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Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in con-
junction with classical processing, constitute a promising architecture for quantum simulations, classical opti-
mization, and machine learning. However, the required VQC depth to demonstrate a quantum advantage over
classical schemes is beyond the reach of available NISQ devices. Supervised learning assisted by an entan-
gled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning
algorithms to tailor multipartite entanglement shared by sensors for solving practically useful data-processing
problems. Here, we report the first experimental demonstration of SLAEN and show an entanglement-enabled
reduction in the error probability for classification of multidimensional radio-frequency signals. Our work paves
a new route for quantum-enhanced data processing and its applications in the NISQ era.

I. INTRODUCTION

The convergence of quantum information science and
machine learning (ML) has endowed radically new capa-
bilities for solving complex physical and data-processing
problems [1–9]. Many existing quantum ML schemes
hinge on large-scale fault-tolerant quantum circuits com-
posed of, e.g., quantum random access memories. At
present, however, the available noisy intermediate-scale
quantum (NISQ) devices [10, 11] hinder these quan-
tum ML schemes to achieve an advantage over classi-
cal ML schemes. Recent developments in hybrid sys-
tems [9, 12] comprising classical processing and varia-
tional quantum circuits (VQCs) open an alternative av-
enue for quantum ML. In this regard, a variety of hy-
brid schemes have been proposed, including quantum ap-
proximate optimization [13], variational quantum eigen-
solvers [14], quantum multi-parameter estimation [15],
and quantum kernel estimators and variational quantum
models [4, 5]. On the experimental front, hybrid schemes
have been implemented to seek the ground state of quan-
tum systems [14, 16], to perform data classification [4],
to unsample a quantum circuit [17], and to solve the
MAXCUT problem [18, 19]. The finite quantum co-
herence time and circuit depths of state-of-the-art NISQ
platforms, however, hold back a near-term quantum ad-
vantage over classical ML schemes. An imperative ob-
jective for quantum ML is to harness NISQ hardware to
benefit practically useful applications [2].

∗ zsz@arizona.edu

II. SUPERVISED LEARNING ASSISTED BY AN
ENTANGLED SENSOR NETWORK

A multitude of data-processing scenarios, such as clas-
sification of images captured by cameras [20], target de-
tection through a phased array [21], and identification of
molecules [22], encompass sensors for data acquisition.
Recent theoretical [23–29] and experimental [30–32] ad-
vances in distributed quantum sensing have unleashed
the potential for a network of entangled sensors to out-
perform classical separable sensors in capturing global
features of an interrogated object. Such a capability en-
dowed by distributed quantum sensing creates an oppor-
tunity to further utilize VQCs to configure the entangled
probe state shared by the sensors to enable a quantum
advantage in data-processing problems.

Supervised learning assisted by an entangled sen-
sor network (SLAEN) [33] is such a hybrid quantum-
classical framework empowered by entangled sensors
configured by a classical support-vector machine (SVM)
for quantum-enhanced high-dimensional data classifica-
tion, as sketched in Fig. 1 (a). SLAEN employs a VQC
parameterized by v to create an entangled probe state ρ̂E
shared by M quantum sensors. The sensing attempt at the
mth sensor is modeled by running the probe state through
a quantum channel, Φ(αm), where the information about
the object is embedded in the parameter αm. A measure-
ment modeled byMm on the output quantum state from
the channel then yields α̃m as the measurement data. To
label the interrogated object, a classical SVM chooses a
hyperplane parameterized byw to separate the measure-
ment data into two classes in an M-dimensional space.
To learn the optimum hyperplane and the configuration
of the VQC that produces the optimum entangled probe
state under a given classification task, the sensors first
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Figure 1. Schematics of SLAEN and classical classifier with sample data sets. (a) In SLAEN, a VQC is configured to generate
an entangled probe state. In classical processing, measurement data are utilized to train a classical SVM, whose hyperplane w is
mapped to the VQC setting v by the VQC parameter optimizer. (b) Classical classifier only uses a classical SVM. (c, d) 2D data
acquired by two sensors, applicable to RF-field direction classification. (e, f) 3D data acquired by three sensors, applicable to RF-
field mean-amplitude classification. Circle/sphere: data point with radius representing standard deviation of estimation uncertainty.
Entangled sensors (c, e) with a clear error-probability reduction over classical separable sensors (d, f).

probe training objects with known labels, and the mea-
surement data and the true labels are used to optimize the
hyperplanew of the SVM. Then, the VQC parameter op-
timizer maps w → v, which in turn configures the VQC
to generate an entangled probe state ρ̂E = Û(v)ρ̂0Û†(v)
that minimizes the measurement noise subject to the cho-
sen hyperplane. As a comparison, Fig. 1 (b) sketches
a conventional classical classifier that solely relies on a
classical SVM trained by the measurement data obtained
by separable sensors to seek the optimum hyperplane
for classification. By virtue of the entanglement-enabled
noise reduction, SLAEN yields a substantially lower er-
ror probability than that achieved by the classical clas-
sifier, which is illustrated and compared in Fig. 1 (c–f)
for two classification problems in, respectively, a two-
dimensional (2D) data space and a three-dimensional
(3D) data space.

III. EXPERIMENT

We demonstrate SLAEN in a quantum optics plat-
form based on continuous-variable (CV) entangle-
ment. The experiment endeavors to classify a fea-
ture embedded in a set of radio-frequency (RF) signals:
{Em(t) = Em cos(ωct + ϕm)}Mm=1, where E ≡ {Em}

M
m=1 and

ϕ ≡ {ϕm}
M
m=1 are, respectively, the RF amplitudes and

phases at the M = 3 sensors, and ωc is the RF carrier fre-
quency. The class label y is determined by a joint func-
tion of amplitudes and phases: y = F(E,ϕ).

The experimental setup is sketched in Fig. 2. An op-
tical parametric amplifier source emits a single-mode

squeezed state represented by the annihilation opera-
tor b̂. To acquire data, a VQC prepares an entangled
probe state, described by {b̂m}

M
m=1, by applying a uni-

tary operation Û(v) on b̂. The VQC setting is en-
tailed in v ≡ {vm, φm}

M
m=1, where vm is the power ra-

tio of the squeezed state sent to the mth sensor, satis-
fying

∑M
m=1 vm = 1, and φm is a phase shift imparted on

the quantum state at the mth sensor. The VQC is com-
posed of two variable beam splitters (VBSs) and three
phase shifters. A VBS comprises two half-wave plates
(H), a quarter-wave plate (Q), a phase modulator (PM),
and a polarizing beam splitter (PBS). The PM controls
the splitting ratio of the VBS and thus determines vm,
while the phase shift φm is controlled by an RF signal de-
lay (see Appendix B for details). At the mth sensor, an
electro-optic modulator (EOM) converts the RF signal
into a displacement αm ∝ Em sinϕm on the phase quadra-
ture p̂m ≡ (b̂m − b̂†m)/2i. Three homodyne detectors then
measure the quadrature displacements, and the measure-
ment data are diverted to a classical processing unit for
training, classification, and VQC setting optimization.

SLAEN consists of a training stage and a utilization
stage. The training stage is aimed at using N training
data points {E(n),ϕ(n), y(n)}Nn=1 supplied to the sensors to
optimize the hyperplane used by the SVM and the entan-
gled probe state. y(n) ∈ {−1,+1} is the true label for the
nth training data point. The training data point leads to
the homodyne measurement data α̃(n) from the sensors.
α̃(n) and y(n) ∈ {−1,+1} are the only information avail-
able to the classical processing unit. For a hyperplane
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Figure 2. Experimental diagram. Squeezed light processed by two variable beam splitters (VBSs), each composed of two half-
wave plates (H), a quarter-wave plate (Q), a phase modulator (PM), and a polarizing beam splitter (PBS), generating a three-partite
entangled probe state. Each sensor comprises an electro-optic modulator (EOM) and a balanced homodyne measurement setup.
Measurement data acquired by an I/O device and processed on a classical computer for training and data classification. During
training, classical processing controls VBSs and EOMs through the I/O device. LO: local oscillator; BS: beam splitter.

specified by
{
w ≡ {wm}

M
m=1, b

}
, we define a cost function

Eλ(w, b) =

N∑
n=1

∣∣∣∣1 − y(n)
(
w · α̃(n) + b

)∣∣∣∣
+

+ λ‖w‖2, (1)

where |x|+ equals x for x ≥ 0 and zero otherwise, ‖ · ‖
is the usual two-norm, and λ‖w‖2 is used to avoid over-
fitting. The w · α̃(n) term represents a weighted aver-
age over the measurement data acquired by different sen-
sors. It is the weighted average that benefits from us-
ing multipartite entanglement to reduce the measurement
noise [31, 33]. Only the support vectors, i.e., points close
to the hyperplane with y(n)

(
w · α̃(n) + b

)
≤ 1, contribute

non-trivially to the cost function. The rationale behind
constructing such a cost function is that errors primar-
ily occur on support vectors in a classification task, thus
accounting for the deviations of all data points from the
hyperplane in the cost function is non-ideal.

To enable efficient minimization of the cost function,
we adopt a stochastic optimization approach in which

the hyperplane and the VQC setting are updated in each
training step consuming a single data point. Suppose
the optimized hyperplane is

{
w(n−1), b(n−1)

}
after (n − 1)

training steps. Prior to updating the hyperplane in the
nth training step, the inferred label is derived by ỹ(n) =

sign
(
w(n−1) · α̃(n) + b(n−1)

)
. Using a simultaneous pertur-

bation stochastic approximation (SPSA) algorithm, the
hyperplane is updated to

{
w(n), b(n)

}
(see Appendix A for

algorithm details). Once an updated hyperplane is found,
the VQC optimizer performs the mapping w(n) → v(n)

to configure the VQC so that its generated entangled
probe state minimizes the measurement noise subject to
the current hyperplane. Specifically, one desires that the
virtual mode b̂v ≡

∑M
m=1 w(n)

m b̂m, whose phase-quadrature
measurement outcome constitutes the w(n) · α̃(n+1) term
in ỹ(n+1), is identical to the original squeezed-light mode
b̂ so that the overall uncertainty in labeling is minimized.

This is accomplished by setting
√

v(n)
m exp

(
iφ(n)

m

)
= w(n)

m
in the VQC parameter optimizer. Physically, this is the
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noise-reduction mechanism, stemming from the quan-
tum correlations between the measurement noise at dif-
ferent sensors, that gives rise to SLAEN’s quantum ad-
vantage over the classical classifier in which the mea-
surement noise at different sensors is independently sub-
ject to the standard quantum limit. After N training steps,
the cost function is near its minimum with the hyperplane{
w?, b?

}
≡

{
w(N), b(N)

}
, and the VQC setting v? ≡ v(N).

Then, in the utilization stage, SLAEN configures the
VQC using v? and classifies the measurement data α̃
with an unknown label using the optimized hyperplane
w?:

ỹ = sign
(
w? · α̃ + b?

)
. (2)

SLAEN is a versatile framework capable of tailor-
ing the entangled probe state and the classical SVM
to enhance the performance of multidimensional data-
classification tasks. In our experiment, SLAEN first
copes with 2D data acquired by two entangled sen-
sors, as illustrated in Fig. 1 (c). As an example
and useful application for 2D data classification, we
demonstrate the classification of the incident direction
of an emulated RF field. To this end, the train-
ing commences with an initial hyperplane specified by{
w(0) =

(√
0.50,

√
0.50

)
, b(0) = 0.70

}
, which is mapped

to an initial VQC setting v0 = {0.50, 0.50, 0, 0, 0, 0}.
The training stage comprises 200 steps each using a
training data point with randomly generated RF-field
phases and an associated label {ϕ(n), y(n)}200

n=1, while the
RF-field amplitudes are fixed equal at all sensors. Ap-
plying the training data ϕ(n) on the EOMs at the two sen-
sors leads to quadrature displacementsα(n) = {α(n)

1 , α(n)
2 },

whose each component is chosen to follow a uniform
distribution in [−4, 4] (in the shot-noise unit). The
signal-to-noise ratio of the data set is tuned by exclud-
ing the data points within a margin of ε from the hy-
perplane while the total number of training data points
is fixed at 200. In doing so, the signal-to-noise ra-
tio is raised as ε increases. The true labels for the
RF-field directions is derived by the RF-phase gradi-
ent: y(n) = sign

(
ϕ(n)

1 − ϕ
(n)
2

)
= sign

(
wt ·α

(n)
)
, where{

wt =
(√

1/2,−
√

1/2
)
, bt = 0

}
parameterize the true hy-

perplane. The true labels are disclosed while {wt, bt} and
α(n) are kept unknown to SLAEN. The optimization for
the SVM hyperplane and the VQC setting then follows.

As a performance benchmark, we train the classi-
cal classifier, using the identical training data in train-
ing SLAEN, to undertake the 2D data-classification task.
Unlike SLAEN, the classical classifier uses a separable
probe state ρ̂S to acquire the measurement data, which
are then used to train the classical SVM to seek a hyper-
plane that minimizes the classification error probability.

In the experiment, the squeezed-light source is turned
off while applying the same training data as those used
for SLAEN, thereby ensuring an equitable performance
comparison. The initial hyperplane prior to the training
is randomly picked as

{
w(0) = (0.67, 0.74), b(0) = 0.39

}
.

In the absence of entanglement-enabled noise reduction,
a higher error probability is anticipated for the classical
classifier, as illustrated in Fig. 1 (d).

The effectiveness of the training for SLAEN and the
classical classifier is demonstrated by the converging
error probabilities measured at different training steps,
as plotted in Fig. 3 (a). The inset describes the VQC
parameters being optimized. The convergence of the
error probabilities beyond 100 training steps indicates
that near-optimum settings for the hyperplanes and the
VQC have been found. With such optimized parameters,
SLAEN is able to generate an entangled probe state that
minimizes the measurement noise, as illustrated in Fig. 1
(c) and compared to Fig. 1 (d) for the case of the classi-
cal classifier by a set of sample data points represented
by the circles, whose radii correspond to the standard de-
viation of estimation uncertainty.

SLAEN and the classical classifier are next trained to
tackle 3D data-classification problems. As an example,
we demonstrate the classification of the sign for the RF-
field mean amplitude across three sensors. The training
in either scenario uses 390 data points {E(n), y(n)}390

n=1 with
randomly generated RF-field amplitudes, while the RF
phases are fixed at ϕ(n) = 0. The true labels are then
given by y(n) = sign

(∑3
m=1 E(n)

m

)
= sign

(
wt ·α

(n)
)
, where{

wt =
(√

1/3,
√

1/3,
√

1/3
)
, bt = 0

}
specify the true hy-

perplane, which unknown to SLAEN and the classical
classifier. The error probabilities during training for both
scenarios are plotted in Fig. 3 (d), with its inset describ-
ing the VQC parameters being optimized. The error
probabilities converge after 250 training steps, indicating
that near-optimum settings for the hyperplanes and the
VQC have been found. Once both are trained, SLAEN
shows a clear error-probability advantage over that of the
classical classifier, as observed in Fig. 3 (d) and intu-
itively illustrated in Fig. 1 (e) and (f).

The trajectories of the evolving hyperplane
{
w(n), b(n)

}
during training are plotted in Fig. 3 (b, c) for 2D data
classification and (e, f) for 3D data classification. The
hexagrams entail the optimum hyperplane parameters.
The hyperplane parameters approach the optimum with
a decreasing error probability during training, as antici-
pated. Notably, the optimized hyperplanes obtained by
SLAEN are considerably closer to the true hyperplanes,
i.e., the optimum solutions, than those attained by the
classical classifier thanks to SLAEN’s reduced measure-
ment noise. To further investigate SLAEN’s improved
accuracy to problem solutions, we randomly generate 50
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Figure 3. Experimental results for training SLAEN and classical classifier. Convergence of error probabilities during training for
2D data classification (a) and 3D data classification (d). Blue curves: SLAEN. Red curves: classical classifier. Horizontal dashed
lines: expected error probabilities based on true hyperplanes and measurement-noise levels. Error bars: one standard deviation of
uncertainty derived from five measurements each with 1000 data points. Insets: VQC parameters being optimized. VBS: variable
beam splitter. History of hyperplane

{(
w(n)

1 ,w(n)
2

)
, b(n)

}
during training for 2D data classification (b, c) and 3D data classification (e,

f). (b, e) SLAEN; (c, f) classical classifier. Red squares: initial hyperplane parameters prior to training; blue triangles: hyperplane
parameters after training; hexagrams: optimum hyperplane parameters. Color gradients: evolution of error probabilities during
training. Green circles: samples of hyperplane parameters at every 20 (30) training steps for 2D (3D) data classification. Curves are
obtained from a cubic spline data fitting. Simulated distributions of hyperplane parameters prior to training (g), at Step 100 (h), and
at Step 390 (i). Blue filled circles: SLAEN hyperplanes; red filled circles: classical-classifier hyperplanes; hexagrams: optimum
hyperplanes. Open circles: projected hyperplane parameters onto (w1,w2) plane (grey). SLAEN’s optimized hyperplanes distribute
statistically closer to optimum solutions.

sets of initial hyperplanes for SLAEN and the classical
classifier and plot in Fig. 3 (g–i) the simulated distri-
butions of the hyperplanes at different steps of training
for 3D data classification. The simulation shows that
SLAEN’s optimized hyperplanes (red circles) have a dis-
tance of dS = 0.135 ± 0.056 to the true hyperplane, i.e.,
the optimum solutions (hexagrams), as compared to a
distance of dC = 0.167 ± 0.073 for the optimized hy-
perplanes attained by the classical classifier (red circles)
(see Appendix C for simulation results and comparison

with experiment).
To investigate the performance of SLAEN and the

classical classifier with respect to the signal-to-noise ra-
tio of the data, the error probabilities, under the opti-
mum settings for the VQC and the classical SVMs in the
2D data-classification problem, are measured as the mar-
gin ε varies in {0.2, 0.4, 0.6, 0.8, 1}. The results plotted
in Fig. 4 show that SLAEN enjoys an error-probability
scaling advantage over that of the classical classifier, as
manifested in the disparity between the slopes for the two
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error-probability curves. At ε = 1, SLAEN’s error prob-
ability is more than three-fold less than that of the classi-
cal classifier.

IV. DISCUSSIONS

The SLAEN theory paper [33] reported an error-
probability advantage achieved by an entangled sensor
network over that of a sensor network based on separa-
ble squeezed states with the same total number of pho-
tons, which is verified by the current SLAEN experiment
(see Appendix D for details). However, SLAEN’s per-
formance has been primarily benchmarked against clas-
sical classifiers that do not use any quantum resources
(see Ref. [34] for an in-depth discussion about different
types of resources used in distributed quantum sensing).
Such a choice is motivated by two main considerations.
First, the compared classical classifier represents a com-
mon configuration for sensing and data processing. In-
troducing quantum resources yields a performance en-
hancement over the existing classical schemes. In the
SLAEN experiment, the power of the coherent-state por-
tion is orders of magnitude stronger than that of either
the squeezed or the entangled light, similar to the case
in squeezed-light-enhanced Laser Interferometer Gravi-
tational Wave Observatory (LIGO) [35]. In both cases,
the squeezed-light power is limited due to experimental
capabilities, so it barely affects the total optical power
employed in sensing. As such, like LIGO, we choose

to quantify the quantum advantage as the performance
gain over the classical system using the same amount of
laser power but taking no advantage of any quantum re-
sources. Second, a complete experimental demonstra-
tion of supervised learning based on separable squeezed
states requires three independent squeezed-light sources,
which places significantly more resource overhead than
SLAEN’s single squeezed-light source. Hence, SLAEN
also enjoys a practical advantage over classical classi-
fiers based on separable squeezed states. It is worth not-
ing that such a practical advantage would be more pro-
nounced when sensors are nearby so that the entangle-
ment distribution loss is low.

Our experiment has implemented an entanglement
source trained by supervised learning. The original
SLAEN proposal [33], however, also entails reconfig-
urable measurements. Since homodyne measurements
commute with a linear quantum circuit, SLAEN’s perfor-
mance under three homodyne detectors equals that ob-
tained by the variational measurement apparatus consid-
ered by Ref. [33]. The current SLAEN protocol only
leverages Gaussian sources and measurements, but non-
Gaussian resources would potentially improve its per-
formance. Indeed, non-Gaussian measurements have
been shown to benefit quantum metrology [36], quan-
tum illumination [37], and entanglement-assisted com-
munication [38]. A variational circuit approach for non-
Gaussian entanglement generation and measurements
would open a promising route to further enhance the per-
formance.

V. CONCLUSIONS

In conclusion, we have experimentally demonstrated
the SLAEN framework for quantum-enhanced data clas-
sification. Our work opens a new route for exploit-
ing NISQ hardware to enhance the performance of real-
world data-processing tasks. Our current experiment ver-
ified SLAEN’s quantum advantage in classifying fea-
tures embedded in RF signals, but SLAEN by itself is
a general framework applicable to data-processing prob-
lems in other physical domains by appropriately engi-
neering entangled probe states and quantum transduc-
ers. The present experiment only demonstrated data
classification with linear hyperplanes. To accommodate
nonlinear hyperplanes, non-Gaussian entangled probe
states [39] and joint quantum measurements [40] would
be needed, and the VQC parameter optimizer would
also need to be trained to conduct an effective map-
ping from the SVM hyperplane to the VQC parame-
ters. With these developments, we envisage that SLAEN
would create new near-term opportunities in a variety of
realms including distributed big-data processing, naviga-
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tion, chemical sensing, and biological imaging.
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Appendix A: OPTIMIZATION ALGORITHM

The simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm is used by the classical support-
vector machine (SVM) to update the hyperplane in each
training step. The SPSA algorithm calculates an approxi-
mation of the gradient with only two measurements,w+

and w−, of the loss function. This simplicity leads to a
significant complexity reduction in the cost optimization.
See Algorithm 1 for details.

In the algorithm, d is the dimension of the data set. d =

2 for classification problems in a 2D data space, while
d = 3 for classification problems in a 3D data space. The
choices of a, c, A, and γ determine the gain sequences
ak and ck, which in turn set the learning rates and have a
significant impact on the performance of the SPSA algo-
rithm. The parameters used by the classical SVM in our
experiment are: a = 1, c = 1, A = 200, α = 0.602, and
γ = 0.1.

The SPSA algorithm calls a loss function that is in line
with the form of the cost function (Eq. (1) of the main
text) but allows for an iterative optimization, as defined
below:

loss(w, b) =
∣∣∣∣1 − y(n)

(
w · α̃(n) + b

)∣∣∣∣
+

+ λ‖w‖2, (A1)

Appendix B: EXPERIMENTAL DETAILS

1. Experimental setup

A detailed experimental setup is shown in Fig. 5.
Squeezed light at 1550 nm is generated from an opti-
cal parametric amplifier (OPA) cavity where a type-0
periodically-poled KTiOPO4 (PPKTP) crystal is pumped
by light at 775 nm produced from a second harmonic

Algorithm 1: The simultaneous perturbation
stochastic approximation (SPSA) [41]

Initialization a;c;A;α;γ;d;N; w(0); b(0)

for n=1:N do
an = a/(n + A)α

cn = c/nγ

∆w = 2 ∗ round(rand(d, 1)) − 1
w+ = w(n−1) + cn ∗∆w
w− = w(n−1) − cn ∗∆w
∆b = 2 ∗ round(rand(1, 1)) − 1
b+ = b(n−1) + cn ∗∆b
b− = b(n−1) − cn ∗∆b
l+ = loss(w+, b+)
l− = loss(w−, b−)
gw = (l+ − l−)/(2 ∗ cn ∗∆w)
w(n) = w(n−1) − an ∗ gw
gb = (l+ − l−)/(2 ∗ cn ∗∆b)
b(n) = b(n−1) − an ∗ gb

end

generation (SHG) cavity. The cavities are locked by the
Pound-Drever-Hall technique using 24-MHz sidebands
created by phase modulating the 1550-nm pump light
prior to the SHG. A small portion of light at 1550 nm
modulated at 20 MHz is injected into the OPA cavity and
phase locked to the pump light to operate in a paramet-
ric amplification regime. In doing so, the squeezed light
emitted from the OPA cavity is composed of an effective
single-mode squeezed vacuum state residing in the 11-
MHz sidebands and a displaced phase squeezed state at
the central spectral mode. Due to the large quadrature
displacement at the central spectral mode, it can be well
approximated by a classical coherent state. More details
about the characterization of our squeezed-light source
are enclosed in Supplemental Material of Ref. [31].

The squeezed light is directed to a variational quan-
tum circuit (VQC) composed of two variable beam split-
ters (VBSs) and three phase shifters, parameterized by
v ≡ {v1, v2, v3, φ1, φ2, φ3}. Here, vm is the portion of the
power diverted to the mth sensor, satisfying

∑3
m=1 vm = 1.

φm is the phase shift on the quantum state at the mth sen-
sor. Each VBS comprises a first half waveplate, a quarter
waveplate, a phase modulator (PM), a second half wave-
plate, and a polarizing beam splitter. The power split-
ting ratio is controlled by applying a DC voltage gener-
ated from a computer-controlled data acquisition board
(NI PCI 6115). The DC voltage is further amplified by a
high-voltage amplifier (Thorlabs HVA 200) with a gain
of 20 prior to being applied on the PM. The power por-
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tions are determined by:

v1 =
1
2

(
sin

(
Es1

Vπ
π

)
+ 1

)
v2 = 1 − v1 − v3 (B1)

v3 =
1
2

(
sin

(
Es2

Vπ
π

)
+ 1

)
(1 − v1)

where Es1 , Es2 are DC voltages applied on PM 1 and PM
2.

After the VBSs, the three-mode entangled probe state,
represented by the annihilation operators {b̂1, b̂2, b̂3}, is
diverted to three RF-photonic sensors, each equipped
with an EOM driven by an RF signal at a 11-MHz car-
rier frequency. Due to the phase modulation, a small por-
tion of the coherent state at the central spectral mode is
transferred to the 11-MHz sidebands, inducing a phase
quadrature displacement. The quadrature displacement
at each RF-photonic sensor is equal to [31]

〈b̂m〉 = αm ' i
√

2πgmacm

γEm

2Vπ
sin (ϕm) , (B2)

where gm = ±1 is set by an RF signal delay that con-
trols the sign of the displacement. Choosing gm = −1 is
equivalent to introducing a π-phase shift on the quantum
state at the mth sensor [31], i.e., setting φm = π in the
VQC parameters. In Eq. (B2), acm is the amplitude of the
baseband coherent state at the mth sensor. Specifically,
acm =

√
vmβ, where β is the amplitude of the baseband

coherent state at the squeezed-light source. Vπ is the half-

wave voltage of the EOM, and γ describes the conversion
from an external electric field Em to the internal voltage.
A more detailed theoretical model for the setup was pre-
sented in Ref. [31].

Subsequently, phase-quadrature displacements carried
on the quantum light at the three sensors are measured
in three balanced homodyne detectors. At each homo-
dyne detector, the quantum light and the local oscilla-
tor (LO) first interfere on a 50/50 beam splitter with a
characterized interference visibility of 97%, and then de-
tected by two photodiodes, each with a ∼88% quantum
efficiency. The difference photocurrent is amplified by
an transimpedance amplifier with a gain of 20×103 V/A.
The DC component of the output voltage signal locks
the phase between the LO and the quantum light. The
11-MHz AC component of the voltage signal is demodu-
lated by an electronic mixer, filtered by a 240-kHz low
pass filter, and then amplified by a low-noise voltage
preamplifier (Stanford Research Systems SR560). The
data are acquired by a multifunction I/O device (NI USB-
6363) and further processed by a desktop computer in
real time. Summing up the measurement data from the
three sensors appropriately by

∑
m
√

vm exp (iφm)α̃m en-
ables the maximal noise reduction, which is equivalent to
the noise of the squeezed quadrature of the single-mode
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squeezed state b̂ at the source [31]:

var(b̂) =var

 M∑
m

√
vm exp (iφm) b̂m


=

1
4

 η(√
Ns +

√
Ns + 1

)2 + (1 − η)

 , (B3)

where η is the quantum efficiency at each sensor and Ns
is the total photon number of the single-mode squeezed
light at the source. In our experiment, η ∼ 53% and Ns '

3.3. In comparing the summation in Eq. (B3) with that
in Eq. (1), it becomes clear that choosing the mapping
from the hyperplane parameter w to the VQC setting v
to be wm =

√
vm exp (iφm) minimizes the measurement

noise. In the current setup, we measured a 2.9 (3.2) dB
noise reduction with the three- (two-) mode entangled
state. The characterization of our sensor networks has
been reported in Ref. [31].

2. Calibration

a. Calibration of variational quantum circuit

To ensure accurate configuration of the VQC, we first
calibrate the power splitting ratio of both VBSs. In cali-
brating VBS 1, we scan the voltage Es1 applied on PM 1
and measure the transmitted optical power, as plotted in
Fig. 6 (a). The data are fitted to a sinusoidal function in
Eq. (B1), which derives Vπ = 606 V for PM 1. An iden-
tical calibration procedure is applied on VBS 2, obtain
Vπ = 606 V for PM 2.

We then measure the quadrature displacements under
different VBS splitting ratios, as a means to test the lock-
ing stability between the quantum signal and the LO.
To do so, while the quantum signal and LO are phase
locked, the VBS transmissivity is randomly set to one
of 17 values at 30 Hz, subject to the limited bandwidth
of the control system. 100 homodyne measurements of
quadrature displacement are taken at each transmissivity
at a 500 kHz sampling rate. The fitted data are plotted in
Fig. 6 (b), showing excellent signal stability and agree-
ment with theory in Eq. (B1). The value of the extrap-
olated Vπ is around 612 V, in good agreement with the
specification of the EOM. The tunable range for the VBS
transmissivity is between 0.07 and 0.93, limited by the
maximum output voltage of the high-voltage amplifier
(±200 V). VBS 2 is calibrated in an identical way, deriv-
ing a Vπ consistent with that of VBS 1. During training,
the transmissivity of the VBS is restricted within 0.125 to
0.875 to ensure sufficient light power for phase locking
between the quantum signal and the LO.

b. Calibration of RF-photonic transduction

The training data of RF-field direction (mean-
amplitude) classification are prepared by applying phase
(amplitude) modulation on the RF-signals. Modulations
on RF signals are converted to different quadrature dis-
placements by three EOMs. To ensure linearity in the
transduction from the amplitude and phase of the RF
signals to quadrature displacements, we calibrate the
quadrature displacements at each sensor with respect to
the modulation voltages that determine the amplitude and
phase for the RF signals applied on the EOMs. In the
calibration of phase modulation at Sensor 1 shown in
Fig. 7 (a), as we sweep the modulation voltage on the
function generator for the RF signal from -0.5 V to 0.5
V with an increment of 0.1 V, 100 homodyne measure-
ments of the quadrature displacement are recorded for
each modulation voltage at a 500 kHz sampling rate. The
distribution of the experimental data on the vertical axis
at a given modulation voltage arises from the quantum
measurement noise. The fit shows an excellent linear de-
pendence of quadrature displacement vs the modulation
voltage. To calibrate the amplitude modulation on the
RF signal, we first set the modulation depth to 120% to
allow for a sign flip on RF signal to enable both positive
and negative quadrature displacements. We then take 100
homodyne measurements at each modulation voltage at a
500 kHz sampling rate. The experimental data and fit are
plotted in Fig. 7 (b), showing excellent linear dependence
of the measured quadrature displacement with respect to
the amplitude of the RF signal. The other two EOMs are
calibrated in the same way.

3. Implementation of data classification

a. Training stage for SLAEN

The training stage consists of N steps using randomly
produced training data

{
E(n),ϕ(n), y(n)

}N

n=1
. In the nth

training data point, E(n) ≡
{
E(n)

m

}M

m=1
and ϕ(n) ≡

{
ϕ(n)

m

}M

m=1
entail, respectively, the probed RF-field amplitudes and
phases at the M = 2 or M = 3 sensors, and y(n) ∈

{−1,+1} is the true label, which can be derived using the
true hyperplane {wt, bt} for the data-classification prob-
lem in hand. Each sensor then converts the probed RF
field into an internal voltage signal, which in turn drives
the EOM to induce a quadrature displacement on the
quantum signal

α(n)
m ' i

√
2πg(n)

m a(n)
cm

γE(n)
m

2Vπ
sin

(
ϕ(n)

m

)
, (B4)
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Figure 6. Calibration of the variable beam splitter. (a) Light power delivered to Sensor 1 from VBS 1 (blue crosses) with respect to
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represent the standard deviations of the measurement results, which are determined by the shot-noise level. SNU: shot-noise unit.
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which is similar to Eq. (B2).
A technicality associated with the quadrature displace-

ment at the mth sensor is that it depends on both E(n)
m

and the amplitude of the baseband coherent light, a(n)
cm =√

v(n)
m β, as shown by Eq. (B4) (see also Ref. [31] for a

more detailed description). Our experiment focuses on
demonstrating the principle of SLAEN, so, without loss
of generality, displacement’s dependence on the base-
band light is eliminated by scaling γ by a factor of

1/
√

v(n)
m such that the amount of induced displacement
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is solely determined by the training data. In our exper-
iment, this is accomplished by applying an extra ampli-

tude modulation that introduces a gain of 1/
√

v(n)
m on the

RF signal before it goes to the EOM.
We properly choose γ such that the training data

point {E(n),ϕ(n), y(n)} leads to random quadrature dis-
placements α(n) at the involved sensors with each dis-
placement value initially following a uniform distribu-
tion within [−4, 4] in the shot-noise unit. The signal-to-
noise ratio of the training data set is tuned by excluding
points within a margin of ε to the hyperplane. In doing
so, the signal-to-noise ratio is raised with an increased ε.
In the training experiments, ε = 0.6 is chosen, compara-
ble to one shot-noise unit.

In the 3D data-classification experiment, amplitude
modulations on the RF signals from three function gen-
erators prepare the training data. Two DC voltages pro-
duced by a multifunction I/O device (NI PCI-6115) are
used to configure the two VBSs in the VQC. In the
2D data-classification experiment, phase modulations on
the RF signals from two function generators prepare the
training data, and one DC voltage generated by the same
multifunction I/O device is used to configure VBS 1.

The flowchart of the training process is sketched in
Fig. 8. The training starts with an initial hyperplane{
w(0), b(0)

}
and its corresponding VQC setting v(0). Here,

b(0) is a number stored in the classical SVM algorithm
and will be updated during training.

The measurement data at each sensor are collected
by a multifunction I/O device (NI USB-6363) operat-
ing in an on-demand mode and are then transmitted to
a desktop computer on which the classical SVM algo-
rithm runs. In the nth training step, the measurement
data α̃(n) from all sensors, the true label y(n) and the cur-
rent hyperplane

{
w(n−1), b(n−1)

}
are fed to the SPSA algo-

rithm, which then updates the hyperplane to
{
w(n), b(n)

}
,

as elaborated in Appendix A. The VQC setting is sub-
sequently updated to v(n). The next training step starts
with adjusting the power splitting ratios of the VBSs by
applying two voltages on the PMs based on Eq. (B1) and
the calibrated Vπ. The new training data are then applied
through the EOMs.

During training, a phase shift ϕ(n)
m = π needs to be

applied to the quantum state b̂m when sign(w(n)
m ) = −1.

Experimentally, this is done by flipping the sign of the
emulated RF-signal amplitude. If the sign of the initial
hyperplane, sign(w(0)

m ), is different from that of true hy-
perplane, w(n)

m will move across zero, which will cause
zero optical power being delivered to the mth sensor such
that the phase locking between the quantum signal and
the LO breaks down. To avoid this, we restrict the mini-
mum powter splitting ratio to min

(
v(n)

m

)
= 0.125, so that

Sensing attempts

Configure 
VQC

Update SVM parameters 
using SPSA

Initial SVM 
parameters

Preparing RF field by 
AM/PM

Data collection

Preset # of training 
steps met?

Trained 
VQC

Yes

No

Training 
Data

Figure 8. Flowchart of the training process for SLAEN. VQC:
variational quantum circuit; SPSA: simultaneous perturbation
stochastic approximation.

a sign flip on w(n)
m will be applied whenever v(n)

m hits this
boundary. The training iterates 200 steps for the 2D data-
classification experiment and 390 steps for the 3D data-
classification experiment. The loss function converges to
its minimum with the hyperplane

{
w?, b?

}
when training

completes.

b. Utilization stage for SLAEN

In the utilization stage, SLAEN performs data clas-
sification on new measurement data α̃(n), each with an
unknown label. The new data follow the same statistical
distribution as the training data. To verify the conver-
gence in the training process, we first measure the error
probabilities at different training steps with the hyper-
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plane
{
w(k), b(k)

}
, where k ∈ {0, 20, 40, ..., 160, 180, 200}

in the 2D data-classification experiment and k ∈

{0, 30, 60, ..., 330, 360, 390} in the 3D data-classification
experiment. The classical SVM is set to use the hyper-
plane

{
w(k), b(k)

}
, and the VQC is configured by the cor-

responding setting v(k). For each error-probability mea-
surement, 1000 testing data points are applied on the
EOMs at a 500-kHz rate by a multifunction I/O device
(NI USB-6363), and the measurement data α̃(n) are syn-
chronously recorded by the same device. A decision is
made based on

ỹ(n) = sign
(
w(k) · α̃(n) + b(k)

)
. (B5)

We then estimate the error probability via PE =∑N=1000
n=1 |(ỹ(n) − y(n))|/N.
To verify the scaling of error probability with respect

to the signal-to-noise ratio of the data set, the hyperplane
parameters and the VQC setting are configured to{
w?, b?

}
and v?. The error probabilities for the 2D

example are measured using data sets with margins
ε ∈ {0.2, 0.4, 0.6, 0.8, 1}.

c. Training and utilization stages for classical classifier

The measurement noise at different sensors in the clas-
sical classifier is independent. As such, the classical clas-
sifier can solely be trained in post processing carried out
by the classical SVM. To perform a direct performance
comparison, the training data sets for SLAEN are used to
train the classical classifier. The hyperplane

{
w(n), b(n)

}
is

updated in each training step. The error probabilities at
different training steps are measured to validate the con-
vergence. As a comparison, the scaling of the error prob-
abilities for the classical classifier in the 2D example is
also measured using the same testing data sets as SLAEN
employs.

4. Experiment for general 3D data classification

To show that SLAEN can be trained to tackle general
data-classification problems, we randomly choose a true
hyperplane and experimentally train SLAEN and the
classical classifier to the undertake the classification
task. In the experiment, the initial hyperplane is ran-
domly set to {w0 = (0.60, 0.566, 0.566), b0 = 0.45},
and the picked true hyperplane is
{wt = (0.8165, 0.4082, 0.4082), bt = 0}. A training
data point is supplied to SLAEN at each of the 390
steps, during which the evolving hyperplane param-

eters are recorded. As anticipated, the experimental
result depicted in Fig. 9 (a) shows that the hyperplane
parameters move toward the optimum during training,
indicating SLAEN’s capability of solving general
data-classification problems as long as training data
are provided. As a comparison, we train the classical
classifier over 390 steps with the same training data set
used for SLAEN. The evolving hyperplane parameters
during training is plotted in Fig. 9 (b), showing that the
classical classifier can also shift the hyperplane toward
the optimum.

With the experimentally measured hyperplane param-
eters during training, the error probabilities for SLAEN
and the classical classifier are derived and plotted in
Fig. 9 (c). SLAEN possesses a clear error-probability
advantage over the classical classifier. Specifically, the
error probability of SLAEN is two-fold less than that of
the classical classifier when both are trained.

Appendix C: SIMULATIONS

We have performed Monte Carlo simulations for the
training processes of SLAEN and the classical classifier
on a classical computer, as a means to verify the qualita-
tive behaviors of the evolving hyperplane parameters and
error probabilities during the training experiments. Note
that such a training simulation is merely a testing tool
and cannot replace the physical training of SLAEN or
the classical classifier in their practical applications be-
cause the original data {E(n),ϕ(n)} probed by the sensors
are in general unavailable.

1. Simulation for two-dimensional data classification

The simulation of the training for 2D data classifi-
cation undergoes 200 steps, each of which consumes a
randomly generated data point. The measurement noise
for SLAEN and the classifier is also randomly gener-
ated, with the correlation between the measurement noise
at SLAEN’s different sensors accounted for. To facili-
tate the comparison between the experimental data and
the simulation results, Fig. 3 (a–c) in the main text is
replicated as Fig. 10 (a–c) here. Fig. 10 (d) depicts the
simulated convergence of error probabilities for SLAEN
(blue) and the classical classifier (red). In addition, we
simulate the evolving hyperplane {w(n)

1 ,w(n)
2 , b(n)} during

training and plot the results for SLAEN in Fig. 10 (e)
and for the classical classifier in Fig. 10 (f). In com-
paring the top and middle panels of Fig. 10, excellent
qualitative agreement between the experimental data and
simulation results is found. Note that since the experi-
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mental and simulated measurement results are random,
and the SPSA algorithm is stochastic, we only expect a
qualitative agreement.

The simulation, in analogy to the experiment, shows
that SLAEN’s optimized hyperplane (blue triangle) re-
sides closer to the optimum hyperplane (hexagram) than
the classical classifier’s optimized hyperplane. To in-
vestigate whether this is a universal feature for SLAEN,
we performed 200 training simulations for both SLAEN
and the classical classifier. The initial hyperplane for
each training simulation is randomly drawn and is de-
fined as random variables {W (0)

S , B(0)
S } for SLAEN and

{W (0)
C , B(0)

C } for the classical classifier. Fig. 10 (g) plots
the distributions for 50 initial hyperplane parameters
in filled circles for both SLAEN (blue) and the classi-
cal classifier (red) prior to training. The optimum hy-
perplane {wt, bt} is represented by the hexagram. The
open circles are the projected hyperplane parameters
onto the (w1,w2) plane in grey. After 50 training steps,
the distributions of the hyperplane {W (50)

S , B(50)
S } and

{W (50)
C , B(50)

C } are drawn in Fig. 10 (h), showing that
the hyperplane parameters are migrating toward the op-
timum. The distributions of the hyperplane parame-
ters after 200 training steps are depicted in Fig. 10 (i),
which shows, qualitatively, that SLAEN’s optimized hy-
perplanes (blue circles) are almost enclosed by the classi-
cal classifier’s optimized hyperplanes (red circles). This
is an evidence for SLAEN’s enhanced accuracy in seek-
ing the optimum solutions.

To conduct a more quantitative assessment on the con-
vergent behaviors for the hyperplane parameters, we de-
fine the distance between SLAEN’s hyperplanes and the

optimum hyperplane after n training steps as

d(n)
S ≡

〈√(
W (n)

S −wt

)2
+

(
B(n)

S − bt

)2
〉
. (C1)

The standard deviation of the distance is then defined as

∆d(n)
S ≡

√√√〈
√(
W (n)

S −wt

)2
+

(
B(n)

S − bt

)2
− d(n)

S

2〉
.

(C2)
Likewise, the distance between the classical classifier’s
hyperplanes and the optimum hyperplane is defined as

d(n)
C ≡

〈√(
W (n)

C −wt

)2
+

(
B(n)

C − bt

)2
〉
. (C3)

The standard deviation for the classical classifier’s dis-
tance is then defined as

∆d(n)
C ≡

√√√〈
√(
W (n)

C −wt

)2
+

(
B(n)

C − bt

)2
− d(n)

C

2〉
.

(C4)

The distances at different training steps are plotted in
Fig. 11 for SLAEN’s hyperplanes (red) and the clas-
sical classifier’s hyperplanes (blue). The distance for
SLAEN’s hyperplanes after 200 training steps is d(200)

S =

0.129 ± 0.07, as compared to the classical classifier’s
d(200)

C = 0.154 ± 0.073. The disparity between the dis-
tances at the end of training is highlighted via a zoom-
in view between Step 150 and Step 200 in the inset of
Fig. 11.
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Figure 10. Comparison between experimental data and simulations in training for 2D data classification. (a, d) convergence of the
error probabilities during training. Red curve: classical classifier; Blue curve: SLAEN. Horizontal dashed lines: expected error
probabilities based on true hyperplanes and measurement-noise levels. Error bars represent one standard deviation of the uncertainty
derived from five measurements or simulations each with 1000 data points. (b, e) history of hyperplane parameters for SLAEN
during training. (d, f) history of hyperplane parameters for classical classifier. Red squares: initial hyperplane parameters prior to
training; blue triangles: hyperplane parameters after training; magenta hexagrams: true hyperplane parameters, representing the
optimum. Color gradients: evolution of the error probabilities during training. Green circles: samples of hyperplane parameters
at every 20 training steps. Curves obtained by cubic spline data fitting. Simulated distribution of hyperplane parameters prior
to training (g), at Step 50 (h), and at Step 200 (i). Blue filled circles: SLAEN hyperplanes; red filled circles: classical-classifier
hyperplanes; hexagrams: optimum hyperplanes. Open circles: projected hyperplane parameters onto the (w1,w2) face drawn in
grey. SLAEN’s optimized hyperplanes distribute statistically closer to the optimum solutions.

2. Simulation for three-dimensional data classification

We next simulate the training processes of SLAEN
and the classical classifier for 3D data classification. The
training for each case takes 390 steps, identical to the
number of training steps in the experiment. To facilitate
the comparison between experimental data and the sim-
ulation results, the plots in Fig. 3 (d–f) of the main text
are replicated as Fig. 12 (a–c) here. The simulated con-

vergence of error probabilities is plotted in Fig. 12 (d).
Fig. 12 (e) and (f) draw, respectively, the simulated his-
tories of the hyperplane parameters for SLAEN and the
classical classifier during training. The qualitative be-
haviors for the experimental data agree very nicely with
those of the simulation results, thereby supporting the va-
lidity of the experimental approach.

In addition, we conducted a statistical study of the
distances between the hyperplanes and the optimum hy-
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Figure 11. Distance between the true hyperplane and the opti-
mized hyperplanes at different steps under training for 2D data
classification. Solid lines: distance averaged over 200 trajecto-
ries for the hyperplanes parameters each with a randomly gen-
erated initial hyperplane; shaded area: standard deviation of
the distances of 200 trajectories. Inset: zoom-in view of the
distances between training Step 150 and 200. Blue: SLAEN;
red: classical classifier.

perplane during training for 3D data classification. The
distributions of the hyperplane parameters for SLAEN
and the classical classifier are plotted in Fig. 3 (g–i) of
the main text for, respectively, the initial hyperplanes,
the hyperplanes after 100 training steps, and the hy-
perplanes when training completes. It can be visu-
ally observed that SLAEN’s optimized hyperplanes lo-
cate closer to the optimum hyperplane than the classi-
cal classifier’s optimized hyperplanes. As a quantita-
tive analysis, the distances vs. training step curves for
SLAEN and the classical classifier are plotted in Fig. 13.
Akin to Fig. 11, SLAEN enables a reduced distance be-
tween its optimized hyperplanes and the optimum hy-
perplane. This is a consequence of the entanglement-
enabled measurement-noise reduction mechanism that
SLAEN harnesses. The inset of Fig. 13 is a zoom-in
view of the distances for SLAEN and the classical clas-
sifier near the end of training. After 390 training steps,
we define SLAEN’s optimized distance as dS ≡ d(390)

S =

0.135±0.056 and the classical classifier’s optimized dis-
tance as dC ≡ d(390)

C = 0.167± 0.073. Both dS and dC are
reported in the main text.

Appendix D: DATA CLASSIFICATION USING
SEPARABLE SQUEEZED STATES

The original SLAEN theory paper [33] showed that
the performance of data processing tasks undertaken by

an entangled sensor network is superior to that of a sen-
sor network based on separable squeezed states that have
the same total photon number as the entangled state. In
this Section, we show, in simulation and by experimental
data, that our SLAEN experiment achieves an advantage
over a sensor network based on separable squeezed states
in data-classification tasks, subject to a photon-number
constraint. Specifically, our simulation shows that data
classification based on separable squeezed states has a
larger error probability than that of our SLAEN exper-
iment. We also experimentally show that the quantum
noise of a sensor network with separable squeezed states
is higher than that of SLAEN, thereby supporting the
SLAEN’s claimed advantage over supervised learning
based on separable squeezed states. Finally, we present
the motivation behind the main text’s focus on a perfor-
mance comparison between SLAEN and classical classi-
fiers based on coherent states.

1. Simulation for 3D data classification using separable
squeezed states

We simulate the training process of average RF-
field amplitude classification undertaken by a three-
node sensor network based on separable squeezed
states. The total photon number of the separable
squeezed states is set to be the same as that of
the entangled states in the SLAEN experiment. The
evolution and convergence of the error probabilities
during the training process are plotted in Fig. 14.
In the simulation, the initial hyperplane is set to
{w0 = (0.9044, 0.3152, 0.2876), b0 = 0.53}, identical to
that of the training in the SLAEN experiment. As a com-
parison, we experimentally measure the error-probability
evolution in SLAEN by taking ten more measurements
based on the same experimental setting as what is used
to produce Fig. 12a. Our SLAEN experiment shows an
error probability advantage of ∼ 13% over that of a simu-
lated sensor network based on separable squeezed states.

2. Experimental noise calibrations

A complete demonstration of a three-node sensor net-
work with separable squeezed states requires three inde-
pendent squeezed-light sources, which places a signifi-
cant resource overhead. Instead, we calibrate the quan-
tum noise of a sensor network with separable squeezed
states using a time-domain multiplexing approach intro-
duced by Ref. [30]. We first set the mean photon num-
ber of our squeezed-light source to that of a separable
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Figure 12. Comparison between experimental data and simulation results of training for 3D data classification. (a, d) convergence
of the error probabilities during training. Red curve: classical classifier; Blue curve: SLAEN. Horizontal dashed lines: expected
error probabilities based on true hyperplanes and measurement-noise levels. Error bars represent one standard deviation of the
uncertainty derived from five measurements or simulations each with 1000 data points. (b, e) history of hyperplane parameters for
SLAEN during training. (d, f) history of hyperplane parameters for classical classifier during training. Red squares: initial hyper-
plane parameters prior to training; blue triangles: hyperplane parameters after training; magenta hexagrams: optimum hyperplane
parameters. Color gradients: evolution of the error probabilities during training. Green circles: samples of hyperplane parameters
at every 30 training steps. Curves obtained by cubic spline data fitting.

squeezed state at a single sensor. We then take three sam-
ples in the time domain to emulate the independent quan-
tum noise at three sensor nodes. The histogram of the
averaged homodyne data is plotted in Fig. 15 and fitted
with a normalized Gaussian probability density function.
Since the measured noise variance of the separable sen-
sor network is ∼ 11.7% higher than that of SLAEN, it is
anticipated that the error probability of SLAEN beats that
of a sensor network based on separable squeezed states.

3. Performance comparison

Quantum metrology studies how nonclassical re-
sources such as squeezed light and entanglement can
be utilized in a measurement system to enable a per-
formance advantage over systems based on classical re-
sources. Such a performance gain in sensing under-
pins SLAEN’s error-probability advantage over separa-
ble sensor networks. In many practical optical sensing
systems such as the Laser-Interferometer Gravitational-
Wave Observatory (LIGO), the usable power of the clas-
sical laser light is limited due to, e.g., thermal effects,

photon radiation-pressure induced torques, and paramet-
ric instabilities that cause adverse effects on the system
performance [35]. Nonclassical squeezed light is then
injected into the system to further improve the measure-
ment sensitivity. In such a scenario, the measurement
sensitivity achieved by a classical laser at a given power
level is defined as the standard quantum limit (SQL).
Surpassing the SQL using nonclassical resources demon-
strates a quantum advantage enabled by quantum metrol-
ogy. In our experiment, SLAEN’s performance is com-
pared with that of a classical classifier based on laser
light, i.e., coherent states. The error probabilities for a
classical classifier are measured at a given laser power
level. SLAEN’s error probabilities are then measured
at the same laser power level while entanglement is dis-
tributed and shared by the sensors. In the SLAEN ex-
periment, the calibration gives a total photon number of
the entangled state of NS = 3.3 and the quantum effi-
ciency of η = 0.53 at each sensor. In a conceived three-
node sensor network based on separable squeezed states,
the mean photon number of a separable squeezed state
at each sensor will be 1.1, so that the total photon num-
ber matches that of the entangled state. We can then es-
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Figure 13. Distance between the true hyperplane and the opti-
mized hyperplanes at different steps under training for 3D data
classification. Solid lines: distance averaged over 200 trajecto-
ries for the hyperplanes parameters each with a randomly gen-
erated initial hyperplane; shaded area: standard deviation of
the distances of 200 trajectories. Inset: zoom-in view of the
distances between training Step 350 and 390. Blue: SLAEN;
red: classical classifier.
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Figure 14. Convergence of error probability. Blue curve: sim-
ulation of training process based on separable squeezed states.
Error bars represent one standard deviation of the uncertainty
derived from 60000 simulated data points. Red curve: SLAEN
experiment. Error bars represent one standard deviation of the
uncertainty derived from 10 measurements. Horizontal dashed
lines: expected error probabilities based on true hyperplanes
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timate a noise reduction of 2.57 dB below SQL at the
same quantum efficiency at each sensor as the SLAEN
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Figure 15. Histograms of homodyne data. Red bins: separable
squeezed states. Blue bins: entangled state. Histograms are
normalized to probability mass functions and fitted with Gaus-
sian probability density functions. Red curve: theory fit for
separable squeezed states. Blue curve: theory fit for entangled
state. Black curve: standard quantum limit (SQL).

experiment. The squeezed state residing at the 11-MHz
sidebands is at tens of pico Watts power level, while
in the experiment most photons at each sensor originate
from the strong (∼ 50 µW) coherent state at the central
wavelength of 1550 nm. Give the ∼ 6 orders of mag-
nitude power disparity between the strong coherent state
and the quantum states at the sidebands, a separable sen-
sor network based on either coherent states or separable
squeezed states employs nearly identical optical power
as an entangled sensor network. This situation is in anal-
ogy to LIGO in which the overall optical power remains
nearly unchanged despite the injection of squeezed light
into the interferometer.
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