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We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access
channels with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss
multiple-access channel and solve the one-shot capacity region enabled by an entanglement source
composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is
strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed
vacuum states as the source and phase modulation as the encoding, we also design practical receiver
protocols to realize the entanglement advantages. Four practical receiver designs, based on optical
parametric amplifiers, are given and analyzed. In the parameter region of a large noise background,
the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation
and superdense coding, our results for EA classical communication can be directly extended to EA
quantum communication at half of the rates. Our work provides a unique and practical network
communication scenario where entanglement can be beneficial.

I. INTRODUCTION

Communication channels model physical media for in-
formation transmission. In the case of a single-sender
single-receiver channel, the Shannon capacity theorem [1,
2] concludes that a channel is essentially characterized
by a single quantity—the channel capacity. As phys-
ical media obey quantum physics, the channel model
eventually needs to incorporate quantum effects during
the transmission, which has re-shaped our understand-
ing of communication. To begin with, the Shannon ca-
pacity has been generalized to the Holevo-Schumacher-
Westmoreland (HSW) classical capacity [3–5]. Quan-
tum effects such as entanglement have also enabled non-
classical phenomena in communication, such as super-
additivity [6–11] and capacity-boost from entanglement-
assistance (EA) [12–21]. Moreover, reliable transmission
of quantum information is possible, established by the
Lloyd-Shor-Devetak quantum capacity theorem [22–24].
Combining different types of information transmission,
Refs. 25 and 26 provide a capacity formula for the simul-
taneous trade-off of classical information (bits), quantum
information (qubits) and quantum entanglement (ebits).

Despite their exact evaluation being prevented by
the superadditivity dilemma, capacities of single-sender
single-receiver quantum channels are well-understood.
In particular, the benefits of entanglement in boost-
ing the classical communication rates have been known
since the pioneering theory works [12–15, 17] and re-
cently experimentally demonstrated [27] in a thermal-
loss bosonic communication channel. The two-mode-
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squeezed-vacuum (TMSV) state is utilized as the en-
tanglement source and functional quantum receivers are
demonstrated, thanks to the practical protocol design in
Ref. [28]. Further development of receiver designs [29]
and the application to covert communication [30] have
also been considered.

However, supported by the Internet, real-life commu-
nication scenarios, such as online lectures and online
conferences, often involve multiple senders and/or re-
ceivers. As a common paradigm being studied in the
literature [31–35], the multiple-access channel (MAC)
concerns multiple senders and a single receiver. Com-
munication over a MAC is no longer characterized by a
single rate, but a rate region with a trade-off between
multiple senders. With the development of a quantum
network [36–40], quantum effects have also become rele-
vant in such a communication scenario. In this regard,
the classical capacity region of a quantum MAC was
solved by Winter [41], while the entanglement-assisted
(EA) classical communication capacity region in the spe-
cial case of a two-sender MAC was solved in Ref. [17].
Although superadditivity in the capacity region has also
been found in a MAC [42, 43] and EA advantage in a
classical MAC can be shown [33], it is unclear how much
advantage entanglement can provide for a quantum MAC
in a direct communication scenario.

In this work, we present a thorough study of EA
classical communication over a quantum MAC with
an arbitrary number of senders. On the fundamental
information-theoretic side, we prove the general EA clas-
sical capacity theorem for an s-sender (s ≥ 2) MAC,
which has been conjectured in Ref. [17] and yet not
proven for the past decade. Next, we proceed to evalu-
ate the EA rate region of the bosonic thermal-loss MAC,
which models an optical or microwave communication
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Figure 1. Conceptual schematic of EA classical com-
munication over a MAC. The entanglement source dis-
tributes entangled pairs to each sender and the receiver, po-
tentially via a quantum network. The senders encode their
own message on their share and send the signals to the re-
ceiver. The receiver decodes the messages of all senders by
jointly measuring the received signal and the entanglement
assistance locally stored.

scenario (see Fig. 1), and find rigorous advantages from
entanglement. Finally, on the application layer, we pro-
pose practical protocols to realize the EA advantage
in a bosonic thermal-loss MAC, and provide a variety
of transmitter and receiver designs. Due to teleporta-
tion [45] and superdense coding [12], our results for EA
classical communication can be directly extended to EA
quantum communication at half of the rates. As bosonic
thermal-loss MACs model various real-world communica-
tion networks, our EA communication scenario is widely
applicable to radio-frequency, deep-space [46], and wire-
less communication scenarios [47].

II. RESULTS

In a MAC, multiple senders individually communicate
with a single receiver. As shown in Fig. 1, besides a trans-
mitter that sends encoded messages, each sender has ac-
cess to entanglement pre-shared with the receiver, poten-
tially through a ground-satellite and/or fiber-based quan-
tum network. The receiver decodes all messages from the
senders via a joint measurement on all received signals
and the stored EA. Our first main result is an EA capac-
ity theorem which quantifies the trade-off between the
ultimate communication rates of different senders. The
capacity formula has a form of conditional quantum mu-
tual information, analogous to the classical formula [2].
We then give an explicit example of a bosonic thermal-
loss MAC and evaluate its rate-region with the common
TMSV entanglement source. Comparing it with the case
without EA [44], we find great advantages enabled by
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Figure 2. Schematic of a general EA-MAC communi-
cation protocol. The EA sources φ̂ of the s senders are in
a product state of Eq. (1). The s senders apply independent
encoding modeled by quantum operations, i.e., sender k ap-
plies Emk on the signal state given the message mk. Denoting
the entire message as m = m1 · · ·ms, the encoded signal-idler
is then in a state σ̂m. The senders’ encoded quantum sys-
tems A = A1 · · ·As are sent through the MAC N , leading
to the output system B. The receiver applies the quantum
operation D to decode the information from the joint state
β̂m of the output system B and the pre-shared reference sys-
tems A′ = A′1 · · ·A′s. We define Mk as the codeword space of
each message mk, M as the overall codeword space of mes-
sage m, and M ′ as the decoded codeword space. To facilitate
the analysis, we denote the overall state Ξ̂ (Eq. (A1)) over
systems MAA′ right before the channel and the overall state
ω̂ (Eq. (A2)) over systems MBA′ right before the decoding.

entanglement; Moreover, when the sources of all senders
have equal and low brightness, we numerically find that
the TMSV source is optimal at a corner rate point. As
a benchmark, we derive bounds on the capacity region
and design practical protocols, based only on off-the-shelf
quantum optical elements, which can achieve quantum
advantages from entanglement in the near-term.

A. EA classical capacity theorem for MAC

1. Multiple-access channels

As depicted in Fig. 2, consider a MAC with s senders,
each sending a message mk (1 ≤ k ≤ s) sampled
from a message space Mk, therefore the overall mes-
sage m = m1 · · ·ms is sampled from the message space
M = ⊗sk=1Mk. To send each message mk, the kth sender
performs a quantum operation Emk to produce a signal
quantum system Ak. Following Ref. [17], we introduce
EA in the above communication scenario—namely the
receiver has a reference system A′k (idler) pre-shared as
the EA with the kth sender.

We consider the entanglement to be pairwise between
each sender and the receiver such that the overall quan-
tum state

φ̂AA′ = ⊗sk=1φ̂AkA′k (1)
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is in a product form, where we have denoted A =
A1 · · ·As and A′ = A′1 · · ·A′s as the overall systems.

After the encoding, the composite system A containing
all of the quantum systems {Ak}sk=1 is input to the MAC
NA→B , which outputs the quantum system B for the re-
ceiver to decode the messages jointly with the EA A′. For
convenience, we define a quantum state after the channel
but without the encoding, ρ̂BA′ = [NA→B ⊗ I]

(
φ̂AA′

)
,

where I is the identity channel modeling the ideal storage
of the idler system. The formal analyses of the quantum-
state evolution can be found in Appendix A.

The performance metric of the above communication
scenario is described by a vector of rates (R1, · · · , Rs),
where Rk is the reliable communication rate between the
kth sender and the receiver (see Appendix A, Section II
of Ref. [41], and Subsection III.A of Ref. [17] for the for-
mal definitions). These rates in general have non-trivial
trade-offs with each other. In the case without EA, the
capacity region is well-established by the pioneering work
of Winter [41] (see Appendix C).

To describe the rate region of the s-sender MAC, we
will frequently divide the senders into two blocks, the
block of interest indexed by a sequence J and the com-
plementary block Jc. For example, when s = 2, we have
four possible block divisions: {J = 1, Jc = 2}, {J =
2, Jc = 1}, and and two trivial cases {J = 12, Jc = ∅},
{J = ∅, Jc = 12}. Any s-fold quantity can be written as
a composition of the two blocks, e.g., message spaceM =
M [J ]M [Jc], with M [J ] = ⊗i∈JMi, M [Jc] = ⊗i∈JcMi;
similarly the message as m = m[J ]m[Jc].

2. Capacity theorem

To present our EA-MAC capacity theorem for the sce-
nario in Fig. 2, we introduce some entropic quantities.
For a quantum system XY Z in a state α̂, we define the
quantum mutual information between X and Y as

I(X : Y )α̂ = S(X)α̂ + S(Y )α̂ − S(XY )α̂,

where S(X)α̂ = S(α̂X) = − tr (α̂X log2 α̂X) is the von
Neumann entropy. Similarly, the quantum conditional
mutual information between X and Z conditioned on Y

I(X;Z|Y )α̂ = S(XY )α̂ +S(Y Z)α̂−S(XY Z)α̂−S(Y )α̂.

With the entropic quantities in hand, we can present our
main theorem below (see Appendix D for a proof).

Theorem 1 (EA-MAC capacity) The entanglement-
assisted classical communication capacity region over an
s-sender MAC N is given by the regularized union

CE(N ) =
∞⋃
`=1

1

`
C(1)

E (N⊗`) (2)
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Figure 3. Schematic of the bosonic thermal-loss MAC.
The beam-splitter array models a linear scattering medium.
The thermal-loss channel models the noisy transmission.

where the “one-shot” capacity region C(1)
E (N ) is the con-

vex hull of the union of “one-shot, one-encoding” regions

C(1)
E (N ) = Conv

⋃
φ̂

C̃E(N , φ̂)

 . (3)

The “one-shot, one-encoding” rate region C̃E(N , φ̂) for
the 2s-partite pure product state φ̂AA′ = ⊗sk=1φ̂AkA′k over
AA′, is the set of rates (R1, · · · , Rs) satisfying the follow-
ing 2s inequalities∑

k∈J

Rk ≤ I(A′[J ];B|A′[Jc])ρ̂, ∀J, (4)

where the conditional quantum mutual information is
evaluated over the output state ρ̂BA′ = NA→B⊗I(φ̂AA′).

Here we make some remarks about Theorem 1: First, if
we only focus on the regularized capacity region CE(N ),
then the convex hull in Eq. (3) is not necessary, as one
can simply include the time-sharing over different inputs
among the infinite number of channel uses; However, if
one wants to formulate the “one-shot” capacity region
C(1)

E (N ), then the convex hull is necessary to include po-
tential time-sharing between any codes. Second, the ca-
pacity formula in Ref. [17] can be considered as a special
case of our theorem, as the regularized case does not need
the convex hull in Eq. (3); indeed, at the end of Ref. [17]
our theorem is stated as a conjecture.

B. EA capacity region for a bosonic MAC

1. Bosonic thermal-loss multiple-access channels

In an optical or microwave communication scenario,
the relevant MAC is a bosonic thermal-loss MAC de-
picted in Fig. 3. Upon the input modes âA1

· · · âAs from
the s senders, the MAC N first combines the modes
through a beam-splitter array to produce a mixture mode

âAmix
=

s∑
k=1

√
ηkâAk , (5)

while all other ports of the beam-splitter array are dis-
carded, here the weights {ηk} are non-negative and nor-
malized. Then the mixture mode goes through a bosonic
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thermal-loss channel Lτ,NB described by the operator
transform

âB =
√
τ âAmix +

√
1− τ âE , (6)

where âE denotes the environment mode in a thermal
state with a mean photon number

〈
â†E âE

〉
= NB/(1−τ).

This convention of fixing the mean photon number NB

of the thermal noise mixed into the output mode âB is
widely used, e.g., in quantum illumination [48, 49].

In a bosonic MAC, the Hilbert space of the quantum
systems is infinite-dimensional—an arbitrary number of
photons can occupy a single mode due to the bosonic
nature of light. To model a realistic communication sce-
nario, we will consider an energy constraint on the mean
photon number (brightness) of the signals modes〈

â†Ak âAk

〉
= NS,k, 1 ≤ k ≤ s, (7)

which is commonly adopted in bosonic communica-
tion [28, 44, 50]. Note that in general the energy of
different senders can be different.

Without EA, the capacity region of the above bosonic
MAC has been considered in Ref. [44] for the two-user
case. However, the generalization of the coherent-state
rate region therein to the s-sender case is straightfor-
ward, leading to a rate region specified by the following
2s inequalities,

∑
i∈J

Ri ≤ CJcoh ≡ g

(∑
i∈J

τηiNS,i +NB

)
− g (NB) , (8)

where g(x) = (x+ 1) log2(x+ 1)−x log2(x) and J can be
chosen arbitrarily. Moreover, a squeezing-based encoding
scheme is shown to be advantageous over the coherent-
state encoding; however, regardless of the encoding, the
rate region is always bounded by the following set of outer
bounds

Rk ≤ g (τNS,k +NB)− g (NB) , 1 ≤ k ≤ s, (9)

which are derived by assuming a super receiver that can
reverse the beamsplitter array in the bosonic thermal-
loss MAC. A second outer bound can be obtained from
energetic considerations, which leads to the same form of
Ineq. (8) with J being all users. As these outer bounds
represent the upper limit of all encodings without EA, an
EA rate region outside the rate region specified by the
above outer bounds will demonstrate a strict advantage
enabled by entanglement.

2. EA outer bounds

As the exact evaluation of the EA capacity region for
the bosonic MAC is challenging, we first focus on outer
bounds to obtain some insights. Similar to the case with-
out EA, via reducing to the single-sender EA classical

capacity, one can obtain outer bounds for the EA-MAC
classical capacity region (See Appendix A for a proof).
Explicitly, we have

Rk ≤ CE

(
NS,k;Lτ,NB

)
, 1 ≤ k ≤ s, (10a)

s∑
k=1

Rk ≤ CE

(
s∑

k=1

ηkNS,k;Lτ,NB

)
, (10b)

where the explicit formula of the EA capacity
CE

(
NS;Lτ,NB

)
over a bosonic thermal-loss channel

Lτ,NB , with the energy constraint NS, can be found in
Eq. (A5) of Appendix A. These outer bounds provide
the upper limit of EA classical communication rates, and
apply to arbitrary forms of entanglement source φ̂ and
encoding {Em}.

3. Two-mode squeezed vacuum rate region

To obtain an explicit example of bosonic EA-MAC ca-
pacity region, we consider the entanglement source in
Eq. (1) as a product of TMSV pairs, each with the wave-
function

φ̂TMSV
AkA′k

=
∞∑

nk=0

√
Nnk

S,k

(NS,k + 1)nk+1
|nk〉Ak |nk〉A′k , (11)

for 1 ≤ k ≤ s, where |n〉 is the number state defined
by â†â |n〉 = n |n〉. In Ref. [28], it has been shown
that the TMSV state is optimal for single-sender single-
receiver EA classical communication, therefore we expect
the TMSV source to be good in the MAC case. Although,
due to the complexity from the plurality of the senders,
the exact union over the states in Eq. (3) for the EA-
MAC classical capacity region is challenging to solve.

We evaluate the “one-shot, one-encoding” rate region
C̃E(N , φ̂TMSV) in Ineqs. (4) for the TMSV source in
Eq. (11). Although the evaluation of each Ineq. (4) is
efficient thanks to the Gaussian nature of the state, the
number of such inequalities 2s is exponential and there-
fore resource-consuming in practice. To showcase the
capacity region, we choose s = 2, 3, which enable di-
rect visualization as the rate region is two or three di-
mensional. In comparison, we also compute the classical
coherent-state rate region in Ineq. (8) and the classical
outer bound, specified jointly by Ineq. (9) and Ineq. (8)
with J being all senders. Moreover, we can also compare
C̃E(N , φ̂TMSV) with the EA outer bound in Ineqs. (10).

Three representative setups of parameters are chosen
as examples. To begin with, we consider an interme-
diate channel noise NB = 20, identical to the case of
microwave quantum illumination [48, 51]; Furthermore,
a noisy channel with sufficiently large noise NB = 104 is
noteworthy as it provides a saturated EA advantage [28];
Finally, the long wavelength infrared domain with rela-
tively small noise NB = 0.1 is a relatively uncharted ter-
ritory for EA communication, nevertheless also relevant
for practical application.
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Figure 4. The symmetric two-sender rate region. Rates
are normalized by the coherent-state bound C1

coh, C
2
coh defined

in Ineq. (8), evaluated in the scenario of (a) microwave do-
main, τ = 0.01, NB = 20, NS,1 = NS,2 = 0.01, η1 = 1/3,
η2 = 2/3. (b) microwave domain, τ = 0.01, NB = 20,
η1 = η2 = 1/2, NS,1 = 0.001, NS,2 = 0.01. (c) a noisy chan-
nel, τ = 10−3, NB = 104, η1 = η2 = 1/2, NS,1 = 0.001, NS,2 =
0.01. (d) long wavelength infrared domain η1 = η2 = 1/2, τ =
0.001, NB = 0.1, NS,1 = 0.001, NS,2 = 0.01. The EA rate re-
gion in Ineq. (4) (cyan solid), evaluated on TMSV states, is
bounded by the EA outer bound (magenta dashed) in In-
eqs. (10); while the coherent-state rate region (black solid)
given by Ineq. (8) is bounded by the classical outer bound
(black dashed).

We begin with a two-sender case (s = 2). As shown
in Fig. 4, in all the parameter settings being consid-
ered, we can see strict advantages of the EA capacity
region (cyan solid) over the classical outer bound (black
dashed), which is higher than the coherent-state rate re-
gion (black solid). We find that the advantage is larger
when the noise NB is larger, comparing subplots (c)
and (d). In particular, this advantage also holds when
NS � NB � 1, which can happen in the long wavelength
infrared domain, as shown in subplot (d).

Comparing with the EA outer bound (magenta
dashed), we see that in Fig. 4(a) the TMSV rate re-
gion (cyan solid) touches the EA outer bound (magenta
dashed) at a corner point when R2/C

2
coh = R1/C

1
coh to

the leading order. The gap is of the order of 10−5 rela-
tively; therefore, at this point, the TMSV source is in fact
optimal for the thermal-loss MAC being considered, for
this symmetric case where the parameters NS,k � 1 are
identical among the senders. Note this holds although
the transmissivities of the senders ηk are not equal. In
other cases, when NS,1 6= NS,2, regardless of the values
of ηk being equal, a strict gap between the TMSV rate

Figure 5. The asymmetric three-sender EA rate re-
gion. The rates are normalized by the coherent state bound
C1

coh, C
2
coh and C3

coh defined in Ineq. (8), evaluated in the
scenario of microwave domain NS,1 = NS,2 = 0.1, NS,3 =
0.01, τ = 0.01, NB = 20, η1 = η2 = η3 = 1/3. The EA
rate region in Ineq. (4) (cyan), evaluated on TMSV states,
is bounded by the EA outer bound (magenta) in Ineqs. (10);
while the coherent-state rate region (black) given by Ineq. (8)
is bounded by the classical outer bound (light gray).

region and the EA outer bound exists. This does not
conclude that the TMSV encoding is inferior, though, as
the outer bound is likely to be loose.

Furthermore, we consider a three-sender asymmetric
case (s = 3), with unequal source brightness NS,1 =
NS,2 6= NS,3. In Fig. 5, a gap emerges between the TMSV
rate region (the region below the cyan surface) and the
outer bound (the magenta surface), as we expected. An
appreciable EA advantage remains as the EA capacity
region is several times larger than the coherent state rate
region (dark gray surface) and the classical outer bound
(light gray surface).

Now we further consider the scaling of the EA advan-
tage observed above. As shown in Fig. 6, the advantage
of the EA capacity (magenta) relative to the case without
EA also diverges with log(NS), when the signal bright-
ness NS is small and the noise NB is much larger than
the signal brightness NS. Note that this advantage also
holds for the case when NS � NB < 1, as shown in
Fig. 6(b). This logarithmic diverging EA advantage in
MAC is similar to the single-sender single-receiver case
studied in Ref. [28]. Indeed, at the limit τ � 1, NS � 1,
the relative ratio of the outer bound over the coherent-
state rate

CE

(
NS,k;Lτ,NB

)
Ckcoh

' log(1/NS,k)

ηk(1 +NB) log(1 + 1/NB)
, (12)

is also logarithmic in 1/NS,k when NB is small.
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Figure 6. Rates versus signal brightness. The de-
pendence on source brightness NS,1 = NS,2 = NS of the
EA advantage of the EA rate regions for two-sender MAC
communication under the scenario of (a) microwave domain
η = 1/2, τ = 0.01, NB = 20; (b) long wavelength infrared
domain η1 = η2 = 1/2, τ = 0.001, NB = 0.1. We plot
R1 for sender 1 under conditions R1/R2 = ∞ (solid) and
R1/R2 = 1 (dot-dashed). For TMSV, the two curves overlap.
Note that R1/R2 = 0,∞ are equivalent up to a swap due to
the symmetry between the two senders; and for given R1/R2,
R2/C

2
coh = R1/C

1
coh. We also compare the EA rate region of

TMSV (cyan) with the EA outer bound (magenta).

C. Protocol designs for the bosonic EA-MAC

In this section, we design a practical protocol to realize
EA classical communication over the bosonic thermal-
loss MAC. The protocol consists of phase-modulation en-
coding on the TMSV entanglement source and structured
receiver designs.

1. Encoding and receiver designs

Similar to the single-sender single-receiver case, to en-
code a bit of information mk = 0, 1, the kth sender
performs a phase modulation on the signal part of the
TMSV pairs via a unitary Emk = e

imkπâ
†
Ak
âAk to pro-

duce the quantum system Ak input to the MAC, while
the idler part of the TMSV pair A′k is pre-shared to the
receiver side for EA. Here we have considered the binary
phase-shift keying: the kth sender sends the bit message
mk = 0, 1 by the same probability p0 = p1 = 1/2. To
enable efficient decoding, we consider NR repetition of
such encoding—each message is repeatedly encoded on
NR signal modes of a single sender.

The decoding process takes the output of the MAC
âB and the EA idlers {âA′k , 1 ≤ k ≤ s} to decode the
information {mk, 1 ≤ k ≤ s} of all the senders. Below
we propose four receiver designs for the decoding. The
basic element in the receiver design is the optical para-
metric amplifier (OPA), which upon input modes âR and
âI , produces two modes â′R =

√
GâR +

√
G− 1â†I , â

′
I =√

GâI +
√
G− 1â†R, where G is the gain of the OPA. An

OPA transforms the phase-sensitive correlation between

the input mode-pair into the photon number difference
∆
〈
â′†I â

′
I

〉
∝
√
G(G− 1)2Re 〈âI âR〉, which is widely uti-

lized to design receivers in EA applications, such as quan-
tum illumination [51] and the bipartite EA classical com-
munication [28]. Moreover, one can use an OPA as a
phase-conjugator to design a phase-conjugate receiver
(PCR), as explained in Ref. [28].

To decode all s messages, one can apply two different
strategies, either decode them in a serial manner or in
parallel. One can also base the receiver design on the di-
rect OPA or on the phase-conjugation mechanism. These
choices lead to four receiver designs—serial OPA receiver
(OPAR), serial PCR, parallel OPAR and parallel PCR—
as we summarize below (see details in Appendix B).

In the serially connected scheme, on the kth round,
the signal output â′Bk−1

from the (k−1)th round and the
idler âAk are input to an OPA. The idler mode output
from the OPA is detected, by direct detection in serial
OPAR or an interferometric detection in serial PCR, to
decode the message from the kth sender. Meanwhile, the
signal mode output from the OPA is further utilized in
the next round. Note that after the kth round, the cross
correlation between the signal mode with the other idler
modes are almost intact; therefore, performing an OPA
on the signal and another idler âA′k , one can decode the
message from the k′th sender. Iterating this procedure
on the remaining mode consecutively, one obtains a serial
architecture for the receiver, as shown in Fig. 7 (a)(b) for
the serial OPAR and serial PCR.

We can also adopt a parallel design for the receivers.
As the thermal-loss channel in the MAC adds excess noise
into the output, we expect that in the noisy case, splitting
the received signal into s copies, each for the decoding of
the message of a single sender, will still provide similar
signal-to-noise ratios (SNR), when compared to the case
without the splitting. In this way, each portion of the
received signal can be utilized in parallel, in each indi-
vidual OPA component in the parallel OPAR or in each
phase-conjugation detection in the parallel PCR, to de-
code each message. As shown in Fig. 7 (c)(d), we can
design parallel-OPAR and parallel-PCR schemes.

Finally, we specify the choices of the gain in the OPA.
Optimized with respect to the SNR, for OPAR the gains
of the s OPAs are to be Gk =

√
NS,k/

√
NB(1 +NB),

1 ≤ k ≤ s. For PCR the optimal gain turns out to
be at infinity; however, we find that the performance is
saturated when (Gk − 1)NB � NS,k for the kth sender,
thus we choose a feasible value accordingly.

2. Receiver rate region evaluations

As the encoding and receivers are chosen, now the
(soft-decoding) rate region is entirely obtained from the
classical formula of conditional mutual information [2]
computed over the measurement outcome distribution
(see Appendix B). As shown in Fig. 8, we compare the re-
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Figure 7. Schematic of four receiver designs. (a) serial optical-parametric-amplifier receiver (sOPAR) (b) serial phase-
conjugate receiver (sPCR) (c) parallel optical-parametric-amplifier receiver (pOPAR) (d) parallel phase-conjugate receiver
(pPCR).

Figure 8. The two-sender rate region of our four re-
ceivers. The rates are normalized by the coherent state
bound C1

coh, C
2
coh defined in Ineq. (8): (a) microwave domain

NS,1 = NS,2 = 0.01, τ = 0.01, NB = 20, η1 = η2 = 1/2, NR =
2 × 104; (b) a noisy channel with NS,1 = NS,2 = 10−3, τ =
10−3, NB = 104, η = 1/2, NR = 107. To distinguish between
the overlapping lines, we plot the serial receivers in thicker
lines by contrast with the parallel receivers plotted narrowed.
The gains of OPAR are given in the main text, and the gains
of PCR areG = 2 forNB = 20 andG = 1+10−3 forNB = 104.
We also compare the receiver rate region with the coherent-
state rate (black solid) region and the classical outer bound
(black dashed).

ceiver rate regions with the classical coherent-state rate
region in Ineq. (8) (black solid) and the classical outer
bound in Ineq. (9) jointly and Ineq. (8) (black dashed)

Figure 9. Receiver rates versus signal brightness. The
dependence on source brightness NS,1 = NS,2 = NS of
the EA advantage of the four receivers for two-sender MAC
communication under the scenario of (a) microwave domain
η = 1/2, τ = 0.01, NB = 20; (b) long wavelength infrared
domain η1 = η2 = 1/2, τ = 0.001, NB = 0.1. In the legend
s, p refer to ‘serial’ and ‘parallel’ respectively. The number
of modes NR is fixed such that the SNR NRτNS/NB = 0.1
for sender i = 1, 2. We plot R1 for sender 1 under condi-
tions R1/R2 =∞ (solid) and R1/R2 = 1 (dot-dashed). Note
that R1/R2 = 0,∞ are equivalent up to a swap due to the
symmetry between the two senders; and for given R1/R2,
R2/C

2
coh = R1/C

1
coh.

with J being all senders. We see that the performance
of both OPAR and PCR can beat the classical coherent
state rate region and the classical outer bound.

In Fig. 8, the performance of the OPAR (blue solid and
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red solid) is inferior to the PCR (purple solid and orange
solid), a gap between which is significant in Fig. 8(a).
This is because the PCR has a better SNR to the next
order in NS compared with OPA, as found in the single-
sender case in Ref. [28] and confirmed in Fig. 9 here. As
the brightness NS decreases in Fig. 8(b), the gap between
the PCR and OPAR almost diminishes. In Fig. 9, we see
the rates of OPAR (blue and red) are lower than PCR
(purple and orange), with a gap expanding as the bright-
ness NS grows. We also find that the rate advantage of
both the OPAR and PCR saturates to 3dB as the bright-
ness NS decreases, consistent with the SNR advantage in
quantum illumination [48, 49]. This is because when the
noise is large, the information rate is proportional to the
SNR. Note that when the channel noise NB decreases, the
theoretical EA advantage evaluated by TMSV remains
substantial. However, the practical advantage allowed
by our receivers diminishes as NB falls below 1. For
NB = 0.1 (and smaller), there is no advantage for the
proposed receivers, as shown in Fig. 9(b). This leaves an
open question that a feasible receiver that provides EA
advantage in the low-noise scenario is hitherto elusive.

III. DISCUSSION

In this paper, we have solved the capacity region
of entanglement-assisted classical communication over a
quantum multiple-access channel with an arbitrary num-
ber of senders. We also provide explicit encoding and
decoding strategies that offer a practical route towards
achieving quantum advantages in such network commu-

nication scenarios. Due to teleportation [45] and super-
dense coding [12], the rate region of EA quantum commu-
nication is precisely half of the EA classical communica-
tion region; therefore, all of our results can be straightfor-
wardly extended to the case of quantum communication.
The explicit protocols can also be used for EA quantum
communication via further combining with a teleporta-
tion protocol.

Many future directions can be explored. For example,
multi-partite entanglement may be considered instead of
the product form of Eq. (1) to assist the communication
scenario, when the senders can collaborate in the entan-
glement distribution process. Another open question is
whether one can have superadditivity phenomena in our
entanglement-assisted capacity region of multiple-access
channels.

Before closing, we discuss potential experimental real-
izations for the proposed EA-MAC communication sys-
tems. The basic setup will be similar to that in Ref. [27],
with entanglement generated by spontaneous paramet-
ric down-conversion in a nonlinear crystal. The receiver
can be implemented with another nonlinear crystal to
perform phase conjugation or parametric amplification.
However, the challenge to demonstrate an entanglement
advantage under the multiple-senders scenario is that the
pump beams for different entanglement sources need to
be frequency and phase locked. Moreover, each stored
idler needs to be phase locked to its corresponding sig-
nal received from the MAC. Differential-phase encoding
can potentially avoid the need for phase locking, which
is subject to future studies.
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Appendix A: Details of formalism

1. Formal analysis of the EA MAC

In the MAC communication scenario of Fig. 2, each en-
coded signal-idler is in a state σ̂mkAkA′k = Emk⊗I

(
φ̂AkA′k

)
,

where I is the identity channel modeling the ideal storage
of the idler system. Denote the overall encoding opera-
tion as Em = ⊗sk=1Emk , and the probability of sending
each message as pm =

∏s
k=1 pmk , the overall encoding

can be described by the composite quantum state

Ξ̂MAA′ =
∑
m

pm |m〉〈m|M ⊗ σ̂
m
AA′ , (A1)

where σ̂mAA′ = ⊗sk=1σ̂
mk
AkA′k

≡ [Em ⊗ I]
(
φ̂AA′

)
is the over-

all encoded state conditioned on message m and |m〉〈m|M
is the classical register for message m.

After the encoding, all of the quantum systems from
the s senders A are input to the MAC NA→B , which
outputs the quantum system B for the receiver to decode
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the messages jointly with the EA A′. The overall state
after the channel is

ω̂MBA′ =
∑
m

pm |m〉〈m|M ⊗ β̂
m
BA′ , (A2)

where β̂mBA′ = [NA→B ⊗ I] (σ̂mAA′).
The performance metric of a communication sce-

nario over a MAC is described by a vector of rates
(R1, · · · , Rs), where Rk is the reliable communication
rate between the kth sender and the receiver. These rates
in general have non-trivial trade-offs with each other.
Formally, we define an (n,R1, · · · , Rs, ε) EA code by:
the prior set {pmn

k
}, the encoded quantum states {σ̂mn

k },
1 ≤ k ≤ s on An, with each message mn

k ∈ [2nRk ], and
the decoding positive operator-valued measure (POVM)
{Λ̂m1···ms} on BnA′n such that

Tr

{
Λ̂m1···ms

[
N⊗n ◦ (⊗sk=1Emk)⊗ IA′n

]
φ̂AnA′n

}
≥ 1−ε.

(A3)
We say that (R1, · · · , Rs) is an achievable rate vector if
for all ε > 0, δ > 0 and sufficiently large n, there exists
an (n,R1 − δ, · · · , Rs − δ, ε) EA code. The EA classical
capacity region CE(N ) is defined to be the closure of the
set of all achievable rate vectors. The regularized capac-
ity CE(N ) is the union of all `-letter one-shot capacity
regions C(1)

E (N⊗`)/`, with integers ` ≥ 1. The one-shot
capacity region C(1)

E (N ) is the closure of the subset of
achievable rate vectors by (n,R1− δ, · · · , Rs− δ, ε) codes
that are generated from separable inputs among the n
channel uses. Here “one-shot” is in the sense that the
entanglement is constrained in a single channel use. In
this regard, the capacity region C(1)

E (N⊗`) considers N⊗`
as a single channel and allows codes with entanglement
between ` uses of N . In the case without EA, the capac-
ity region is well-established by the pioneering work of
Winter [41] (see Appendix C).

2. Outer bounds for bosonic thermal-loss MAC

Now we provide the outer bound in Ineqs. (10) for the
EA classical capacity region of the bosonic thermal-loss
MAC. As we see in Fig. 3, the overall channel can be
written as a concatenation of two parts, N = Lτ,NB ◦
EMAC, where EMAC represents the beamsplitter modeling
the signal interference. From the bottleneck inequality,
the overall communication rate is upper bounded by

s∑
k=1

Rk ≤ CE

(
s∑

k=1

ηkNS,k;Lτ,NB

)
, (A4)

the single-sender single-receiver EA classical capac-
ity of the thermal-loss channel Lτ,NB with brightness

∑s
k=1 ηkNS,k. This is because for the channel Lτ,NB ,

only a single mode signal âAmix
in Eq. (5) with brightness〈

â†Amix
âAmix

〉
=
∑s
k=1 ηkNS,k goes through. Explicitly,

the capacity

CE

(
NS;Lτ,NB

)
= g(NS)+g(N ′S)−g(A+)−g(A−), (A5)

with A± = (D− 1± (N ′S −NS))/2, N ′S = τNS +NB and
D =

√
(NS +N ′S + 1)2 − 4τNS(NS + 1). This proves

Ineq. (10b).
As for the individual upper bounds for the senders in

Ineq. (10a), we consider a theoretical super-receiver with
access to all of the output ports of the beamsplitter part.
The super-receiver performs the reverse of the beamsplit-
ter transform, after which the communication reduces to
the single-sender scenario of which the information rate
is bounded by each single-sender single-receiver EA clas-
sical capacity. Explicitly, we have

Rk ≤ CE

(
NS,k;Lτ,NB

)
, 1 ≤ k ≤ s, (A6)

which proves Ineq. (10a).

Appendix B: Analyses of the receiver designs

To begin with, we briefly summarize the receiver prob-
lem to be solved in this section. Note that in this sec-
tion, we will write subscripts inside subscripts as normal
texts so that the equations are not too small to be vis-
ible. In the phase encoding scheme, each sender applies
a phase rotation on the signal mode âAk of its TMSV
source, which modules the signal-idler correlations by〈
âAk âA′k

〉
= Cpk ≡

√
NS,k(NS,k + 1)eiθk . For binary en-

coding, each θk has two possible values θ(0)
k = 0, θ

(1)
k = π.

The signal modes âAk then goes through the thermal-loss
MAC, which produces the received mode mode âB given
by Eq. (5) and Eq. (6) of the main paper.

Below we assess the receivers in the two-sender scenario
as an example. The s-sender case is solved in the same
way. For convenience, let η1 = η, η2 = 1 − η. To ease
the reading, we mark the modes after the OPAs with the
superscript ‘′’.

In the BPSK encoding of all senders, denote the phases
of the s senders as θ(m) conditioned on the message m.
The phase-modulated photon statistics P (n|θ(m)) of the
measurement is derived in each subsections. It is conve-
nient to define the photon statistics with respect to the
message m: P (n|m) ≡ P (n|θ(m)). Define the measure-
ment register space of system B as BR, then the con-
ditional Shannon information I(M [J ];BR|M [Jc]) can be
obtained from the measurement statistics P (n|m)
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I(M [J ];BR|M [Jc]) =
∑
m[Jc]

pm[Jc]

{
H

∑
m[J]

pm[J]P (n|m)


n

−∑
m[J]

pm[J]H [{P (n|m)}n]

}
, (B1)

where H[{P (n)}n] = −
∑

n P (n) logP (n) is the Shan-
non entropy of the distribution P . Different from the
quantity I(M [J ];B|M [Jc]), here Eq. (B1) is the formula
of the optimum information rate for a specific measure-
ment strategy given by one of the four receiver designs.

While the performances of OPAR are evaluated ex-
actly, the performances of PCR are evaluated with a
Gaussian approximation on the photon statistics, which
is precise when the number of repetition modes NR is
large.

1. Serial OPAR (Fig. 7a of the main paper)

For the first OPA with a gain G1,

â′B,1 =
√
G1âB +

√
G1 − 1â†A′1

,

â′A′1 =
√
G1âA′1 +

√
G1 − 1â†B .

(B2)

We measure the photon counts of NR independent and
identical (i.i.d.) copies of â′A′1 .

For the second OPA with a gain G2,

â′B,2 =
√
G2â

′
B,1 +

√
G2 − 1â†A′2

â′A′2 =
√
G2âA′2 +

√
G2 − 1â′†B,1 .

(B3)

We measure the photon counts of NR i.i.d. copies of â′A′2 .

We make decision on the NR i.i.d photon counts of
modes â′A′1 , â

′
A′2

. Indeed, â′A′1 , â
′
A′2

are in a zero-mean
Gaussian state with the covariance matrix

V ≡

〈
â′A′1
â′†A′1
â′A′2
â′†A′2

(â′†A′1 â′A′1
â′†A′2

â′A′2

)〉
=

a+ 1 0 c 0
0 a 0 c?

c? 0 s+ 1 0
0 c 0 s

 , (B4)

where the constants

a =G1NS,1 + 2
√

(G1 − 1)G1τηReCp1 + (G1 − 1) [1 +NB +N?
S ] ,

s =G2NS,2 + 2
√

(G2 − 1)G2G1τ (1− η) ReCp2

+ (G2 − 1)
{

(G1 − 1)NS,1 +G1

[
1 +NB +N?

S

]
+ 2 Re

√
(G1 − 1)G1τηCp1

}
,

c =
√

(G2 − 1)
[√

(G1 − 1)G1 (N?
S + 1 +NS,1) + (G1 − 1)

√
τηC?p1 +G1

√
τηCp1

]
+ C?p2

√
τηG2 (G1 − 1) .

(B5)

Here N?
S = τ [NS,1η +NS,2 (1− η)] + NB . The depen-

dence on the phases θ1, θ2 lies in the phase-sensitive cor-
relations Cp1, Cp2.

Given V , we immediately have the covariance matrix of
the quadratures q̂′A′k = â′A′k

+ â′†A′k
, p̂′A′k = −i

(
â′A′k
− â′†A′k

)
for the two modes k = 1, 2

Vquad ≡

〈q̂1

p̂1

q̂2

p̂2

(q̂1 p̂1 q̂2 p̂2

)〉
=

E 0 C 0
0 E 0 C
C 0 S 0
0 C 0 S

 ,

(B6)

which can be obtained via the relationship Vquad =
UV U † with the transform matrix U

U =

 1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

 . (B7)

The probability distribution of the random photon
counts of such a two-mode Gaussian state with the
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quadrature covariance matrix Eq. (B6) is given by

P (n1, n2|θ1, θ2) =− 4FR(1 + n1, 1 + n2, 1,
4C2

XY
)

× (−1 + C2 + E + S − ES)1+n1+n2

X1+n1Y 1+n2
,

(B8)
where FR is the regularized hypergeometric function and
X = 1 + C2 + E − (1 + E)S, Y = C2 − (E − 1)(S + 1).
The information rates are then obtained via Eq. (B1).

2. Serial PCR (Fig. 7b of the main paper)

For the first OPA with a gain G1,

â′B,1 =
√
G1âB +

√
G1 − 1â†v,1,

â′C,1 =
√
G1âv,1 +

√
G1 − 1â†B ,

(B9)

where the ancilla âv,1 is in a vacuum mode. The fol-
lowing balanced beamsplitter yields two arms âX,1 =

(â′C,1 + âA′1)/
√

2, âY,1 = (â′C,1 − âA′1)/
√

2. We measure
the photon count differences of NR i.i.d. copies between
âX,1 and âY,1.

For the second OPA with a gain G2,

â′B,2 =
√
G2â

′
B,1 +

√
G2 − 1â†v,2,

â′C,2 =
√
G2âv,2 +

√
G2 − 1â′†B,1 .

(B10)

Similarly the following balanced beamsplitter yields two
arms âX,2 = (â′C,2+âA′2)/

√
2, âY,2 = (â′C,2−âA′2)/

√
2.We

measure the photon count differences between âX,2 and
âY,2 of NR i.i.d. copies. The modes âX,1, âY,1, âX,2, â′Y,2
are in a zero-mean Gaussian state with the covariance
matrix

V ≡

〈


â′X,1
â′†X,1
â′Y,1
â′†Y,1
â′X,2
â′†X,2
â′Y,2
â′†Y,2


(
â′†X,1 â′X,1 â′†Y,1 â′Y,1 â′†X,2 â′X,2 â′†Y,2 â′Y,2

)〉
=



a1 + 1 0 c1 0 a3 0 c31 0
0 a1 0 c1

? 0 a3
? 0 c31

?

c1
? 0 s1 + 1 0 c32 0 s3 0

0 c1 0 s1 0 c32
? 0 s3

?

a3
? 0 c32

? 0 a2 + 1 0 c2 0
0 a3 0 c32 0 a2 0 c2

?

c31
? 0 s3

? 0 c2
? 0 s2 + 1 0

0 c31 0 s3 0 c2 0 s2


,

(B11)
where the constants

a1 =
1

2

(
2 Re(Cp1)

√
η(G1 − 1)τ + ηG1τNS,1 − (η − 1)(G1 − 1)τNS,2 − ητNS,1 + (G1 − 1)(NB + 1) +NS,1

)
,

s1 =
1

2

(
−2 Re(Cp1)

√
η(G1 − 1)τ + η(G1 − 1)τNS,1 − (η − 1)(G1 − 1)τNS,2 + (G1 − 1)(NB + 1) +NS,1

)
,

c1 =
1

2

(
−2i Im(Cp1)

√
η(G1 − 1)τ + η(1−G1)τNS,1 + (η − 1)(G1 − 1)τNS,2 + (1−G1)(NB + 1) +NS,1

)
,

a3 =
1

2

(
Cp2

?
√

(1− η)(G1 − 1)τ + Cp1
√
ηG1(G2 − 1)τ +

√
(G1 − 1)G1(G2 − 1)(N?

S + 1)
)
,

s3 =
1

2

(
−Cp2?

√
(1− η)(G1 − 1)τ + Cp1

(
−
√
ηG1(G2 − 1)τ

)
+
√

(G1 − 1)G1(G2 − 1)(N?
S + 1)

)
,

c31 =
1

2

(
Cp2

?
√

(1− η)(G1 − 1)τ + Cp1

(
−
√
ηG1(G2 − 1)τ

)
−
√

(G1 − 1)G1(G2 − 1)(N?
S + 1)

)
,

c32 =
1

2

(
−Cp2?

√
(1− η)(G1 − 1)τ + Cp1

√
ηG1(G2 − 1)τ −

√
(G1 − 1)G1(G2 − 1)(N?

S + 1)
)
,

a2 =
1

2

(
2 Re(Cp2)

√
(1− η)G1(G2 − 1)τ +G1(G2 − 1)(N?

S + 1) +NS,2

)
,

s2 =
1

2

(
−2 Re(Cp2)

√
(1− η)G1(G2 − 1)τ +G1(G2 − 1)(N?

S + 1) +NS,2

)
,

c2 =
1

2

(
−2i Im(Cp2)

√
(1− η)G1(G2 − 1)τ −G1(G2 − 1)(N?

S + 1) +NS,2

)
.

(B12)

The dependence on phase modulation θ1, θ2 lies in the
phase-sensitive correlations Cp1, Cp2.

As it is challenging to numerically evaluate the pho-
ton count distribution of a four-mode Gaussian state,
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we estimate the performance of PCRs by a Gaus-
sian approximation. From the covariance matrix V of
âX,1, âY,1, âX,2, â

′
Y,2, by Wick’s theorem we immediately

have the 2× 2 covariance matrix Vd of the photon differ-
ences ∆N̂i = N̂X,i−N̂Y,i = 〈âX,iâX,i〉−〈âY,iâY,i〉 for the
two slices i = 1, 2. Due to the central limit theorem, the
mean distribution of NR i.i.d. copies of random variables
∆N1,∆N2 converges to the Gaussian distribution when
NR →∞

P (n|θ1, θ2) =
1

(2π)2

√
detV (NR)

d

exp

{
−
nTV

(NR)−1
d n

2

}
,

(B13)
where V (NR)

d = Vd/NR is the covariance matrix of the
NR-copy mean distribution, n is the two-dimensional
output averaged over NR copies of the random photon
count differences ∆N1,∆N2. The information rates are
then obtained via Eq. (B1).

3. Parallel OPAR (Fig. 7c of the main paper)

At the receiver side we apply a beamsplitter to slice
the received mode âB into two copies i = 1, 2

âB,i =
√
ηiâB +

√
1− ηiâv,i , (B14)

where each ancilla âv,i is in vacuum. For each OPA i =
1, 2

â′B,i =
√
GiâB,i +

√
Gi − 1â†A′i

,

â′A′i =
√
GiâA′i +

√
Gi − 1â†B,i .

(B15)

We measure the photon counts of NR i.i.d. copies of
â′A′1

, â′A′2 . These modes are in a Gaussian state with the
covariance matrix in the same form of Eq. (B4) valued
by

a =η(G1 − 1)NB + 2η
√

(G1 − 1)G1τ Re (Cp1) + η (G1 − 1) τ (ηNS,1 + (1− η)NS,2) +G1NS,1 +G1 − 1 ,

s =(G2 − 1)
[
(1− η) (NB + ητNS,1) + (1− η)2τNS,2

]
+G2(NS,2 + 1) + 2(η − 1)

√
(G2 − 1)G2τ Re (Cp2)− 1 ,

c =−
√

(1− η)η (G2 − 1)
(√

G1 − 1N?
S + Cp1

√
G1τ

)
+ C?p2

√
−(η − 1)η (G1 − 1)G2τ .

(B16)

where N?
S = τ [ηNS,1 + (1 − η)NS,2] + NB . The pho-

ton count distribution is given by Eq. (B8) with quadra-
ture covariance matrix evaluated by plugging a, s, c in
Eq. (B6). The information rates are then obtained via
Eq. (B1).

4. Parallel PCR (Fig. 7d of the main paper)

By contrast with the parallel OPAR, at the receiver
side we first apply the phase conjugation by an OPA to
obtain

â′C =
√
Gâv +

√
G− 1â†B , (B17)

where the ancilla âv is in vacuum. Then a beamsplitter
slices the mode â′C into two copies i = 1, 2,

â′C,i =
√
ηiâ
′
C +

√
1− ηiâv,i . (B18)

For each slice i = 1, 2, a balanced beamsplitter yields two
arms âX,i = (âC,i+ âA′i)/

√
2, âY,i = (âC,i− âA′i)/

√
2. We

measure the photon count differences between âX,i and
âY,i of NR i.i.d. copies. Here âX,1, âY,1, âX,2, â′Y,2 are in
a zero-mean Gaussian state with the covariance matrix
in the same form of (B11). The evaluation of param-
eters a1, s1, c1, . . . is straightforward and lengthy, so we
omit it here. A Gaussian approximation for the probabil-
ity distribution of the measurement results follows from
Eq. (B13). The information rates are then obtained via
Eq. (B1).

Appendix C: MAC HSW theorem

Consider the s-sender MAC M. Here we deliberately
use a different notationM instead of N for reasons that
will become apparent later. The scenario of MAC classi-
cal communication without EA is similar to the EA case

𝑀𝑀𝑗𝑗1 𝑀𝑀𝑗𝑗2 …
𝐽𝐽 𝑀𝑀𝑘𝑘1 𝑀𝑀𝑘𝑘2 … 𝐽𝐽c

𝐽𝐽 = {𝑗𝑗1, 𝑗𝑗2, … } 𝐽𝐽𝑐𝑐 = {𝑘𝑘1,𝑘𝑘2, … }

𝑠𝑠 senders

𝑂𝑂𝑗𝑗1 𝑂𝑂𝑗𝑗2 … 𝑂𝑂𝑘𝑘1 𝑂𝑂𝑘𝑘2 …

……

… …

𝐵𝐵

Multi-access
channelℳ

𝑀𝑀𝑀

Figure 10. The protocol of general MAC communication. The
s senders individually prepare the quantum states in the cor-
responding quantum system Ai given their messages in each
codeword space Mi. The receiver reconstructs a message in
codeword spaceM ′ decoded from the output in quantum sys-
tem B.
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in Fig. 2 of the main paper, except that the EA systems
A′ are gone. We also adopt the same notation, as shown
in Fig. 10.

The receiver decodes the messages m = m1m2 . . .ms

of all senders, of which the word space is denoted as
M ′. Accordingly, we can write the message as a bi-
partition m = m[J ]m[Jc]. The input encoding of the
MAC {pm, σ̂mA } involves sending each quantum state σ̂mA
through MAC M by probability pm. The overall state
after the encoding is

Ξ̂MA =
∑
m

pm |m〉〈m|M ⊗ σ̂
m
A . (C1)

Note that due to the independence between the s senders,
the overall probability and state of each encoding can be
written as the products pm =

∏s
i=1 pmi , σ̂

m
A = ⊗si=1σ̂Ai ,

where Ai denote the quantum system of sender i. Al-
ternatively, for an arbitrary bipartition J, Jc, we have
pm = pm[J]pm[Jc] , σ̂

m
A = σ̂A[J] ⊗ σ̂A[Jc]. The MAC maps

the composite input A to a single output quantum system
B, leading to the output

ω̂MB =
∑
m

pm |m〉〈m|M ⊗MA→B(σ̂mA ). (C2)

With the above notations prepared, we can introduce
the information theoretical quantities. To begin with, we
introduce the conditional entropy

S (B|M [Jc])ω̂ =
∑
m[Jc]

pm[Jc]S

MA→B

∑
m[J]

pm[J]σ̂
m
A

 ,
(C3)

similarly, noting that M = M [J ]M [Jc] and pm =
pm[J]pm[Jc] we can have the notation

S (B|M)ω̂ =
∑
m

pmS [MA→B (σ̂mA )] . (C4)

We introduce the conditional quantum mutual informa-
tion

I (M [J ];B|M [Jc])ŵ = S (B|M [Jc])ω̂ − S (B|M)ω̂ (C5)

The one-shot capacity region of the quantum MAC
M can be directly obtained from the classical-quantum
channel formalism in Ref. [41]. In this case, we can re-
duce the (n,R1, . . . , Rs, ε) code defined in Appendix A to
the n-block code proposed in Ref. [41], as we detail be-
low. In the n quantum channel uses, sender k encodes the
n-partite codeword wn

k from the code space W n
k of size

2nRk . Without loss of generality, we consider each code-
word to be chosen with equal probability pwn

k
= 1/2nRk .

A classical n-block coding maps the codewords fromW n
k

to Mn
k as

F : wn
k →mn

k ≡ m
(1)
k . . .m

(n)
k , 1 ≤ k ≤ s, (C6)

where each block m(u)
k is in the message space M (u)

k , the
n blocks together form message mn

k in Mn
k . Alterna-

tively, F can be implemented by sending each message
mn
k subject to probability distribution

pmn
k

=
∑

wn
k∈S(mn

k )

pwn
k
, (C7)

where S(mn
k ) is the set spanned by wn

k ’s satisfying
F (wn

k ) = mn
k . We define the marginal distribution for

each block p
m

(u)
k

for 1 ≤ u ≤ n. For the one-shot capac-
ity region, entanglement is forbidden among the n blocks
and we consider product states as the encoding

σ̂mn
k = ⊗nu=1σ̂

m
(u)
k

u , 1 ≤ k ≤ s , (C8)

where σ̂m
(u)
k

u is the state of the quantum system at the
uth block for sender k. Without loss of generality, we
can always fix the classical-quantum encoding mapping

Fk : m
(u)
k → σ̂m

(u)
k , 1 ≤ k ≤ s , (C9)

for all channel uses 1 ≤ u ≤ n. This is because time shar-
ing of different {σ̂m

(u)
k

u }’s over u ∈ [1, n] is available by
expanding the domain of {m(u)

k } and varying the support
of {p

m
(u)
k

} per block. As a result, we can always combine

the encoding {pmn
k
, σ̂mn

k } (1 ≤ k ≤ s) with the quantum
channel N⊗n into an n-block classical-quantum channel
W⊗n, with each classical-quantum channel defined by

W ≡M◦ (⊗sk=1Fk) : m1m2 . . .ms →M(⊗sk=1σ̂
mk).
(C10)

To summarize, when considering the one-shot capac-
ity region, a quantum MAC M with any encoding
{pmn

k
, σ̂mn

k }, 1 ≤ k ≤ s, can be reduced to a classical-
quantum channel W with certain classical coding F .

With the notations introduced, we restate Theorem
9 and Theorem 10 of Ref. [41] in a version adapted to
the communication over a quantum MAC without EA,
in preparation for the proof of Theorem 1 of the main
paper.

Lemma 2 Let (R1, . . . , Rs) be any non-negative-valued
vector, satisfying the constraints∑

i∈J
Ri ≤ I (M [J ];B|M [Jc])ω̂ , (C11)

for some encoding {pmk , σ̂mk}, 1 ≤ k ≤ s, where ω̂ is
defined in Eq. (C2) relying on the encoding. Then, for
every ε, δ > 0 and all sufficiently large n, there exists a
(n,R1−δ, . . . , Rs−δ, ε)-code, i.e. (R1, . . . , Rs) is achiev-
able.

Proof. With the reduction to classical-quantum chan-
nel defined by Eq. (C10) and Eq. (C9), this lemma im-
mediately follows from Theorem 9 in Ref. [41]. We note
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that the capacity achieving encoding is subject to a prod-
uct prior distribution pmn

k
=
∏n
u=1 pm(u)

k

, and a product-

state encoding σ̂mn
k = ⊗nu=1σ̂

m
(u)
k .

Theorem 3 For any s-sender quantum MAC M, given
a constrained set of classical-quantum encoding mappings
Fk : mk → σ̂mk , 1 ≤ k ≤ s, the one-shot constrained ca-
pacity region of reliable classical communication overM
is the convex hull over all rates (R1, R2, . . . , Rs) satisfy-
ing the 2s inequalities∑

i∈J
Ri ≤ I (M [J ];B|M [Jc])ω̂ , (C12)

for some encoding {pmk , σ̂mk}, 1 ≤ k ≤ s. Here ω̂ is
defined in Eq. (C2) relying on the encoding.

Proof. The achievability results from Lemma 2, which
states that for every ε, δ > 0 and all sufficiently large
n, there exists a (n,R1 − δ, . . . , Rs − δ, ε) code (see Ap-
pendix A) achieving I (M [J ];B|M [Jc])ω̂. Thus, by time-
sharing, Eq. (C12) can always be achieved. Now we ad-
dress the proof of weak converse here. Considering the
classical coding F in, let

{
{σ̂wn

k
} | 1 ≤ k ≤ s

}
, {Λ̂wn

1 ···wn
s
}

be any (n,R1, . . . , Rs, ε) code. The channel output is in
a separable state

ω̂ = ⊗sk=1

1

2nRk

∑
wn
k

(W⊗n ◦ F )[wn
k ]⊗ |wn

k 〉〈wn
k | . (C13)

Its reduced state in the uth channel use is denoted as
ω̂(u). Denote the error rate of the POVM output w′nk as
ε = P (wn

k 6= w′nk ). By Fano’s inequality we have

S(W [J ]n|W ′n)ω̂ ≤ 1 + ε n
∑
i∈J

Ri . (C14)

Note that |wn
k | = 2nRk , 1 ≤ k ≤ s. We have

n
∑
i∈J

Ri = S(W [J ]n)ω̂

= I(W [J ]n;W ′n)ω̂ + S(W [J ]n|W ′n)ω̂

≤ I(W [J ]n;W ′n)ω̂ + 1 + ε n
∑
i∈J

Ri .

(C15)

For reliable communication we require ε→ 0, thus∑
i∈J

Ri ≤
I(W [J ]n;W ′n)ω̂

n
+

1

n

≤ I(M [J ]n;Bn|M [Jc]n)ω̂
n

+
1

n

≤
∑n
u=1 I(M [J ](u);B(u)|M [Jc](u))ω̂(u)

n
+

1

n
,

(C16)
which is outer bounded by the convex hull of rates de-
fined by Eq. (C12). The second inequality is due to the
data processing inequality since we have the completely

positive trace-preserving mapping W n →Mn → Bn →
W ′n, and that discarding system never increases quan-
tum mutual information (which follows from strong sub-
additivity of von Neumann entropy); the third inequality
results from the chain rule and the fact that ω̂ condi-
tioned on Mn is a product state over n channel uses.
Specifically, choosing the encoding over n blocks to be
identical, we have the outer bound of one-encoding rate
region defined by∑

i∈J
Ri ≤ I(M [J ];B|M [Jc])ω̂ +

1

n
, (C17)

Remark. For an `-letter communication scenario (en-
coding with inputs entangled between ` channel uses),
the systems A` and B` can be entangled over the ` let-
ters within a block. In this case, the mutual information
is not necessarily subadditive, Eq. (C12) needs to be eval-
uated over ` channel uses as a whole∑

i∈J
Ri ≤ I

(
M [J ]`;B`|M [Jc]`

)
ω̂
. (C18)

This has already been pointed out in Sec. VII of Ref. [41].

In the EA protocol, the quantum system comes with
a reference system A′ which is pre-shared to the receiver
side intact, while the quantum system goes through the
MAC N . However, we can view the overall channel
M = N ⊗ I as a single MAC. Note that the encod-
ing is, however, restricted as the I part corresponds to
references. Namely, the encoding mappings are defined
by

Fk : mk → Emk(σ̂0), 1 ≤ k ≤ s , (C19)

where the generator state σ̂0 is an arbitrary state of
AkA

′
k, while the encoding operations {Emk} is con-

strained to act only on the signal system Ak.

Appendix D: Proof of Theorem 1 of the main paper

We derive the EA-MAC classical capacity in analogy to
the single-sender single-receiver EA classical capacity [14]
and the two-sender EA-MAC classical capacity [17].

Theorem 1 in the maintext includes two parts: the
regularization Eq. (2), and the convex hull Eq. (3).

To begin with, we provide an explanation for the reg-
ularization. For channel N , denote X (`) as the set of all
codebooks with at most ` entangled letters. The `-letter
one-shot capacity region C(1)

E (N⊗`) spans the rate sub-
set achieved by the codebook set X (`). Thus the union
of block codes

⋃∞
`=1 X (`) includes any possible codebook.

Hence the ultimate capacity region CE(N ) is given by the
regularized rate region achieved by the universal code-
book set

⋃∞
`=1 X (`). This block-code reduction yields

Eq. (2) from Eq. (3) in the main text.
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Below we provide both the inner and outer bounds of
single-letter one-shot region C(1)

E (N ), which coincides and
thus gives the formula Eq.(3) in the main text. The proof
does not specify the mode number per user since the
entanglement assistance is unlimited, thus the formula
of `-letter one-shot region C(1)

E (N⊗`) follows by inserting
N → N⊗`, A→ A`, B → B`, A′k purifying A`

k, 1 ≤ k ≤
s. The `-letter one-shot, one-state region C̃E(N⊗`, φ̂) is
defined by ∑

k∈J

Rk ≤ I(A′[J ];B`|A′[Jc])ρ̂, ∀J , (D1)

with ρ̂ = N⊗` ⊗I(φ̂), where φ̂ is a pure state defined on
A`A′.

In the proof below, we omit ‘ˆ’ in the notation of oper-
ators for simplicity, since the meaning of each notation is
clear in the context. Our proof combines the techniques
in Ref. [41] (Lemma 2 and Theorem 3), Ref. [14], and
Ref. [17].

1. Inner bound

We prove the inner bound by showing the bound-
aries achievable for any pure state φ. We show that
the 2s conditional quantum mutual information quan-
tities in Eq. (C12) reach all the boundaries of C̃E region
defined by Eq. (4) of the main paper, i.e. the rate region
defined by Eq. (C12) is inner bounded by C̃E regions.
Lemma 2 guarantees that for any ε, δ > 0 there is some
(n,R1−δ, . . . , Rs−δ, ε) code achieving the region defined
by Eq. (C12) with some encoding {pmk , σmk}, 1 ≤ k ≤ s,
thus the convex hull over all possible encodings provides

the inner bound of C(1)
E (N ). Then the achievability of

Conv
[⋃

φ C̃E(N , φ)
]
is proven. During the evaluation of

entropies within this section, AA′ or BA′ is the relevant
Hilbert space and we omit the subscripts for states living
in AA′ or BA′.

We begin with the special case of each pair
{(Ai, A′i), 1 ≤ i ≤ s} being in a maximally entangled
state, such that the reduced state φAi = TrA′Aj 6=i(φ) =
(I/di)Ai is fully mixed, here the dimension di = dimAi.
The capacity achieving protocol is implemented by a
generator state being φ and a correlation-removing
unitary encoding {Um}. In terms of the ensemble∑
m pmUmφU

†
m, a correlation-removing encoding {Um}

wipes out the correlation between each system Ai with
its reference system. Concretely, this can be implemented
by the generalized Pauli operators

Umi = T
mi,T
Ai

R
mi,R
Ai

, where

mi = mi,Tmi,R, 1 ≤ mi,T ≤ di, 1 ≤ mi,R ≤ di ,
(D2)

with the Pauli matrices Tjk = δj,k−1 mod di , Rjk =

ei2πk/diδjk acting on each subspace Ai. Governed by the
independence constraint of MAC, φ = ⊗si=1φAiA′i . The
encoding Um = ⊗si=1Umi acting on ⊗si=1Ai by probabil-
ity pm =

∏s
i=1 pmi is also separable, where mi is subject

to the uniform distribution pmi = 1/|Mi|.
Now the overall quantum state after the channel is

ωMBA′ =
∑
m

pm |m〉〈m|M ⊗ [NA→B ⊗ I]
(
UmφU

†
m

)
.

(D3)
Applying Lemma 2 to Eq. (D3), for any ε, δ > 0 there
exists a (n,R1−δ, . . . , Rs−δ, ε) code achieving the vector
of data transmission rate of this protocol

∑
i∈J

Ri = I (M [J ];B|M [Jc])ω

= Em[Jc]

{
S

N ⊗ I
∑
m[J]

pm[J]

(
Um[J] ⊗ Um[Jc]

)
φ
(
U†m[Jc] ⊗ U

†
m[J]

)− Em[J]

{
S
[
N ⊗ I

(
UmφU

†
m

)] }}
,

= Em[Jc]

{
S
[
N ⊗ I

(
Um[Jc]φA′[Jc]AU

†
m[Jc]

)]
+ S

(
φA′[J]

)
− Em[J]

{
S
[
N ⊗ I

(
UmφU

†
m

)] }}
,

(D4)
where Ex[f(x)] ≡

´
dxp(x)f(x) refers to the expectation value of function f averaged on probability distribution p.

The second equality is because {Um[J]} is correlation-removing within system A[J ],

N ⊗ I

∑
m[J]

pm[J]

(
Um[J] ⊗ Um[Jc]

)
φ
(
U †m[Jc] ⊗ U

†
m[J]

) = N ⊗ I
(
Um[Jc]φA′[Jc]AU

†
m[Jc]

)
⊗ φA′[J] . (D5)

In contrast to the single-user case, here we see that the
encoding restricted on A[J ] fails to remove the correlation

between A and A′[Jc], so A′[Jc] is left with A in the
entropy quantities.
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Next, we note that for the maximally entangled state
φ, we have U ⊗ I |φ〉 = I ⊗ U? |φ〉 for any unitary U .
This equivalence ensures that the encoding preserves the
entropy of the output state

S
[
N ⊗ I

(
Um[Jc]φA′[Jc]AU

†
m[Jc]

)]
= S

[
N ⊗ I

(
φA′[Jc]A

)]
, (D6)

similarly

S
[
N ⊗ I

(
UmφU

†
m

)]
= S [N ⊗ I (φ)] . (D7)

Therefore, the averaging in Em[J],Em[Jc] disappears in
Eq. (D4). Therefore, Eq. (D4) reduces to∑

i∈J
Ri =S

(
N ⊗ I

(
φA′[Jc]A

))
+ S(φA′[J])

− S (N ⊗ I (φ)) . (D8)

Simplifying the right-hand-side above, we obtain∑
i∈J

Ri = S (BA′[Jc])ρ + S (A′[J ])ρ − S (A′[J ]BA′[Jc])ρ

= I (A′[J ];BA′[Jc])ρ = I(A′[J ];B|A′[Jc])ρ.
(D9)

Here we utilized the channel mapping ρ =ρBA′ =
NA→B ⊗ I(φAA′). The last step is due to independence
between the signals. Note that Eq. (D9) holds for any J .
Hence Eq. (D4) achieves C̃E(N , φ) in Eq. (4) of the main
paper for the maximally entangled state.

Indeed, the achievability also holds for any projection-
like φA, which is proportional to a projection operator
to some subspace S of the input Hilbert space Hin, along
with the encoding {Um[J]} restricted on S. For now, we
have achieved the rate region specified by Eq. (4) of the
main paper for all projection-like inputs.

Having proven the result for the special case of in-
puts with a projection-like reduced density matrix, now
we extend the proof to general pure product states φ.
For simplicity here we denote the reduced density ma-
trix as ξ ≡ φA. First we introduce the n-block ε-
typical space Tn(ξ) of an arbitrary single-block state
ξ =

∑
x p(x) |x〉〈x|, where {|xi〉} is an orthogonal set.

Tn(ξ) comprises every typical states |x1x2 . . . xn〉 associ-
ated with typical sequences x1x2 . . . xn satisfying∣∣∣∣∣− log

(
n∏
i=1

p(xi)

)
/n− S(ξ)

∣∣∣∣∣ ≤ ε . (D10)

Denote by PTn the projection operator onto subspace
Tn(ξ). The typicality follows from the law of large num-
ber, explicitly, for any ε > 0 there exists n sufficiently
large such that the typical subspace almost includes the
n-block random encoding ξ⊗n

Tr
[
ξ⊗n (I − PTn)

]
≤ δ. (D11)

Now let πTn be the normalized projection operator
PTn/ dimTn. By the definition of ε-typicality Eq. (D10),

the entropy of the uniform distribution πTn is almost
nS(ξ) up to a prefactor ∼ 1− δ, explicitly

(1− δ)2n(S(ξ)−ε) ≤ dimTn(ξ) ≤ 2n(S(ξ)+ε). (D12)

By a similar correlation-removing encoding
on ΦπTn , below we show that the n-block
I(A′[J ]n;Bn|A′[Jc]n)(N⊗I)⊗n(πTn ) quantity achieves
nI(A′[J ];B|A′[Jc])N⊗I(ξ).

Following a similar procedure to the proof for max-
imally entangled state, Eq. (D8) holds for the n-block
state. The typicality Eq. (D12) gives the first term in
Eq. (D8). Meanwhile, for the last two terms in Eq. (D8),
we construct a unitary including the environment mode
to simulate channel N . Denote the complementary chan-
nel as K, which maps the input state to the environ-
ment mode. Define ΦπTn as a purification of πTn fulfilled
per system pair AiA′i, 1 ≤ i ≤ s. Then the last term
S[(N ⊗I)⊗n(ΦπTn )] = S[K(πTn)], thereby the latter two
terms converges to the desired quantity when ε→ 0

S
[
N⊗n (πTn)

]
− S [K (πTn)]

→ n [S (N (ξ))− S (N ⊗ I (Φξ))] ,
(D13)

which follows from Lemma 1 in [14]. Both sides of the
equation above can be reduced to a conditional quantum
information quantity: I(A′[J ]n;Bn|A′[Jc]n)ρ with ρ =
(N ⊗I)⊗n(ΦπTn ) for LHS, and nI(A′[J ];B|A′[Jc])ρ with
ρ = N ⊗ I(φ) for RHS. Combining the above together,
we have the information rate per letter

I(A′[J ]n;Bn|A′[Jc]n)(N⊗I)⊗n(ΦπTn
)/n

→ I(A′[J ];B|A′[Jc])N⊗I(φ)

(D14)

given ε → 0. Note that πTn is projection-like thus
I(A′[J ]n;Bn|A′[Jc]n)(N⊗I)⊗n(ΦπTn

) is achieved
by the correlation-removing encoding. Hence,
I(A′[J ];B|A′[Jc])N⊗I(φ) is achievable for any pure
product state φ.

Now we have proven C̃E specified by Eq. (4) of the main
paper is achievable for any input φ. Then the convex hull
of C̃E is achievable due to time sharing. Thus the one-
shot capacity region is inner bounded by the convex hull
of C̃E(N , φ) regions over all possible φ

C(1)
E (N ) ⊇ Conv

⋃
φ

C̃E(N , φ)

 . (D15)

2. Outer bound

Theorem 3 gives an outer bound with a convex hull
over the region defined by I(M [J ];BA′|M [Jc])ω quanti-
ties in Eq. (C12). We prove that C̃E(N , φ) is an outer
bound of each region defined by Eq. (C12) with repeti-
tive uses of one encoding {pm}, which is the outer bound
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Figure 11. For the proof of the outer bound, A,B are the
input and output systems of our MAC N ,M,M ′ are the input
and output code spaces. A′ is the entanglement assistance
system. System R purifies system A per subsystem Ai, 1 ≤
i ≤ s.

of one-shot, one-encoding rates. Then we take the con-
vex hull over C̃E(N , φ) and prove it as an outer bound
of C(1)

E (N ).
To ease the proof, we introduce reference systems R,E,

as shown in Fig. 11. R = ⊗si=1Ri individually purifies
per sender i the subsystem ΞMiAiA′i

of the overall state
Ξ = ΞMAA′ just after encoding, defined by Eq. (A1)
of the main paper. The environment system E purifies
the overall state, including the system R, just after the
channel. The channel is extended to a unitary transform
UN : AE → BE when E is included. We denote the
purification before channel as

ξ = ξMAA′RE= ΦΞ ⊗ |0〉〈0|E , (D16)

and the final purification after channel as
η = ηMBA′RE = UN (ξ). Below we show that
I(M [J ];BA′|M [Jc])ω is upper bounded by the right-
hand side of Eq. (4) of the main paper.

Equivalently, since the purification systems R,E are
traced out at the end and make no difference, we evaluate
I(M [J ];BA′|M [Jc])ω over η

I
(
M [J ];BA′

∣∣M [Jc]
)
η

= I (M [J ];BA′M [Jc])η

= I (M [J ]A′[J ];BA′[Jc]M [Jc])η

− I (A′[J ];BA′[Jc]M [Jc])η + I (M [J ];A′[J ])η .

(D17)
The first equality is due to the chain rule of quantum
mutual information and the independency constraint of
MAC I(M [Jc];M [J ]) = 0. The second equality is due
to the chain rule of quantum mutual information. Let
M [J ] = X, BA′[Jc]M [Jc] = Y and A′[J ] = Z, we
have I(M [J ];BA′M [Jc])η = I(X;Y Z) = I(Y ;X|Z) +
I(X;Z) = I(XZ;Y ) − I(Z;Y ) + I(X;Z), which equals
the second line term by term. Note that the encoding
does not affect the entanglement assistance A′, thus

I(M [J ];A′[J ])η = 0 , (D18)

and from the positivity of quantum mutual information

I(A′[J ];BA′[Jc]M [Jc])η ≥ 0 , (D19)
we have

I(M [J ];BA′|M [Jc])η ≤ I(M [J ]A′[J ];BA′[Jc]M [Jc])η .
(D20)

As EA is unlimited, there is always an expanded system
A′ex = ⊗si=1A

′
ex,i available that includes A′i, Ri,Mi for

each sender i. Adopting the expanded EA,

I(M [J ]A′[J ];BA′[Jc]M [Jc])η ≤ I(A′ex[J ];BA′ex[Jc])η ,
(D21)

since, as a result of strong subadditivity of the Von Neu-
mann entropy, discarding systems never increases quan-
tum information. Note that I(A′ex[Jc];A′ex[J ]) = 0, com-
bining Eq. (D20) and the equation above, we obtain the
outer bound

I(M [J ];BA′|M [Jc])η ≤ I(B;A′ex[J ]|A′ex[Jc])η (D22)

for some pure state η, which is a product between differ-
ent senders. With the expanded entanglement assistance
A′ ≡ A′ex, we arrive at the desired outer bound for any
encoding Ξ

I(M [J ];BA′|M [Jc])η ≤ I(B;A′[J ]|A′[Jc])ρ , (D23)

evaluated on the channel output ρ = N ⊗ I(φ) of some
pure product state φ = φAA′ that purifies the reduced
state ΞA.

Denote Tφ as a family of encodings, of which the overall
state after the encoding satisfies ΦΞA = φ. Substitute
the repetitive n uses of some encoding from Tφ for the
input of {ω(u)}nu=1 in Ineq. (C17), the left hand sides of
Ineqs. (D23) gives an outer bound for information rates
of the repetitive encoding. Thus one-shot, one-encoding
rates are outer bounded by the region C̃E(N , φ)∑

i∈J
R̃i ≤ I(B;A′[J ]|A′[Jc])ρ . (D24)

Finally, taking the convex hull on both sides of
Ineq. (D23) and combining it with Theorem 3, for any
(n,R1, . . . , Rs, ε) code we have∑

i∈J
Ri ≤

∑
u

puI(M [J ];BA′|M [Jc])η(u) (D25)

for some encoding set {p
m

(u)
k

, σm
(u)
k } that generates state

set {η(u)} by plugging Ξ =
∑

mn
k
pmn

k
σmn

k
⊗ |mn

k 〉〈mn
k |

in Eq. (D16), and thereby∑
i∈J

Ri ≤
∑
u

puI(B;A′[J ]|A′[Jc])ρ(u) (D26)

for some pure state sets {φ(u) = ΦΞ
A(u)
} that generate

state sets {ρ(u)} by ρ(u) = N ⊗ I(φ(u)), with {pu} satis-
fying

∑
u pu = 1. Thus the convex hull C(1)

E (N ) provides
an outer bound for the (n,R1, . . . , Rs, ε) code rate

C(1)
E (N ) ⊆ Conv

⋃
φ

C̃E (N , φ)

 . (D27)
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