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Summary. Creep in shale is a multiscale deformation process across both space and7

time. In this paper, we propose a scale-bridging technique linking creep phenomena8

in shale from nanometer scale to specimen scale, and explore the mechanisms of creep9

at different scales. To this end, we simulate indentation tests on Woodford shale10

at the nanometer and micrometer scales using an incremental frictionless multi-11

body contact algorithm based on the Lagrange multipliers method, along with a12

recently developed Cam-Clay IX constitutive framework that explicitly recognizes13

the inherent heterogeneity of the rock material. Simulation results suggest that creep14

of the sample is mostly attributed to the viscoplastic deformation of the material15

away from the indenter tip, and that such response is highly dependent on the stress16

rate during the loading stage. Furthermore, simulations of triaxial creep indicate17

that creep behavior of the bulk sample is dominated by the presence of organics18

and clay constituents, and that such behavior follows a widely used logarithmic19

law. Throughout this work, we address the issues of heterogeneity across scales,20

anisotropy arising from the presence of bedding planes, and viscoplasticity of the21

individual constituents as they relate to the time-dependent properties of the bulk22

shale sample.23
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1 Introduction4

Shale is a highly heterogeneous material composed of hard crystalline ag-5

gregates (quartz, feldspar, pyrite), and soft nanoporous matrix (clay, organic6

materials). The complexity of the material system is evident in experiments7

on the scales of nanometer (Loucks et al., 2009; Semnani and Borja, 2017;8

Ulm et al., 2007), micrometer (Bennett et al., 1991; Bornert et al., 2010), and9

centimeter (Chen et al., 2012; Lonardelli et al., 2007; Valcke et al., 2006).10

Furthermore, experimental studies have recognized the transverse isotropy of11

shale resulting from the existence of bedding planes (McLamore and Gray,12

1967; Niandou et al., 1997; Xu et al., 2011). Multiscale heterogeneity and13

transverse isotropy have been studied numerically using recently developed14

constitutive laws (Borja et al., 2020; Choo et al., 2021; Semnani and White,15

2020; Zhang, 2020).16

Unlike crystalline rocks that tend to fracture under deformation (Bennett17

et al., 2016; Bennett and Borja, 2018; Borja and Rahmani, 2012; Tjioe et al.,18

2012; Tjioe and Borja, 2014, 2015, 2016), shale behaves like clay (Borja and19

Kavazanjian, 1985; Borja, 1990; Borja and Choo, 2016; de Borst and Duretz,20

2020; Han et al., 2020; Lazari et al., 2019; Li et al., 2020; Tafili et al., 2020;21

Zeng et al., 2020; Zhang et al., 2020; Zhao et al., 2019) in that it exhibits22

pronounced viscous creep behavior in the laboratory and in the field (Abel23

and Lee, 1980; Chang and Zoback, 2008; Horsrud et al., 1994; Kabwe et al.,24

2020). Triaxial creep tests on millimeter-scale samples have been extensively25
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conducted on different types of shale (Almasoodi et al., 2014; Li and Ghassemi,1

2012; Mishra and Verma, 2015; Rassouli and Zoback, 2015, 2018). Sone and2

Zoback’s triaxial creep tests (Sone and Zoback, 2013) on a number of shale3

samples showed that creep responses depended on the orientation of deviatoric4

loading (i.e., stress difference) relative to the bedding plane, as well as on the5

magnitude of the deviator stress. They concluded that creep behavior was6

largely attributed to the pore volume compaction inside clay and organic7

materials (i.e. soft materials), while the hard materials did not contribute8

much to creep deformation. However, triaxial creep tests require large shale9

cores that are difficult to obtain from the field. In addition, triaxial creep10

tests are time consuming – they typically last days if not months. In a series11

of triaxial creep tests, Rassouli and Zoback (2018) predicted the long-term12

behavior of shale samples based on short-term responses, but the predictions13

were not reliable in some cases.14

Recent advances in indentation testing allow the measurement of the me-15

chanical properties and creep behavior of shale samples within a period of16

several minutes (Bobko, 2008; Gathier, 2008; Kumar, Curtis, et al., 2012; Ku-17

mar, Sondergeld, et al., 2012; Liu et al., 2016; Shukla et al., 2013; Ulm et18

al., 2007). Three-stage (load-hold-unload) nanoindentation tests on different19

constituents of Bakken shale from North Dakota (Liu, Ostadhassan, Bubach,20

Dietrich, et al., 2018) revealed that creep deformation of soft materials was21

seven times larger than that of the hard materials within the same time pe-22

riod. Bennett et al. (2015) conducted nanoindentation and microindentation23

tests on organic-rich Woodford shale samples from the same core and demon-24

strated the anisotropy of the shale at both scales. However, little information25

beyond the elastic modulus and hardness of the material could be extracted26
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from indentation tests, and no information on the stress and strain states1

could be obtained beneath the indented surface of the sample.2

Attempts have been made to link the creep behavior of shale at the nano-3

and micro-meter scales to the centimeter scale (Mighani et al., 2019; Ran-4

dall et al., 2009; Vandamme and Ulm, 2009, 2013; Zhang et al., 2014) based5

on an analytical homogenization method originated from Eshelby’s inclusion6

problem (Eshelby, 1957). In this method, the Mori-Tanaka estimate to the7

homogenized stiffness tensor of a mixture of multiple elastic materials was ex-8

tended and applied to viscoelastic materials. Furthermore, the two indentation9

parameters (i.e., modulus and hardness) were derived through dimensionless10

similarities, and creep related parameters were further calculated by Laplace11

transformation in the frequency domain. However, in general these methods12

cannot account for quantified heterogeneity of the sample, nor can they be13

extended to the inelastic regime.14

Recently, Borja et al. (2020) proposed a two-material constitutive model15

(i.e., Cam-Clay IX) for the creep behavior of shale that accommodated16

anisotropy, heterogeneity, and viscoplasticity. In this model, shale was rep-17

resented as a mixture of a stiffer material and a softer material, each forming18

a solid frame and occupying the same space through their volume fractions.19

The model captures the anisotropic creep behavior of Barnett shale as well20

as the onset of dilative shear bands under various loading rates. We use this21

constitutive model in this paper as a scale-bridging technique to link the creep22

phenomena in shale across space and time, i.e. from nanometers to millimeters,23

and from seconds to days. To this end, we employ an incremental frictionless24

multi-body contact algorithm based on the Lagrange multipliers method to25

simulate the indentation process.26
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A 3D mechanistic simulation of the indentation process allows calibration1

of the viscosities of the two-material model. We first calibrate the viscosity of2

the soft frame by simulating the nanoindentation process on clay and kerogen.3

Once the viscosity of the softer matter has been fixed, we then calibrate the4

viscosity of the hard frame from data on microindentation tests in which both5

the softer and harder frames are engaged. Finally, the mechanical properties6

inferred from indentation testing are used to simulate the creep behavior of a7

triaxial sample of shale to see how the properties calibrated at the nanoscale8

upscale to the specimen scale.9

2 Theory10

This section briefly introduces the two-material constitutive law proposed by11

Borja et al. (2020) and presents the formulation for nonlinear multi-body con-12

tact problems based on the Lagrange multipliers method. We note that by as-13

suming a rigid indenter, the size of the system is significantly reduced because14

the indenter can now be represented as a one-degree-of-freedom body. We also15

note that the formulation differs from the conventional one-body contact prob-16

lem (Frohne et al., 2016; Hüeber and Wohlmuth, 2005; Wriggers, 2004) where17

the rigid body is a prescribed Dirichlet constraint to the deformable body, and18

not a Neumann constraint on the rigid body. Throughout the derivation, we19

keep in mind that the problem involves a diamond Berkovich indenter pushed20

into the surface of a shale sample, after which the load exerted by the indenter21

on the shale is held fixed while the shale undergoes creep deformation.22
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2.1 Constitutive law1

The Cam-Clay IX model considers a shale as a mixture of a hard crystalline2

material M and a soft material m representing clay and organics, with the3

volume fractions φM and φm approximately equal to each other and φM+φm =4

1. The problem is not the same as the inclusion problem considered by Hill5

(1963) in that neither volume fraction is more dominant than the other, and so6

it is possible to assume that separate solid frames may form for each of the two7

materials. Since the two frames are continuous, their individual displacement8

fields must be continuous, and since one frame cannot displace relative to the9

other frame, their displacement fields must be the same. From a kinematical10

point of view, this implies that the strains in the two frames must be the11

same, i.e. εM = εm = ε, where ε is the overall strain tensor. Borrowing the12

ideas from mixture theory (Borja, 2006), the overall Cauchy stress tensor can13

be determined from the weighted sum of the intrinsic stress tensors σM and14

σm in the rate form15

σ̇ = φMσ̇M + φmσ̇m . (1)16

We assume that the total strain rate tensor ε̇ can be decomposed into17

elastic and viscoplastic parts,18

ε̇ = ε̇e + ε̇vp . (2)19

The overall viscoplastic strain rate tensor can then be calculated as20

ε̇vp = Ce−1 :
( ∑
α=M,m

φαCe
α : ε̇vp

α

)
, (3)21

where Ce
α and ε̇vp are the tangential elasticity tensor and viscoplastic strain22

rate tensor for material α, respectively; and Ce is the overall tangential elas-23
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ticity tensor calculated as the weighted sum of the tangential elasticity tensors1

Ce
m and Ce

M.2

The viscoplastic strain rate tensor ε̇vp
α for material α has a form analogous3

to the flow rule used in rate-independent elastoplasticity (Borja, 2013). Two4

common forms, one proposed by Perzyna (1966) and the other proposed by5

Duvaut and Lions (1976), are widely used in the context of over-stress model in6

which the stress point may lie outside the yield surface. However, the Duvaut-7

Lions model is not appropriate for the problem of indentation simulation due8

to the lack of a solution for the inviscid problem when the stress concentrates9

around the tip of the indenter. Thus, only the Perzyna formulation is employed10

in the present work.11

Transverse isotropy is assumed for the hard frame in both the elastic and12

viscoplastic responses. We assume a transversely isotropic linear elasticity13

with five independent elastic parameters for the elastic deformation, and an14

anisotropic version of the modified Cam-Clay model (Semnani et al., 2016;15

Zhao et al., 2018; Zhao and Borja, 2019) for the viscoplastic deformation.16

The soft frame is assumed to be isotropic, using an isotropic linear elasticity17

model with two elastic constants for the elastic response, and the conventional18

isotropic modified Cam-Clay model for the viscoplastic response. For further19

details of the model, including the derivation of the algorithmic tangent op-20

erator, we refer the readers to Borja et al. (2020).21

We emphasize that the present constitutive model applies to the case where22

the volume fractions of the two groups (soft and hard) are about the same.23

This assumption applies, for example, to Barnett and Haynesville shales tested24

by Sone and Zoback (2013) (see the ternary plot representation of sample25

material compositions in Figure 1 of their paper), as well as to the shale26

sample imaged by Curtis et al. (2010). In contrast, the problem of inclusion27
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does not admit a continuous displacement field for the less dominant group,1

as it only takes a ride with the motion of the more dominant group.2

2.2 Multi-body contact formulation3

In what follows, we assume that contact between the indenter and the indented4

surface is frictionless. Consider a two-body contact problem consisting of a5

master body represented by subscript “1” and a slave body represented by6

subscript “2” (Wriggers, 2004). We denote the set of all potential contact7

surfaces between the master and slave bodies as Γc. For each point x2 on8

the slave side of Γc, we define a projected point x1 on the potential contact9

surface on the master side such that x2−x1 is perpendicular to the surface on10

the slave side (Figure 1). The strong form of the frictionless contact problem11

is then given by the following set of equations12

∇ · σα + fα = 0 in Ωα

uα = uα0 on Γαd

σα · nα = hα on Γαh


, (4)13

subject to the constraints14

(u2 − u1) · n2 − g0 6 0

σαn > 0

σαn((u2 − u1) · n2 − g0) = 0


on Γc , (5)15

where α = 1, 2; g0 is the initial gap between x2 and x1; σαn = (σαn ·nα) ·nα16

is the normal component of traction; and u1 is the displacement of point17

x1. Here, we follow the soil mechanics convention and denote compression as18

positive.19
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Fig. 1. Schematic plot of contact boundaries.

Let λ2 > 0 and λ1 > 0 denote the Lagrange multipliers representing the1

normal components of traction on the slave and master sides. The potential2

contact boundary Γc can be further decomposed into Γa, the set of boundaries3

in contact, and Γ1i and Γ2i, the set of boundaries not in contact (Figure 1).4

Here, we further assume that Γa, Γ1i, and Γ2i are known. Later, we shall use5

the active set strategy (Hintermüller et al., 2002) to determine the contact6

boundaries. The reformulated strong form is based on the governing equations7

that assume the contact boundaries are known. These equations take the form8

∇ · σα + fα = 0 in Ωα

(u2 − u1) · n2 − g0 = 0 on Γa

λ2 = 0 on Γ2i

λ1 = 0 on Γ1i

uα = uα0 on Γαd

σα · nα = hα on Γαh

σ2 · n2 = −σ1 · n1 = −λ2n2 on Γa



. (6)9
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Note from the foregoing equations that λ2 = λ1 and n2 = −n1 on Γa. This1

reformulation is necessary for the derivation of the weak form due to the2

fact that the widely applied approach of Lagrangian mechanics in contact3

problems (Wriggers, 2004) is not applicable in the present problem. We remark4

that for a nonlinear constitutive law such as the one presented in the previous5

section, the Lagrangian may not be available because of the lack of an explicit6

expression for the strain energy.7

To develop the weak form, we define the sets of trial functions8

Su = {u|u ∈ H1,u = uα0 on Γαd for α = 1, 2}

Sλ = {λ|λ ∈ H0, λ = 0 on Γαi for α = 1, 2}

 , (7)9

and the sets of weighting functions10

Vu = {ω|ω ∈ H1, ω = 0 on Γαd for α = 1, 2}

Vλ = {ν|ν ∈ H0, ν = 0 on Γαi for α = 1, 2}

 . (8)11

In what follows, we provide the linearized version of the variational equa-12

tions applicable for the kth Newton iteration at time tn+1, and13

un+1 = un +

l∑
k=1

∆uk , λn+1 = λn +

l∑
k=1

∆λk , (9)14

where l is the total number of Newton iterations for convergence at the current15

time step.16

The linearized variational equation for the balance of linear momentum17

for the slave body is18
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∫
Ω2

∇sω :
∂σ2

∂u

∣∣∣∣
k

· ∆uk2 dΩ +

∫
Γa

ω · n2∆λ
k
a dΓ

=

∫
Γ2h

ω · h2 dΓ +

∫
Ω2

ω · f2 dΩ

−
∫

Ω2

∇sω : σk2 dΩ−
∫

Γa

λkaω · n2 dΓ . (10)

The linearized variational equation for the balance of linear momentum for1

the master body is2

∫
Ω1

∇sω :
∂σ1

∂u

∣∣∣∣
k

· ∆uk1 dΩ −
∫

Γa

ω · n2∆λ
k
a dΓ

=

∫
Γ1h

ω · h1 dΓ +

∫
Ω1

ω · f1 dΩ

−
∫

Ω1

∇sω : σk1 dΩ +

∫
Γa

λkaω · n2 dΓ . (11)

The linearized variational equation for the contact constraint is3

∫
Γa

ν∆uk2 · n2 dΓ −
∫

Γa

ν∆uk1 · n2 dΓ

=

∫
Γa

ν[g0 − (uk2 − uk1) · n2] dΓ , (12)

where λa = λ2 = λ1 on Γa. To determine the sets of boundaries Γa, Γ1i,4

and Γ2i, the Karush-Kuhn-Tucker (KKT) conditions (Borja, 2013) can be5

reformulated as6

λ−max(0, λ+ c((u2 − u1) · n2 − g0)) = 0 for ∀c > 0 , (13)7

where σn is replaced with the Lagrange multiplier λ. Thus, the set of bound-8

aries in contact, Γa, can be determined as (hintermüller et al., 2002)9

Γa = {x|λ(x) + c((u2(x)− u1(x)) · n2(x)− g0)) > 0 for ∀c > 0} . (14)10
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2.3 Numerical implementation1

In general, discretization of solids in a contact problem is challenging (Wrig-2

gers, 2004). The challenge comes mainly from the fact that the displacement3

field u1 for the projected contact points may not be consistent with the dis-4

cretization of the master side. If they are not consistent, mapping techniques5

like node-to-surface, surface-to-surface, and mortar element methods must be6

applied with extra computation of the mapping procedures. Even if all of7

the projected contact points coincide with the discretization (a node-to-node8

contact algorithm), the computational cost associated with creating equally9

refined meshes for the two bodies may still be high depending on the problem.10

However, in simulating an indentation problem, the diamond indenter may11

be modeled as a rigid body since its stiffness is much higher than that of12

the indented material. In this paper, we propose a numerical algorithm that13

deals with the contact problem between a rigid body and a deformable body.14

More specifically, the displacement of the rigid body is fully represented by15

only one degree of freedom. In this case, neither the meshing of the rigid16

body nor the mapping between the contact points from the slave side to the17

master side is needed. In our model, the entire indenter is modeled with only18

one degree of freedom ur describing the vertical displacement of the indenter19

along the direction of indentation. Thus, movements perpendicular to the20

direction of indentation are all constrained. For a rigid indenter, only the total21

magnitude of the the normal traction representing the contact force controls22

the vertical displacement of the indenter, while the actual distribution of the23

normal traction has no effect. Therefore, without changing the distribution of24

the normal traction on the slave side, all traction terms on the master side25

can be combined and shifted to a single node.26
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The procedure described above reduces the number of elements on the1

master side to minimum, and greatly simplifies the mapping between the2

slave and master sides. We note that this approach is different from the one-3

body contact problem where the rigid body is prescribed through a Dirichlet4

boundary constraint on the deformable body. It is an appropriate and efficient5

approach for simulating the problem of creep where the forcing function is a6

sustained Neumann boundary condition on the rigid body.7

Now, Equation (11), which was originally a set of vector equations, has8

been reduced into a single scalar equation. By simplifying Equations (11)9

and (12), we arrive at the following system of equations in matrix form10



K2 0 M 0

0 K P 0

MT P T 0 0

0 0 0 I





∆uk2

∆ukr

∆λka

∆λk2i


= R , (15)11

where ∆uk2 ∈ Rp, ∆ukr ∈ R, ∆λka ∈ Rq; and ∆λk2i ∈ Rj , p � q and p � j.12

Also, K2 ∈ Rp × Rp is the conventional stiffness matrix for the slave body,13

and is given by14

K2 =

∫
Ω2

BTCalg
2 BdΩ , (16)15

where Calg
2 is the algorithmic tangent operator for the slave body. The sub-16

matrix M ∈ Rp × Rq is a rectangular matrix with more rows than columns,17

and takes the form18

M =

∫
Γa

NT
2D N3D|Γa

dΓ , (17)19

where N2D denotes the shape function matrix used to interpolate the La-20

grange multiplier λ, while N3D|Γa
denotes the matrix used to interpolate21

the displacement field on the contact surface. If we set N2D = N3D|Γa
and22
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apply the Gauss-Lobatto quadrature rule to calculate the integral, then M1

simplifies to a diagonal matrix (Frohne, 2016)2

Mii =

∫
Γa

N2
i dΓ, Mij = 0 for i 6= j . (18)3

Furthermore, P is a row vector given by the expression4

P = 1TM , (19)5

where 1 ∈ Rp is a column vector with all elements being 1. The null submatrix6

0 varies in dimension depending on its location in the larger matrix, while K7

is a positive number with its value depending on the stiffness tensor assigned8

to the rigid master body. Finally, the fourth row of the block matrix is added9

to fix the size of the system and minimize memory reallocation.10

The nonlinear contact algorithm is summarized in Box 1. We remark that11

the algorithm can be extended to efficiently solve the contact problem between12

a rigid body and a nonlinear solid under strain and stress driven conditions.13

The computational performance of this algorithm will be reported in a future14

work.15

Step 1. Initialize Γc, u and λ.

Step 2. Update Γa and Γ2i from (14).

Step 3. Assemble and solve the system of equations (15).

Step 4. Check if ‖R‖ < tolerance and Γa unchanged?

Yes, update u, λ, stress and strains. Go to next time step.

Step 5. No, line search on u and λ and go to Step 2.

14



Box 1. Nonlinear contact algorithm for indentation simulations.1

The multi-body contact algorithm and the two-material constitutive model2

were implemented into an in-house finite element code called GeoScale. The3

next three sections report the results of numerical simulations conducted in4

GeoScale to demonstrate the scale-bridging technique that links the creep5

phenomena in shale from nanometer scale to specimen (millimeter) scale. The6

first example focuses on capturing the three-stage (load-hold-unload) nano-7

and micro-indentation responses of a Woodford shale sample, from which the8

viscous material properties of the hard and soft materials are calibrated. Next,9

the impact of loading rate and anisotropy on the overall creep responses is10

investigated during the hold stage of indentation to explain the source of vis-11

cous deformation. Finally, long-term triaxial creep behavior of a similar shale12

is simulated to demonstrate how the formulation upscales to the specimen13

scale.14

3 Indentation responses of Woodford shale15

Bennett et al. (2015) conducted nanoindentation and microindentation tests16

on samples of an organic-rich Woodford shale obtained from the northern17

flank of the Arbuckle uplift, near the Arkoma Basin, Pontotoc County. Lab-18

oratory and field characterization results obtained from the Element Capture19

Spectroscopy (ECS) showed that the shale sample was composed of hard ma-20

terials (quartz and pyrite) and soft materials (clay minerals and kerogen)21

(Abousleiman et al., 2010).22

Nanoindentation tests were conducted for three materials, namely, the23

hard frame (quartz and pyrite), clay, and kerogen. The tests were conducted24

15



in both bed-normal (BN) and bed-parallel (BP) directions. Two material pa-1

rameters were extracted from each nanoindentation test, namely, the effec-2

tive modulus Eeff representing the stiffness, and the hardness H represent-3

ing the strength. Experimental results showed that the hard frame exhibited4

anisotropic responses along the two directions, whereas the responses of clay5

and kerogen were isotropic. Thus, it is natural to describe the hard material as6

transversely isotropic and the softer clay-kerogen as isotropic. This assump-7

tion is consistent with a similar model developed for Barnett shale (Borja et8

al., 2020).9

Microindentation tests were also carried out along the BN and BP di-10

rections with larger indentation area and greater indentation depth. In the11

process, both the hard and soft frames of the material were engaged. On av-12

erage, the sample tested consisted of nearly 50% hard materials (quartz and13

pyrite) and 50% soft materials (clay and kerogen) by volume. Thus, the two-14

material constitutive model combining the transversely isotropic hard frame15

and the isotropic soft frame is appropriate for modeling the microindented16

samples.17

All indentation tests were performed with a diamond Berkovich indenter18

with a half angle of 65.27◦ (Sakharova et al., 2009). Given that the stiffness of19

diamond is around 10 times higher than that of the hard shale material (Klein20

and Cardinale, 1993), it is reasonable to simulate the indenter as a rigid body.21

Contact between the indenter and the indented material was assumed to be22

smooth, as indicated by Bennett et al. (2015).23

In order to obtain the viscosities of the soft and hard frames, we first24

simulated the nanoindentation creep response of the kerogen using the one25

material model and took this response as representative of the soft frame26

(clay-kerogen) creep response. The viscosity was then obtained by fitting the27
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three-stage (load-hold-unload) indentation curve for kerogen. On the other1

hand, nano-indentation creep tests on the stiffer minerals would not yield2

any meaningful result since the hold period of 10 minutes would be far too3

short for the indentation to change noticeably during this period. Instead, we4

back-figured the viscosity of the hard frame from simulating the microinden-5

tation tests along both BN and BP directions. In doing so, both the hard and6

soft frames were engaged, allowing us to use the two-material model in the7

simulations.8

To characterize the transversely isotropic hard frame material, it is neces-9

sary to define a second-order microstructure tensor m as10

m = n⊗ n , (20)11

where n is the unit vector normal to the plane of isotropy. This tensor defines12

the general orientation of the plane of isotropy, or bedding plane. The tensorial13

expression for the elastic tangent modulus can be written in terms of this14

microstructure tensor as15

Ce = λ1⊗ 1 + 2µT I + a(1⊗m+m⊗ 1) + bm⊗m

+ (µL − µT )(1⊕m+m⊕ 1 + 1	m+m	 1) , (21)

where 1 is the second-order identity tensor (Kronecker delta) and I is the16

rank-four symmetric identity tensor. The tensorial operators ⊗, ⊕, and 	17

are defined such that (• ⊗ ◦)ijkl = (•)ij(◦)kl, (• ⊕ ◦)ijkl = (•)jl(◦)ik, and18

(• 	 ◦)ijkl = (•)il(◦)jk, see Semnani et al. (2016), Zhao et al. (2018), Zhao19

and Borja (2019) for further details. Five material constants characterize the20

elastic properties of the transversely isotropic material. In the above tensorial21

expression, the constants are λ, µT , µL, a, and b.22
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Alternatively, the following five elastic parameters may be used in lieu of1

the parameters mentioned above: Young’s modulus along the BP direction2

Eh
p , Young’s modulus along the BN direction Eh

n , Poisson’s ratio for stress3

applied and strain measured along the BP direction νh
pp, Poisson’s ratio for4

stress applied in the BN and strain measured in the BP directions νh
np, and5

the shear modulus along the BN direction Gh
np. For the isotropic soft frame,6

only the Young’s modulus Es and Poisson’s ratio νs are necessary. Here, the7

superscripts represent the different material frames and the subscripts rep-8

resent different directions. The Poisson’s ratios for the two frames are given9

in Bennett et al. (2015) and Borja et al. (2020). The Young’s moduli can be10

calculated following the equation (Bennett et al., 2015)11

E = Eeff(1− ν2) , (22)12

where E, Eeff and ν are the general representations of the aforementioned13

Young’s moduli, effective moduli, and Poisson’s ratio. The shear modulus14

Gh
np is assumed to be dependent on the Young’s modulus Eh

p and Poisson’s15

ratio νh
np following the expression for isotropic materials16

Gh
np =

Eh
n

2(1 + νh
np)

. (23)17

We converted the five elastic parameters for the hard frame and the two18

for the soft frame to the ones adopted by Namani et al. (2012) and Borja et19

al. (2020). The converted elastic parameters for the hard frame include the20

Lamé parameter λh, shear modulus along the BN direction µh
n, shear modulus21

along the BP direction µh
p, and the two anisotropy parameters αh and βh. The22

converted elastic parameters for the soft frame include the Lamé paramter λs23

18



and the shear modulus µs. The original and converted elastic parameters are1

summarized in Table 1.

Table 1. Elastic material parameters for Woodford shale, all in MPa except Pois-
son’s ratios.

hard frame

original

Eh
p 38000

converted

λh 2900
Eh

n 33000 µh
n 13000

νh
pp 0.038 µh

p 18000
νh

np 0.19 αh 4100
Gh

np 13000 βh 6900

soft frame

original
Es 8000

converted
λs 4600

νs 0.3 µs 3100

2

In the inelastic regime, we employ the ellipsoidal yield surface of the mod-3

ified Cam-Clay model but rotate this surface in stress space in the direction4

that is consistent with the microstructure tensor m to reflect the anisotropy5

of the hard frame. As demonstrated in Semnani et al. (2016) and Zhao et al.6

(2018), an alternative way to directly rotating the yield surface in stress space7

is to consider a fictitious stress configuration σ′ at which the modified Cam-8

Clay yield surface may be written in the isotropic form. This is facilitated by9

a projection tensor P such that the real Cauchy stress tensor σ is mapped to10

the fictitious Cauchy stress tensor σ′ according to the equation σ′ = P : σ,11

where P is given by (Semnani et al., 2016; Zhao et al., 2018)12

P = c1I +
c2
2

(
m⊕m+m	m

)
+
c3
4

(
1⊕m+m⊕ 1 + 1	m+m	 1

)
, (24)

in which c1, c2, and c3 are the anisotropy parameters.13
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The parameters of the anisotropic modified Cam-Clay model include the1

slope of the critical state line M , the compressibility parameter λp, and the2

three anisotropy parameters, c1, c2 and c3, which are all summarized for the3

hard and soft frames in Table 2. The stress history is defined by the pre-4

consolidation stress Pc, which is also given in the same table. All Cam-Clay5

parameters are adopted from the numerical simulations of Barnett shale, as6

reported in the literature (Borja et al., 2020), except that the slope of the7

critical state line M is estimated from a friction angle of φcs ≈ 36◦ reported8

by Bennett et al. (2015), along with the standard formula relating M and φcs9

given in Borja (2013).

Table 2. Cam-Clay parameters for Woodford shale.

harder frame

Mh 1.46

softer frame

M s 1.46
λh

p 0.00013 λs
p 0.0026

ch1 0.73 cs1 1.0
ch2 −0.20 cs2 −
ch3 0.40 cs3 −
P h

c0 2 P s
c0 35

10

The setup of the simulation is shown in Figure 2. The indented material11

was modeled as a cube with a side length of 2 µm for nanoindentation and12

50 µm for microindentation. The angle θ denotes the bedding plane orientation13

in the microindentation simulation, where θ = 0◦ represents loading along14

the BN direction and θ = 90◦ represents loading along the BP direction.15

To simulate the indentation test, the bottom of the cube was fixed and the16

vertical sides were constrained from lateral movement. The loading protocol17

followed the test procedure described by Bennett et al. (2015). In the loading18

stage, a load P was applied as a function of time t on top of the indenter19

until a predefined maximum indentation depth h was reached. The load-time20

function is given by21
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Fig. 2. Finite element model for simulation of indentation tests on Woodford shale.

P = P0e
kt . (25)1

The maximum load was then held for 60 s to allow creep deformation to de-2

velop, after which the indenter was unloaded over a period of 20 s. For nanoin-3

dentation, P0 and k were chosen to be 0.022 mN and 0.0156 s−1, respectively,4

and the maximum indentation depth was 200 nm, while for microindentation,5

P0 and k were 1 mN and 0.05 s−1, respectively, and the maximum indentation6

depth was 5 µm. The calibrated viscosities for the soft and hard frames were7

determined to be ηs = 1.3 × 1010 MPa3 · s and ηh = 1.3 × 1013 MPa3 · s,8

respectively.9

We remark that since the load was not applied instantaneously, time-10

dependent inelastic deformation also developed during the loading stage,11

which was taken into consideration in the calibration. For the record, however,12

creep deformation is interpreted herein to be the time-dependent movement13

of the indenter during the hold stage when the load was held fixed.14
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Fig. 3. Nanoindentation on kerogen of Woodford shale: solid lines are experimental
results.

The load-indentation responses are shown in Figure 3 for nanoindenta-1

tion, and in Figure 4 for microindentation simulations along the BN and BP2

directions. We see that the model captures the material responses during all3

three stages (load-hold-unload) of the indentation tests quite well. The exper-4

imental curves in Figure 3 show more variability in the mechanical responses5

due to the inherent heterogeneity in material composition of the shale, but6

the effect of heterogeneity is diminished as both the hard and soft frames7

were engaged with deeper indentation, see Figure 4. As an aside, the sudden8

rebound shown by the experimental curves toward the end of the unloading9

stage is an artifact of the tests and is commonly observed when the indenter10

disengages from the material being indented. The residual geometry of the11

microindentation simulation is presented in Figure 5 and compared with a lab12

photo from Bennett et al. (2015).13
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Fig. 4. Microindentation on Woodford shale: (a) BN direction, (b) BP direction.
Solid lines are experimental results.

To summarize, we have obtained the viscoplastic parameters for the hard1

and soft frames of an organic-rich Woodford shale by simulating nanoindenta-2

tion tests on the kerogen component and microindentation tests along the BN3
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and BP directions on the rock. These parameters will be used in the following1

sections to further understand the mechanism of creep during indentation test-2

ing, as well as to investigate implications of the calibrated model parameters3

for creep at the specimen scale.4

Fig. 5. Post-indented residual geometry from simulation of microindentation versus
backscatter electron image adopted from Bennett et al. (2015).

4 Parametric studies5

We now perform 2D indentation simulations to study the effect of loading6

rate and bedding plane orientation on the creep deformation of shale. Ide-7

ally, 3D modeling would be desirable for this purpose, much like the modeling8

described in the previous section. But since we are simply conducting para-9

metric studies in this section, we have reduced the model to 2D plane-strain10

to avoid the high computing cost associated with 3D simulations. The 2D11

model used for this purpose is a cross-section cutting through the centroid of12

the 3D Berkovich indenter as shown in Figure 6. The bedding plane angle θ13

is also defined in this figure. The resulting 2D triangular indenter has a tip14

angle of 136.51◦, while the side of the block is 2 µm for nanoindentation and15

50 µm for microindentation simulations.16

24



（a） (b)

1 1

1-1 plane

θ
x

y

x

z

Fig. 6. Model geometry for 2D indentation simulations.

4.1 Effect of loading rate1

We first study the effect of loading rate on the creep response of shale. To this2

end, we consider a one-material constitutive model with an isotropic soft frame3

and material properties appropriate for the kerogen component of Woodford4

shale. Indentation loading and creep were simulated as a two-step process.5

During the loading stage, the load P was increased from 0 to 0.6 mN following6

the exponential relation7

P = P0e
αkt , (26)8

where the loading parameters are P0 = 0.022 mN and k = 0.0156 s−1. The9

loading rate was controlled by the multiplier α, and values of 0.1, 1 and 1010

were used in the parametric study. During the creep stage, the load P was11

held constant at 0.6 mN over a period of 2000 s.12

Figure 7 shows the resulting P -h curves for the three chosen values of α.13

Observe that as the loading rate increases, the depth of indentation decreases,14

indicating an initially stiffer material response. During the creep stage, how-15

ever, larger viscoplastic deformations develop in materials that were subjected16

to higher loading rates.17
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Fig. 7. P -h curves under different loading rates.

Figure 8 portrays the creep indentation as a function of time and provides1

insight into the viscoplastic response of the material. In all simulations, the2

sample was subjected to the same sustained load P . We see that at a higher3

loading rate, creep deformation develops faster and the indent extends deeper4

into the rock. The shape of the curve and magnitude of creep deformation5

for the case α = 10 are very similar to those reported by Liu, Ostadhassan,6

Bubach (2018).7

To further understand the mechanism of deformation during the loading8

and creep stages of indentation, we investigate the evolution of viscoplastic9

strains within the indented sample. This information is not available from10

experiments, but fortunately, it can be modeled and investigated numerically.11

Figure 9 shows the distribution of the volumetric and deviatoric plastic12

strains at the beginning and conclusion of the creep stage. The four plots13

indicate that the deviatoric strain invariant ‖dev(εvp)‖ is more intense and14

concentrated over a smaller zone, whereas the volumetric strain tr(εvp) is less15
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Fig. 8. Indentation creep curves for different loading rates.

intense but more pervasive over a larger region. We recall that the viscoplastic1

strain rate tensor in the Perzyna model (Perzyna, 1966) is given by the flow2

rule for the two-material description as (Borja et al., 2020)3

ε̇vp =
〈fα〉
ηα

∂fα
∂σ

, (27)4

where fα is the yield function, 〈·〉 are the Macauley brackets, ηα is the viscosity5

coefficient, and α = M,m. Near the indenter where the ratio of deviatoric6

to volumetric stresses (q/p) approaches the slope of the critical state line,7

inelastic deviatoric strain dominates, but away from the indenter where the8

stress ratio is close to zero, inelastic volumetric strain pervades.9

Figure 10 shows the distribution of the total viscoplastic strain ‖εvp‖ be-10

fore and after the creep stage. Letters A, B and C correspond to values of11

α = 0.1, 1 and 10, respectively, while numbers 1 and 2 pertain to the start12

and end of creep. Prior to creep, an increase of α from 0.1 to 10 leads to13
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Fig. 9. Volumetric and deviatoric components of viscoplastic strain at the begin-
ning and end of creep. A1 = volumetric/beginning; A2 = volumetric/end; B1 =
deviatoric/beginning; B2 = deviatoric/end.

a significant decrease in the magnitude of the viscoplastic strain around the1

indenter tip, as well as to a reduction in the extent of the inelastic zone. This2

is consistent with a known feature of viscoplasticity theory in that when the3

loading rate is high, the deformation of the material is mostly elastic.4

Figure 10 also shows that at the conclusion of the creep stage, an inelastic5

zone forms at a finite distance away from the indenter tip, and not directly6

below it, even though the total strain experienced by the elements in con-7

tact with the indenter is large. This can be attributed to the time-dependent8

nature of the constitutive model: Under a high loading rate, the elements9

around the indenter experience elastic deformation. When entering the creep10
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Fig. 10. Total viscoplastic strain ‖εvp‖ for different loading rates and time instants
during the creep stage of indentation. Letters A, B, and C are for loading rates of
α = 0.1, α = 1, and α = 10, respectively; numbers 1 and 2 pertain to the beginning
and end of creep.

stage, however, the over-stress in these elements relaxes to produce inelastic1

deformation, but the elements in contact with the indenter are constrained by2

the geometry of the rigid indenter, and so they are unable to deform much in3

shear.4
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For a closer look at the time-evolution of the viscoplastic strain and the1

total stress during the creep stage, we show snapshots of strains and stresses2

in Figures 11 and 12, respectively. Here, the viscoplastic strain norm ‖εvp‖3

and stress norm ‖σ‖ were calculated relative to their initial values at the4

beginning of the creep stage. The snapshots were taken at three different5

instants: t = 100 s, t = 500 s, and t = 2000 s, where t = 0 denotes the6

beginning of the creep stage.7

Fig. 11. Creep strains for different loading rates. Letters A, B, and C are for loading
rates of α = 0.1, α = 1, and α = 10, respectively; numbers 1, 2, and 3 are for times
instants t =100 s, 500 s, and 2000 s, respectively.

30



Fig. 12. Change in the stress norm for different loading rates during the creep stage
of indentation. Letters A, B, and C are for loading rates of α = 0.1, α = 1, and
α = 10, respectively; numbers 1, 2, and 3 are for times instants t =100 s, 500 s, and
2000 s, respectively.

Figure 11 depicts the inelastic zones generated by the indenter load during1

the creep stage of indentation. For α = 0.1, the inelastic zones develop from2

the top surface of the material on the left and right sides of the indenter,3

and propagate deeper into the material away from the indenter. For α =4

1, the inelastic zones appear to merge into a circular region, although the5

maximum creep intensity remains close to the top surface of the indented6
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material. For α = 10, the inelastic zone develops throughout the entire circular1

region surrounding the indenter.2

Figure 12 shows the evolution of the stress norm ‖σ‖ during the creep3

stage of deformation. For α = 0.1, two fan-shaped regions on the two sides of4

the indent experience a reduction in stress, indicating stress relaxation as the5

stress point outside the yield surface returns back to the yield surface. This is6

consistent with the buildup of viscoplastic strains within these same regions,7

as shown in Figure 11. For α = 1 and 10, on the other hand, stresses relax in8

the zones directly beneath the indenter, which is consistent with Figure 11 in9

that the inelastic regions concentrate beneath the indenter for these loading10

rates.11

The upshot of Figures 11 and 12 is that the loading rate exerts a significant12

influence on the way in which the stresses around the indenter redistribute13

themselves to resist the constant indenter load during the creep stage. When14

the loading rate is low, the elastic over-stress beneath the indenter is small,15

and stress relaxation takes place mostly on the sides of the indent. This stress16

relaxation on the sides must be accompanied by a stress increase beneath the17

indenter to balance the constant load. This is consistent with the increase18

in stress at a point in contact with the tip of the indenter for α = 0.1, as19

shown in Figure 13. On the other hand, when the loading rate is high, elastic20

strains build up beneath the indenter tip prior to creep. Stress relaxation21

then takes place directly beneath the indenter tip, which is accompanied by22

a stress increase on the sides of the indent, as well as beneath the indenter23

but at greater depths, to balance the applied load. This is consistent with the24

decrease in stresses directly beneath the indenter tip for α = 1 and 10, as25

shown in Figure 13.26
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Fig. 13. Change in the stress norm beneath the tip of the indenter under different
loading rates during the creep stage.

To summarize, results of the parametric study suggest that creep defor-1

mation during the hold period of an indentation experiment arises from the2

time-dependent strains that develop in the region surrounding the indenter,3

and not just from the deformation of the material directly in contact with the4

indenter. Creep deformation depends on the rate at which the indenter load5

is applied: the faster the loading rate, the greater the creep deformation. The6

loading rate also impacts the way in which the stresses within the indented7

material redistribute themselves to balance the applied load.8

4.2 Effect of bedding plane orientation9

Next, we investigate the effect of cross anisotropy on the creep responses of10

shale during an indentation test. Anisotropy emanates from the presence of11

bedding planes, and is accounted for in the model through the hard frame12

response. We thus consider the two-material model with the soft and hard13

33



frames occupying 50% each by volume, and use the material properties for1

Woodford shale calibrated in Section 3. The sample size is 50 µm × 50 µm,2

which is comparable to the sample size used for 3D microindentation simula-3

tions. The bottom of the sample was fixed and the lateral movements of the4

vertical boundaries were constrained. The load P at the top of the indenter5

was increased from 0 to 15 mN over approximately 200 s, following (25), with6

P0 = 0.55 mN and k = 0.0156 s−1. The maximum load was held constant7

for 2000 s, allowing the sample to creep. Figure 14 shows the resulting creep8

curves for five different bedding plane angles θ = 0◦ (horizontal bedding), 30◦,9

45◦, 60◦ and 90◦ (vertical bedding).10
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Fig. 14. Indentation creep curves for various bedding plane orientations θ.

The curves shown in Fig. 14 suggest that anisotropy in the creep response11

does not strongly manifest itself during an indentation experiment, at least12

within the range of properties considered for Woodford shale. In contrast, as13

will be shown later in Section 5, strongly anisotropic creep behavior can be14
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reproduced from triaxial creep simulations on the same shale sample with1

the same material properties. This is due to the fact that indentation test2

involves localized deformation around the indenter tip, which does not allow3

the anisotropy of a larger volume to manifest itself. This result is consistent4

with the experimental results presented by Bennett et al. (2015), which showed5

that indentation testing has obscured the anisotropic creep response of this6

shale. The main takeaway from this study is that indentation test is not the7

right test to investigate anisotropy in creep.8

An interesting feature of anisotropic creep during indentation tests is the9

material flow near the tip of the indenter. When the sample is compressed by10

the indenter, the material flows from the stronger BP direction to the weaker11

BN direction. The kinematics of flow can be clearly observed in Figure 15,12

which shows the scaled displacement vectors for the simulation with θ = 45◦.13

θ = 45◦
BP

Fig. 15. Displacement vectors during creep for bedding plane orientation θ = 45◦.
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5 Implications for triaxial creep1

In this section, we demonstrate how the model, calibrated from tests on the2

order of nanometers to micrometers in scale, upscales to the specimen scale.3

Triaxial creep test is the most common laboratory test for quantifying the4

time-dependent deformation behavior of geomaterials at the specimen scale.5

However, this test alone does not distinguish between the creep responses of6

the individual constituents of a heterogeneous sample of a shale. Neither does7

it distinguish between the constitutive response of an elementary volume and8

the structural response of the triaxial sample. The numerical simulations pre-9

sented in this section could shed some light onto the creep responses of the10

soft and hard constituents of a shale sample taken individually as well as col-11

lectively. Results of the analysis could be useful in interpreting the sources of12

creep deformation in a heterogeneous sample that would otherwise be difficult13

to extract from the overall laboratory creep response alone.14

We consider once again the two-material Cam-Clay IX model presented15

in Section 2, along with the calibrated model parameters appropriate for the16

Woodford shale sample tested by Bennett et al.(2015) and described in Sec-17

tion 3. The finite element mesh for a cylindrical sample with spatially varying18

hard/soft volume fractions is shown in Figure 16. The sample is 25.4 mm in19

diameter and 50.8 mm in height, which is approximately the same size as the20

triaxial sample tested by Sone and Zoback (2013). In principle, the spatial21

distribution of the hard/soft frame volume fractions can be determined ex-22

perimentally through a combination of high-resolution imaging and chemical23

characterization such as through energy dispersive X-ray spectroscopy (EDX),24

and plotted on ternary plots (see Sone and Zoback (2013)). In the following25

simulation, however, we generated this type of heterogeneity stochastically,26
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following a normal distribution for the volume fractions ranging from 0.4 to1

0.6.2

Transverse isotropy was assumed for the hard frame, with the bedding3

plane orientation described by the angle θ. The bottom end was supported4

on rollers except for the node at the center, which was supported by a pin5

to arrest rigid-body lateral translation. A confining pressure of σc = 35 MPa6

was first applied around the cylinder until the material reached steady state7

(negligible viscoplastic deformation). Then, a differential stress σd = 40 MPa8

was applied in the axial direction. The following results pertain to two bedding9

plane orientations, at θ = 90◦ and at θ = 0◦.10

θ

σcσc

σc

σd

Fig. 16. Setup of the triaxial creep tests.

The axial creep strain after applying the differential stress is reported in11

Figure 17. Even though the results presented in this figure are only hypotheti-12

cal and have not been validated experimentally for the specific shale simulated13
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in this example, the creep curves shown in the figure are remarkably very simi-1

lar to the experimental results reported on Barnett shale by Sone and Zoback2

(2013) and simulated numerically by Borja et al.(2020). We remark that a3

noteworthy feature of the present result is that the model parameters used in4

the simulation were obtained from indentation tests. The fact that the model5

still produced realistic results for creep at the specimen (millimeter) scale and6

over several hours of creep, even though the model parameters were calibrated7

from creep tests that lasted only a few minutes, is encouraging and points to8

the potential of the framework to bridge scales across space and time.9
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Fig. 17. Axial creep responses from triaxial creep simulations.

Superimposed in Figure 17 are theoretical plots obtained from a widely10

used phenomenological Lomnitz logarithmic creep law (Lomnitz, 1956), which11

is given by the analytical equation12
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ε = B log
(

1 +
t

τ

)
, (28)1

where B and τ are the parameters of the constitutive law. We note that2

equation (28) only includes the time-dependent part of the original Lomnitz3

creep law, with the constant component removed from the equation. For θ =4

0◦, we get B = 9.97× 10−5 and τ = 385 s; and for θ = 90◦, B = 6.74× 10−55

and τ = 364 s. The discrepancy between the simulated creep responses and6

the fitted logarithmic curves emanated from the assumption of viscoelasticity7

in the Lomnitz law, which is a different description of creep response from the8

one adopted in the present framework.9

Because the model can track the evolution of creep strain throughout the10

domain of the cylindrical sample, it is possible to separate the creep strains11

in the soft frame from the creep strains in the hard frame and report their12

evolutions statistically with time. We thus extracted the viscoplastic strain at13

the Gauss points for each frame and plotted their evolution statistically, as14

shown in Figure 18. Note that these plots pertain to one stochastic realization,15

and that the statistical range of creep behavior here refers to the spatial16

distribution of viscoplastic strain throughout the problem domain. The solid17

lines represent the mean values, the dark shadows delimit the first and third18

quartiles (25% and 75%) of the data, and the light shadows mark the range19

of data. The plots clearly demonstrate that the contribution of the soft frame20

to the creep response of the cylindrical sample is more than 10 times larger21

than the contribution of the hard frame, irrespective of the bedding plane22

orientation. Although it has been recognized that the creep behavior of shale23

is mostly due to creep of the soft materials (Herrmann et al., 2020; Mighani et24

al., 2015; Slim et al., 2019; Sone and Zoback, 2013), the methodology presented25
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Fig. 18. Statistical plot of triaxial creep responses.

in this work allows (for the first time) a statistical description of the effect of1

heterogeneity on the creep response of a rock under triaxial condition.2

6 Closure3

We have presented a scale-bridging technique linking the creep behavior of4

shale from the nanometer scale to the millimeter scale. At the nanome-5

ter scale, nanoindentation simulations were conducted using a one-material6

elasto-viscoplastic constitutive model representing the response of the softer7

clay-kerogen matrix. At the micrometer scale, microindentation simulations8

along the bed-normal and bed-parallel directions were conducted using the re-9

cently developed Cam-Clay IX model. From these simulations, we determined10

the material parameters for an organic-rich Woodford shale. The calibrated11

model was then used to predict the creep response of a triaxial sample of the12

same shale in a way that statistically quantifies the contributions of the soft13

40



and hard frames to the overall creep response. The schematic of the proposed1

scale-bridging technique is summarized in Figure 19.2

mmµmnm

Anisotropy, nano-scale 
heterogeneity, viscoplasticity

Submicron to specimen scale modeling

Mesoscale heterogeneity

2-Material Model
Microindentation

1-Material Model
Nanoindentation

Triaxial Creep

Fig. 19. Scale-bridging technique from nanoscale to millimeter scale.

The main contribution of the work is a framework for shale that links the3

creep response from nanometer scale to millimeter scale in space, and from4

a few minutes to several hours of creep responses in time. We are not aware5

of any framework in the literature that is capable of bridging creep processes6

over space that spans several orders of magnitude, neither are we aware of7

any framework that allows calibration of a time-dependent model for rocks8

from creep tests lasting only a few minutes. The two-material constitutive9

description facilitated by Cam-Clay IX provides this critical link between the10

nanoscale and millimeter scale descriptions, see Figure 19. The viscoplastic11

framework adopted in this model also allows representation of creep processes12

over time scales several orders of magnitude different. Work is currently under-13

way to investigate the effect of fluid flow on the poromechanics of transversely14

isotropic rocks (Zhao and Borja, 2020).15
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of Perzyna viscoplastic modelling for granular geomaterials. Int. J. Numer.25

Anal. Methods Geomech. 43, 544–567. https://doi.org/10.1002/nag.2876.26

27

Li, J., Tang, Y., Feng, W., 2020. Creep behavior of soft clay subjected to28

artificial freeze-thaw from multiple-scale perspectives. Acta Geotech. 15,29

47



2849–2864. https://doi.org/10.1007/s11440-020-00980-2.1

2

Li, Y., Ghassemi, A., 2012. Creep behavior of Barnett, Haynesville, and3

Marcellus shale. 46th US Rock Mechanics/Geomechanics Symposium,4

American Rock Mechanics Association, ARMA-2012-330.5

6

Liu, K., Ostadhassan, M., Bubach, B., 2016. Applications of nano-7

indentation methods to estimate nanoscale mechanical properties8

of shale reservoir rocks. J. Nat. Gas. Sci. Eng. 35, 1310–1319.9

https://doi.org/10.1016/j.jngse.2016.09.068.10

11

Liu, K., Ostadhassan, M., Bubach, B., 2018. Application of nanoindentation12

to characterize creep behavior of oil shales. J. Pet. Sci. Eng. 167, 729–736.13

https://doi.org/10.1016/j.petrol.2018.04.055.14

15

Liu, K., Ostadhassan, M., Bubach, B., Dietrich, R., Rasouli, V., 2018. Nano-16

dynamic mechanical analysis (nano-dma) of creep behavior of shales: Bakken17

case study. J. Mater. Sci. 53(6), 4417–4432. https://doi.org/10.1007/s10853-18

017-1821-z.19

20

Lomnitz, C., 1956. Creep measurements in igneous rocks. J. Geol. 64(5),21

473–479. https://doi.org/10.1086/626379.22

23

Lonardelli, I., Wenk, H.R., Ren, Y., 2007. Preferred orienta-24

tion and elastic anisotropy in shales. Geophys. 72(2), D33–D40.25

https://doi.org/10.1190/1.2435966.26

27

Loucks, R.G., Reed, R.M., Ruppel, S.C., Jarvie, D.M., 2009. Morphology,28

genesis, and distribution of nanometer-scale pores in siliceous mudstones29

of the Mississippian Barnett Shale. J. Sediment. Res. 79(12), 848–861.30

48



https://doi.org/10.2110/jsr.2009.092.1

2

McLamore, R., Gray, K.E., 1967. The mechanical behavior of anisotropic sed-3

imentary rocks. J. Eng. Ind. 89(1), 62–73. https://doi.org/10.1115/1.3610013.4

5
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