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Mechanisms of creep in shale from nanoscale
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Summary. Creep in shale is a multiscale deformation process across both space and
time. In this paper, we propose a scale-bridging technique linking creep phenomena
in shale from nanometer scale to specimen scale, and explore the mechanisms of creep
at different scales. To this end, we simulate indentation tests on Woodford shale
at the nanometer and micrometer scales using an incremental frictionless multi-
body contact algorithm based on the Lagrange multipliers method, along with a
recently developed Cam-Clay IX constitutive framework that explicitly recognizes
the inherent heterogeneity of the rock material. Simulation results suggest that creep
of the sample is mostly attributed to the viscoplastic deformation of the material
away from the indenter tip, and that such response is highly dependent on the stress
rate during the loading stage. Furthermore, simulations of triaxial creep indicate
that creep behavior of the bulk sample is dominated by the presence of organics
and clay constituents, and that such behavior follows a widely used logarithmic
law. Throughout this work, we address the issues of heterogeneity across scales,
anisotropy arising from the presence of bedding planes, and viscoplasticity of the
individual constituents as they relate to the time-dependent properties of the bulk

shale sample.
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1 Introduction

Shale is a highly heterogeneous material composed of hard crystalline ag-
gregates (quartz, feldspar, pyrite), and soft nanoporous matrix (clay, organic
materials). The complexity of the material system is evident in experiments
on the scales of nanometer (Loucks et al., 2009; Semnani and Borja, 2017;
Ulm et al., 2007), micrometer (Bennett et al., 1991; Bornert et al., 2010), and
centimeter (Chen et al., 2012; Lonardelli et al., 2007; Valcke et al., 2006).
Furthermore, experimental studies have recognized the transverse isotropy of
shale resulting from the existence of bedding planes (McLamore and Gray,
1967; Niandou et al., 1997; Xu et al., 2011). Multiscale heterogeneity and
transverse isotropy have been studied numerically using recently developed
constitutive laws (Borja et al., 2020; Choo et al., 2021; Semnani and White,
2020; Zhang, 2020).

Unlike crystalline rocks that tend to fracture under deformation (Bennett
et al., 2016; Bennett and Borja, 2018; Borja and Rahmani, 2012; Tjioe et al.,
2012; Tjioe and Borja, 2014, 2015, 2016), shale behaves like clay (Borja and
Kavazanjian, 1985; Borja, 1990; Borja and Choo, 2016; de Borst and Duretz,
2020; Han et al., 2020; Lazari et al., 2019; Li et al., 2020; Tafili et al., 2020;
Zeng et al., 2020; Zhang et al., 2020; Zhao et al., 2019) in that it exhibits
pronounced viscous creep behavior in the laboratory and in the field (Abel
and Lee, 1980; Chang and Zoback, 2008; Horsrud et al., 1994; Kabwe et al.,

2020). Triaxial creep tests on millimeter-scale samples have been extensively
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conducted on different types of shale (Almasoodi et al., 2014; Li and Ghassemi,
2012; Mishra and Verma, 2015; Rassouli and Zoback, 2015, 2018). Sone and
Zoback’s triaxial creep tests (Sone and Zoback, 2013) on a number of shale
samples showed that creep responses depended on the orientation of deviatoric
loading (i.e., stress difference) relative to the bedding plane, as well as on the
magnitude of the deviator stress. They concluded that creep behavior was
largely attributed to the pore volume compaction inside clay and organic
materials (i.e. soft materials), while the hard materials did not contribute
much to creep deformation. However, triaxial creep tests require large shale
cores that are difficult to obtain from the field. In addition, triaxial creep
tests are time consuming — they typically last days if not months. In a series
of triaxial creep tests, Rassouli and Zoback (2018) predicted the long-term
behavior of shale samples based on short-term responses, but the predictions
were not reliable in some cases.

Recent advances in indentation testing allow the measurement of the me-
chanical properties and creep behavior of shale samples within a period of
several minutes (Bobko, 2008; Gathier, 2008; Kumar, Curtis, et al., 2012; Ku-
mar, Sondergeld, et al., 2012; Liu et al., 2016; Shukla et al., 2013; Ulm et
al., 2007). Three-stage (load-hold-unload) nanoindentation tests on different
constituents of Bakken shale from North Dakota (Liu, Ostadhassan, Bubach,
Dietrich, et al., 2018) revealed that creep deformation of soft materials was
seven times larger than that of the hard materials within the same time pe-
riod. Bennett et al. (2015) conducted nanoindentation and microindentation
tests on organic-rich Woodford shale samples from the same core and demon-
strated the anisotropy of the shale at both scales. However, little information

beyond the elastic modulus and hardness of the material could be extracted
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from indentation tests, and no information on the stress and strain states
could be obtained beneath the indented surface of the sample.

Attempts have been made to link the creep behavior of shale at the nano-
and micro-meter scales to the centimeter scale (Mighani et al., 2019; Ran-
dall et al., 2009; Vandamme and Ulm, 2009, 2013; Zhang et al., 2014) based
on an analytical homogenization method originated from Eshelby’s inclusion
problem (Eshelby, 1957). In this method, the Mori-Tanaka estimate to the
homogenized stiffness tensor of a mixture of multiple elastic materials was ex-
tended and applied to viscoelastic materials. Furthermore, the two indentation
parameters (i.e., modulus and hardness) were derived through dimensionless
similarities, and creep related parameters were further calculated by Laplace
transformation in the frequency domain. However, in general these methods
cannot account for quantified heterogeneity of the sample, nor can they be
extended to the inelastic regime.

Recently, Borja et al. (2020) proposed a two-material constitutive model
(i.e., Cam-Clay IX) for the creep behavior of shale that accommodated
anisotropy, heterogeneity, and viscoplasticity. In this model, shale was rep-
resented as a mixture of a stiffer material and a softer material, each forming
a solid frame and occupying the same space through their volume fractions.
The model captures the anisotropic creep behavior of Barnett shale as well
as the onset of dilative shear bands under various loading rates. We use this
constitutive model in this paper as a scale-bridging technique to link the creep
phenomena in shale across space and time, i.e. from nanometers to millimeters,
and from seconds to days. To this end, we employ an incremental frictionless
multi-body contact algorithm based on the Lagrange multipliers method to

simulate the indentation process.
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A 3D mechanistic simulation of the indentation process allows calibration
of the viscosities of the two-material model. We first calibrate the viscosity of
the soft frame by simulating the nanoindentation process on clay and kerogen.
Once the viscosity of the softer matter has been fixed, we then calibrate the
viscosity of the hard frame from data on microindentation tests in which both
the softer and harder frames are engaged. Finally, the mechanical properties
inferred from indentation testing are used to simulate the creep behavior of a
triaxial sample of shale to see how the properties calibrated at the nanoscale

upscale to the specimen scale.

2 Theory

This section briefly introduces the two-material constitutive law proposed by
Borja et al. (2020) and presents the formulation for nonlinear multi-body con-
tact problems based on the Lagrange multipliers method. We note that by as-
suming a rigid indenter, the size of the system is significantly reduced because
the indenter can now be represented as a one-degree-of-freedom body. We also
note that the formulation differs from the conventional one-body contact prob-
lem (Frohne et al., 2016; Hileber and Wohlmuth, 2005; Wriggers, 2004) where
the rigid body is a prescribed Dirichlet constraint to the deformable body, and
not a Neumann constraint on the rigid body. Throughout the derivation, we
keep in mind that the problem involves a diamond Berkovich indenter pushed
into the surface of a shale sample, after which the load exerted by the indenter

on the shale is held fixed while the shale undergoes creep deformation.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

2.1 Constitutive law

The Cam-Clay IX model considers a shale as a mixture of a hard crystalline
material M and a soft material m representing clay and organics, with the
volume fractions oM and ¢™ approximately equal to each other and pM+¢™ =
1. The problem is not the same as the inclusion problem considered by Hill
(1963) in that neither volume fraction is more dominant than the other, and so
it is possible to assume that separate solid frames may form for each of the two
materials. Since the two frames are continuous, their individual displacement
fields must be continuous, and since one frame cannot displace relative to the
other frame, their displacement fields must be the same. From a kinematical
point of view, this implies that the strains in the two frames must be the
same, i.e. €y = €, = €, where € is the overall strain tensor. Borrowing the
ideas from mixture theory (Borja, 2006), the overall Cauchy stress tensor can
be determined from the weighted sum of the intrinsic stress tensors oy and
o, in the rate form

o =Mon + 0" . (1)

We assume that the total strain rate tensor € can be decomposed into

elastic and viscoplastic parts,
e=¢€"+¢€P. (2)
The overall viscoplastic strain rate tensor can then be calculated as

&P =l ( Y ogecy: éZf’), (3)

a=M,m

where C¢ and €'P are the tangential elasticity tensor and viscoplastic strain

rate tensor for material a, respectively; and C°® is the overall tangential elas-
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ticity tensor calculated as the weighted sum of the tangential elasticity tensors
C;, and Cg;.

The viscoplastic strain rate tensor é.° for material o has a form analogous
to the flow rule used in rate-independent elastoplasticity (Borja, 2013). Two
common forms, one proposed by Perzyna (1966) and the other proposed by
Duvaut and Lions (1976), are widely used in the context of over-stress model in
which the stress point may lie outside the yield surface. However, the Duvaut-
Lions model is not appropriate for the problem of indentation simulation due
to the lack of a solution for the inviscid problem when the stress concentrates
around the tip of the indenter. Thus, only the Perzyna formulation is employed
in the present work.

Transverse isotropy is assumed for the hard frame in both the elastic and
viscoplastic responses. We assume a transversely isotropic linear elasticity
with five independent elastic parameters for the elastic deformation, and an
anisotropic version of the modified Cam-Clay model (Semnani et al., 2016;
Zhao et al., 2018; Zhao and Borja, 2019) for the viscoplastic deformation.
The soft frame is assumed to be isotropic, using an isotropic linear elasticity
model with two elastic constants for the elastic response, and the conventional
isotropic modified Cam-Clay model for the viscoplastic response. For further
details of the model, including the derivation of the algorithmic tangent op-
erator, we refer the readers to Borja et al. (2020).

We emphasize that the present constitutive model applies to the case where
the volume fractions of the two groups (soft and hard) are about the same.
This assumption applies, for example, to Barnett and Haynesville shales tested
by Sone and Zoback (2013) (see the ternary plot representation of sample
material compositions in Figure 1 of their paper), as well as to the shale

sample imaged by Curtis et al. (2010). In contrast, the problem of inclusion
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does not admit a continuous displacement field for the less dominant group,

as it only takes a ride with the motion of the more dominant group.

2.2 Multi-body contact formulation

In what follows, we assume that contact between the indenter and the indented
surface is frictionless. Consider a two-body contact problem consisting of a
master body represented by subscript “1” and a slave body represented by
subscript “2” (Wriggers, 2004). We denote the set of all potential contact
surfaces between the master and slave bodies as I'.. For each point x5 on
the slave side of I'c, we define a projected point ®; on the potential contact
surface on the master side such that x5 —%; is perpendicular to the surface on
the slave side (Figure 1). The strong form of the frictionless contact problem

is then given by the following set of equations
V-eoo.+f,=0 1in Q,
Uy =Uqp ON L'aq ¢ (4)
o, Nng=h, on Iy,

subject to the constraints

(’LLg—ﬁl)'ng—90<O
Oan =0 ¢ on T'¢, (5)

Oan((u2 — 1) - n2 —go) =0

where a = 1, 2; go is the initial gap between @2 and T1; oan = (Can - Na) - Mo
is the normal component of traction; and w; is the displacement of point
x1. Here, we follow the soil mechanics convention and denote compression as

positive.



Fig. 1. Schematic plot of contact boundaries.

Let Ay > 0 and A\; > 0 denote the Lagrange multipliers representing the
normal components of traction on the slave and master sides. The potential
contact boundary I'; can be further decomposed into I',, the set of boundaries
in contact, and I'y; and T'y;, the set of boundaries not in contact (Figure 1).
Here, we further assume that I'y, I'y;, and I'y; are known. Later, we shall use
the active set strategy (Hintermiiller et al., 2002) to determine the contact
boundaries. The reformulated strong form is based on the governing equations

that assume the contact boundaries are known. These equations take the form

Vooo+fo,=0 1in Q,

(ug =) - n2—go=0 on Iy
A2=0 on Ty

A=0 onTy ¢ - (6)

Ug = Uqp ON gg

o, Ny =h, on Ty

02 Mo =—01 N = —)\gng on Fa
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Note from the foregoing equations that Ay = A and ny = =7 on I',. This
reformulation is necessary for the derivation of the weak form due to the
fact that the widely applied approach of Lagrangian mechanics in contact
problems (Wriggers, 2004) is not applicable in the present problem. We remark
that for a nonlinear constitutive law such as the one presented in the previous
section, the Lagrangian may not be available because of the lack of an explicit
expression for the strain energy.

To develop the weak form, we define the sets of trial functions

Sy ={ulu e H ,u =usgonTyq fora =1, 2}

Sy={AMA e HO A=0o0onT, fora=1, 2}

and the sets of weighting functions

Vo ={wlw e H', w=00nT,q fora=1, 2}
(8)
Vi={vlre H’, v =0o0nTy, fora =1, 2}

In what follows, we provide the linearized version of the variational equa-

tions applicable for the kth Newton iteration at time ¢,1, and

l

l
Ungr =Un+ Y _AuF, Ny =N+ > AN, (9)
k=1 k=1

where [ is the total number of Newton iterations for convergence at the current
time step.
The linearized variational equation for the balance of linear momentum

for the slave body is

10
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s .80'2
/QQVw. T

-Au’gd9+/ w - naANE D
Ta

:/ w~h2dF+/ w- fyd
Ton Q2

- VSw:a’ng—/ Mew . nydl. (10)
192 Ta

k

The linearized variational equation for the balance of linear momentum for

the master body is

s .80'1
/91Vw. T

~Au’fdQ—/ w - naANE D
k a

:/ w~h1dI‘+/ w- fdQ
Tin 921

- VSw:a’fdQ+/ Mew . nydl. (11)
Q Ta

The linearized variational equation for the contact constraint is

/uAu’g-ngdr—/ vATY - mydD
Fa

- / v[go — (u§ —w}) - o dl, (12)

a

where A, = A2 = A\ on I',. To determine the sets of boundaries I',, T'y;,
and T'y;, the Karush-Kuhn-Tucker (KKT) conditions (Borja, 2013) can be

reformulated as
A —max(0, A+ c((uz —@1) -m2 —go)) =0 for Ve >0, (13)

where oy, is replaced with the Lagrange multiplier A\. Thus, the set of bound-

aries in contact, I',, can be determined as (hintermiiller et al., 2002)

Iy = {z|\(x) + c((uz(x) — w1 (x)) - na(x) — go)) >0 for Ve >0}. (14)

11
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2.3 Numerical implementation

In general, discretization of solids in a contact problem is challenging (Wrig-
gers, 2004). The challenge comes mainly from the fact that the displacement
field w, for the projected contact points may not be consistent with the dis-
cretization of the master side. If they are not consistent, mapping techniques
like node-to-surface, surface-to-surface, and mortar element methods must be
applied with extra computation of the mapping procedures. Even if all of
the projected contact points coincide with the discretization (a node-to-node
contact algorithm), the computational cost associated with creating equally
refined meshes for the two bodies may still be high depending on the problem.

However, in simulating an indentation problem, the diamond indenter may
be modeled as a rigid body since its stiffness is much higher than that of
the indented material. In this paper, we propose a numerical algorithm that
deals with the contact problem between a rigid body and a deformable body.
More specifically, the displacement of the rigid body is fully represented by
only one degree of freedom. In this case, neither the meshing of the rigid
body nor the mapping between the contact points from the slave side to the
master side is needed. In our model, the entire indenter is modeled with only
one degree of freedom u, describing the vertical displacement of the indenter
along the direction of indentation. Thus, movements perpendicular to the
direction of indentation are all constrained. For a rigid indenter, only the total
magnitude of the the normal traction representing the contact force controls
the vertical displacement of the indenter, while the actual distribution of the
normal traction has no effect. Therefore, without changing the distribution of
the normal traction on the slave side, all traction terms on the master side

can be combined and shifted to a single node.

12
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The procedure described above reduces the number of elements on the
master side to minimum, and greatly simplifies the mapping between the
slave and master sides. We note that this approach is different from the one-
body contact problem where the rigid body is prescribed through a Dirichlet
boundary constraint on the deformable body. It is an appropriate and efficient
approach for simulating the problem of creep where the forcing function is a
sustained Neumann boundary condition on the rigid body.

Now, Equation (11), which was originally a set of vector equations, has
been reduced into a single scalar equation. By simplifying Equations (11)

and (12), we arrive at the following system of equations in matrix form

Ky, 0 Mo| | Auk
0 K Po| | Aub
MT PT 0 0| | AN

0 0 0 I| |AN:

where Aub € RP, AuF € R, ANF € R%; and ANS, € R7, p > g and p > j.
Also, K5 € RP x RP is the conventional stiffness matrix for the slave body,
and is given by

K,= | B'C}*BdQ, (16)
Q2

where (Cglg is the algorithmic tangent operator for the slave body. The sub-
matrix M € RP x RY is a rectangular matrix with more rows than columns,

and takes the form

M :/ Njp Njplp dT, (17)
Fa

where INop denotes the shape function matrix used to interpolate the La-
grange multiplier A, while N 3D|Fa denotes the matrix used to interpolate

the displacement field on the contact surface. If we set Nop = N 3D|Fa and

13
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apply the Gauss-Lobatto quadrature rule to calculate the integral, then M

simplifies to a diagonal matrix (Frohne, 2016)
M;; = /F NZAT, M;j=0fori#j. (18)
Furthermore, P is a row vector given by the expression
P=1"M, (19)

where 1 € R? is a column vector with all elements being 1. The null submatrix
0 varies in dimension depending on its location in the larger matrix, while K
is a positive number with its value depending on the stiffness tensor assigned
to the rigid master body. Finally, the fourth row of the block matrix is added
to fix the size of the system and minimize memory reallocation.

The nonlinear contact algorithm is summarized in Box 1. We remark that
the algorithm can be extended to efficiently solve the contact problem between
a rigid body and a nonlinear solid under strain and stress driven conditions.
The computational performance of this algorithm will be reported in a future

work.

Step 1. Initialize I'¢, w and .
Step 2. Update I'y and T'g; from (14).
Step 3. Assemble and solve the system of equations (15).
Step 4. Check if ||R|| < tolerance and T', unchanged?
Yes, update u, A, stress and strains. Go to next time step.

Step 5. No, line search on w and A\ and go to Step 2.

14
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Box 1. Nonlinear contact algorithm for indentation simulations.

The multi-body contact algorithm and the two-material constitutive model
were implemented into an in-house finite element code called GeoScale. The
next three sections report the results of numerical simulations conducted in
GeoScale to demonstrate the scale-bridging technique that links the creep
phenomena in shale from nanometer scale to specimen (millimeter) scale. The
first example focuses on capturing the three-stage (load-hold-unload) nano-
and micro-indentation responses of a Woodford shale sample, from which the
viscous material properties of the hard and soft materials are calibrated. Next,
the impact of loading rate and anisotropy on the overall creep responses is
investigated during the hold stage of indentation to explain the source of vis-
cous deformation. Finally, long-term triaxial creep behavior of a similar shale
is simulated to demonstrate how the formulation upscales to the specimen

scale.

3 Indentation responses of Woodford shale

Bennett et al. (2015) conducted nanoindentation and microindentation tests
on samples of an organic-rich Woodford shale obtained from the northern
flank of the Arbuckle uplift, near the Arkoma Basin, Pontotoc County. Lab-
oratory and field characterization results obtained from the Element Capture
Spectroscopy (ECS) showed that the shale sample was composed of hard ma-
terials (quartz and pyrite) and soft materials (clay minerals and kerogen)
(Abousleiman et al., 2010).

Nanoindentation tests were conducted for three materials, namely, the

hard frame (quartz and pyrite), clay, and kerogen. The tests were conducted

15
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in both bed-normal (BN) and bed-parallel (BP) directions. Two material pa-
rameters were extracted from each nanoindentation test, namely, the effec-
tive modulus Feg representing the stiffness, and the hardness H represent-
ing the strength. Experimental results showed that the hard frame exhibited
anisotropic responses along the two directions, whereas the responses of clay
and kerogen were isotropic. Thus, it is natural to describe the hard material as
transversely isotropic and the softer clay-kerogen as isotropic. This assump-
tion is consistent with a similar model developed for Barnett shale (Borja et
al., 2020).

Microindentation tests were also carried out along the BN and BP di-
rections with larger indentation area and greater indentation depth. In the
process, both the hard and soft frames of the material were engaged. On av-
erage, the sample tested consisted of nearly 50% hard materials (quartz and
pyrite) and 50% soft materials (clay and kerogen) by volume. Thus, the two-
material constitutive model combining the transversely isotropic hard frame
and the isotropic soft frame is appropriate for modeling the microindented
samples.

All indentation tests were performed with a diamond Berkovich indenter
with a half angle of 65.27° (Sakharova et al., 2009). Given that the stiffness of
diamond is around 10 times higher than that of the hard shale material (Klein
and Cardinale, 1993), it is reasonable to simulate the indenter as a rigid body.
Contact between the indenter and the indented material was assumed to be
smooth, as indicated by Bennett et al. (2015).

In order to obtain the viscosities of the soft and hard frames, we first
simulated the nanoindentation creep response of the kerogen using the one
material model and took this response as representative of the soft frame

(clay-kerogen) creep response. The viscosity was then obtained by fitting the

16
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three-stage (load-hold-unload) indentation curve for kerogen. On the other
hand, nano-indentation creep tests on the stiffer minerals would not yield
any meaningful result since the hold period of 10 minutes would be far too
short for the indentation to change noticeably during this period. Instead, we
back-figured the viscosity of the hard frame from simulating the microinden-
tation tests along both BN and BP directions. In doing so, both the hard and
soft frames were engaged, allowing us to use the two-material model in the
simulations.

To characterize the transversely isotropic hard frame material, it is neces-

sary to define a second-order microstructure tensor m as

m=ngn, (20)

where n is the unit vector normal to the plane of isotropy. This tensor defines
the general orientation of the plane of isotropy, or bedding plane. The tensorial
expression for the elastic tangent modulus can be written in terms of this

microstructure tensor as

C°=A1@1+2url+a(l@m+me1l)+bmem

+ (pr—pr)lem+mel+1om+mol), (21)

where 1 is the second-order identity tensor (Kronecker delta) and I is the
rank-four symmetric identity tensor. The tensorial operators ®, &, and &
are defined such that (e ® o)k = (@);j(0)ks, (@ B 0)ijri = (#);1(0)ik, and
(¢ ©0)ijkt = (®)i(0);k, see Semnani et al. (2016), Zhao et al. (2018), Zhao
and Borja (2019) for further details. Five material constants characterize the
elastic properties of the transversely isotropic material. In the above tensorial

expression, the constants are A\, ur, pr, a, and b.

17
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Alternatively, the following five elastic parameters may be used in lieu of
the parameters mentioned above: Young’s modulus along the BP direction
Eg, Young’s modulus along the BN direction E!, Poisson’s ratio for stress
applied and strain measured along the BP direction Vgp, Poisson’s ratio for

stress applied in the BN and strain measured in the BP directions v, and

np>
the shear modulus along the BN direction Gﬁp. For the isotropic soft frame,
only the Young’s modulus E® and Poisson’s ratio v° are necessary. Here, the
superscripts represent the different material frames and the subscripts rep-
resent different directions. The Poisson’s ratios for the two frames are given

in Bennett et al. (2015) and Borja et al. (2020). The Young’s moduli can be

calculated following the equation (Bennett et al., 2015)
E = FEg(1-17), (22)

where E, F.g and v are the general representations of the aforementioned

Young’s moduli, effective moduli, and Poisson’s ratio. The shear modulus

G, is assumed to be dependent on the Young’s modulus E! and Poisson’s
ratio Vrlfp following the expression for isotropic materials

wo_ B

Gop = m . (23)

We converted the five elastic parameters for the hard frame and the two

for the soft frame to the ones adopted by Namani et al. (2012) and Borja et

al. (2020). The converted elastic parameters for the hard frame include the

Lamé parameter A", shear modulus along the BN direction p!, shear modulus

along the BP direction ,ug, and the two anisotropy parameters o and ". The

converted elastic parameters for the soft frame include the Lamé paramter \®

18
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and the shear modulus p®. The original and converted elastic parameters are

summarized in Table 1.

Table 1. Elastic material parameters for Woodford shale, all in MPa except Pois-
son’s ratios.

hard frame
E5 | 38000 AR 2900
ENT 33000 ul 13000
original | vh | 0.038 | converted [ u3| 18000
ve,| 019 o 4100
Ggp 13000 B 6900
soft frame
- ES 8000 A% 4600
original s 03 converted 13100

In the inelastic regime, we employ the ellipsoidal yield surface of the mod-
ified Cam-Clay model but rotate this surface in stress space in the direction
that is consistent with the microstructure tensor m to reflect the anisotropy
of the hard frame. As demonstrated in Semnani et al. (2016) and Zhao et al.
(2018), an alternative way to directly rotating the yield surface in stress space
is to consider a fictitious stress configuration o’ at which the modified Cam-
Clay yield surface may be written in the isotropic form. This is facilitated by
a projection tensor P such that the real Cauchy stress tensor o is mapped to
the fictitious Cauchy stress tensor o’ according to the equation o/ =P : o,

where P is given by (Semnani et al., 2016; Zhao et al., 2018)

]P’:cl]l—&—c—;(m@m—i—m@m)

C
tp(lemimeltleom+mol), (24)

in which ¢1, c2, and c3 are the anisotropy parameters.
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The parameters of the anisotropic modified Cam-Clay model include the
slope of the critical state line M, the compressibility parameter A,, and the
three anisotropy parameters, c1, co and c3, which are all summarized for the
hard and soft frames in Table 2. The stress history is defined by the pre-
consolidation stress P, which is also given in the same table. All Cam-Clay
parameters are adopted from the numerical simulations of Barnett shale, as
reported in the literature (Borja et al., 2020), except that the slope of the
critical state line M is estimated from a friction angle of ¢.s =~ 36° reported
by Bennett et al. (2015), along with the standard formula relating M and ¢

given in Borja (2013).

Table 2. Cam-Clay parameters for Woodford shale.

MM 1.46 M®|  1.46

)\g 0.00013 Ap | 0.0026

harder frame | cf 0.73 | softer frame | ¢ 1.0
s —0.20 c5 —

ch 0.40 c3 -

P 2 =T 35

The setup of the simulation is shown in Figure 2. The indented material
was modeled as a cube with a side length of 2 um for nanoindentation and
50 pm for microindentation. The angle 6 denotes the bedding plane orientation
in the microindentation simulation, where 8 = 0° represents loading along
the BN direction and # = 90° represents loading along the BP direction.
To simulate the indentation test, the bottom of the cube was fixed and the
vertical sides were constrained from lateral movement. The loading protocol
followed the test procedure described by Bennett et al. (2015). In the loading
stage, a load P was applied as a function of time ¢ on top of the indenter
until a predefined maximum indentation depth h was reached. The load-time

function is given by
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Fig. 2. Finite element model for simulation of indentation tests on Woodford shale.
P = Pyeft. (25)

The maximum load was then held for 60 s to allow creep deformation to de-
velop, after which the indenter was unloaded over a period of 20 s. For nanoin-
dentation, Py and k were chosen to be 0.022 mN and 0.0156 s~!, respectively,
and the maximum indentation depth was 200 nm, while for microindentation,
Py and k were 1 mN and 0.05 s~1, respectively, and the maximum indentation
depth was 5 um. The calibrated viscosities for the soft and hard frames were
determined to be n° = 1.3 x 101 MPa? - s and 7" = 1.3 x 10'® MPa? - s,
respectively.

We remark that since the load was not applied instantaneously, time-
dependent inelastic deformation also developed during the loading stage,
which was taken into consideration in the calibration. For the record, however,
creep deformation is interpreted herein to be the time-dependent movement

of the indenter during the hold stage when the load was held fixed.
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Fig. 3. Nanoindentation on kerogen of Woodford shale: solid lines are experimental
results.

The load-indentation responses are shown in Figure 3 for nanoindenta-
tion, and in Figure 4 for microindentation simulations along the BN and BP
directions. We see that the model captures the material responses during all
three stages (load-hold-unload) of the indentation tests quite well. The exper-
imental curves in Figure 3 show more variability in the mechanical responses
due to the inherent heterogeneity in material composition of the shale, but
the effect of heterogeneity is diminished as both the hard and soft frames
were engaged with deeper indentation, see Figure 4. As an aside, the sudden
rebound shown by the experimental curves toward the end of the unloading
stage is an artifact of the tests and is commonly observed when the indenter
disengages from the material being indented. The residual geometry of the
microindentation simulation is presented in Figure 5 and compared with a lab

photo from Bennett et al. (2015).
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Fig. 4. Microindentation on Woodford shale: (a) BN direction, (b) BP direction.
Solid lines are experimental results.

To summarize, we have obtained the viscoplastic parameters for the hard
and soft frames of an organic-rich Woodford shale by simulating nanoindenta-

tion tests on the kerogen component and microindentation tests along the BN
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and BP directions on the rock. These parameters will be used in the following
sections to further understand the mechanism of creep during indentation test-
ing, as well as to investigate implications of the calibrated model parameters

for creep at the specimen scale.

Iuoem

- 1000

-2000

l -3000
-3.60+03

Fig. 5. Post-indented residual geometry from simulation of microindentation versus
backscatter electron image adopted from Bennett et al. (2015).

4 Parametric studies

We now perform 2D indentation simulations to study the effect of loading
rate and bedding plane orientation on the creep deformation of shale. Ide-
ally, 3D modeling would be desirable for this purpose, much like the modeling
described in the previous section. But since we are simply conducting para-
metric studies in this section, we have reduced the model to 2D plane-strain
to avoid the high computing cost associated with 3D simulations. The 2D
model used for this purpose is a cross-section cutting through the centroid of
the 3D Berkovich indenter as shown in Figure 6. The bedding plane angle
is also defined in this figure. The resulting 2D triangular indenter has a tip
angle of 136.51°, while the side of the block is 2 um for nanoindentation and

50 wm for microindentation simulations.
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Fig. 6. Model geometry for 2D indentation simulations.

4.1 Effect of loading rate

We first study the effect of loading rate on the creep response of shale. To this
end, we consider a one-material constitutive model with an isotropic soft frame
and material properties appropriate for the kerogen component of Woodford
shale. Indentation loading and creep were simulated as a two-step process.
During the loading stage, the load P was increased from 0 to 0.6 mN following
the exponential relation

P = PyeFt | (26)

where the loading parameters are Py = 0.022 mN and k = 0.0156 s~!. The
loading rate was controlled by the multiplier «, and values of 0.1, 1 and 10
were used in the parametric study. During the creep stage, the load P was
held constant at 0.6 mN over a period of 2000 s.

Figure 7 shows the resulting P-h curves for the three chosen values of «.
Observe that as the loading rate increases, the depth of indentation decreases,
indicating an initially stiffer material response. During the creep stage, how-
ever, larger viscoplastic deformations develop in materials that were subjected

to higher loading rates.
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Fig. 7. P-h curves under different loading rates.

Figure 8 portrays the creep indentation as a function of time and provides
insight into the viscoplastic response of the material. In all simulations, the
sample was subjected to the same sustained load P. We see that at a higher
loading rate, creep deformation develops faster and the indent extends deeper
into the rock. The shape of the curve and magnitude of creep deformation
for the case a = 10 are very similar to those reported by Liu, Ostadhassan,
Bubach (2018).

To further understand the mechanism of deformation during the loading
and creep stages of indentation, we investigate the evolution of viscoplastic
strains within the indented sample. This information is not available from
experiments, but fortunately, it can be modeled and investigated numerically.

Figure 9 shows the distribution of the volumetric and deviatoric plastic
strains at the beginning and conclusion of the creep stage. The four plots
indicate that the deviatoric strain invariant ||dev(e'P)|| is more intense and

concentrated over a smaller zone, whereas the volumetric strain tr(e'?) is less
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Fig. 8. Indentation creep curves for different loading rates.

intense but more pervasive over a larger region. We recall that the viscoplastic
strain rate tensor in the Perzyna model (Perzyna, 1966) is given by the flow

rule for the two-material description as (Borja et al., 2020)

v _ {fa) Ofa
P = 00 (27)

where f,, is the yield function, () are the Macauley brackets, 7, is the viscosity
coefficient, and o« = M,m. Near the indenter where the ratio of deviatoric
to volumetric stresses (q/p) approaches the slope of the critical state line,
inelastic deviatoric strain dominates, but away from the indenter where the
stress ratio is close to zero, inelastic volumetric strain pervades.

Figure 10 shows the distribution of the total viscoplastic strain ||€"P|| be-
fore and after the creep stage. Letters A, B and C correspond to values of
a = 0.1, 1 and 10, respectively, while numbers 1 and 2 pertain to the start

and end of creep. Prior to creep, an increase of a from 0.1 to 10 leads to
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Fig. 9. Volumetric and deviatoric components of viscoplastic strain at the begin-
ning and end of creep. Al = volumetric/beginning; A2 = volumetric/end; Bl =
deviatoric/beginning; B2 = deviatoric/end.

a significant decrease in the magnitude of the viscoplastic strain around the
indenter tip, as well as to a reduction in the extent of the inelastic zone. This
is consistent with a known feature of viscoplasticity theory in that when the
loading rate is high, the deformation of the material is mostly elastic.

Figure 10 also shows that at the conclusion of the creep stage, an inelastic
zone forms at a finite distance away from the indenter tip, and not directly
below it, even though the total strain experienced by the elements in con-
tact with the indenter is large. This can be attributed to the time-dependent
nature of the constitutive model: Under a high loading rate, the elements

around the indenter experience elastic deformation. When entering the creep
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Fig. 10. Total viscoplastic strain ||€"?|| for different loading rates and time instants
during the creep stage of indentation. Letters A, B, and C are for loading rates of
a=0.1, « =1, and a = 10, respectively; numbers 1 and 2 pertain to the beginning
and end of creep.

stage, however, the over-stress in these elements relaxes to produce inelastic
deformation, but the elements in contact with the indenter are constrained by
the geometry of the rigid indenter, and so they are unable to deform much in

shear.
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For a closer look at the time-evolution of the viscoplastic strain and the
total stress during the creep stage, we show snapshots of strains and stresses
in Figures 11 and 12, respectively. Here, the viscoplastic strain norm ||€*P||
and stress norm ||| were calculated relative to their initial values at the
beginning of the creep stage. The snapshots were taken at three different
instants: ¢ = 100 s, t = 500 s, and ¢ = 2000 s, where ¢t = 0 denotes the

beginning of the creep stage.

0.01
0.0e+00

9.4e-02

—0.06
—0.04

[ 0.02
0.0e+00

Cl C2 C3

Fig. 11. Creep strains for different loading rates. Letters A, B, and C are for loading
rates of a = 0.1, @ = 1, and a = 10, respectively; numbers 1, 2, and 3 are for times
instants t =100 s, 500 s, and 2000 s, respectively.
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Fig. 12. Change in the stress norm for different loading rates during the creep stage
of indentation. Letters A, B, and C are for loading rates of « = 0.1, a = 1, and
a = 10, respectively; numbers 1, 2, and 3 are for times instants ¢ =100 s, 500 s, and
2000 s, respectively.

Figure 11 depicts the inelastic zones generated by the indenter load during
the creep stage of indentation. For o = 0.1, the inelastic zones develop from
the top surface of the material on the left and right sides of the indenter,
and propagate deeper into the material away from the indenter. For a =
1, the inelastic zones appear to merge into a circular region, although the

maximum creep intensity remains close to the top surface of the indented
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material. For a = 10, the inelastic zone develops throughout the entire circular
region surrounding the indenter.

Figure 12 shows the evolution of the stress norm |o| during the creep
stage of deformation. For a = 0.1, two fan-shaped regions on the two sides of
the indent experience a reduction in stress, indicating stress relaxation as the
stress point outside the yield surface returns back to the yield surface. This is
consistent with the buildup of viscoplastic strains within these same regions,
as shown in Figure 11. For « = 1 and 10, on the other hand, stresses relax in
the zones directly beneath the indenter, which is consistent with Figure 11 in
that the inelastic regions concentrate beneath the indenter for these loading
rates.

The upshot of Figures 11 and 12 is that the loading rate exerts a significant
influence on the way in which the stresses around the indenter redistribute
themselves to resist the constant indenter load during the creep stage. When
the loading rate is low, the elastic over-stress beneath the indenter is small,
and stress relaxation takes place mostly on the sides of the indent. This stress
relaxation on the sides must be accompanied by a stress increase beneath the
indenter to balance the constant load. This is consistent with the increase
in stress at a point in contact with the tip of the indenter for a = 0.1, as
shown in Figure 13. On the other hand, when the loading rate is high, elastic
strains build up beneath the indenter tip prior to creep. Stress relaxation
then takes place directly beneath the indenter tip, which is accompanied by
a stress increase on the sides of the indent, as well as beneath the indenter
but at greater depths, to balance the applied load. This is consistent with the
decrease in stresses directly beneath the indenter tip for @« = 1 and 10, as

shown in Figure 13.
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Fig. 13. Change in the stress norm beneath the tip of the indenter under different
loading rates during the creep stage.

To summarize, results of the parametric study suggest that creep defor-
mation during the hold period of an indentation experiment arises from the
time-dependent strains that develop in the region surrounding the indenter,
and not just from the deformation of the material directly in contact with the
indenter. Creep deformation depends on the rate at which the indenter load
is applied: the faster the loading rate, the greater the creep deformation. The
loading rate also impacts the way in which the stresses within the indented

material redistribute themselves to balance the applied load.

4.2 Effect of bedding plane orientation

Next, we investigate the effect of cross anisotropy on the creep responses of
shale during an indentation test. Anisotropy emanates from the presence of
bedding planes, and is accounted for in the model through the hard frame

response. We thus consider the two-material model with the soft and hard
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frames occupying 50% each by volume, and use the material properties for
Woodford shale calibrated in Section 3. The sample size is 50 pm x 50 pm,
which is comparable to the sample size used for 3D microindentation simula-
tions. The bottom of the sample was fixed and the lateral movements of the
vertical boundaries were constrained. The load P at the top of the indenter
was increased from 0 to 15 mN over approximately 200 s, following (25), with
Py = 0.55 mN and k = 0.0156 s~!. The maximum load was held constant
for 2000 s, allowing the sample to creep. Figure 14 shows the resulting creep
curves for five different bedding plane angles # = 0° (horizontal bedding), 30°,
45°, 60° and 90° (vertical bedding).

500
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w
o
o

creep depth (nm)
3
o

100 | 1

0 500 1000 1500 2000
time (s)

Fig. 14. Indentation creep curves for various bedding plane orientations 6.

The curves shown in Fig. 14 suggest that anisotropy in the creep response
does not strongly manifest itself during an indentation experiment, at least
within the range of properties considered for Woodford shale. In contrast, as

will be shown later in Section 5, strongly anisotropic creep behavior can be
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reproduced from triaxial creep simulations on the same shale sample with
the same material properties. This is due to the fact that indentation test
involves localized deformation around the indenter tip, which does not allow
the anisotropy of a larger volume to manifest itself. This result is consistent
with the experimental results presented by Bennett et al. (2015), which showed
that indentation testing has obscured the anisotropic creep response of this
shale. The main takeaway from this study is that indentation test is not the
right test to investigate anisotropy in creep.

An interesting feature of anisotropic creep during indentation tests is the
material flow near the tip of the indenter. When the sample is compressed by
the indenter, the material flows from the stronger BP direction to the weaker
BN direction. The kinematics of flow can be clearly observed in Figure 15,

which shows the scaled displacement vectors for the simulation with 6 = 45°.
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Fig. 15. Displacement vectors during creep for bedding plane orientation 6 = 45°.
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5 Implications for triaxial creep

In this section, we demonstrate how the model, calibrated from tests on the
order of nanometers to micrometers in scale, upscales to the specimen scale.
Triaxial creep test is the most common laboratory test for quantifying the
time-dependent deformation behavior of geomaterials at the specimen scale.
However, this test alone does not distinguish between the creep responses of
the individual constituents of a heterogeneous sample of a shale. Neither does
it distinguish between the constitutive response of an elementary volume and
the structural response of the triaxial sample. The numerical simulations pre-
sented in this section could shed some light onto the creep responses of the
soft and hard constituents of a shale sample taken individually as well as col-
lectively. Results of the analysis could be useful in interpreting the sources of
creep deformation in a heterogeneous sample that would otherwise be difficult
to extract from the overall laboratory creep response alone.

We consider once again the two-material Cam-Clay IX model presented
in Section 2, along with the calibrated model parameters appropriate for the
Woodford shale sample tested by Bennett et al.(2015) and described in Sec-
tion 3. The finite element mesh for a cylindrical sample with spatially varying
hard/soft volume fractions is shown in Figure 16. The sample is 25.4 mm in
diameter and 50.8 mm in height, which is approximately the same size as the
triaxial sample tested by Sone and Zoback (2013). In principle, the spatial
distribution of the hard/soft frame volume fractions can be determined ex-
perimentally through a combination of high-resolution imaging and chemical
characterization such as through energy dispersive X-ray spectroscopy (EDX),
and plotted on ternary plots (see Sone and Zoback (2013)). In the following

simulation, however, we generated this type of heterogeneity stochastically,
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1 following a normal distribution for the volume fractions ranging from 0.4 to

2 0.6.
3 Transverse isotropy was assumed for the hard frame, with the bedding
4 plane orientation described by the angle 6. The bottom end was supported
5 on rollers except for the node at the center, which was supported by a pin
6 to arrest rigid-body lateral translation. A confining pressure of 0. = 35 MPa
7 was first applied around the cylinder until the material reached steady state
8 (negligible viscoplastic deformation). Then, a differential stress o4 = 40 MPa
9 was applied in the axial direction. The following results pertain to two bedding
10 plane orientations, at # = 90° and at 6 = 0°.
bl
e
<«
<«— Oc
<«
6.0e-01
[0.55
—05
[0445
4.0e-01
Fig. 16. Setup of the triaxial creep tests.
11 The axial creep strain after applying the differential stress is reported in
12 Figure 17. Even though the results presented in this figure are only hypotheti-
13 cal and have not been validated experimentally for the specific shale simulated
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in this example, the creep curves shown in the figure are remarkably very simi-
lar to the experimental results reported on Barnett shale by Sone and Zoback
(2013) and simulated numerically by Borja et al.(2020). We remark that a
noteworthy feature of the present result is that the model parameters used in
the simulation were obtained from indentation tests. The fact that the model
still produced realistic results for creep at the specimen (millimeter) scale and
over several hours of creep, even though the model parameters were calibrated
from creep tests that lasted only a few minutes, is encouraging and points to

the potential of the framework to bridge scales across space and time.
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Fig. 17. Axial creep responses from triaxial creep simulations.
Superimposed in Figure 17 are theoretical plots obtained from a widely

used phenomenological Lomnitz logarithmic creep law (Lomnitz, 1956), which

is given by the analytical equation
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e = Blog (1+§), (28)

where B and 7 are the parameters of the constitutive law. We note that
equation (28) only includes the time-dependent part of the original Lomnitz
creep law, with the constant component removed from the equation. For § =
0°, we get B =9.97 x 107° and 7 = 385 s; and for § = 90°, B = 6.74 x 10~°
and 7 = 364 s. The discrepancy between the simulated creep responses and
the fitted logarithmic curves emanated from the assumption of viscoelasticity
in the Lomnitz law, which is a different description of creep response from the
one adopted in the present framework.

Because the model can track the evolution of creep strain throughout the
domain of the cylindrical sample, it is possible to separate the creep strains
in the soft frame from the creep strains in the hard frame and report their
evolutions statistically with time. We thus extracted the viscoplastic strain at
the Gauss points for each frame and plotted their evolution statistically, as
shown in Figure 18. Note that these plots pertain to one stochastic realization,
and that the statistical range of creep behavior here refers to the spatial
distribution of viscoplastic strain throughout the problem domain. The solid
lines represent the mean values, the dark shadows delimit the first and third
quartiles (25% and 75%) of the data, and the light shadows mark the range
of data. The plots clearly demonstrate that the contribution of the soft frame
to the creep response of the cylindrical sample is more than 10 times larger
than the contribution of the hard frame, irrespective of the bedding plane
orientation. Although it has been recognized that the creep behavior of shale
is mostly due to creep of the soft materials (Herrmann et al., 2020; Mighani et

al., 2015; Slim et al., 2019; Sone and Zoback, 2013), the methodology presented
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Fig. 18. Statistical plot of triaxial creep responses.

in this work allows (for the first time) a statistical description of the effect of

heterogeneity on the creep response of a rock under triaxial condition.

6 Closure

We have presented a scale-bridging technique linking the creep behavior of
shale from the nanometer scale to the millimeter scale. At the nanome-
ter scale, nanoindentation simulations were conducted using a one-material
elasto-viscoplastic constitutive model representing the response of the softer
clay-kerogen matrix. At the micrometer scale, microindentation simulations
along the bed-normal and bed-parallel directions were conducted using the re-
cently developed Cam-Clay IX model. From these simulations, we determined
the material parameters for an organic-rich Woodford shale. The calibrated
model was then used to predict the creep response of a triaxial sample of the

same shale in a way that statistically quantifies the contributions of the soft
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and hard frames to the overall creep response. The schematic of the proposed

scale-bridging technique is summarized in Figure 19.

1-Material Model 2-Material Model

—_—> Triaxial
Nanoindentation Microindentation floxial Creep

Anisofropy, nano-scale
heterogeneity, viscoplasticity Mesoscale heterogeneity

nm um mm
>

A

Submicron to specimen scale modeling

Fig. 19. Scale-bridging technique from nanoscale to millimeter scale.

The main contribution of the work is a framework for shale that links the
creep response from nanometer scale to millimeter scale in space, and from
a few minutes to several hours of creep responses in time. We are not aware
of any framework in the literature that is capable of bridging creep processes
over space that spans several orders of magnitude, neither are we aware of
any framework that allows calibration of a time-dependent model for rocks
from creep tests lasting only a few minutes. The two-material constitutive
description facilitated by Cam-Clay IX provides this critical link between the
nanoscale and millimeter scale descriptions, see Figure 19. The viscoplastic
framework adopted in this model also allows representation of creep processes
over time scales several orders of magnitude different. Work is currently under-
way to investigate the effect of fluid flow on the poromechanics of transversely

isotropic rocks (Zhao and Borja, 2020).
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