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1. Introduction
1.1. The setting and notation

Let My (C) denote the set of N x N matrices over C, N > 2. Let & denote the
set of non-degenerate density matrices in My (C). That is, each 0 € &4 is a positive
definite N x N matrix with unit trace. The GNS inner product on My (C) is defined by
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(B,A)gns = Tr[B*Ao] . (1.1)
Here we are concerned with a family of inner products on My (C) that all reduce to
(B, A)gns when either A or B commutes with o. Let P[0, 1] denote the set of probability
measures on the interval [0, 1].
1.1 Definition. For each m € P[0, 1], (-, +),, denotes the inner product on My (C) given
by

(B, Ay, = Tr[B* M, (A)] where M,,(A) = /JsAal_s dm(s) . (1.2)

Notice that for each s € [0, 1],
Tr[B*O_l—sAO_s] — TI,[(U(I—S)/QBO_S/Z)*O_(l—s)/2AO_s/2] ’

and this quantity is strictly positive when B = A # 0, and hence (-,-),, is a non-
degenerate inner product for every m.

We call the measure m and its associated inner product (-,-),, even when m is sym-
metric with respect to reflection about s = 1/2:

m(U) =m(l —U) for all measurable U C [0,1] . (1.3)

Note that the GNS inner product corresponds to m = &g, the point mass at s = 0.
Other cases are known by name. Taking m = 0, /, yields the Kubo-Martin-Schwinger
(KMS) inner product

(B, A)kns = Tr[B*c/2Act/?] . (1.4)

Taking m to be uniform on [0, 1] yields the Bogoliubov-Kubo-Mori (BKM) inner product,
1
<ByA>BKM = /TI‘[B*O'SAdl_S]dS . (15)
0

Unlike the GNS inner product, these two are even.

Finally, if o = N1, the normalized identity, all choices of m reduce to the normalized
Hilbert-Schmidt inner product. Throughout this paper, $) always denotes the Hilbert
space My (C) equipped with this inner product,

@AM:%ﬁB%y (1.6)
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Let L(My(C)) denote the linear operators on My (C), or, what is the same thing in
this finite dimensional setting, on £). Throughout this paper, a dagger is always used to
denote the adjoint with respect to the inner product on ). That is, for ® € L(My(C)),
T is defined by

(@1(B), A)s = (B, ®(A))s (1.7)

for all A, B. We can also make £L(My(C)) into a Hilbert space by equipping it with the
normalized Hilbert-Schmidt inner product. Throughout this paper, this Hilbert space
is denoted by $. The following formula for the inner product in § is often useful. Let
{Fi j}1<ij<n be any orthonormal basis for §). Then for ® and ¥ € 9,

(W, )5 = Ng Z Fij), ®(Fij))s - (1.8)

1,j=1

To each 0 € &, there corresponds the modular operator A on $ defined by
AA=cAc™ . (1.9)

Let {u1,...,un} be an orthonormal basis of CV consisting of eigenvectors of o, so that
for 1 < j < N, ou; = Aju;. For 1 < i,j < N, define E; ; = vV NJu;){u;|, so that
{FE; j}i<i,j<n is an orthonormal basis of §). Then a simple computation shows that for
each 1, 7,

AE; ;= A 'E;; . (1.10)

Thus A is diagonalized, with positive diagonal entries, by an orthonormal basis in §). It
follows that A is a positive operator on $). Using the Spectral Theorem, we may then
define A® for all s. This provides another way to write the operator M,,, defined in (1.2):

1
/ASdm R, (1.11)
0

where R, denotes right multiplication by o, also a positive operator on $) that commutes
with A, and hence with fol Asdm.

Finally, the terms “Hermitian” and “self-adjoint” are often used interchangeably. Here,
we must make a distinction: A linear operator ® on My (C) is Hermitian if and only if
D(A*) = (P(A))* for all A € My(C). This is the only sense in which we shall use this
term.
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1.2. The problems considered

It is assumed that the reader is familiar with the notion of completely positive (CP)
maps that was introduced by Stinespring [13], and have been much-studied since then.
A concise account containing all that is needed here can be found in the early chapters of
[12] or in [14]. By a quantum Markov semigroup, we mean a semigroup {2 };>¢ of linear
operators on My (C) such that each & is completely positive and satisfies Z2,(1) = 1.
A map ® on My(C) is unital in case (1) = 1. Thus, when { P }+>¢ is a QMS, each &,
is unital, but unital CP maps are of wider interest in mathematical physics, and in this
context are often referred to as quantum operations. The generator of a QMS {2 }>0
is the operator .Z defined by

1
f:z}%g(,@t—ﬂ.

Note that £1 =0, and &, = <.

We are interested here in CP maps and quantum Markov semigroups (QMS) and
their generators that are self-adjoint with respect to the inner product (:,-),, for some
m € P[0,1] and some o € & 4. The structure of the set of QMS generators that are
self-adjoint with respect to the GNS and KMS inner products has been studied by
mathematical physicists, but apart from these cases, not much is known.

1.2 Definition. For m € P[0, 1], let H,,, denote the Hilbert space obtained by equipping
M (C) with the inner product (-, -),,. Let C'P,, denote the set of CP maps ® on My (C)
that are self-adjoint on H,,, and let C'P,, (1) denote the subset of C'P,, consisting of unital
maps. Finally, let QM .S,,, denote the set of QMS generators that are self-adjoint on H,,.
We write C'P to denote the set of all CP maps (without any particular self-adjointness
requirement). Likewise, we write C'P(1) to denote the set of all CP unital maps and
QMS to denote the set of all QMS generators.

As is well-known, both CP and QM S are convex cones. For C'P this is obvious. If
& and % are two generators of completely positive semigroups, then

HANLD) — lim (DD L)k (1.12)

is completely positive, and hence the set of generators of completely positive semigroups
is closed under addition, and also evidently under multiplication by non-negative real
numbers. Since if Z;1 = 0 for j = 1,2, then (% +.%)1 = 0, it follows easily that the set
of all QM S semigroup generators is a convex cone. However, it is not a pointed cone: Let
H € Mn(C) be self-adjoint, and define £ (A) = i[H, A]. Then e!(A) = et Ae=*H is
a QMS, and evidently both . and —.% are QMS generators.

By a theorem of Lindblad [10] and Gorini, Kossakowski and Sudarshan [8], every QMS
generator .Z on My (C) is of the form
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L(A) = (G*A + AG) + ®(A) (1.13)

where @ is completely positive. Since £1 = 0, G* + G = —®(1). If we define K :=
2-(G — G*), then we can rewrite (1.13) as

L(A) = B(A) - %(@(1)A+A<I>(1)) —i[K, A] . (1.14)

However, ® and K are not uniquely determined by £, and it is possible for . to be
self-adjoint on H,, while @ is not, and vice-versa. Hence the problem of determining the
structure of C'P,, is not the same as the problem of determining the structure of QM .S,,.

There is a natural order relation on C'P (without any requirement of self-adjointness),
that was investigated by Arveson in [2]. He worked in the general context of CP maps
from a C* algebra <7 into B(H), the bounded operators on a Hilbert space H. If ® and
¥ are two such CP maps, we write ® > W in case ® — ¥ is CP. An element ® is called
extreme in case whenever ¥ € CP and ® > tWV for some ¢ > 0, then ¥ is a multiple of
®. Arveson also considered the set C'P(1) of unital CP maps. An element ® € CP(1)
is extreme if whenever for some 0 < ¢t < 1 and ¥y, ¥y € CP(1), & = t¥; + (1 — )Py,
Uy = ¥y = &. Equivalently, whenever ® > tW¥ for some 0 < ¢ < 1 and ¥ € C'P(1), then
V=,

For all ® € C'P, Arveson’s Radon-Nikodym Theorem gives an explicit description of
the set {U € CP : & — ¥ > 0}. Using this, he proved a characterization of the extreme
points of C'P(1). Later, Choi [5] gave a simplified treatment of Arveson’s result in the
case of matrix algebras. Every CP map on My (C) has a Kraus representation [9]: There
is a set {Vi,...,Va} C My(C) such that for all A € My(C),

M
O(A) =D VAV, (1.15)
j=1
and one may always take such a representation in which {Vi,...,Vj} is linearly in-

dependent; such a Kraus representation is minimal. There is a close relation between
minimal Kraus representations and minimal Stinespring representations that is recalled
in an appendix. If (1.15) is any Kraus representation of ®, then ® is unital if and only
if Zj\il V;'Vj =1, and Choi’s matricial version [5] of Arveson’s theorem on extremality
is that if (1.15) is a minimal Kraus representation, ® is extremal in CP(1) if and only
if {V;*V; + 1<4,j < M} is linearly independent.

While necessary and sufficient conditions for a QMS generator to be self-adjoint for
the GNS or KMS inner products have been proved by Alicki [1] and Fagnola and Umanita
[6,7], little appears to be known about the order structure and extreme points for C'P,,,
CP,,(1) and QMS,,. Even for the case of the GNS or KMS inner products, there is
more to say.

For the KMS inner product, let CPg s := CPs, /ot We prove the following results:
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1.3 Theorem. Let 8 be the real vector space consisting of all V.€ My (C) such that
A=Y2V = V*. The extremal elements ® of CPxars are precisely the elements of the
form

D(A)=V*AV | Ver. (1.16)
Every map in C Pk s is a positive linear combination of at most N? such maps.

1.4 Theorem. Let ® and ¥ be two CP maps that are KMS self-adjoint. Let ®(A) =
Z].]Vil VI AV; be a minimal Kraus representation of ® with each Vj € & Then ® —V is
CP if and only if there exists a real M x M matrix T such that 0 <T <1 and

M
V(A = 3 T VAY; (1.17)

4,j=1

1.5 Theorem. Let ® be a unital CP map that is KMS self-adjoint and let ®(A) =
Z]-Nil VIAV; be a minimal Kraus representation of ® with V; € R for each j. Then
® is an extreme point of the set of unital CP maps that are KMS self-adjoint if and only

if
{VZ*V]—f—V]*VZ 1<i<j< M} (1.18)
is linearly independent over the real numbers.

Theorem 1.4 is an analog of Arveson’s Radon-Nikodym Theorem for CP maps in the
context of KMS self-adjointness. The matrix algebra version of Arveson’s theorem states
that if (1.15) is a minimal Kraus representation of a CP map ®, and ¥ is another CP
map, then ® — ¥ is CP if and only if there is a complex M x M matrix T, 0 < T <1
such that ¥ is given by (1.17). The restriction that both ® and ¥ are self-adjoint on
H i ms results in the further requirements that V; belongs to the real vector space K for
each 7, and that T is real. The matricial version of Arveson’s theorem is proved in an
appendix.

For every m € PJ0, 1], there is a natural order on QM S,,,. While QM S is not a pointed
cone, QM S,, is always a pointed cone: We prove:

1.6 Theorem. For any m € P[0,1], if ® € QM S,,, and —® € QM S,,, then & = 0.

For 4,% € QMS,,, we define &, > % to mean that & — % € QMS,,. By
Theorem 1.6, it follows that if £ > % and % > %, then & = %. We then define
an element . € QM S,,, to be extremal in case whenever = QMS,, satisfies .& > ts
for some t > 0, #is a non-zero multiple of .Z.

The special feature of self-adjointness on H,, for m = J,, and s € [0, 1] that greatly
simplifies the task of studying QM.S,, in these cases is that there is an orthogonal
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decomposition of 5 into two subspaces, each of which is invariant under the operation
of taking the adjoint on H,,:

1.7 Definition. Define 55 to be the subspace of ) consisting of all operators ® of the
form

P(A)= XA+ AY (1.19)
for some X,Y € Mxy(C).
We shall prove:

1.8 Lemma. For each s € [0,1], both 9s and S%fg are invariant under the operation of
taking the adjoint with respect to the inner product (-,-)s,. Moreover, if {V1,...,Var} is
linearly independent in My (C), the map A — Z;\il Vi AV belongs to S%fg if and only
if Tr[V;] =0 for each j.

(Of course, once the invariance of one subspace is shown, the invariance of the other
follows.)

Now consider any QMS generator .Z. By the LGKS Theorem [10,8] recalled earlier
in the introduction, £ has the form

L(A) = (G*A+ AG) + U(A) (1.20)

where W is CP. Let
M
V(A) =) VAV,
j=1

be a minimal Kraus representation of ¥. Replacing each V; by V;—Tr[V;]1, and absorbing
the difference into G, we may assume that Tr[V;] = 0 for each j. By Lemma 1.8, we then
have ¥ € .%é Furthermore, adding a purely imaginary multiple of 1 to G does not
change %, and hence we may also assume without loss of generality that Tr[G] € R.
Thus, making these choices for G and ¥, (1.20) gives the decomposition of .£ into its
components in 5%5 and S%fg Then by Lemma 1.8, if .7 is self-adjoint on H;_, each of these
pieces must be individually self-adjoint on Hs,. For example, for s = 1/2, corresponding
to the KMS inner product, Theorem 1.3 gives the necessary and sufficient conditions
for ¥ to be self-adjoint, and then an easy computation shows that A — G*A + AG is
self-adjoint on H g ars if and only if A~Y/2G = G*, where we have taken, without loss of
generality, Tr[G] € R.

This brings us to a result of Fagnola and Umanita [6, Theorem 37]: Let £ € QM S
be given in the form
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M
ZL(A)=G"A+ AG + > W AW,

j=1

where Tr[G] € R, {W1,..., Wy} is linearly independent, and for each j, Tr[W;] = 0.

Then .Z is self-adjoint on Hx s is and only if

(i) A=12G = G*

(ii) There is an M x M unitary matrix U such that for each j, ATV, = Zkle ﬁj,kW,:.
We have already explained how condition (i) follows from Lemma 1.8 apart from the

simple computation that will be provided below. As for (i), let W(A) = ZJM:1 W;AW;.

By Lemma 1.8, this must be self-adjoint on Hx s and then by Theorem 1.3 there is

another minimal Kraus representation ¥(A) = Zj\il V. AVj, necessarily with the same

M, such that A=Y/ 2Vj = V;*. By the unitary equivalence of minimal Kraus represen-

tations (see the appendix), there is an M x M unitary matrix such that for each j,

W; = Zé\/le U, . Vi and hence

M M M M
A_1/2Wj = Z UMA‘WVk = Z UijVk* = Z Uj,kUZ,kW;: = Z(UUT)J',ZWI:
k=1 k=1 k=1 =1

where UT denotes the transpose of U, and of course U:=UUT is unitary.
Conversely, suppose that (ii) is satisfied. Let U be another unitary to be chosen below.
Then for each /,

M M »
ATVZAN U Wy | = ) U UpeWy
j=1 j,k=1

and thus if we choose U so that U = UU, we may define V; = 224:1 Ui Wi, ¥(A) =
Zj]vil V;*AV; and for each j, ATV, = Vi and Tr[Vj] = 0. It is easy to find such U:
Choose an orthonormal basis in which U is diagonal with jth diagonal entry e?%. We
may take U to be diagonal in this same basis with jth diagonal entry e~/

The result of Fagnola and Umanita allows one to check whether or not any given QMS
generator is self-adjoint on Hxars. However, it does not provide a parameterization
of QM Sk s, the cone of QMS generators that are self-adjoint on Hg s, nor can
one readily read off the set of extreme points from their result; there are compatibility
conditions relating G and {W7,..., Wy, }. The following result provides this and other
additional information:

1.9 Theorem. There is a one-to-one correspondence between elements £ of QM Sk s
and CP maps ¥ € H% that are self-adjoint on Hars. The correspondence identifies W
with Ly where

Lu(A) = G*A+ AG + T(A) (1.21)
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where G = H +iK, H and K self-adjoint and given by

H:=10(1) (1.22)
and
1 o0
K=~ /e_wl/z(al/zH — Ho'/?)e ' at (1.23)
1
0

Furthermore, for all Ly, , Ly, € QM Skyms, Lv, —ZLw, € QMS if and only if U1 -V, €
CP; ie, Ly, > Ly, if and only if Y1 > Vs, and the extreme points of QM Sk s are
precisely the generators of the form

L(A) = G*A+ AG + V*AV

where A™Y2V = V* and where G = H +iK is given by (1.22) and (1.23) for U(A) =
V*AV.

1.10 Remark. It is easy to see that K defined by (1.23) satisfies Tr[K] = 0, so that
Tr[G] € R.

We also prove analogous results for self-adjointness with respect to the inner products
on Hs, for all s # 1/2. This includes the GNS case, and in fact it is well known that for
s # 1/2, any Hermitian operator ® is self-adjoint on H;s, for all s # 1/2 if and only if it is
self-adjoint on Hgns = Hs,- It follows that Hermitian operators ® that are self-adjoint
on Hans are universally self-adjoint — they are self-adjoint on H,, for all m. The results
specifying extreme points, e.g., of the set of GNS self-adjoint unital CP maps, etc., are
new, as is the theorem giving necessary conditions for ®; — &3 € CP when ®; and ®»
are CP and self-adjoint on Hgyg, while the structure of QM Sgns was worked out by
Alicki [1].

We turn next to the BKM inner product, whose investigation is motived in part by
[4, Theorem 2.9]. It is much more difficult to prove analogs of the theorems proved
here for the KMS and GNS inner product, in part because 5§ is not invariant under
the operation of taking the BKM adjoint. However, the BKM case shares one very nice
feature with the KMS case; in both cases M,! is CP. Using this, we construct and study
a one-to-one map from C Pk rs into CPpgps. This map is unfortunately not surjective,
but it does also take unital maps to unital maps, and so it gives us a large class of
quantum operations that are self-adjoint on Hpx -

Finally, we study operators that are evenly self-adjoint, by which we mean self-adjoint
on H,, for all even m. The class of evenly self-adjoint QMS generators is strictly larger
than the class of GNS self-adjoint QMS generators, but also strictly smaller than the set
of QMS generators that are BKM or KMS self-adjoint.
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2. Background material

We recall some useful tools. It is convenient to index orthonormal bases of §) by
ordered pairs (i,7) € {1,... N} x {1,... N} =: Jn. We use lower case Greek letters to
denote elements of the index set. For a = (i,5) € Jn, o := (j,1).

For F,G € Mx(C), define the operator #(F @ G) on $ by

#(F®G)X = FXG . (2.1)

Simple computations show that

(#(F1 ®© G1), #(F2 ® Ga)) g = (F1,F2)5(G1,G2) 5 - (22)

Hence, if { Fi, }ac gy and {Ga}tacgy are two orthonormal bases of 9, {#(Fo,®Gg) }a.ey
is an orthonormal basis of 5%

Now fix any orthonormal basis { Fi, }ac 7, of $. Then {F*},c 7, is also an orthonormal
basis of $), and hence {#(F} ® Fg)}a,pe7y 1S an orthonormal basis of 9. Thus, every
linear operator ® on $) has an expansion

O= Y (co)as#(F; @ Fp) (2:3)
a,BETN
where
(ca)a,p = (#(Fa ® Fp), P)g - (2.4)

In particular, the coefficients (cg)q,s are uniquely determined. The following definition
is from [8]; see the Appendix of [3] for more information.

2.1 Definition (Characteristic matriz). Given a linear operator ® on ), and an orthonor-
mal basis {Fi,}acry Of 9, its characteristic matriz for this orthonormal basis is the
N? x N? matrix Cp whose (o, 3)th entry is (co)a,s as specified in (2.4).

2.2 Remark. An easy computation shows the following: Let ® be a linear operator on
9. Let {F,} and {F,} be two orthonormal bases of §). Let Cg be the characteristic
matrix of ® with respect to {F,}, and let Cy be the characteristic matrix of ® with
respect to {F,,}. Let U be the N2 x N2 unitary matrix such that F, = Z Ua,3Fps. Then

B
Co = UCaU*.

2.3 Lemma (See [8]). A linear operator ® on $) is Hermitian if and only if Cg, for any
orthonormal basis {Fy}ac gy, i self-adjoint.
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Proof. We compute

(@A) == D (ca)apFiA Fs| = > (ca)apF5A Fa
a,BEIN a,BETN
Y EAE
o,fEIN

By the uniqueness of the coefficients, ® is Hermitian if and only if (¢3)a,s = (ca)g,q for
all , 8. O

The following lemma is a variant of Choi’s Theorem [5]; see [8] for this version.

2.4 Lemma. A linear operator ® on My (C) is completely positive if and only if for every
orthonormal basis {Fy}ac gy of 9, the corresponding characteristic matriz Cy is positive
semi-definite.

Proof. The right side of (2.4) can be computed using the matrix unit basis to compute

the trace:
* 1 * *
(ca)as = (#(Fa ® F5), D)5 = 15 Tr[E} (Fo®(E. ) F3]
1<k <N
Let (z1,...,2y2) € CV° and define G := Y wcgy 2ol Then
1
D Zalca)apzs = =3 > Tr[ErxG*O(Ers)G) - (2.5)
a8 1<k <N

Let [E; ;] denote the block matrix whose i, jth entry is E; ;. Then it is easy to see
that N~/ 2[Ei7j] is an orthogonal projection, and in particular, positive. Now suppose
that ® is completely positive. Then the block matrix [G*®(E; ;)G] whose i, jth entry is
G*®(FE; ;)G is positive. The right side of (2.5) is then the trace (on the direct sum of N
copies of CV) of the product of positive N? x N2 matrices, and as such it is positive.
Thus, whenever ® is completely positive, Cp is positive semi-definite.

On the other hand, suppose that Cg is positive semi-definite. Let A be a diagonal
matrix whose diagonal entries are the eigenvalues of Cg, and let U be a unitary such
that Ce = U*AU. Then by (2.3), for any X € 9,

oX)= Y Ui MUysFiXFz= > VIXV,,
a,B,Y€IN YEIN

where V., := /A, Z U, o Fo. This shows that whenever Cg is positive semi-definite,

aeJn
® is completely positive, and provides a Kraus representation of it. O
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So far, we have not required any special properties of the orthonormal bases { Fj }oc 7
of $H that we used. Going forward, it will be necessary to choose bases that have several
useful properties:

2.5 Definition (symmetric, unital and matriz unit bases). An orthonormal basis
{Fu}acay of $is symmetric in case

forall aeJy, F,=Fu. (2.6)

It is unital in case it is symmetric and moreover

F(l,l) == 1 . (27)

It is the matriz unit basis corresponding to an orthonormal basis {u1,...,uyx} of CV in
case

Fli ) = VNJug){uj] - (2.8)

Note that a matrix unit basis is symmetric.

One reason unital bases are useful is the following: the characteristic matrix C; of
the identity transformation I(A) = A in a unital basis {F}, }oc7, has only one nonzero
entry, a 1 in the upper left corner. Indeed, for any A, the expansion of I(A) in the form
>oap HEFL @ Fp)(A) =3 5(cr)a,F5 AFp reads simply 1" A1 = F | AF(q,1). This fact
will be used later.

2.6 Remark. When studying self-adjointness with respect to the various inner products
we have introduced, the following bases will be particularly useful: Let o € G4 (A), and
let {us,...,uxn} be an orthonormal basis of CV consisting of eigenvectors of o:

JUJ':)\]"LL]'7 jzl,,N
The associated matrix unit basis is then given by
E¢ 5y = VNlu;){uy] . (2.9)

We can then construct a unital basis from this as follows: Let v; be the unit vector
N-12(1,...,1) € CN each of whose entries (v1)r = N~/2. Let e; = (1,0,...,0) be the
unit vector in CV whose first entry is 1. Define
L —e)  and V= 1-2fu)l
U= ————(v] — e an =1 —2|u){u| .
[vr — ex]

Then it is evident that V' is a self-adjoint real unitary matrix, and that Ve; = vy. (V
is the Householder reflection of e; onto v1). Since Ve; is the first column of V', the first
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column of V is w1, and then since V is symmetric, the first row of V is also v;. One
readily finds that

1 1=1lorj=1
VNV j=q X2 1 i=j>2 (2.10)
\/%1_1 otherwise

Let U be the N2 x N? unitary matrix whose lower right (N? — N) x (N? — N) block is
the identity, and whose upper left N x N block is V. That is, for N = 2,

1 1

w w00

L L oo
U=|vz "2 (2.11)

0 0 1 0

0 0 0 1

Then using this unitary U, we define

Fo:=> UapEg . (2.12)

B

Then {Fy}aecsy is a unital basis; in particular F; 1) = 1.

We are now ready to recall the characterization of QM S generators. Again, the defi-
nition is due to [8].

2.7 Definition (Reduced characteristic matriz). Let £ be a Hermitian operator on £
such that 1 = 0, and let {F,}ncy, be a unital orthonormal basis. Let C'¢ be the
characteristic matrix of .Z with respect to this basis. The reduced characteristic matriz
R of £ is the (N? —1) x (N? — 1) matrix obtained by deleting the first row and column
of C' L.

The point of this definition is the following, due to [8,11].
2.8 Lemma. Let . be a Hermitian operator on $) such that £1 =0, and let {Fy}ac gy be
a unital orthonormal basis. Let Ry be the reduced characteristic matriz of £ with respect
to this basis. Then £ is a QMS generator if and only if Ry is positive semi-definite.
Proof. Suppose that &, := e*< is completely positive for each ¢t > 0. By the computation

of the characteristic matrix C; of the identity transformation I performed earlier, we
know that its reduced characteristic matrix R; = 0. Then since

Rtfl(gzt_[) = tilet — tilRI = tilR(@t ,
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the reduced characteristic matrix of t=*(?; —I) coincides with the reduced characteristic
matrix of t 1%, and by Lemma 2.4 this is positive. Taking the limit ¢t — 0, we conclude
that the reduced characteristic matrix of .Z is positive.

Conversely, suppose that the reduced characteristic matrix of . is positive. Since
Faq1 =1,

L(A) = (c2)apFiAFy = G*"A+ AG+ Y (re)asFiAF;
a,f a,f

where

1
G:= 5(63)(1,1),(1,1)1 + ;(02)(171)75}% :

By Lemma 2.4, if we define W(A) := >_ , 5(re)a,pFaAFp, then W is completely positive.
Defining ®(A) := G*A + AG, we have £ = ® 4+ ¥, and then by the argument around
(1.12), ' is completely positive for all £ > 0. Finally, since 1 = 0, ¢ is a QMS. 0O

We are also interested in characterizing the characteristic matrices of operators ® in
$ for which ®1 = 0, and, for some o € &, ®To = 0.

2.9 Lemma. Let {E,} be a matriz unit basis of $). Let ® be an operator on $), and let
Co be its characteristic matriz with respect to {Ey}. Then ®(1) = 0 if and only if for
each 1 <k, { <N

N
> _(ca) o =0 (2.13)

=1

<.

and ®(1) = 1 if and only if (2.13) is satisfied for k # £, and for 1 <k < N,
al 1
Z(ch)(j,k),(j,k) =~ (2.14)

Jj=1

Proof. We compute

(1) = (ca)apEilEs =Y (co)as0ar 8 Pass = Y (ca)k)..0) Etkot) »
«a,f o, 7,k

from which (2.13) follows, and then (2.14) follows since 1 = < Z,i\[:l Egry. O

2.10 Lemma. Let ® be an Hermitian operator on £, and let Cg be its characteristic
matriz with respect to a symmetric orthonormal basis {Fa}acgy of . Then

(#(F @ F) = #F5 @ Fy | (2.15)
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and

(cot)ap = (ca)par - (2.16)

Proof. We compute

Te[B*#(F: @ Fy)(A)] = Tr[B*F AFj) = Tr[(Fo BF})" A] = Tr[(F BFy)* A] ,

and this proves (2.15). Then since ® = Z(ap)aﬁ#(Fa* ® F3) and since (ca)ag =

a,p
(c®)s,a by Lemma 2.3,

O = " (ca)as(#(F; @ Fp)' .
B,a

Then by (2.15), (2.16) follows. O

The next lemma says that for ® € CP(1) or £ € QM S, there is often exactly one
o € &, with respect to which ® or .Z can possibly be self-adjoint on H,, for that choice
of o.

2.11 Lemma. Let ® be a Hermitian operator that is self-adjoint on H,, where H,, is
defined in terms of some o € &. If ®(1) = 1, then ®T(c) = o, and if ®(1) = 0, then
®T(0) = 0. Hence if ® € CP(1) is such that 1 is a non-degenerate eigenvalue of ®, then
for any m € P[0,1], there can be only one o € & such that ® is self-adjoint on H,,.
Likewise, if £ € QM S is such that 0 is a non-degenerate eigenvalue of £, then for any
m € P[0, 1], there can be only one o € & such that £ is self-adjoint on H,y,.

Proof. For any Hermitian operator @ in §), any o0 € &, and any m € P]0, 1] such that
® is self-adjoint on H,,, we compute that for all A,

Te[®' (o) A] = Telo®(A)] = (1, B(A))n = (B(1), A -

If ®(1) = 1, we have Tr[®f(c)A] = Tr[c A] and since A is arbitrary ®f(c) = 0. Likewise,
if ®(1) = 0, we have Tr[®T(c)A] = 0 and since A is arbitrary ®(c) =0. O

On account of this lemma, we will only rarely make the choice of ¢ explicit in our
notation. In the next section we determine necessary and sufficient conditions for self-
adjointness.

3. Characterization for self-adjointness with respect to (-, ).,

For m € PJ0,1], let (-,),, denote the m-weighted mean of two nonnegative numbers
Z,Yy:
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1
(@, ¥)m = / 2y dm(s) , @y eRy . (3.1)
0

Note that for all m € P[0, 1],
min{z,y} < (z,y)m < max{z,y} and (x,2)pm =z forallzeRy . (3.2)
For m even,
(,Y)m = (y,x)m forall z,y € Ry . (3.3)
Otherwise define m to be the reflection of m about 1/2; i.e., m(U) = m(1 — U). Then
(,Y)m = (y, )7 forall z,y € Ry . (3.4)
3.1 Remark. For any even m € P[0, 1] and any x,y € Ry, = # y, we have

VTy = (,y)xms < (2, Y)m , (3.5)

with equality if and only if m = d; /5. Indeed, first use symmetry of m to rewrite

(mvy>m =

O

1
/(:Us‘yl_S + 2t 5y*)dm(s) . (3.6)
0

Then
s, 1—s —s,.8 1 s —S —Ss s
($ yl + xl Yy ) —\/TY = E(x /2y(1 )/2 + x(l )/2y /2)2 )

and integrating against m,

N | =

1
(2, Y)m — (T, y)kMs = /(ﬂfs/2y“‘s)/2 — 179/ 2ys/2)2qm(s) |
0

. . 1
and for z # y, the integrand vanishes only for s = 3.

For m € P[0,1] let M,, be the linear transformation on $) defined in (1.2). Let
{u1,...,un} be a complete orthonormal basis of CV consisting of eigenvectors of o so
that ou; = Aju; for each j. By hypothesis, each \; is strictly positive. Let {Eq}acay
be the associated matrix unit basis;

Ejry = VNlug) (ug] - (3.7)
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Then
M (Eiiky) = Ny M) m B xy -

That is, M,, is diagonalized by the orthonormal basis of § consisting of
{VNE( ) t1<jr<n. Since all of the eigenvalues are strictly positive, it follows that
M is a positive, invertible operator on $), and the inverse is given by

1

“YE,. =—F/: 1 .
Mo ( (Jak)) (>\j;)\k)m (4,%)

Since Eak) = E,j), we also have, with m denoting the reflection of m about s = 1/2,
M, (A*) = (M#(A))* and M LAY = (./\/l/;l\1 (A)* (3.8)
In particular, if m is even, M, and M1 are Hermitian.

3.2 Lemma. With respect to a matriz unit basis {Eq}ac 7y associated to o, the charac-
teristic matrices Ca,, and Cy -1 of My, and M1 are given by

(CMm)&ﬁ = (alaﬁl)méal,azéﬁl,ﬁz and (C,A/[;ql)aﬁ = (041751)7;1(5&17042551732. (39)

Proof. We compute

1 ) \
(€M )as = Nz > Tr(ELEG ) Ep)) Mum(EGj)]

(2]

1 * *
- N2 Z()‘i?)‘j)mTr[(EaE(i,j)Eﬁ» E(i,j)]
.5

1 *
= 53 2_ i MBS E iy Ba B ) = Y _(Nis A)mds, 108, 0 idas.i -
'7\7‘

,J
from which the first formula follows. The second follows in the same way. O

Hence, if we order the basis { Fy }aec 7, S0 that the first N unit vectors are

Eaqays - Bv,ny

in this order, then C'yq,, and C Ml are both zero except in their upper left N x N blocks
where the (7, j)th entries are (A\;, Aj)m and (A\;, A;),,' respectively.

Now let A be a symmetric N x N matrix with positive entries. Then a necessary
condition for A to be positive semi-definite is that for all 7,5 A; ; < \/A;;A; ;. For
N = 2, the condition is also sufficient, but it is easy to see that sufficiency fails already

for N = 3.
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However, combining the necessity with Remark 3.1, we see that M,, is never com-
pletely positive except in the KMS case, m = 9y /3, corresponding to the geometric mean.
On the other hand, at least in the 2 x 2 case, M1 is completely positive whenever m is
even. There are important cases in which M1 is completely positive in every dimension,
including the KMS and BKM cases. We return to this later.

3.3 Definition. Let ® be a linear transformation on My (C), and hence on H,, for each
m € P[0, 1]. Its adjoint with respect to the inner product (-, -),, is denoted ®*.

3.4 Lemma. Let ® be an Hermitian linear transformation on My (C) and let m € P[0, 1].
Then

4" = M lodf o M,, . (3.10)

Proof. First recall that, since ® is Hermitian, ®' is Hermitian. To see this, note that

Tr[(@(B7))* A] = Tr[BO(A)] = Tr[B*(2(4))*] = Te[B*(A*)]
= Tr[(®TB)*A*] = Tr[(®TB)A4] .

Thus, (®7(B*))* = ®T(B) for all B.
We now compute

(B, ®(A))m = Tr[B* M (®(A))] = Tr[(Mm(B))*@(A)]
= Tr[(@7(M(B)))" 4]
= Tr[(M,,H (@ (M (B)))) " Myn (A)]

Then (3.10) follows from (3.8). O
It follows that an Hermitian operator @ is self-adjoint on H,, if and only if
Mpo®=d"oM,, . (3.11)

3.5 Lemma. Let {E,} be the orthonormal basis of $ specified in (3.7). Then for all
m € P[0, 1],

#(Eq ® Eg) o M = (Aay; Agy Jm #(EG © Ep) (3.12)

and

M o #(E}, ® Eg) = (Aag, Mgy )m#(Ey @ Ep) (3.13)
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Proof. We compute
1
EfMp(A)Eg = / Efo' 5 Ac®Egdm = (Aay, Mg, )mELAES |

0

and this proves (3.12).
Next, since M}, = M,,, by (2.15)
Moy o #(E; ® Eg) = (#(Ey ® Egr) o Mm)T = (Aaz, Agy )m (#(Ey ® Eﬁ’))T

form which (3.13) follows upon another application of (2.15). O

3.6 Theorem. Let ® be an Hermitian operator on $). Let {E,} be the orthonormal basis
of $ specified in (3.7), and let Cg be the characteristic matriz of ® with respect to this
basis. Then @ is self-adjoint on H,, if and only if for all o, 3,

(/\0417)‘61)771
o = - ! o ].4
(ca)a,s O Ao (ca)p, (3.14)

In particular, define the matriz B , by
(bo,m)ap = (€o)a,8(Aazs Agy)m (3.15)
and the anti-unitary self-adjoint operator U on v given by
(Uv)o = Tor - (3.16)
Then (3.17) is equivalent to
UBg m = Bo.mU . (3.17)

Proof. Applying Lemma 3.4 together with Lemma 3.5 yields (3.14). Then (3.14) can be
written as

(b<I>,m)a,B = (bé,m)a/ﬁ/ . (318)
Then (3.17) follows from (3.16) and the definition of U. O

3.7 Remark. We may identify CV ’ equipped with its usual inner product and My (C)
equipped with the Hilbert-Schmidt inner product in the usual way, identifying the vector
v that has entries v, with the matrix V' that has entries V,, «,. Under this identification
U is identified with V*. That is, the anti-unitary map U may be identified with the map
e
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3.1. QMS,, is always a pointed cone

3.8 Lemma. An Hermitian operator £ satisfies £ € QMS if and only if for some H
with H=H*, Z(A) =1i[H,A|.

Proof. It is evident that if Z(A) = i[H, A] with H self-adjoint, then both . and —.%
belong to QM S. For the converse, suppose that .2 and —.% belong to QM S. Consider
some unital orthonormal basis {F,} of . Let C¢ be the characteristic matrix of .Z
with respect to this basis. Since .£ and —.% belong to QM S, the reduced characteristic
matrix of . must be both positive semi-definite and negative semidefinite, and hence
it is zero. Thus (c¢)q,p = 0 unless either o = (1,1) or f = (1,1) or both. Since .Z is
Hermitian (c¢)(1,1),8 = (c2)g,1,1)- Define

1
= 5(ez)an,an + > (ex)ansFs -
B£(L1)

G

Then Z(A) =) (ca)asFiAFs = G*A+ AG. Write G = K — iH with K and H self-

o,
adjoint. Since £ (1) = 0, we have G*+G = 0, that is, K = 0. Then £ (A) = iHA—iAH =

i[H,A]l. O

3.9 Theorem. For any m € P|0,1], the only ® such that ® € QM S,, and —P € QM S,,
is © = 0.

Proof. Suppose that & € QMS,, and —P € QMS,,. By Lemma 3.8, there is a self-

adjoint H € My (C) such that ®(A) =i[H, A]. Let {E,} be the orthonormal basis of £
specified in (3.7), so that we may apply Theorem 3.6. We compute

(ca)as = i5m > Tr((ELE:;Ep)* (HE; ; — Ei;H)]
i3
=inz > T (Te(Ei B3 Ej i BoH) — Te[R; i Ea Br  HES))
0]
= 108,,8,(Eq, H) g — 10ay,0,(Ep, H) g -

In particular, (¢¢)a,s = 0 unless either & = o/ or f = /3 or both.
If o =¢ and 8= 3, then

. 1 1
(Bay H)s = 5T EoH) = S Tr[HE,] € R

and likewise (Eg, H)s € R. But then (c¢¢)q,p is purely imaginary, and this contradicts
(8.1) unless (ca)a,p = 0.
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Next, suppose a = o', but 8 # 3’. Then
(ce)a.p = —i(Ep, H)s and (ca)g.a = i(Eg, H)g .
By (8.2) we then have
—(Aazr Agy )m (B, H) g = (Aays Agy )Jm (B, H) s

which is impossible unless (Eg, H) s = 0. But since j is arbitrary apart from the condition
that 8 # (', this completes the proof that H = 0. O

3.2. The decomposition = 5%5 @ 5%f§

Recall Definition 1.7 of 5?)5 as the subspace of all operators ® on 5% of the form
®(A) = XA+ AY for some X,Y € My(C).

3.10 Lemma. An operator ® on $) belongs to 55 if and only if for any unital orthonormal
basis of §, the reduced characteristic matrix of ® is zero; i.e., Rg = 0.

Proof. Let {F,} be a unital orthonormal basis. Let {E; ;} be a matrix unit basis. Then
for ®(A) = XA+ AY we compute

N
1 * *
(ce)ap = §3 > T[(FLE; jFs)"(XE;j + E;ijY)]
ij=1

= o3 ({3 TR X] 4 To{ L T3 )

1
= N(55,(1,1)<Favx>ﬁ + 5a,(1,1)<FBa Y>fo) (3-19)

and this is zero unless either a = (1,1) or f = (1,1) or both. Hence Rg = 0.
On the other hand, if Rg = 0, ® has the form

O(A) = (co)anan+ Y, (o)aanFad+ Y (ca)asAFs, (3.20)
a#(1,1) B#(1,1)

and hence if we define

1
X = 5(0(1))(1,1),(171)1—’_ Z (C‘I’)a,(l,l)F;
a£(1,1)
1
Yi=glea)an,anl+ > ()b
B#(1,1)

then ® has the form ®(A) = XA + AY, and hence ® € Hs. O
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3.11 Remark. By the computation in (3.19),

1 . —_—
(ca)@,1),0,1) = NTT[X +Y] = (Eu1, X)s +(Ea1),Y)s

but for a # (1,1), both (X, E,)g and (Y, E,)g can be read off from Cg, so that if for
some X' Y’ we also have ®(A) = X' A+ AY”, it follows that for some n € C, X' = X +nl
and Y = Y — 771

3.12 Lemma. Let ® be CP with a minimal Kraus representation Z]]Vil VI AV;. Then the
necessary and sufficient condition that ® € 5%§ is that Tr[V;] = 0 for each j.

Proof. Let {F,} be any unit orthonormal basis. By Lemma 3.10 ® € .%é if and only if
the characteristic and reduced characteristic matrices of ®, C'y and R, respectively, are
such that the lower right (N2 — 1) x (N2 — 1) block of Cy is Re and all other entries are
zero. In other words, the first row and column of Cg are zero.

Writing V; = > S} o Fa, for some unit orthonormal basis {F, },

M
®(A) =3 (5a,59.8) | FaAFp,

a,B Jj=1

and hence
M
(ca)ap = > (S5 ;558) -
=1

If for each j, Tr[V;] = 0, then S(; 1) ; = 0 for each j, and hence the first row and column
of Cg are zero.
On the other hand, if the first row and column of C¢ are zero, then

M
0= (C<I>)(1,1),(1,1) = Z |Sj,(1,1)’2 )

j=1
and hence S; 11y = 0 for all j. This implies that Tr[V;] =0. O

3.13 Lemma. For all s € [0, 1], the subspaces 5?35 and ?)fg are tnvariant under the opera-
tion of taking the adjoint on Hs,.

Proof. Evidently it suffices to prove the invariance of Hs. Let ®(A) = XA+ AY. Then
dT(A) = Y*A+ AX* and so

~

D% (A) = (AT YA+ AA*(G)X*) e Hs . O (3.21)
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4. Self-adjointness for the KMS inner product

It is now very easy to determine the structure of CPg s := CPs, P In this case,
(3.15) becomes

(bo.m)a.s = VAaz (Ca)a,81/ As, - (4.1)

Therefore, for Hermitian ®, By i s is positive semi-definite if and only if C'y is positive
semidefinite; i.e., if and only if ® is CP.

4.1 Theorem. Let & be the real vector space consisting of all V- € My (C) such that
A~Y2V = V*. The extremal elements ® of CPxg are precisely the elements of the
form

D(A) =V*AV | VeRr. (4.2)
Every map in C Pk s is a linear combination of at most N? such maps.

Proof. If ® is extremal in the set of KMS self-adjoint CP maps, then necessarily C's and
Bg kms are rank one, because if By gars is not rank one, its spectral decomposition
would allow it to be written as a sum of two positive matrices By and B, neither a
multiple of the other, and each commuting with U, the anti-unitary operator defined
in Theorem 3.6. By Theorem 3.6, this would induce a decomposition of ® into the sum
of two KMS self-adjoint CP maps. It follows that ® is extremal in the set of KMS
self-adjoint CP maps if and only if B = |u)({u| where u is an eigenfunction of U; i.e.,
Uu = +u. Then

U ug

1
VA8,

——=ugkFj3, then ®(A) = VAV, .

(ca)as = —
@a,ﬂ—\/)\—az

Thus if we define V,, := Z
J_

Next, since

AY2E, = VA

By

Y
and hence, since ug = fugr,

1/2V = UQEg UB'EB uﬂEﬁl :EV:

R B L R B

Now suppose that V is such that A~Y/2V = £V* and ®(A) = V*AV. Then &T(A) =
VAV*, and then by Lemma 3.4,
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oW KM (A) = o7V (V (02 Ac! 2 V)02 = (ATIRV)TAANPY = VEAV = ©(A)
Finally, observe that if A=/2V = —V* then A~Y2(;V) = (iV)* and of course

V*AV = (iV)*A(iV), so we need only concern ourselves with V such that A=1/2V = V*,
Now equip K with the inner product

(V,W)g =Re ((V,W)g) .

We will make use of the following orthonormal basis for K: Let {E, } be a matrix unit
basis associated to o. First define

Wy = log Ay, — logAg, , (4.3)

and note that AY/2E, = e¥»/2E,,. For a = (a1, @) such that a1 < ag, define

1
Gy =

NG cosh(wy/2)

For oo = (a1, a2) such that o > ag, define

(eWa/2E, — e wa/4EX) (4.4)

1
S S ARl ol (4.5)

Go =
/2 cosh(wa/2)

Then one readily checks that for all «,
A_1/2<Ga) = Gj; ) (46)

and that {G, }aey, is orthonormal in K.

We now show that {G4}aeg, is a basis for the real linear space in question. Suppose
that V' € K. Let {E,} be the modular basis out of which the orthonormal basis {G,}
was constructed. We then expand

V= Zaae“’“/4Ea .

We compute

ATWV) =Y age ™M B, and  VF = GgenMEL =Y agete /4B, .

«

It follows that since A=Y2(V) = V*, then age /% = Gge¥e'/* = Gge /4 and
hence a,, = @g’. Therefore, if a, = x, + iy, is the decomposition of a, into its real and
imaginary parts,

aae®/ By + age?e By = z4[e“*/ Ey + e %/ EY] + iy e/ By — e /17
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Now consider any o = (a1, ag) with a3 > a. Then we have
aaew“/4Ea + aa/e“a//4Ea/ =20Go + YaGor

while if a1 = ag, o = a0 = To and age*/*E, + ag e/ Ey = 220F, = 24Ga.
Hence V is a real linear combination of the {G,}. O

4.2 Theorem. Let ® and ¥ be two CP maps that are KMS self-adjoint. Let ®(A) =
ZjM:1 Vi AVj be a minimal Kraus representation of ® with each V; € K. Then ® — W is
CP if and only if there exists a real M x M matrix T such that 0 <T <1 and

M
V(A) =Y T;,; VAV (4.7)

ij=1

Proof. Suppose that ® — ¥ is CP. Then by Arveson’s Theorem, there exists a uniquely
determined T with 0 < T' < 1 such that (4.7) is valid. Since ¥ is KMS self-adjoint,

M M
U(A) = Z Ti,ja_1/2W01/2Ao—1/2vfa‘1/2 _ Z T,jVi*AVj .

ij=1 1,j=1

By the uniqueness, T is real.

Conversely, suppose that ¥ has the form specified in (4.7) with 0 < T <1 and T is
real. Then ® is CP and KMS self-adjoint, and since T' > 0, ¥ is CP, and since T < 1,
® > V. Finally, since T is real, ¥ is KMS self-adjoint. O

4.3 Theorem. Let ® be a unital CP map that is KMS self-adjoint and let ®(A) =
ijvil ViAV; be a minimal Kraus representation of ® with V; € & for each j. Then
® is an extreme point of the set of unital CP maps that are KMS self-adjoint if and only

if
ViV +ViVi s 1<i<j< M) (4.8)
is linearly independent over the real numbers.

Proof. Suppose that the set in (4.8) is linearly independent over the real numbers. Sup-
pose that W is unital, CP and KMS self-adjoint, and that for some 0 <t < 1, ® —tV is
CP. We must show that ¥ = ¢. By Lemma 4.2, there is a real M x M matrix T such
that 0 < T <1 and

M
tU(A) = > T Vi AV

,j=1

Then
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M M
t1=1t¥(1) = Z T; ;Vi'V; and 11 =td(1) = Z t0; ;Vi*Vj .
=t ij=1
Therefore
M
0= (ti;— T ;)Vi'V; .
ij=1

Then by the linear independence, td; ; — T; ; = 0 for each 7, j. Thus t¥ = t®, and ® is
extreme.

Now suppose that the set in (4.8) is not linearly independent over the reals. Then there
is an M x M real symmetric matrix B such that B; ; are not all zero and Z” B, jVV; =
0. Choose some t > 0 such that

0<T:=1+tB<21,

and define ¥ by

M
(A)= > T, ViFAV;
i,j=1
Then ¥ is CP, KMS self-adjoint, and
M M
W)= D (0 +Bi)ViAV; = 3 0V = (1) =1.
i,j=1 =1

Thus ¥ is unital and since ¥ < %@, ® is not extreme. 0O

The problem of determining the structure of QMS generators that are self-adjoint on
Hims has been studied in [6], but we give a simpler approach that goes further in one
important aspect.

Let £ € QM Sk s and write it in the form

ZL(A) = (G"A+AG) + ) VAV, (4.9)

where {V1,...,Vjs} is linearly independent, which we may always do for any QMS gen-
erator. Replacing each V; by V; — Tr[V;]1 and absorbing the difference into G, we may
assume without loss of generality that for all j Tr[V;] = 0. By Lemma 3.12, ¥, given by
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U(A) = Z]]Vi1 V AV; belongs to 5§ Under these conditions on {Vi,...,Var}, (4.9) is
the orthogonal decomposition of . into its components in 5?35 and 5‘J§
By Lemma 3.13, each component is individually self-adjoint. Let ® denote the map

®(A) = G*A+ AG. Then ®T(A) = GA + AG* and hence
(I)*,KMS(A) — (A_1/2G)A+A(A1/2G*)

Furthermore, adding a purely imaginary multiple of 1 to G has no effect on the
operation A — G*A 4+ AG, and hence we may assume without loss of generality that
Tr[G] € R. Then Tr[A~/2G] € R, and by Remark 3.11, we must have A~'/2G = G*.

Thus, a QMS generator .Z is self-adjoint on H g rs if and only if it can be written in
the form

M
ZL(A) =G A+ AG + > VAV, (4.10)

j=1

where Tr[G] € R, {V4,..., Vas} is linearly independent, A=/2G = G* and A_I/QVj =V

as well as Tr[V;] = 0 for each j. As explained in the introduction, this much one finds
in [6]. However, there is a compatibility question to be dealt with. Since .Z(1) = 0, we
must have
M
0=G"+G+Y V/V;. (4.11)
j=1

That is, writing G = H + K, H and K self-adjoint,
M
H = 5Zvj*vj. (4.12)
j=1

Now in general A~Y/2(H) is not even self-adjoint, so that A=™'/2(H) = H does not
generally hold true.

This raises the following question: Given any CP map ¥ with a minimal Kraus rep-
resentation W(A) = Z]Nil V¥ AV; such that for each j ATV, = Vi and Tr[Vj] = 0,
when does there exist a G such that

L(A) = G"A+ AG + U(A) (4.13)

belongs to QM Sk ars? By what has been noted above, we may as well require Tr[G] € R,
and then we must have A~'/2G = G*, and we must have G = H + iK, H and K self-
adjoint, with H specified by (4.12). It turns out that there always exists a unique choice
of K such that A=1/2G = G*, and thus the answer to the question just raised is “always”.
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4.4 Theorem. There is a one-to-one correspondence between elements £ of QM Sk s
and CP maps U € H3% that are self-adjoint on Hns. The correspondence identifies ¥
with Ly where

Ly(A)=G"A+ AG+ Y (A) (4.14)
where G = H 4+ iK, H and K self-adjoint and given by
U(1) (4.15)

and

1 oo
K = - /et01/2(01/2H - Hal/Q)eft"l/zdt . (4.16)
i
0

Furthermore, for all Ly, v, € QM Sk ms, Ly, —Lv, € QMS if and only if V1 -V, €
CP;i.e., Ly, > Ly, if and only if V1 > Vo, and the extreme points of QM Sk s are
precisely the generators of the form

L(A) = G*A+ AG + V*AV

where A=YV = V* and where G = H +iK is given by (4.15) and (4.16) for U(A) =
V*AV.

Proof. Consider such a set {V1,...V} and define
M
T(A) =) VSAV; . (4.17)
j=1

Since Tr[V;] = 0 for each j, Ry is positive semidefinite, and since A~Y/2V; = V for each
J, W is self-adjoint on H g prs. Then for any choice of G, L (A) = G*A + AG + V(A)
generates a CP semigroup, and it belongs to QM S if and only if £ (1) = 0, and this
is the case if and only if the self-adjoint part of H := 1(G + G*) is given by (4.14).
Finally, .2 will be self-adjoint on Hxasrg if and only if K := fi%(G — G*) is chosen so
that A~1/2(G) = G*.

The equation A~'/2(G) = G* is equivalent to (H + iK)o'/? = ¢'/?(H — iK), and
rearranging terms we have

o'?K + Ko'/? = —i(¢'/?H — Ho'/?) . (4.18)

This is a Lyapunov equation, and for any X self-adjoint, the unique solution K of
o'?K + Ko'/?2 = X is given by
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o0
K = /e_wl/QXe_wl/th.
0

Indeed,
01/2 /et01/2Xetal/2dt 01/2 - _ / %eftal/zXefto—l/zdt - x.
0 0

Thus we must take K to be given by (4.16). Note that Tr[K] = 0 as an easy consequence
of cyclicity of the trace, and hence Tr[G] € R.

Now suppose Ly, Ly, € QMSkys. Then Ly, — Ly, € QMS if and only if its
reduced density matrix is positive semidefinite. By Lemma 3.10 and Lemma 3.12, this is
the case if and only if W1 —W, is CP. The final assertion now follows from Theorem 4.1. O

5. Self-adjointness for the GNS inner product

The other case of main interest that is easily handled is the case of self-adjointness
for the GNS inner product. While the KMS inner product corresponds to the measure
m = 0y /2, the GNS inner product corresponds to the measure dp. It turns out that we
may as well consider m = ds, s # %; the set of CP maps that are self-adjoint on Hs,
does not depend on s # % The structure of QM Sans was worked out by Alicki, and
his methods adapt well to the study of CP(1)gns.

5.1 Theorem. The extremal rays in the cone of CP maps that are self-adjoint on Hs_,
s F# %, are precisely the maps of the form

D(A) = e“/PVFEAV + e @2V AV (5.1)
where AV = e“V, w > 0, or of the form
O(A)=VAV | (5.2)

AV =V = V* In particular, every CP map that is self-adjoint on Hs, is a positive
linear combination of the operators specified in (5.1) and (5.2).

5.2 Remark. The restriction to w > 0 in (5.1) is not essential; it is to avoid double
counting, since the eigenvalues ¥ of A with w > 0 and with w < 0 enter only in the
precisely paired manner specified in (5.1). Also, note that replacing V by ¢V, 0 € R,
has no effect on the map in (5.2). There do exist V' that are not self-adjoint such that
A V*AV is self-adjoint on Hs, and extremal even in the wider class of all CP maps.
However, the theorem asserts that in this case one may replace V by an appropriate
complex multiple and then V = V*.
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Proof. Specializing to m = ds, (3.14) becomes

S ALTS
1781 (Ci’),@’,a’ _ €swa+(1_s)wﬁ(6q>)/3/,a/ ) (53)

(co)as = 15
)\32)\[52 ’

As a consequence, (cg) g0 = €98’ 1799 (cg), 5 = e598=(1=5)a (cg), 5. Altogether,
7209 (cg) a5 = (ca)a,pet 297 (5.4)

That is, Cp commutes with the diagonal matrix  whose ath diagonal entry is e(1 28w
Of course this condition is vacuous for s = %, but otherwise it is a strong restriction on
Cs. Let us order the entries in such a manner that all indices o for which e“> has the
same value are grouped together. Then Cg will have a block structure. In any case, as a
consequence of (5.4), for s # %,

Wa 75 wg = (C@)a’ﬁ =0. (55)

The blocks correspond to the distinct eigenvalues of the modular operator. Let u be
such an eigenvalue and let J, = {o : e¥~ = p }. Apart from p = 1, which is always
an eigenvalue, the eigenvalues come in pairs. Let p/ := %; then a — o' is a one-to-one
map from J,, onto J,/. For o, € J,, (5.3) reduces to (ca)aps = p1 72 (ca)pr o =
1172%) (cg) s g, OF equivalently,

H_(1_2S)/2<C‘1>)a75 = /«L(l_2s)/2(0¢’)a/7ﬁ/ . (56)

Hence, for u # 1, if U, 5, o, 8 € J,, is a unitary that diagonalizes the block corresponding

to the eigenvalue p, Uy g/ is a unitary that diagonalizes the block corresponding to the

eigenvalue % For p =1, (5.3) further reduces to (¢g)a,3 = (€#)ar,pr Which means that
this block of Cs is diagonal in an orthonormal basis consisting of eigenvectors of this

anti-unitary transformation. The eigenvectors v are such that

(Z %Ea) =Y TaE,=% Y vaE, =% w.FE.,

a€Jy aeJ1 acJy aEJL

commutes with the anti-unitary transformation v, — v4. Replacing v by —v as needed,
we can arrange that ) ., voE, is self-adjoint. Then the p = 1 block of Cg can be
diagonalized by a unitary U, s such that for each v € J1, > 5c 7, Uy g Ep is self-adjoint.
Now we piece together all the unitary blocks into an N? x N2 unitary that we still
call U, being careful to use the “matched” unitaries in the adjoint blocks, as described
above.
It follows that there is a unitary matrix U and non-negative numbers c, such that

Ca,p = Z ey Us Uy g = Z cyUy,aUy,p
¥

~
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and such that U, g = 0 unless e“» = e*#, and defining V,, := Z U, sEs we have
B

AV, =e*V,
for all v and
Vy s vyedn)={Vy : ve Iy}

is an orthonormal basis of $. When working with this basis, we redefine the map a — o/
by Vo = V. This can only differ from the definition used with the matrix unit bases for
indices in 77, and only if o has at least two eigenvalues equal to one another, producing
an “accidental” eigenvector of A with the eigenvalue 1.
Then ®(A) = >, 5ca,sE3AEs becomes ®(A) := Z cy VAV, Since Ay (V) =
¥

eV, and Vi =V,
OMe(A) = ZO'_SV,YUSAOJ_SV;O'_O_S) = Z cve_s“’”e(s_l)w”f VAV
v v

= Z Cyr €7 VA;‘AV7 .

~

By the uniqueness of the coefficients, ®*"= = ® if and only if for each ~
Cy = Cype®r . (5.7)

Defining b, = e’“ﬁ/zc,y, (5.7) is equivalent to by = b,/. Let S denote the spectrum of A,
which is of course determined by the spectrum of o. We can finally write ® in the form

D(A) = 3 VAV, + S0 3 by (e AVIAV, w e Pravy) L (58)

AV HES,u>1~vET,

It remains to show that the maps specified in (5.1) are extremal. Suppose first that
V = e®V* for some real . Then w = 0, and (5.1) reduces to ®(A) = V*AV which is
extremal in the larger cone of all CP maps, and thus extremal among those that are
self-adjoint on H;,. Replacing V by e~*/2V we see that we may assume without loss of
generality in this case that V = V*.

Next, suppose that V # eV* for any real §, but w = 0. Write V = X +iY, X,Y
self-adjoint. Then AX = X and AY =Y and X # Y. We compute

V*AV = (X —iYV)A(X +iY) = XAX + YAY +i(XAY — Y AX)
VAV = (X +iYV)AX —iY) = XAX + YAY —i(XAY — Y AX) .

Thus ®(A) = XAX +YAY. Then A — XAX and A — Y AY are distinct CP maps
that are self-adjoint on Hs,. Hence ® is not extreme. In summary, when AV =V, the
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necessary and sufficient condition for ® to be extremal is that V* = ¢V for some real
f, in which case we may replace V' by an equivalent self-adjoint operator.

Now suppose that AV = e“V with w # 0. Then V and V* are orthogonal. For
convenience in what follows define Wy := e~ (1=29)9/4y and W, 1= e(1-28)w/4y/*, Then,

ignoring the trivial case V =0,
O(A) = W] AW, + W5 AW,

is a minimal Kraus representation of ®. Consequently, if ¥ is any CP map such that
® — ¥ is CP, then ¥ has the form

U(A) =) T, ;W AW;

,J
where T is a 2 x 2 matrix such that 0 < T < 1. Then,

\If*’é Z E ; (AI SW* ZT’je—s(S—%)we(l—s)(3—2j)wWiAW; .

i?j
Since Td = Tj ;, simple calculations yield
P*o0s (A) = T171W2*AW2 + T272W1*AW1 + T271€_wW1AW2* + T1’26wW2AW1* .

Then with ¥*% = U, by the uniqueness of the coefficients, Tip=T51=0and T1; =
T5 2. This shows that T' is a multiple of the identity, and hence that ¥ is a multiple of
®. Hence @ is extreme. 0O

The following notation will be useful going forward. For u € S, let d,, be the dimension
of the corresponding eigenspace of A. As a consequence of Theorem 5.1, every CP map
® that is self-adjoint on H;, has a Kraus representation of the followmg form:

Let S’ = {,ul,...,ud} be a subset of S such that 1 < pu; < pg--- < pg. For each
1 <35 < d, let {V1( yeen v } be a linearly independent set of eigenvectors of A
with eigenvalue ;. EV1dently, 1 < M; < dj. Suppose further that if p; = 1, then
{Vl(l), cee Vz\(411)} is self-adjoint. Then, if d; > 1, the Kraus representation is

d [ M;
Z Z M1/2Vk(])*AVk(j) + M;1/2VIC(J)AVI§(]) ) , (59)
j=1 \k=1
while if d; =1, it is
M, d M; . -\ %
(4) = ZV(I)AV(I) 3 S 1/2V(])*AV 1/2V(J)Avk(ﬂ) )| . (5.10)

k=1 i=2 \k=1
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In either case, the minimality of the Kraus representation is a consequence of the linear
independence required above. We call such a minimal Kraus representation of a CP map
that is self-adjoint on Hs_, s # % a canonical minimal Kraus representation.

5.3 Theorem. Let @ be a CP map that is self-adjoint on Hs,, s # % Then if ¥ is another
CP map that is self-adjoint on Hs, , ® — W is CP if and only if:

(1) If ® has a canonical minimal Kraus representation of the form (5.9), there are ma-
trices T, ..., T where TU) is an M; x M; matriz satisfying 0 < T < 1 such
that

M;
j 1/2 j )% j —1/2 j i)*
\I’(A) — Z Z Tlg,]é) (:uj/ Vk(J) A‘/Z(]) +/ij / ‘/Z(])Avk(j) ) 7 (511)
j=1 k=1

(2) If ® has a canonical minimal Kraus representation of the form (5.10), there are
matrices T, ... TD where T is an M; x M; matriz satisfying 0 < TU) <1, and
with T real, such that

Ml d Mj
U(A) = Z Tlg,lz)Vk(I)A‘Q(l) I Z Z T,ijg <M;/2V]€(1)*A‘/£(J) +Mj—1/2V£(J)AVk(J) )

(5.12)

Proof. Let us consider the case (1). For each j = 1,...,d, apply the Gram-Schmidt algo-
rithm to produce an invertible lower triangular M; x M; matrix L) and an orthonormal
set {Wl(l), e WJSIJ)} such that

LY (WO .

e

M;
v =3"LYw?  andhence  (VW); =
=1

~
Il

1
Evidently {Wl(l), cee W]Ej])} lies in the eigenspace of A corresponding to ;. Then
d

M;
o(A) =) ( S (W PUED) LD W aw )
1 \ k=1

J

1 T LT v ) ).

One can read off from this expression the characteristic matrix C'gs with respect to the
orthonormal basis obtained by extending, if necessary

WP o 1<j<d,1<k<M,}.
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Let Cy denote the characteristic matrix of W with respect to this same basis. Then & — W
is CP if and only if Cy — Cy > 0. Thus, ® — ¥, which is certainly self-adjoint on H;,, is
CP if and only if there are matrices {R(l), e R(d)} where for each j, RY) is an M; x M;
matrix with 0 < RU) < (LUW)*LU) such that

d M;
v =30 35 (R s R )
=1 \k,e=1

Now defining T70) = ((LU))=1)*RU)(LU))~1 we have the result in case (1) on account
of the self-adjointness of each T,

The proof in case (2) is essentially the same, except for one point: Since {Vl(l), ceey
Vig b is self-adjoint, for all 4, 7, Te[(VV) V"] = e[,V vD] e R,

Therefore, applying the Gram-Schmidt algorithm to {Vl(l), . "VJ\(411)} yields a self-
adjoint orthonormal basis {Wl(l), ce W](V}l)} and a real lower triangular matrix L(!) such
that Vk(l) = é\/[:jl L;{;W;l). Also, since {Wl(l), ce WJSB} is a set of self-adjoint eigenvec-
tors of A in the eigenspace with eigenvalue 1, ZMll Rg}j) Wi(l)AWj(l) is CP and self-adjoint

j:
on Hs, if and only if R > 0 and R(M) is real. Hence the matrix 7 is real in addition

to satisfying 0 < 7MW < 1. O

5.4 Theorem. Let ® € CP(1)s,, the set of unital CP maps that are self-adjoint on Hs,.
Let ® have a canonical minimal Kraus representation specified in terms of

d d
(v vy
as in (5.9) or (5.10). Define

j 1/21,(i)*1 (i —1/2¢ ()1, ()*
Xli],l? ::U’j/ Vk(J) VZ(J) + 1 / VZ(J)Vk(J) )
The necessary and sufficient condition for ® to be extremal in CP(1)s, is that for each
l<j<d,

{XJ) c1<kt<M;,1<j<d} (5.13)
is linearly independent.

Proof. Suppose first that ® has a canonical minimal Kraus representation of the type
(5.9). Let ¥ be a unital CP map that is self-adjoint on Hs_, and suppose that for some
0<t<1, ®—t¥is CP. Then by Theorem 5.3, there are matrices T, ..., T(4) where
TU) is an M; x M; matrix satisfying 0 < 7 < 1 such that tW(A) is given by the right
side of (5.11). Since ¥ and ® are both unital, t¥(1) = ¢®(1), and then
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d M;
j=1 \ k(=1

Then, if the set specified in (5.13) is linearly independent, for each j, T = t1, and
hence t¥ = t® so that ¥ = ®. Hence ® is extremal.
For the converse, suppose that the set specified in (5.13) is linearly dependent. Then

there are matrices {B™, ..., B9} not all zero, such that
d M;
j 20, (G)*y G —1/2 ()1, (5)*
Z Z Bl(cj,; <M]1/ Vk(]) ‘/Z(]) +/~Lj / ‘/E(J)Vk(J) ) —0. (514)
j=1 \ k=1

The adjoint of the N x N matrix on the left in (5.14) equals the matrix obtained by
replacing each B\ by its adjoint. Thus, we may assume without loss of generality that
each BUY) is self-adjoint.

Now replacing each BY) with tBU) for some common ¢ > 0, we may assume without
loss of generality that ||[BU)|| < 1 for each j. Now define T7U) := (1 + BY)). Then
0 <TU <1 for all j. Now, using these T), define ¥ by (5.11). Then by Theorem 5.3,
U is CP, self-adjoint on H;, and & — ¥ is CP. By (5.14) and the fact that ® is unital, ¥
is unital. But since BY) #£ 0 for at least one j, ¥ is not a multiple of ®. Hence ® is not
extremal.

The case in which ® has a canonical minimal Kraus representation of the type (5.10)
is quite similar. O

6. Evenly self-adjoint maps

We say a map ® is evenly self-adjoint in case it is self-adjoint on H,, for all even
m. Let CPeyen, CPeyen(1l) and QM Seyen, be the sets of evenly symmetric CP maps,
unital CP maps and QMS generators respectively. We have seen that, for instance,
CPans C CPoyeny, C CPi s, since when @ € CPgng, ® is self-adjoint on every H,,
whether m is even or not, and since the measure m defining the KMS inner product is
even. For the same reason we have CP.yen, C CPBK M.

Using the next lemma, we will describe a natural way to construct elements of C' Pyep,
CP.yen(1) and QM Seyer, that do not belong to CPgns, CPans(1) and QM Sans re-
spectively:

6.1 Lemma. Let m € P[0,1] and suppose ® is such that [M,, ®] = 0. Then 1(® + @)
and 5 (® — ®1) are self-adjoint on Hy,.

Proof. By Lemma 3.4, ® is self-adjoint on H,, if and only if M,, o ® = & o M,,. Since
M, = My, My, @7 = 0. Then

M 0 (07 + @) = 1(@ + @) 0 My, = 5(@F + ) 0 My, .
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The proof for o-(® — @) is the same. O

For 1 < i,j < N, let E;; := vV Nl|u;){u;j| where {ui,...,uy} is an orthonormal
basis of CV consisting of eigenvectors of o; ou; = Aju;. Recall that the E;; are an
orthonormal basis of §) consisting of eigenvectors of M,,, with M, E; j = (i, A\j)m Ei ;.
If m is not even, it can easily be that each eigenspace of M,, is one dimensional, and
then ® commutes with M., if and only if it is a function of M,, itself.

However, when m is even, (A, A\j)m = (\j, \i)m for all 4,j, and hence if i < j,
E;; and E;; belong to the same eigenspace. For ¢ < j, consider the map ® defined
by ®(A) = E; ;AE; ;. Note that ®7(A) = E;;AE;,;. A simple calculation shows that
PoM,, = (X, Aj)m® and M,,, 0® = (A, ;) ®. Hence, whenever m is even, [®, M,,] =
0. For i # j define the maps ¥, ; by

LB ;AE; ; + E; ;AE;;) i<]j
i5(A) :_{2( J g T i) 1< (6.1)

Qii(Ei,jAEz}j — Ej7iAEj,i) 7 >j .

Lemma 6.1 says that these maps are evenly self-adjoint.
Therefore, let ®g be a CP map that is self-adjoint on H,, for all m € P[0, 1], and let
T be areal N x N matrix that is zero on the diagonal. Then

=0+ Y Tp;Vi, (6.2)
i#]j

is evenly self-adjoint, and is CP if and only if C'%Jrz#j 1w, = 0. Notice also that
U, i(1) = 0 for all 4 # j, so that, if ® is unital, then so is the operator ® in (6.2).
Likewise, if %5 is a QMS generator that is self-adjoint on H,, for all m € PJ0, 1], then

L=%+ ) Ti;V;, (6.3)
1#£]

is evenly self-adjoint, and is a QMS generator if and only if R Lot Yy Tog Wiy 2 0 where
the reduced density matrix is computed with respect to any unital basis.

As we explain next, under a non-degeneracy condition on the spectrum of the mod-
ular operator, this construction not only gives us a class of examples, but a complete
parameterization of the set of all evenly self-adjoint CP maps and QMS generators.

Suppose the eigenvalues {\1,...,An} of o are such that the N? — N numbers i\‘—;,
i # j are all distinct, which of course implies that the N eigenvalues of ¢ are all distinct.
In this case we say that the modular operator has minimally degenerate spectrum — the
eigenvalue 1 has multiplicity N and all other eigenvalues are simple.

6.2 Theorem. Suppose o is such that A has minimally degenerate spectrum. Let ® be an
evenly self-adjoint CP map. Then there exists a GNS self-adjoint CP map ®¢ and a real
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N x N matriz T that is zero on the diagonal such that ® is given by (6.2). If we also
assume ® € CP(1), then &y € CP(1).

Furthermore, the extreme points of the set CP.yepn of evenly self-adjoint CP maps are
of the form either

®(A) = VAV (6.4)

where A(V) =V and V* =V, in which case ® is GNS self-adjoint, or, for some o such
that a; < aa,

B(A) =a (/\alEa/AEa Ay BaAB s+ as hay (60 By Ay + e_wEaAEa)> (6.5)
where a > 0 and 0 € [0,27), in which case ® is not GNS self-adjoint.
6.3 Theorem. Suppose o is such that A has minimally degenerate spectrum. Let £ be
an evenly self-adjoint QMS generator. Then there exists a GNS self-adjoint CP map
% and a real N x N matriz T that is zero on the diagonal such that £ is given by

(6.3). Furthermore, the extreme points of the set QM Seypen of evenly self-adjoint QMS
generators are of the form either

L(A) =VAV — J(VPA+ AV?) (6.6)

where A(V) =V and V* =V, in which case £ is GNS self-adjoint, or, for some «
such that o < aa,

Z(A) =a (AalEa/AEa 4 Ny B AEor + /ey hag (€0 By AB ) + e*“’EaAEa))

(6.7)
- @ <()‘041E0¢2,012 + )‘QQEC%hOél)A + A()\alEa27a2 + AQQEOZ17CK1)> ’ (68)
where a > 0 and 0 € [0,27), in which case £ is not GNS self-adjoint.

The proofs of these theorems are very similar. We first record some useful lemmas.

6.4 Lemma. Let a,b,c,d > 0 with a < b and ¢ < d. Then

(6.9)
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Proof. Suppose ¢ = % = K. Then a = Kc and b = Kd so that for any m,

1 1 1
/a‘gbl_sdm = /(Kc)s(Kd)l_Sdm = K/csdl_sdm )
0 0 0

and the ratio in (6.9) is independent of m, even or not.

For the converse, suppose that the ratio in (6.9) is K for all even m. Then taking
m = 01/ and m = (0o + 01), giving the geometric and arithmetic means respectively,
we have

a+b=K(c+d) and Vab=KVcd,
from which we deduce
(Va+Vb)? = K(Ve+ Vi) and (Va-VB)® = K(Vé— V)

Since a < b and ¢ < d,

\/5:\/5'21‘\@_‘_\/5;\/52@\/5‘;\/&_’_@\5;\/&:@\/5’

and likewise, vb = v K+V/d. This implies that 2= g =K. O

6.5 Lemma. Let ® be an evenly symmetric map. Suppose 1 < i,7,k, £ < N are such that
there exist even my and mo for which

()\’h )\k)ml
()‘j7 )\£>m1

(6.10)

Let Cy be the characteristic matriz of £ computed with respect to {E;;}. Then
(ca)(i,j),k,0) = 0.

Proof. By Theorem 3.6, for ® to be self-adjoint on H,,,,

(/\ia/\k)ml
(Co)in) k0 = (0 N CONERGD)

while for ® to be self-adjoint on H,,,, the same relation must hold with m; replaced by
my. By (6.10), this means that (cs)( j),k,e) = 0. O

Proof of Theorem 6.2. Returning to the notation @ = (a1,2) and o = (agz, 1), by
()‘qu)‘ﬁl )m

o e is independent of m even. By Lemma 6.4, this
@9 2/m

Lemma 6.5, (¢ )a,p = 0 unless
means that either
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>‘Otl )‘51 A041 )‘5
— = or — .
)‘Otz >‘52 )‘,32 >‘0t2

Since the spectrum of A is minimally degenerate, the first of these conditions is satisfied
if and only if either (« = ) or (&« = o and 8 = [3’). The second of these conditions
is satisfied if and only if & = 8 or @ = (. Thus, when A has minimally degenerate
spectrum and @ is evenly self-adjoint, then (cg)s,s = 0 unless one of the following is
satisfied:
(1) a=a"and g =p'
(2) =
(3) a=p

If we order the indices so that (1,1),..., (N, N) come first, followed by consecutive
pairs (i,7) and (j,4) with ¢ < j, Cp will have an N x N block in the upper left, and
then a string of (];’ ) 2 x 2 blocks down the diagonal, with all other entries being zero.
Consider one of these 2 x 2 blocks. The diagonal entries are (¢g)a,o and (¢e)a,os for
some « with a1 < as. Again by Theorem 3.6, these are related by

>

a1

(C<I>)oc,a = (ch)a’,oc’

>

N

o

Hence if we order the indices so that o comes before o, the 2 x 2 block has the form

N P
C AOLQ
for some a > 0. Then if a # 0, we must have |(|* < Ay, Aa, if @ is completely positive.
If we write ( = x + iy, x,y € R, then

Aar € ]_alxal 0

Z A 0 + 2V, 0, +YVasa; - (6.11)
a2 a2

Applying this to all such blocks we see that ® has the form

=0+ Y Tp ;¥ (6.12)
i#

where Cgp, is the matrix obtained by setting all off diagonal elements of Cy outside the
upper left N x N block equal to zero. Since Cg is positive semidefinite, so is Cg,. It
follows that ®( is CP and GNS symmetric. Also note that ®(1) = 1 is equivalent to
®y(1) = 1, since the maps V; ; annihilate 1.

Maps of the form (6.4) are readily seen to be extreme points of C Ppyep, just as in the
proof of Theorem 5.1. Other extrema ® are obtained by letting the only non-zero entries
in Cp be those of a 2 x 2 block like (6.11) with |¢| chosen as to give equality in the
condition |¢|? < Ay, Aa,- These extreme points are those of the form (6.5). In particular
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note that maps of the form (5.1), which were extreme in CPgyg, are not extreme in
CP,yen, since they can be obtained as convex combinations of two maps in the form
(6.5) using opposite values of §. O

Proof of Theorem 6.3. Just as in the proof of Theorem 6.2 above, we conclude that C ¢
for an evenly self-adjoint QMS generator .Z has the block structure of an upper-left
N x N block followed by (];7) 2 x 2 blocks down the diagonal in the form (6.11), which
justifies the formula

L =%+ TV, (6.13)
i#]

with %, being GNS self-adjoint. It remain to prove that % is a QMS generator.

According to Lemma 2.8, the reduced characteristic matrix R of £ computed in
some unital orthonormal basis must be positive semidefinite. Moreover, as a consequence
of Lemma 2.2 and as described in Remark 2.6, R can be obtained as the lower-right
(N? — 1)-dimensional block of the matrix C ' = UC4U™*, where U is an unitary matrix
containing a nonzero upper-left N x N block and the identity for its lower-right (N2—N) x
(N2—N) block. In particular R has a block structure with an upper-left (N —1)x (N—1)
block and the same (1; ) 2 x 2 blocks down the diagonal as C'y, and by assumption each
of these blocks is positive semidefinite, which implies the same condition |¢|? < Aa, Aas
described in the proof of the previous theorem. Meanwhile, R &, also has a block structure
with the same upper-left (N —1) x (N — 1) block as R¢ (because the upper-left N x N
blocks for C'¢ and Cg, are the same), and with a diagonal lower-right (N2—N)x (N?—N)
block. Hence R, is positive semidefinite, implying that %, is a QMS generator.

The description of the extreme points of QM Seyen follows the same reasoning as in
the proof of Theorem 6.2 above. 0O

7. From KMS self-adjointness to BKM self-adjointness

Recall that M pg s denotes the operator on ) given by

1
MBKM(A)I/G‘SAalst . (7.1)
0
Then
M (A)—7 Lo b (7.2)
BEMY [t 46 t4+0 '
0

so that Mg}{M is CP. Now define the unital CP map
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dt .
/ + o t—i— (73)
0

7.1 Theorem. The map ® — Vo is a one-to-one map from the set of KMS self-adjoint
CP maps into the set of BKM self-adjoint CP maps, taking unital maps to unital maps.

Proof. Let ® be KMS self-adjoint. Then
(B, (2(A)))prm = Tr[B*Mpru (¥ (2(A)))] = Tr[B*od(A)Vo]
= <B7(1)(A)>KMS = <(I)(B)7A>KMS
= Tr[Vo((B))" VoAl = Tl M) i (Vo (B(B)' Vo), M (A)
= (U(®(B)), A)BK M -

The rest follows from the fact that ¥ is invertible, CP, and unital. O

Evidently, a similar construction is possible for any m such that M ! is CP. This is
not the case for every even m, but there are examples other than BK M and KM S:

7.2 Theorem. For s € [0,1] define my := (65 + d1—5). Then for each s € [0,1], the
operator /\/l;é is completely positive for all 0 € & ..

Proof. By Lemma 3.2, for any m, for the standard matrix unit basis {F, },

(CM;LI)Oé,ﬁ = (al?/gl);zléahaQth@ :

If we order the indices as usual so that (1,1),..., (N, N) come first, Cr,, has the N x N
matrix A defined by

1

A =
(Ai Aj)m

(7.4)

in its upper left block, and is zero elsewhere. By Lemma 2.4 M_! is CP if and only if
A™) is positive semi-definite. Specializing to the case m = my for some s,

2

AP —\meyTs 2
(2¥) 7 J 1-2s 1-2s

Define x; = )\;725. Then

1
1
s = [t
)\}725 +/\;725 0/
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and hence for any (z1,...,2,) € C",

2
dt >0,

n

1
Z zZ‘A,EZLS)zj = 2/
0

i,7=1

n

YNt

i=1

proving that A(™s) is positive semidefinite. O
8. QMS,,, for N = 2, m even
The following lemma will facilitate the computations in this section:

8.1 Lemma. Let @ be self-adjoint on H,,. Then, with respect to any matrix unit orthonor-
mal basis of §, the characteristic matrix Ce of ® satisfies

Fora=d,8=08", (co)ap=(co)sa , (8
Fora=ao,8#8" , (ca)a,sAazsAgy)m = (¢a)sa(Xags gy )m (8-
Fora#a' , a=4", (a)as(asda)m = (@)oo das)m . (8

Fora#a' , a=8, (co)apla; = (Co)asra ; (8

Proof. This is an immediate consequence of Theorem 3.6. O

In this section we determine the structure of QM S,, for even m when N = 2. First
consider any Hermitian .2 on M3 (C) such that .#(1) = 0. Then the fact that Cy is
self-adjoint, together with Lemma 2.9 constrain C'¢ to have the form

—a G z G

_ G —-b G -z
Cy = z & E e (8.5)

G2 —z (3 a

where a, b are real and z is complex and the relations among entries involving them are
determined by Lemma 2.9 and self-adjointness, and where (1, ...,{4 are complex, and
the relations among entries involving them are constrained only by self-adjointness.

We next apply Lemma 8.1. By (8.1), (1 = (f =: —z, and hence the upper-left block
is real and symmetric for all choices of m. By (8.3), since (A1, A2)m = (A2, A1), there is
no restriction on (s.

Next we apply (8.2). Taking a = (1,1) and 5 = (1,2), and then a = (2,2) and
B =(2,1), we see that

A — A
! and —2—72@.

= Daoa)m & = Do)
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Next we apply (8.4). Taking o = (1,2) and g = (1,2)

—a —x z U1z
—x —b  —pez -z
Cy = . 8.6
O R R (&
H1z —Zz (s a

Conjugating with the unitary U given in (2.11), and replacing z by v/2z, yields 53,
the characteristic matrix for the associated unital basis:

—z—5  (M—A)5 (I—p2)z (m—1)z

~ = A)8 -5 (Q+p)z (1+m)z

Cr = (1—p2)z (14 p2)z /\ia (3 (8.7)
(1 =1z (1+m)z G3 A2a

Defining v; = p; + 1, j = 1,2 and dropping the subscript on (3, we have the reduced
characteristic matrix

B xT—5 Uz Viz
Ry = VoZ Aa ¢ (8.8)
vz Z A2a

To break the homogeneity, let us fix Tr[R | = 1, which means z+4§ = 1. For positivity,
we must have z > § > 0, and hence 0 < 1 < a. We now determine the extreme points
in the set of (a, z,¢) for which R is positive semidefinite.

If a = 0, then necessarily z = ( = 0, so (a,z,() = (0,0,0) is extreme. If a = 1, then
x — % =0, and necessarily z = 0. Then extremality reduces to || = v/A1A2. Thus,

2 =
(170, AV >\1/\2€i6)

yields a one parameter family of extreme points.
Now we turn to the cases in which 0 < a < 1. Suppose first that

¢l =av/ Az . (8.9)

As with a = 1, it is again the case that z = 0 is necessary for positivity of R¢. To see
this, define

/\1a C

A=
)\ga

] ) T = (ZVQ)Eyl) ) 77:: (7717772) and Z = (t77715772)
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where 11,12 € C and t € R. Then, again with x =1,
(Z,RyZ) = t*(1 — a) + 2tRe ((7,7)) + (i, A7) .
Minimizing over ¢, we find (77, B(z)7) where

al — —(lz_‘z) vs (- —(13_2(1) 202
B(z):=| _ B 22 o
C—ml/lVQ a)\z—ml/l

When (8.9) is satisfied, A has rank one, and B(z) is the difference of two positive rank
one matrices. Hence B(z) cannot be positive definite unless the two rank one matrices
are proportional. Since the null space of A is spanned by w := (—v/Xa, v/A1e??) where
¢ = |¢le??, when y # 0, it is only possible for B(z) to be positive in case (v,w) = 0.
However, (v, w)| > |z||vA1v1 — vV Aars|, and

Vo — g = <w —1) Novevsul

Under the assumption A\; # A2, this is non-zero unless m is the point mass at 1/2; i.e.,
in the KMS case.

Thus, when (8.9) is satisfied, except in the KMS case, z = 0 is necessary and sufficient
for the reduced characteristic matrix to be positive semidefinite. We set aside the KMS
case since we already have a complete description of it for general V. Then

(0,0,0) and (1,0, /A1 he?), 0<60<2rm, (8.10)

are all of the extreme points where (8.9) is satisfied. Notice that they are exactly the
ones that are evenly symmetric.

Now consider pairs (a, ) such that |¢| < ay/A1A2. Then B(0) > 0. Writing 2 =: |z]e®?
and holding ¢ fixed, there is o > 0 such that for |z| < o, B(|z|e??) > 0, but for |z| > 7o,
B(z) has a negative eigenvalue. It follows that a necessary condition for extremality is
that det(B(|z|e??)) = 0. Computing det(B(|z|e?¥)) = 0 yields

(1 —a)(@®MA2 — [¢]*)
a(Mv? + Xov3) — 2v3vaRe (Cei2?)

re = (8.11)

Note that the denominator in this expression is strictly positive since |Re ((e???)| <

ayv/A1\2 and hence

(a(u§>\2 +v2\) — 11122Re (Ceig‘p)) > <a(1/22)\2 + v\ — 2V11/2a\/)\1)\2>

= (1(1/1\/71— 1/2\/72)2 >0.
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Thus the remaining extreme points are those given by
(a,70€™, 7/ A1 Aoe™) O<a<l, 0<r<a, 0<0,p<27m, (8.12)

with 7o given by (8.11).
To write . in the canonical form Z(A) = G*A+ AG + ®(A), we easily read off from
(8.7):

1BM =) -5 5 —pe2)
%(Ml—ﬂz) 2B 2= A1) = §

+%(2—u1—u2) l_g g}

Thus writing G = H +iK, H and K self-adjoint, we have that

1 0 =z
K= E@*Ml*/&) {—z 0}

and by (8.6),

z = (uy, Z(Jur)(us|)uz) .

It is easy to check that in the KMS case, this formula for K coincides with that given by
Theorem 1.9. To write ® in Kraus form amounts to diagonalizing the 3 x 3 matrix R
given by (8.8). Evidently this can be done in closed form, but the resulting formulas are
complicated and shed little light on matters.

9. Appendix

In this appendix we recall some ideas of Arveson that were originally developed in
the context of minimal Stinespring representation, but which have, in our finite dimen-
sional setting, a very simple expression in terms of minimal Kraus representations. This
complements previous work by Choi [5]. The required background on Stinespring repre-
sentations can be found in the initial chapters of [12].

Let ® be a completely positive map on the algebra o = Mxy(C), and let

M
D(A) = ZVJ*AV] be a Kraus representation of it. The same data can be cast as a
j=1
Stinespring representation of ®, which was actually Kraus’ starting point. Let iy s
denote the Hilbert space consisting of all N x M matrices X equipped with the Hilbert-

Schmidt inner product. Define a representation of My (C) on Hn ar by
m(A)X = AX . (9.1)

Define a linear transformation V : CN — § N,M by
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Ve = Viz,...,Vyz], (9.2)
where [z1,--- 2] denotes the N x M matrix whose jth column is x;. Then for X =
M
(21, o] € Onar (X, Va)gy = Trllvn, - on]* Vi, ... Vigal] = Y (Vi 2),
from which it follows that =
M
VX =Y Vi (9.3)
j=1

Thus we have the Stinespring representation
D(A) =V"r(A)V, (9.4)

in terms of a map V from C¥ into some other Hilbert space, and a representation of
Mp(C) on that Hilbert space. Stinespring’s Theorem says that every CP map is of this
form.

The Stinespring representation (9.4) is minimal in case the closed span of

{r(A)Vx : Aco, xecCV}
is all of $n, s, the closure being irrelevant in this finite dimensional case.

9.1 Lemma. The Stinespring representation (9.3) specified by (9.2) is minimal if and only
if {Va, ...,V } is linearly independent.

Proof. Suppose that W = [w1, ..., wps] is non-zero and orthogonal to m(A)Vzx for all A €
/ and all z € CV. Then 0 = (W, AVx)g, ,, = (V*A*W,z), and hence the orthogonality
is equivalent to the condition V*A*W =0 for all A € &.

Suppose that {V1, ..., Vjs} is not linearly independent. Then there is a non-zero vector
v such that Z]Nil v; Vi = 0. Let € CV be arbitrary, and define W = [v1,...,vprz].

M
Then A*W = [niA*z,..., oy A%x] and V*A*W = ZvjVj* A*x = 0. Thus, there
j=1
exists a non-zero N x M matrix W such that W is orthogonal to w(A)Vx for all A € &7
and all z € CV, which proves the necessity of the condition.

Suppose W is a non-zero matrix such that V*A*W = 0 for all A € &. Let r be
the rank of W; evidently 0 < r < min{M,N}. Let W = QR be a QR factorization
of W so that @) is an N X r matrix with orthonormal columns and R is an r x M
with linearly independent rows. Write Q = [q1,...,¢:], and extend {qi,...,q,} to an
orthonormal basis {q1,...,qn} of CV if r < N. Define an N x N matrix B by Bg; = ¢
for j < r, and, in case r < N, Bq; = 0 for j > r. Then BQR = [q1,... ,q1]R;
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ie., (BQR)i; = (q1) Z Ry, ;. Since the rows of R are linearly independent, the vector

k=1

v € CM with v; = >, _; Ry, ; is not zero. Hence for any w € CV, taking A* = UB where
U is an appropriate chosen unitary, we can arrange that A*W = [vjw,...,vpyw], and
then

M

0=V"A"W = Zvjvj* w,

j=1

and since w is arbitrary, this implies that Zj\il v;V;" = 0. This is impossible since

{Vi,...,Vin} are linearly independent, and hence W must be zero. This proves the
sufficiency of the condition. O

The next theorems involve maps of the form

M
U(A)= Y Bi Vi AV, (9.5)

,j=1

where {V1,...,Viy} C &7, and B is an M x M matrix. Suppose that B is positive so
that B = S*S. Then writing B;j = Y oty S} 1Sk = Sorey SkriShy»

M M
V(A) = Z Wy AWy, where W, = Z SV .

k=1 j=1

It follows that whenever B > 0, ¥ is CP, and this is true without any hypotheses on
{Vi,...,Vu}.

Now suppose that {V7, ..., Vas} is linearly independent. The Gram-Schmidt procedure
yields an orthonormal set { £, ..., Ej} and an invertible lower triangular matrix L such
that V; = 30 L; ;E;. Then

M M M
U(A)= > Bi;V;AV;= Y Bi;LixEjALjE;= Y (L*BL); ;E; AE, .
i,j=1 i,j,k, =1 k=1

Since {Ey, ..., Ey} is orthonormal, ¥ is CP if and only if L* BL is positive semidefinite.
But since L is invertible, this is the case if and only if B is positive semidefinite. Moreover,
we see that there is at most one matrix B for which ¥ can be written in the form (9.5)
since L*BL is the characteristic matrix of ¥ for an orthonormal basis determined by

{V1,...,Vas}. This proves:

9.2 Lemma. Let ¥ be a map defined by (9.5) for some set {V1,...,Var} C Mn(C) and
some M x M matriz B. Then if B is positive semi-definite, ¥ is CP, and if {Vi,...,Var}
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is linearly independent, VW is CP if and only if B is positive semi-definite, and in this
case the correspondence between ¥ and B is one-to-one.

Now let ® and ¥ be two CP maps. Then & — ¥ is CP if and only if Ce — Cgy > 0.
Thus, the invertible transformation ® +— Cg identifies the order structure on C'P (<)
with the order structure on My (C)*, the positive semidefinite elements of My (C).
There is another characterization of this order relation due to Arveson that has several
advantages.

9.3 Theorem. Let @ be a completely positive map given by a minimal Kraus representation
D(A) = Zj\il VI AVj. Then a CP map ¥ satisfies ® > W if and only if there is a uniquely
determined M x M matriz T such that 0 <T <1 and

M
w(4)= 3 T VrAY; . (9.6)

i,j=1

Equivalently, in terms of the associated minimal Stinespring representation ®(A) =
V*r(A)V, there is a positive operator T € m(Mny(C))’, the commutant of m(Mn(C)),
such that

(A) = Vr(ATV . (9.7)

9.4 Remark. Arveson [2, Theorem 1.4.2] proved the theorem in the second equivalent
form, and discussed it as being a non-commutative Radon-Nikodym Theorem with the
Radon-Nikodym derivative being the element T of m(Mx(C))".

Proof. Let T' be an M x M matrix, with 0 < T < 1, and let ¥(A) be given by (9.6).
Since T' > 0, ¥ is CP by Lemma 9.2, and

M
D(A) = U(A) = Y (6i; — T, )V;AV; .

ij=1

Since 1 — T > 0, by another application of Lemma 9.2, & — ¥ is CP.

Conversely, suppose that & — ¥ is CP. We again use the Gram-Schmidt procedure to
produce an orthonormal set {F1,..., Ep} and an invertible lower triangular matrix 7T
such that V; = Y2 | L; ;E;. Then ®(A) = Y3 | (L*L); ;B AE;.

If M < N2, extend {E1,...,Ey} to an orthonormal basis of M x(C) equipped with
the Hilbert-Schmidt inner product. The characteristic matrix of ® with respect to this
basis, Cp, has L*L as its upper-left M x M block, and all other entries are zero. If ¥
is a CP map such that ® — ¥ is CP, then Cgy — Cy is positive semidefinite. Hence for
some M x M matrix R with 0 < R < L*L, ¥(A) = Z?,/[j:1 R, ;EfAE;. But then since
Ej = 224:1 Lj_,livh
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U(A)= > ((L7Y)*RL™");,;E; AE; .

i,j=1

Since 0 < R < L*L, 0 < (L~!)*RL™! < 1. Hence we may define T := (L~ !)*RL~! and
we have the contraction. This completes the proof that a CP map W satisfies ¥ < & if
and only if ¥ has the form specified in (9.6).

We now show that this is equivalent to ¥ having the form specified in (9.7). For an
N x M matrix X and an M x M matrix B, define

7/(B)X = XBT ,

where BT denotes the transpose of B. It is easy to check that 7’ is a x-representation
of Mp(C) on Hn ar. It is immediately clear that 7'(Mjys(C)) lies in the commutant of
m(Mn(C)) since 7’ acts by right multiplication, and 7 acts by left multiplication, and
it is easy to check that in fact (7(«)) = 7/(Mp(C)).

Now write X € $n ar in the form X = [x1,...,xp]. Then for any M x M matrix R

Z [Rl,jl‘j, ey RM’]‘.’L‘]-] = XRT .

M
J=1

Suppose now that ¥ has the form specified in (9.6). Then for all z,y € C¥,

M M
(@, W(A)y) =Y (Viz, AY T, ;Vyy) = (2, Vr(A)x' (TT)Vy) .
i=1 j=1

Defining T := 7/(TT), we obtain (9.7).
Finally, assume that ¥ has the form (9.7). Since 7(</) = n/(Mp;(C)) we can write
T = 7/(T") for some M x M matrix T with 0 < T < 1. Then
U(A) = Vr(A)TY = U(A) = Vr(A)r' (TT)Y = Vir (AW

where
M
W = [Wiz,...,Wyz]  and  Wi=> T,;V; .
j=1

Then V¥ has the form specified in (9.6) O

We now turn to a question addressed by Arveson: A CP map is unital in case ®(1) = 1.
Evidently the set of unital CP maps is convex. An element ® of this convex set is extremal
in case whenever ¥ is another unital CP map such that for some ¢t € (0,1), t¥ < @, then
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necessarily ¥ = . What are necessary and sufficient conditions for a unital CP map &
to be extremal in the cone of unital CP maps?

Arveson’s answer is stated in terms of minimal Stinespring representations and the
commutant of w(My(C)), where 7 is the representation in the Stinespring representa-
tion. In our finite dimensional setting, there is a much simpler expression, due to Choi,
of this condition in terms of a minimal Kraus representation:

9.5 Theorem. Let ® be a unital CP map with a minimal Kraus representation ®(A) =
Zj]vil Vi AVj. In order for ® to be extremal in the cone of unital CP maps, it is necessary
and sufficient that the M? matrices

(Vv s 1<ij<M ) (9.8)
are linearly independent.

9.6 Remark. Choi [5, Theorem 5] gave an elementary proof of this result that bypasses
the use of Arveson’s Radon-Nikodym Theorem. We give a very short matricial rendering
of Arveson’s original proof [2, Theorem 1.4.6] using Theorem 9.3. It is worth noting, as
Arveson did, that the proof applies, and yields the same result, if applied to the class of
CP maps for which ®(1) = K, for any fixed 0 < K < 1.

Proof. Suppose first that the set in (9.8) is linearly independent. Let ¥ be CP and unital
with t¥U < @ for some 0 < ¢ < 1. Then by Theorem 9.3, there is an M x M matrix T
with 0 < 7T < 1 such that

M
tU(A) = Y T, VAV .
ij=1
M
Taking A =1, we get t1 = Z T;,;Vi*V;, and then since t1 = t®(1) = Z]J\il tV;Vj, we
i,j=1
have Z%:l B; ;V;*V; = 0 where B; ; = td; j — T; j. By the linear independence, B; ; = 0

for each 14, j, and hence T' = t1. Thus t¥ = t®, and so P is extreme.

For the converse, suppose that ® is extreme. The set in (9.8) is linearly independent
if and only if the map B — Z” B; jV;*V; is injective. Because this map is Hermitian,
to show that it is injective, it suffices to show that it is injective on the self-adjoint
M x M matrices. Therefore, consider a self-adjoint B such that >_, . B; ;V;*V; = 0.
Replacing B with a positive multiple of itself, we may freely assume that |B| < 1.
Define T = (1 + B), and then define ¥ by W(A4) = Z%’:l T; ;V*V;. ¥ is CP with
¥ < @ by Theorem 9.3, and ¥(1) = 11 since > BijVi'V; = 0. Therefore, defining
U = 20, we have that U is unital, CP, and %{Ivf < ®. Since P is extreme, = ®, and
hence 2T'=1and B=0. O



E. Amorim, E.A. Carlen / Linear Algebra and its Applications 611 (2021) 389439 439

Declaration of competing interest
There is no competing interest.
Acknowledgements

The work of both authors was partially supported by NSF grants DMS 1501007 and
DMS 1764254.

References

[1] R. Alicki, On the detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys. 10
(1976) 249-258.
[2] W.B. Arveson, Subalgebras of C* algebras, Acta Math. 123 (1969) 141-224.
[3] E.A. Carlen, J. Maas, Gradient flow and entropy inequalities for quantum Markov semigroups with
detailed balance, J. Funct. Anal. 273 (5) (2017) 1810-1869.
[4] E.A. Carlen, J. Maas, Non-commutative calculus, optimal transport and functional inequalities in
dissipative quantum systems, J. Stat. Phys. 178 (2020) 319-378.
[5] M.D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975)
285-290.
[6] F. Fagnola, V. Umanita, Generators of detailed balance quantum Markov semigroups, Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 10 (3) (2007) 335-363.
[7] F. Fagnola, V. Umanita, Generators of KMS symmetric Markov semigroups on B(h): symmetry and
quantum detailed balance, Commun. Math. Phys. 298 (2010) 523-547.
[8] V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of N-level
systems, J. Math. Phys. 17 (1976) 821-825.
[9] K. Kraus, General state changes in quantum theory, Ann. Phys. 64 (1971) 311-335.
[10] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48 (1976)
119-130.
[11] G. Parravicini, A. Zecca, On the generator completely positive quantum dynamical semigroups of
N-level systems, Rep. Math. Phys. 12 (1977) 423-424.
[12] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced
Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002.
[13] W.F. Stinespring, Positive functions on C* algebras, Proc. Am. Math. Soc. 6 (1955) 211-216.
[14] E. Stgrmer, Positive Linear Maps of Operator Algebras, Springer, Heidelberg, 2010.



