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1. Introduction

1.1. The setting and notation

Let MN (C) denote the set of N × N matrices over C, N ≥ 2. Let S+ denote the 
set of non-degenerate density matrices in MN (C). That is, each σ ∈ S+ is a positive 
definite N ×N matrix with unit trace. The GNS inner product on MN (C) is defined by
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〈B,A〉GNS = Tr[B∗Aσ] . (1.1)

Here we are concerned with a family of inner products on MN(C) that all reduce to 
〈B, A〉GNS when either A or B commutes with σ. Let P[0, 1] denote the set of probability 
measures on the interval [0, 1].

1.1 Definition. For each m ∈ P[0, 1], 〈·, ·〉m denotes the inner product on MN (C) given 
by

〈B,A〉m = Tr[B∗Mm(A)] where Mm(A) =
1∫

0

σsAσ1−s dm(s) . (1.2)

Notice that for each s ∈ [0, 1],

Tr[B∗σ1−sAσs] = Tr[(σ(1−s)/2Bσs/2)∗σ(1−s)/2Aσs/2] ,

and this quantity is strictly positive when B = A &= 0, and hence 〈·, ·〉m is a non-
degenerate inner product for every m.

We call the measure m and its associated inner product 〈·, ·〉m even when m is sym-
metric with respect to reflection about s = 1/2:

m(U) = m(1 − U) for all measurable U ⊆ [0, 1] . (1.3)

Note that the GNS inner product corresponds to m = δ0, the point mass at s = 0. 
Other cases are known by name. Taking m = δ1/2 yields the Kubo-Martin-Schwinger
(KMS) inner product

〈B,A〉KMS = Tr[B∗σ1/2Aσ1/2] . (1.4)

Taking m to be uniform on [0, 1] yields the Bogoliubov-Kubo-Mori (BKM) inner product,

〈B,A〉BKM =
1∫

0

Tr[B∗σsAσ1−s]ds . (1.5)

Unlike the GNS inner product, these two are even.
Finally, if σ = N−11, the normalized identity, all choices of m reduce to the normalized 

Hilbert-Schmidt inner product. Throughout this paper, H always denotes the Hilbert 
space MN (C) equipped with this inner product,

〈B,A〉H = 1
N

Tr[B∗A] . (1.6)
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Let L(MN (C)) denote the linear operators on MN (C), or, what is the same thing in 
this finite dimensional setting, on H. Throughout this paper, a dagger is always used to 
denote the adjoint with respect to the inner product on H. That is, for Φ ∈ L(MN (C)), 
Φ† is defined by

〈Φ†(B), A〉H = 〈B,Φ(A)〉H (1.7)

for all A, B. We can also make L(MN (C)) into a Hilbert space by equipping it with the 
normalized Hilbert-Schmidt inner product. Throughout this paper, this Hilbert space 
is denoted by Ĥ. The following formula for the inner product in Ĥ is often useful. Let 
{Fi,j}1≤i,j≤N be any orthonormal basis for H. Then for Φ and Ψ ∈ Ĥ,

〈Ψ,Φ〉Ĥ = 1
N2

N∑

i,j=1
〈Ψ(Fi,j),Φ(Fi,j)〉H . (1.8)

To each σ ∈ S+, there corresponds the modular operator ∆ on H defined by

∆A = σAσ−1 . (1.9)

Let {u1, . . . , uN} be an orthonormal basis of CN consisting of eigenvectors of σ, so that 
for 1 ≤ j ≤ N , σuj = λjuj . For 1 ≤ i, j ≤ N , define Ei,j =

√
N |ui〉〈uj |, so that 

{Ei,j}1≤i,j≤N is an orthonormal basis of H. Then a simple computation shows that for 
each i, j,

∆Ei,j = λiλ
−1
j Ei,j . (1.10)

Thus ∆ is diagonalized, with positive diagonal entries, by an orthonormal basis in H. It 
follows that ∆ is a positive operator on H. Using the Spectral Theorem, we may then 
define ∆s for all s. This provides another way to write the operator Mm defined in (1.2):

Mm =




1∫

0

∆sdm



Rσ (1.11)

where Rσ denotes right multiplication by σ, also a positive operator on H that commutes 
with ∆, and hence with 

∫ 1
0 ∆sdm.

Finally, the terms “Hermitian” and “self-adjoint” are often used interchangeably. Here, 
we must make a distinction: A linear operator Φ on MN (C) is Hermitian if and only if 
Φ(A∗) = (Φ(A))∗ for all A ∈ MN (C). This is the only sense in which we shall use this 
term.
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1.2. The problems considered

It is assumed that the reader is familiar with the notion of completely positive (CP) 
maps that was introduced by Stinespring [13], and have been much-studied since then. 
A concise account containing all that is needed here can be found in the early chapters of 
[12] or in [14]. By a quantum Markov semigroup, we mean a semigroup {Pt}t≥0 of linear 
operators on MN (C) such that each Pt is completely positive and satisfies Pt(1) = 1. 
A map Φ on MN (C) is unital in case Φ(1) = 1. Thus, when {Pt}t≥0 is a QMS, each Pt

is unital, but unital CP maps are of wider interest in mathematical physics, and in this 
context are often referred to as quantum operations. The generator of a QMS {Pt}t≥0
is the operator L defined by

L := lim
t→0

1
t
(Pt − I) .

Note that L 1 = 0, and Pt = etL .
We are interested here in CP maps and quantum Markov semigroups (QMS) and 

their generators that are self-adjoint with respect to the inner product 〈·, ·〉m for some 
m ∈ P[0, 1] and some σ ∈ S+. The structure of the set of QMS generators that are 
self-adjoint with respect to the GNS and KMS inner products has been studied by 
mathematical physicists, but apart from these cases, not much is known.

1.2 Definition. For m ∈ P[0, 1], let Hm denote the Hilbert space obtained by equipping 
MN (C) with the inner product 〈·, ·〉m. Let CPm denote the set of CP maps Φ on MN (C)
that are self-adjoint on Hm, and let CPm(1) denote the subset of CPm consisting of unital 
maps. Finally, let QMSm denote the set of QMS generators that are self-adjoint on Hm. 
We write CP to denote the set of all CP maps (without any particular self-adjointness 
requirement). Likewise, we write CP (1) to denote the set of all CP unital maps and 
QMS to denote the set of all QMS generators.

As is well-known, both CP and QMS are convex cones. For CP this is obvious. If 
L1 and L2 are two generators of completely positive semigroups, then

et(L1+L2) = lim
k→∞

(e(t/k)L1e(t/k)L2)k (1.12)

is completely positive, and hence the set of generators of completely positive semigroups 
is closed under addition, and also evidently under multiplication by non-negative real 
numbers. Since if Lj1 = 0 for j = 1, 2, then (L1+L2)1 = 0, it follows easily that the set 
of all QMS semigroup generators is a convex cone. However, it is not a pointed cone: Let 
H ∈ MN (C) be self-adjoint, and define L (A) = i[H, A]. Then etL (A) = eitHAe−itH is 
a QMS, and evidently both L and −L are QMS generators.

By a theorem of Lindblad [10] and Gorini, Kossakowski and Sudarshan [8], every QMS 
generator L on MN (C) is of the form
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L (A) = (G∗A + AG) + Φ(A) (1.13)

where Φ is completely positive. Since L 1 = 0, G∗ + G = −Φ(1). If we define K :=
1
2i (G −G∗), then we can rewrite (1.13) as

L (A) = Φ(A) − 1
2(Φ(1)A + AΦ(1)) − i[K,A] . (1.14)

However, Φ and K are not uniquely determined by L , and it is possible for L to be 
self-adjoint on Hm while Φ is not, and vice-versa. Hence the problem of determining the 
structure of CPm is not the same as the problem of determining the structure of QMSm.

There is a natural order relation on CP (without any requirement of self-adjointness), 
that was investigated by Arveson in [2]. He worked in the general context of CP maps 
from a C∗ algebra A into B(H), the bounded operators on a Hilbert space H. If Φ and 
Ψ are two such CP maps, we write Φ ≥ Ψ in case Φ − Ψ is CP. An element Φ is called 
extreme in case whenever Ψ ∈ CP and Φ ≥ tΨ for some t > 0, then Ψ is a multiple of 
Φ. Arveson also considered the set CP (1) of unital CP maps. An element Φ ∈ CP (1)
is extreme if whenever for some 0 < t < 1 and Ψ1, Ψ2 ∈ CP (1), Φ = tΨ1 + (1 − t)Ψ2, 
Ψ1 = Ψ2 = Φ. Equivalently, whenever Φ ≥ tΨ for some 0 < t < 1 and Ψ ∈ CP (1), then 
Ψ = Φ.

For all Φ ∈ CP , Arveson’s Radon-Nikodym Theorem gives an explicit description of 
the set {Ψ ∈ CP : Φ −Ψ ≥ 0}. Using this, he proved a characterization of the extreme 
points of CP (1). Later, Choi [5] gave a simplified treatment of Arveson’s result in the 
case of matrix algebras. Every CP map on MN (C) has a Kraus representation [9]: There 
is a set {V1, . . . , VM} ⊂ MN (C) such that for all A ∈ MN (C),

Φ(A) =
M∑

j=1
V ∗
j AVj , (1.15)

and one may always take such a representation in which {V1, . . . , VM} is linearly in-
dependent; such a Kraus representation is minimal. There is a close relation between 
minimal Kraus representations and minimal Stinespring representations that is recalled 
in an appendix. If (1.15) is any Kraus representation of Φ, then Φ is unital if and only 
if 
∑M

j=1 V
∗
j Vj = 1, and Choi’s matricial version [5] of Arveson’s theorem on extremality 

is that if (1.15) is a minimal Kraus representation, Φ is extremal in CP (1) if and only 
if {V ∗

i Vj : 1 ≤ i, j ≤ M} is linearly independent.
While necessary and sufficient conditions for a QMS generator to be self-adjoint for 

the GNS or KMS inner products have been proved by Alicki [1] and Fagnola and Umanita 
[6,7], little appears to be known about the order structure and extreme points for CPm, 
CPm(1) and QMSm. Even for the case of the GNS or KMS inner products, there is 
more to say.

For the KMS inner product, let CPKMS := CPδ1/2 . We prove the following results:
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1.3 Theorem. Let K be the real vector space consisting of all V ∈ MN (C) such that 
∆−1/2V = V ∗. The extremal elements Φ of CPKMS are precisely the elements of the 
form

Φ(A) = V ∗AV , V ∈ K . (1.16)

Every map in CPKMS is a positive linear combination of at most N2 such maps.

1.4 Theorem. Let Φ and Ψ be two CP maps that are KMS self-adjoint. Let Φ(A) =∑M
j=1 V

∗
j AVj be a minimal Kraus representation of Φ with each Vj ∈ K. Then Φ − Ψ is 

CP if and only if there exists a real M ×M matrix T such that 0 ≤ T ≤ 1 and

Ψ(A) =
M∑

i,j=1
Ti,jV

∗
i AVj . (1.17)

1.5 Theorem. Let Φ be a unital CP map that is KMS self-adjoint and let Φ(A) =∑M
j=1 V

∗
j AVj be a minimal Kraus representation of Φ with Vj ∈ K for each j. Then 

Φ is an extreme point of the set of unital CP maps that are KMS self-adjoint if and only 
if

{V ∗
i Vj + V ∗

j Vi : 1 ≤ i ≤ j ≤ M} (1.18)

is linearly independent over the real numbers.

Theorem 1.4 is an analog of Arveson’s Radon-Nikodym Theorem for CP maps in the 
context of KMS self-adjointness. The matrix algebra version of Arveson’s theorem states 
that if (1.15) is a minimal Kraus representation of a CP map Φ, and Ψ is another CP 
map, then Φ − Ψ is CP if and only if there is a complex M ×M matrix T , 0 ≤ T ≤ 1
such that Ψ is given by (1.17). The restriction that both Φ and Ψ are self-adjoint on 
HKMS results in the further requirements that Vj belongs to the real vector space K for 
each j, and that T is real. The matricial version of Arveson’s theorem is proved in an 
appendix.

For every m ∈ P[0, 1], there is a natural order on QMSm. While QMS is not a pointed 
cone, QMSm is always a pointed cone: We prove:

1.6 Theorem. For any m ∈ P[0, 1], if Φ ∈ QMSm and −Φ ∈ QMSm, then Φ = 0.

For L1, L2 ∈ QMSm, we define L1 ≥ L2 to mean that L1 − L2 ∈ QMSm. By 
Theorem 1.6, it follows that if L1 ≥ L2 and L2 ≥ L1, then L1 = L2. We then define 
an element L ∈ QMSm to be extremal in case whenever L̃ ∈ QMSm satisfies L ≥ tL̃
for some t > 0, L̃ is a non-zero multiple of L .

The special feature of self-adjointness on Hm for m = δs, and s ∈ [0, 1] that greatly 
simplifies the task of studying QMSm in these cases is that there is an orthogonal 



É. Amorim, E.A. Carlen / Linear Algebra and its Applications 611 (2021) 389–439 395

decomposition of Ĥ into two subspaces, each of which is invariant under the operation 
of taking the adjoint on Hm:

1.7 Definition. Define ĤS to be the subspace of Ĥ consisting of all operators Φ of the 
form

Φ(A) = XA + AY (1.19)

for some X, Y ∈ MN (C).

We shall prove:

1.8 Lemma. For each s ∈ [0, 1], both ĤS and Ĥ⊥
S are invariant under the operation of 

taking the adjoint with respect to the inner product 〈·, ·〉δs . Moreover, if {V1, . . . , VM} is 
linearly independent in MN (C), the map A ,→

∑M
j=1 V

∗
j AVj belongs to Ĥ⊥

S if and only 
if Tr[Vj ] = 0 for each j.

(Of course, once the invariance of one subspace is shown, the invariance of the other 
follows.)

Now consider any QMS generator L . By the LGKS Theorem [10,8] recalled earlier 
in the introduction, L has the form

L (A) = (G∗A + AG) + Ψ(A) (1.20)

where Ψ is CP. Let

Ψ(A) =
M∑

j=1
V ∗
j AVj

be a minimal Kraus representation of Ψ. Replacing each Vj by Vj−Tr[Vj ]1, and absorbing 
the difference into G, we may assume that Tr[Vj ] = 0 for each j. By Lemma 1.8, we then 
have Ψ ∈ Ĥ⊥

S . Furthermore, adding a purely imaginary multiple of 1 to G does not 
change L , and hence we may also assume without loss of generality that Tr[G] ∈ R. 
Thus, making these choices for G and Ψ, (1.20) gives the decomposition of L into its 
components in ĤS and Ĥ⊥

S . Then by Lemma 1.8, if L is self-adjoint on Hδs , each of these 
pieces must be individually self-adjoint on Hδs . For example, for s = 1/2, corresponding 
to the KMS inner product, Theorem 1.3 gives the necessary and sufficient conditions 
for Ψ to be self-adjoint, and then an easy computation shows that A ,→ G∗A + AG is 
self-adjoint on HKMS if and only if ∆−1/2G = G∗, where we have taken, without loss of 
generality, Tr[G] ∈ R.

This brings us to a result of Fagnola and Umanita [6, Theorem 37]: Let L ∈ QMS

be given in the form



396 É. Amorim, E.A. Carlen / Linear Algebra and its Applications 611 (2021) 389–439

L (A) = G∗A + AG +
M∑

j=1
W ∗

j AWj

where Tr[G] ∈ R, {W1, . . . , WM} is linearly independent, and for each j, Tr[Wj ] = 0. 
Then L is self-adjoint on HKMS is and only if
(i) ∆−1/2G = G∗

(ii) There is an M×M unitary matrix Ũ such that for each j, ∆−1/2Wj =
∑M

k=1 Ũj,kW ∗
k .

We have already explained how condition (i) follows from Lemma 1.8 apart from the 
simple computation that will be provided below. As for (ii), let Ψ(A) =

∑M
j=1 W

∗
j AWj . 

By Lemma 1.8, this must be self-adjoint on HKMS and then by Theorem 1.3 there is 
another minimal Kraus representation Ψ(A) =

∑M
j=1 V

∗
j AVj , necessarily with the same 

M , such that ∆−1/2Vj = V ∗
j . By the unitary equivalence of minimal Kraus represen-

tations (see the appendix), there is an M × M unitary matrix such that for each j, 
Wj =

∑M
k=1 Uj,kVk and hence

∆−1/2Wj =
M∑

k=1
Uj,k∆−1/2Vk =

M∑

k=1
Uj,kV

∗
k =

M∑

k,#=1
Uj,kU#,kW

∗
k =

M∑

#=1
(UUT )j,#W ∗

k

where UT denotes the transpose of U , and of course Ũ := UUT is unitary.
Conversely, suppose that (ii) is satisfied. Let U be another unitary to be chosen below. 

Then for each $,

∆−1/2




M∑

j=1
U#,jWj



 =
M∑

j,k=1
U#,jŨj,kW

∗
k ,

and thus if we choose U so that U = UŨ , we may define Vj =
∑M

k=1 Uj,kWk, Ψ(A) =∑M
j=1 V

∗
j AVj and for each j, ∆−1/2Vj = V ∗

j and Tr[Vj ] = 0. It is easy to find such U : 
Choose an orthonormal basis in which Ũ is diagonal with jth diagonal entry eiθj . We 
may take U to be diagonal in this same basis with jth diagonal entry e−iθj/2.

The result of Fagnola and Umanita allows one to check whether or not any given QMS 
generator is self-adjoint on HKMS . However, it does not provide a parameterization 
of QMSKMS , the cone of QMS generators that are self-adjoint on HKMS , nor can 
one readily read off the set of extreme points from their result; there are compatibility 
conditions relating G and {W1, . . . , WM}. The following result provides this and other 
additional information:

1.9 Theorem. There is a one-to-one correspondence between elements L of QMSKMS

and CP maps Ψ ∈ Ĥ⊥
S that are self-adjoint on HKMS. The correspondence identifies Ψ

with LΨ where

LΨ(A) = G∗A + AG + Ψ(A) (1.21)
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where G = H + iK, H and K self-adjoint and given by

H := 1
2Ψ(1) (1.22)

and

K := 1
i

∞∫

0

e−tσ1/2(σ1/2H −Hσ1/2)e−tσ1/2dt . (1.23)

Furthermore, for all LΨ1 , LΨ2 ∈ QMSKMS, LΨ1−LΨ2 ∈ QMS if and only if Ψ1−Ψ2 ∈
CP ; i.e., LΨ1 ≥ LΨ2 if and only if Ψ1 ≥ Ψ2, and the extreme points of QMSKMS are 
precisely the generators of the form

L (A) := G∗A + AG + V ∗AV

where ∆−1/2V = V ∗ and where G = H + iK is given by (1.22) and (1.23) for Ψ(A) =
V ∗AV .

1.10 Remark. It is easy to see that K defined by (1.23) satisfies Tr[K] = 0, so that 
Tr[G] ∈ R.

We also prove analogous results for self-adjointness with respect to the inner products 
on Hδs for all s &= 1/2. This includes the GNS case, and in fact it is well known that for 
s &= 1/2, any Hermitian operator Φ is self-adjoint on Hδs for all s &= 1/2 if and only if it is 
self-adjoint on HGNS = Hδ0 . It follows that Hermitian operators Φ that are self-adjoint 
on HGNS are universally self-adjoint – they are self-adjoint on Hm for all m. The results 
specifying extreme points, e.g., of the set of GNS self-adjoint unital CP maps, etc., are 
new, as is the theorem giving necessary conditions for Φ1 − Φ2 ∈ CP when Φ1 and Φ2
are CP and self-adjoint on HGNS, while the structure of QMSGNS was worked out by 
Alicki [1].

We turn next to the BKM inner product, whose investigation is motived in part by 
[4, Theorem 2.9]. It is much more difficult to prove analogs of the theorems proved 
here for the KMS and GNS inner product, in part because H̃⊥

S is not invariant under 
the operation of taking the BKM adjoint. However, the BKM case shares one very nice 
feature with the KMS case; in both cases M−1

m is CP. Using this, we construct and study 
a one-to-one map from CPKMS into CPBKM . This map is unfortunately not surjective, 
but it does also take unital maps to unital maps, and so it gives us a large class of 
quantum operations that are self-adjoint on HBKM .

Finally, we study operators that are evenly self-adjoint, by which we mean self-adjoint 
on Hm for all even m. The class of evenly self-adjoint QMS generators is strictly larger 
than the class of GNS self-adjoint QMS generators, but also strictly smaller than the set 
of QMS generators that are BKM or KMS self-adjoint.
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2. Background material

We recall some useful tools. It is convenient to index orthonormal bases of H by 
ordered pairs (i, j) ∈ {1, . . . N} × {1, . . . N} =: JN . We use lower case Greek letters to 
denote elements of the index set. For α = (i, j) ∈ JN , α′ := (j, i).

For F, G ∈ MN (C), define the operator #(F ⊗G) on H by

#(F ⊗G)X := FXG . (2.1)

Simple computations show that

〈#(F1 ⊗G1),#(F2 ⊗G2)〉Ĥ = 〈F1, F2〉H〈G1, G2〉H . (2.2)

Hence, if {Fα}α∈JN and {Gα}α∈JN are two orthonormal bases of H, {#(Fα⊗Gβ)}α,β∈JN

is an orthonormal basis of Ĥ.
Now fix any orthonormal basis {Fα}α∈JN of H. Then {F ∗

α}α∈JN is also an orthonormal 
basis of H, and hence {#(F ∗

α ⊗ Fβ)}α,β∈JN is an orthonormal basis of Ĥ. Thus, every 
linear operator Φ on H has an expansion

Φ =
∑

α,β∈JN

(cΦ)α,β#(F ∗
α ⊗ Fβ) , (2.3)

where

(cΦ)α,β = 〈#(F ∗
α ⊗ Fβ),Φ〉Ĥ . (2.4)

In particular, the coefficients (cΦ)α,β are uniquely determined. The following definition 
is from [8]; see the Appendix of [3] for more information.

2.1 Definition (Characteristic matrix). Given a linear operator Φ on H, and an orthonor-
mal basis {Fα}α∈JN of H, its characteristic matrix for this orthonormal basis is the 
N2 ×N2 matrix CΦ whose (α, β)th entry is (cΦ)α,β as specified in (2.4).

2.2 Remark. An easy computation shows the following: Let Φ be a linear operator on 
H. Let {Fα} and {F̃α} be two orthonormal bases of H. Let CΦ be the characteristic 
matrix of Φ with respect to {Fα}, and let C̃Φ be the characteristic matrix of Φ with 
respect to {F̃α}. Let U be the N2×N2 unitary matrix such that F̃α =

∑

β

Uα,βFβ . Then 

C̃Φ = UCΦU
∗.

2.3 Lemma (See [8]). A linear operator Φ on H is Hermitian if and only if CΦ, for any 
orthonormal basis {Fα}α∈JN , is self-adjoint.
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Proof. We compute

(Φ(A∗))∗ :=




∑

α,β∈JN

(cΦ)α,βF ∗
αA

∗Fβ




∗

=
∑

α,β∈JN

(cΦ)α,βF ∗
βA

∗Fα

=
∑

α,β∈JN

(cΦ)β,αF ∗
αA

∗Fβ .

By the uniqueness of the coefficients, Φ is Hermitian if and only if (cΦ)α,β = (cΦ)β,α for 
all α, β. !

The following lemma is a variant of Choi’s Theorem [5]; see [8] for this version.

2.4 Lemma. A linear operator Φ on MN (C) is completely positive if and only if for every 
orthonormal basis {Fα}α∈JN of H, the corresponding characteristic matrix CΦ is positive 
semi-definite.

Proof. The right side of (2.4) can be computed using the matrix unit basis to compute 
the trace:

(cΦ)α,β = 〈#(F ∗
α ⊗ Fβ),Φ〉Ĥ = 1

N2

∑

1≤k,#≤N

Tr[E∗
k,#FαΦ(Ek,#)F ∗

β ]

Let (z1, . . . , zN2) ∈ CN2 and define G :=
∑

α∈JN
zαF ∗

α. Then

∑

α,β

zα(cΦ)α,βzβ = 1
N2

∑

1≤k,#≤N

Tr[E#,kG
∗Φ(Ek,#)G] . (2.5)

Let [Ei,j ] denote the block matrix whose i, jth entry is Ei,j . Then it is easy to see 
that N−1/2[Ei,j ] is an orthogonal projection, and in particular, positive. Now suppose 
that Φ is completely positive. Then the block matrix [G∗Φ(Ei,j)G] whose i, jth entry is 
G∗Φ(Ei,j)G is positive. The right side of (2.5) is then the trace (on the direct sum of N
copies of CN ) of the product of positive N2 × N2 matrices, and as such it is positive. 
Thus, whenever Φ is completely positive, CΦ is positive semi-definite.

On the other hand, suppose that CΦ is positive semi-definite. Let Λ be a diagonal 
matrix whose diagonal entries are the eigenvalues of CΦ, and let U be a unitary such 
that CΦ = U∗ΛU . Then by (2.3), for any X ∈ H,

Φ(X) =
∑

α,β,γ∈JN

U∗
α,γλkUγ,βF

∗
αXFβ =

∑

γ∈JN

V ∗
γ XVγ ,

where Vγ :=
√

λγ

∑

α∈JN

Uγ,αFα. This shows that whenever CΦ is positive semi-definite, 

Φ is completely positive, and provides a Kraus representation of it. !
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So far, we have not required any special properties of the orthonormal bases {Fα}α∈JN

of H that we used. Going forward, it will be necessary to choose bases that have several 
useful properties:

2.5 Definition (symmetric, unital and matrix unit bases). An orthonormal basis
{Fα}α∈JN of H is symmetric in case

for all α ∈ JN , F ∗
α = Fα′ . (2.6)

It is unital in case it is symmetric and moreover

F(1,1) = 1 . (2.7)

It is the matrix unit basis corresponding to an orthonormal basis {u1, . . . , uN} of CN in 
case

F(i,j) =
√
N |ui〉〈uj | . (2.8)

Note that a matrix unit basis is symmetric.

One reason unital bases are useful is the following: the characteristic matrix CI of 
the identity transformation I(A) = A in a unital basis {Fα}α∈JN has only one nonzero 
entry, a 1 in the upper left corner. Indeed, for any A, the expansion of I(A) in the form ∑

αβ #(F ∗
α ⊗Fβ)(A) =

∑
αβ(cI)α,βF ∗

αAFβ reads simply 1∗A1 = F ∗
(1,1)AF(1,1). This fact 

will be used later.

2.6 Remark. When studying self-adjointness with respect to the various inner products 
we have introduced, the following bases will be particularly useful: Let σ ∈ S+(A), and 
let {u1, . . . , uN} be an orthonormal basis of CN consisting of eigenvectors of σ:

σuj = λjuj , j = 1, . . . , N .

The associated matrix unit basis is then given by

E(i,j) =
√
N |ui〉〈uj | . (2.9)

We can then construct a unital basis from this as follows: Let v1 be the unit vector 
N−1/2(1, . . . , 1) ∈ CN each of whose entries (v1)k = N−1/2. Let e1 = (1, 0, . . . , 0) be the 
unit vector in CN whose first entry is 1. Define

u := 1
‖v1 − e1‖

(v1 − e1) and V := 1 − 2|u〉〈u| .

Then it is evident that V is a self-adjoint real unitary matrix, and that V e1 = v1. (V
is the Householder reflection of e1 onto v1). Since V e1 is the first column of V , the first 
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column of V is v1, and then since V is symmetric, the first row of V is also v1. One 
readily finds that

√
NVi,j =






1 i = 1 or j = 1
N−2√
N−1 − 1 i = j ≥ 2
−1√
N−1 otherwise

(2.10)

Let U be the N2 ×N2 unitary matrix whose lower right (N2 −N) × (N2 −N) block is 
the identity, and whose upper left N ×N block is V . That is, for N = 2,

U =





1√
2

1√
2 0 0

1√
2 − 1√

2 0 0
0 0 1 0
0 0 0 1




. (2.11)

Then using this unitary U , we define

Fα :=
∑

β

Uα,βEβ . (2.12)

Then {Fα}α∈JN is a unital basis; in particular F(1,1) = 1.

We are now ready to recall the characterization of QMS generators. Again, the defi-
nition is due to [8].

2.7 Definition (Reduced characteristic matrix). Let L be a Hermitian operator on H
such that L 1 = 0, and let {Fα}α∈JN be a unital orthonormal basis. Let CL be the 
characteristic matrix of L with respect to this basis. The reduced characteristic matrix
RL of L is the (N2−1) ×(N2−1) matrix obtained by deleting the first row and column 
of CL .

The point of this definition is the following, due to [8,11].

2.8 Lemma. Let L be a Hermitian operator on H such that L 1 = 0, and let {Fα}α∈JN be 
a unital orthonormal basis. Let RL be the reduced characteristic matrix of L with respect 
to this basis. Then L is a QMS generator if and only if RL is positive semi-definite.

Proof. Suppose that Pt := etL is completely positive for each t > 0. By the computation 
of the characteristic matrix CI of the identity transformation I performed earlier, we 
know that its reduced characteristic matrix RI = 0. Then since

Rt−1(Pt−I) = t−1RPt − t−1RI = t−1RPt ,
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the reduced characteristic matrix of t−1(Pt−I) coincides with the reduced characteristic 
matrix of t−1Pt, and by Lemma 2.4 this is positive. Taking the limit t → 0, we conclude 
that the reduced characteristic matrix of L is positive.

Conversely, suppose that the reduced characteristic matrix of L is positive. Since 
F(1,1) = 1,

L (A) =
∑

α,β

(cL )α,βF ∗
αAFβ = G∗A + AG +

∑

α,β

(rL )α,βF ∗
αAFβ

where

G := 1
2(cL )(1,1),(1,1)1 +

∑

β

(cL )(1,1),βFβ .

By Lemma 2.4, if we define Ψ(A) :=
∑

α,β(rL )α,βF ∗
αAFβ , then Ψ is completely positive. 

Defining Φ(A) := G∗A + AG, we have L = Φ + Ψ, and then by the argument around 
(1.12), etL is completely positive for all t > 0. Finally, since L 1 = 0, etL is a QMS. !

We are also interested in characterizing the characteristic matrices of operators Φ in 
H for which Φ1 = 0, and, for some σ ∈ S+, Φ†σ = 0.

2.9 Lemma. Let {Eα} be a matrix unit basis of H. Let Φ be an operator on H, and let 
CΦ be its characteristic matrix with respect to {Eα}. Then Φ(1) = 0 if and only if for 
each 1 ≤ k, $ ≤ N

N∑

j=1
(cΦ)(j,k),(j,#) = 0 , (2.13)

and Φ(1) = 1 if and only if (2.13) is satisfied for k &= $, and for 1 ≤ k ≤ N ,

N∑

j=1
(cΦ)(j,k),(j,k) = 1

N
. (2.14)

Proof. We compute

Φ(1) =
∑

α,β

(cΦ)α,βE∗
α1Eβ =

∑

α,β

(cΦ)α,βδα1,β1Eα2,β2 =
∑

j,k,#

(cΦ)(j,k),(j,#)E(k,#) ,

from which (2.13) follows, and then (2.14) follows since 1 = 1
N

∑N
k=1 E(k,k). !

2.10 Lemma. Let Φ be an Hermitian operator on H, and let CΦ be its characteristic 
matrix with respect to a symmetric orthonormal basis {Fα}α∈JN of H. Then

(#(F ∗
α ⊗ Fβ))† = #F ∗

α′ ⊗ Fβ′ , (2.15)
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and

(cΦ†)α,β = (cΦ)β′,α′ . (2.16)

Proof. We compute

Tr[B∗#(F ∗
α ⊗ Fβ)(A)] = Tr[B∗F ∗

αAFβ ] = Tr[(FαBF ∗
β )∗A] = Tr[(F ∗

α′BFβ′)∗A] ,

and this proves (2.15). Then since Φ =
∑

α,β

(cΦ)α,β#(F ∗
α ⊗ Fβ) and since (cΦ)α,β =

(cΦ)β,α by Lemma 2.3,

Φ† =
∑

β,α

(cΦ)α,β(#(F ∗
α ⊗ Fβ))† .

Then by (2.15), (2.16) follows. !

The next lemma says that for Φ ∈ CP (1) or L ∈ QMS, there is often exactly one 
σ ∈ S+ with respect to which Φ or L can possibly be self-adjoint on Hm for that choice 
of σ.

2.11 Lemma. Let Φ be a Hermitian operator that is self-adjoint on Hm where Hm is 
defined in terms of some σ ∈ S+. If Φ(1) = 1, then Φ†(σ) = σ, and if Φ(1) = 0, then 
Φ†(σ) = 0. Hence if Φ ∈ CP (1) is such that 1 is a non-degenerate eigenvalue of Φ, then 
for any m ∈ P[0, 1], there can be only one σ ∈ S+ such that Φ is self-adjoint on Hm. 
Likewise, if L ∈ QMS is such that 0 is a non-degenerate eigenvalue of L , then for any 
m ∈ P[0, 1], there can be only one σ ∈ S+ such that L is self-adjoint on Hm.

Proof. For any Hermitian operator Φ in H, any σ ∈ S+ and any m ∈ P[0, 1] such that 
Φ is self-adjoint on Hm, we compute that for all A,

Tr[Φ†(σ)A] = Tr[σΦ(A)] = 〈1,Φ(A)〉m = 〈Φ(1), A〉m .

If Φ(1) = 1, we have Tr[Φ†(σ)A] = Tr[σA] and since A is arbitrary Φ†(σ) = σ. Likewise, 
if Φ(1) = 0, we have Tr[Φ†(σ)A] = 0 and since A is arbitrary Φ†(σ) = 0. !

On account of this lemma, we will only rarely make the choice of σ explicit in our 
notation. In the next section we determine necessary and sufficient conditions for self-
adjointness.

3. Characterization for self-adjointness with respect to 〈·, ·〉m

For m ∈ P[0, 1], let (·, ·)m denote the m-weighted mean of two nonnegative numbers 
x, y:
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(x, y)m =
1∫

0

xsy1−s dm(s) , x, y ∈ R+ . (3.1)

Note that for all m ∈ P[0, 1],

min{x, y} ≤ (x, y)m ≤ max{x, y} and (x, x)m = x for all x ∈ R+ . (3.2)

For m even,

(x, y)m = (y, x)m for all x, y ∈ R+ . (3.3)

Otherwise define m̂ to be the reflection of m about 1/2; i.e., m̂(U) = m(1 − U). Then

(x, y)m = (y, x)m̂ for all x, y ∈ R+ . (3.4)

3.1 Remark. For any even m ∈ P[0, 1] and any x, y ∈ R+, x &= y, we have

√
xy = (x, y)KMS ≤ (x, y)m , (3.5)

with equality if and only if m = δ1/2. Indeed, first use symmetry of m to rewrite

(x, y)m = 1
2

1∫

0

(xsy1−s + x1−sys)dm(s) . (3.6)

Then

(xsy1−s + x1−sys) −√
xy = 1

2(xs/2y(1−s)/2 + x(1−s)/2ys/2)2 ,

and integrating against m,

(x, y)m − (x, y)KMS = 1
2

1∫

0

(xs/2y(1−s)/2 − x(1−s)/2ys/2)2dm(s) ,

and for x &= y, the integrand vanishes only for s = 1
2 .

For m ∈ P[0, 1] let Mm be the linear transformation on H defined in (1.2). Let 
{u1, . . . , uN} be a complete orthonormal basis of CN consisting of eigenvectors of σ so 
that σuj = λjuj for each j. By hypothesis, each λj is strictly positive. Let {Eα}α∈JN

be the associated matrix unit basis;

E(j,k) :=
√
N |uj〉〈uk| . (3.7)
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Then

Mm(E(j,k)) = (λj , λk)mE(j,k) .

That is, Mm is diagonalized by the orthonormal basis of H consisting of
{
√
NE(j,k)}1≤j,k≤N . Since all of the eigenvalues are strictly positive, it follows that 

M is a positive, invertible operator on H, and the inverse is given by

M−1
m (E(j,k)) = 1

(λj , λk)m
E(j,k) .

Since E∗
(j,k) = E(k,j), we also have, with m̂ denoting the reflection of m about s = 1/2,

Mm(A∗) = (Mm̂(A))∗ and M−1
m (A∗) = (M−1

m̂ (A))∗ (3.8)

In particular, if m is even, Mm and M−1
m are Hermitian.

3.2 Lemma. With respect to a matrix unit basis {Eα}α∈JN associated to σ, the charac-
teristic matrices CMm and CM−1

m
of Mm and M−1

m are given by

(cMm)α,β = (α1, β1)mδα1,α2δβ1,β2 and (cM−1
m

)α,β = (α1, β1)−1
m δα1,α2δβ1,β2 . (3.9)

Proof. We compute

(cMm)α,β = 1
N2

∑

i,j

Tr[(E∗
αE(i,j)Eβ))∗Mm(E(i,j))]

= 1
N2

∑

i,j

(λi, λj)mTr[(E∗
αE(i,j)Eβ))∗E(i,j)]

= 1
N2

∑

i,j

(λi, λj)mTr[E∗
βE(j,i)EαE(i,j)] =

∑

i,j

(λi, λj)mδβ1,jδβ2,jδα1,iδα2,i ,

from which the first formula follows. The second follows in the same way. !

Hence, if we order the basis {Eα}α∈JN so that the first N unit vectors are

E(1,1), . . . , E(N,N)

in this order, then CMm and CM−1
m

are both zero except in their upper left N×N blocks 
where the (i, j)th entries are (λi, λj)m and (λi, λj)−1

m respectively.
Now let A be a symmetric N × N matrix with positive entries. Then a necessary 

condition for A to be positive semi-definite is that for all i, j Ai,j ≤
√
Ai,iAj,j . For 

N = 2, the condition is also sufficient, but it is easy to see that sufficiency fails already 
for N = 3.
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However, combining the necessity with Remark 3.1, we see that Mm is never com-
pletely positive except in the KMS case, m = δ1/2, corresponding to the geometric mean. 
On the other hand, at least in the 2 × 2 case, M−1

m is completely positive whenever m is 
even. There are important cases in which M−1

m is completely positive in every dimension, 
including the KMS and BKM cases. We return to this later.

3.3 Definition. Let Φ be a linear transformation on MN (C), and hence on Hm for each 
m ∈ P[0, 1]. Its adjoint with respect to the inner product 〈·, ·〉m is denoted Φ∗,m.

3.4 Lemma. Let Φ be an Hermitian linear transformation on MN (C) and let m ∈ P[0, 1]. 
Then

Φ∗,m = M−1
m ◦ Φ† ◦Mm . (3.10)

Proof. First recall that, since Φ is Hermitian, Φ† is Hermitian. To see this, note that

Tr[(Φ†(B∗))∗A] = Tr[BΦ(A)] = Tr[B∗(Φ(A))∗] = Tr[B∗Φ(A∗)]

= Tr[(Φ†B)∗A∗] = Tr[(Φ†B)A] .

Thus, (Φ†(B∗))∗ = Φ†(B) for all B.
We now compute

〈B,Φ(A)〉m = Tr[B∗Mm(Φ(A))] = Tr[(Mm(B))∗Φ(A)]

= Tr[(Φ†(Mm(B)))∗A]

= Tr[(M−1
m (Φ†(Mm(B))))∗Mm(A)]

Then (3.10) follows from (3.8). !

It follows that an Hermitian operator Φ is self-adjoint on Hm if and only if

Mm ◦ Φ = Φ† ◦Mm . (3.11)

3.5 Lemma. Let {Eα} be the orthonormal basis of H specified in (3.7). Then for all 
m ∈ P[0, 1],

#(E∗
α ⊗ Eβ) ◦Mm = (λα1 , λβ1)m#(E∗

α ⊗Eβ) (3.12)

and

Mm ◦ #(E∗
α ⊗ Eβ) = (λα2 , λβ2)m#(E∗

α ⊗Eβ) (3.13)
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Proof. We compute

E∗
αMm(A)Eβ =

1∫

0

E∗
ασ

1−sAσsEβdm = (λα1 , λβ1)mE∗
αAEβ ,

and this proves (3.12).
Next, since M†

m = Mm, by (2.15)

Mm ◦ #(E∗
α ⊗Eβ) = (#(E∗

α′ ⊗Eβ′) ◦Mm)† = (λα2 , λβ2)m(#(E∗
α′ ⊗ Eβ′))†

form which (3.13) follows upon another application of (2.15). !

3.6 Theorem. Let Φ be an Hermitian operator on H. Let {Eα} be the orthonormal basis 
of H specified in (3.7), and let CΦ be the characteristic matrix of Φ with respect to this 
basis. Then Φ is self-adjoint on Hm if and only if for all α, β,

(cΦ)α,β = (λα1 , λβ1)m
(λα2 , λβ2)m

(cΦ)β′,α′ (3.14)

In particular, define the matrix BΦ,m by

(bΦ,m)α,β = (cΦ)α,β(λα2 , λβ2)m , (3.15)

and the anti-unitary self-adjoint operator U on CN2 given by

(Uv)α = vα′ . (3.16)

Then (3.17) is equivalent to

UBΦ,m = BΦ,mU . (3.17)

Proof. Applying Lemma 3.4 together with Lemma 3.5 yields (3.14). Then (3.14) can be 
written as

(bΦ,m)α,β = (bΦ,m)α′,β′ . (3.18)

Then (3.17) follows from (3.16) and the definition of U . !

3.7 Remark. We may identify CN2 equipped with its usual inner product and MN(C)
equipped with the Hilbert-Schmidt inner product in the usual way, identifying the vector 
v that has entries vα with the matrix V that has entries Vα1,α2 . Under this identification 
U is identified with V ∗. That is, the anti-unitary map U may be identified with the map 
V ,→ V ∗.
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3.1. QMSm is always a pointed cone

3.8 Lemma. An Hermitian operator L satisfies ±L ∈ QMS if and only if for some H
with H = H∗, L (A) = i[H, A].

Proof. It is evident that if L (A) = i[H, A] with H self-adjoint, then both L and −L
belong to QMS. For the converse, suppose that L and −L belong to QMS. Consider 
some unital orthonormal basis {Fα} of H. Let CL be the characteristic matrix of L
with respect to this basis. Since L and −L belong to QMS, the reduced characteristic 
matrix of L must be both positive semi-definite and negative semidefinite, and hence 
it is zero. Thus (cL )α,β = 0 unless either α = (1, 1) or β = (1, 1) or both. Since L is 
Hermitian (cL )(1,1),β = (cL )β,(1,1). Define

G := 1
2(cL )(1,1),(1,1) +

∑

β +=(1,1)
(cL )(1,1),βFβ .

Then L (A) =
∑

α,β

(cΦ)α,βF ∗
αAFβ = G∗A + AG. Write G = K − iH with K and H self-

adjoint. Since L (1) = 0, we have G∗+G = 0, that is, K = 0. Then L (A) = iHA −iAH =
i[H, A]. !

3.9 Theorem. For any m ∈ P[0, 1], the only Φ such that Φ ∈ QMSm and −Φ ∈ QMSm

is Φ = 0.

Proof. Suppose that Φ ∈ QMSm and −Φ ∈ QMSm. By Lemma 3.8, there is a self-
adjoint H ∈ MN (C) such that Φ(A) = i[H, A]. Let {Eα} be the orthonormal basis of H
specified in (3.7), so that we may apply Theorem 3.6. We compute

(cΦ)α,β = i
1
N2

∑

i,j

Tr [(E∗
αEi,jEβ)∗(HEi,j − Ei,jH)]

= i
1
N2

∑

i,j

Tr
(
Tr[Ei,jE

∗
βEj,iEαH] − Tr[Rj,iEαEi,jHE∗

β ]
)

= iδβ1,β2〈E∗
α, H〉H − iδα1,α2〈Eβ , H〉H .

In particular, (cΦ)α,β = 0 unless either α = α′ or β = β′ or both.
If α = α′ and β = β′, then

〈E∗
α, H〉H = 1

N
Tr[EαH] = 1

N
Tr[HEα] ∈ R ,

and likewise 〈Eβ , H〉H ∈ R. But then (cΦ)α,β is purely imaginary, and this contradicts 
(8.1) unless (cΦ)α,β = 0.
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Next, suppose α = α′, but β &= β′. Then

(cΦ)α,β = −i〈Eβ , H〉H and (cΦ)β′,α = i〈Eβ , H〉H .

By (8.2) we then have

−(λα2 , λβ2)m〈Eβ , H〉H = (λα2 , λβ1)m〈Eβ , H〉H ,

which is impossible unless 〈Eβ, H〉H = 0. But since β is arbitrary apart from the condition 
that β &= β′, this completes the proof that H = 0. !

3.2. The decomposition Ĥ = ĤS ⊕ Ĥ⊥
S

Recall Definition 1.7 of ĤS as the subspace of all operators Φ on Ĥ of the form 
Φ(A) = XA + AY for some X, Y ∈ MN (C).

3.10 Lemma. An operator Φ on H belongs to ĤS if and only if for any unital orthonormal 
basis of H, the reduced characteristic matrix of Φ is zero; i.e., RΦ = 0.

Proof. Let {Fα} be a unital orthonormal basis. Let {Ei,j} be a matrix unit basis. Then 
for Φ(A) = XA + AY we compute

(cΦ)α,β = 1
N3

N∑

i,j=1
Tr[(F ∗

αEi,jFβ)∗(XEi,j + Ei,jY )]

= 1
N3 (Tr[F ∗

β ]Tr[FαX] + Tr[Fα]Tr[F ∗
βY ])

= 1
N

(δβ,(1,1)〈Fα, X〉H + δα,(1,1)〈Fβ , Y 〉H) (3.19)

and this is zero unless either α = (1, 1) or β = (1, 1) or both. Hence RΦ = 0.
On the other hand, if RΦ = 0, Φ has the form

Φ(A) = (cΦ)(1,1),(1,1) +
∑

α +=(1,1)
(cΦ)α,(1,1)F ∗

αA +
∑

β +=(1,1)
(cΦ)(1,1),βAFβ , (3.20)

and hence if we define

X := 1
2(cΦ)(1,1),(1,1)1 +

∑

α +=(1,1)
(cΦ)α,(1,1)F ∗

α

Y := 1
2(cΦ)(1,1),(1,1)1 +

∑

β +=(1,1)
(cΦ)(1,1),βFβ

then Φ has the form Φ(A) = XA + AY , and hence Φ ∈ ĤS . !
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3.11 Remark. By the computation in (3.19),

(cΦ)(1,1),(1,1) = 1
N

Tr[X∗ + Y ] = 〈E(1,1), X〉H + 〈E(1,1), Y 〉H

but for α &= (1, 1), both 〈X, Eα〉H and 〈Y, Eα〉H can be read off from CΦ, so that if for 
some X ′, Y ′ we also have Φ(A) = X ′A +AY ′, it follows that for some η ∈ C, X ′ = X+η1
and Y ′ = Y − η1.

3.12 Lemma. Let Φ be CP with a minimal Kraus representation 
∑M

j=1 V
∗
j AVj. Then the 

necessary and sufficient condition that Φ ∈ Ĥ⊥
S is that Tr[Vj ] = 0 for each j.

Proof. Let {Fα} be any unit orthonormal basis. By Lemma 3.10 Φ ∈ Ĥ⊥
S if and only if 

the characteristic and reduced characteristic matrices of Φ, CΦ and RΦ, respectively, are 
such that the lower right (N2 − 1) × (N2 − 1) block of CΦ is RΦ and all other entries are 
zero. In other words, the first row and column of CΦ are zero.

Writing Vj =
∑

α Sj,αFα, for some unit orthonormal basis {Fα},

Φ(A) =
∑

α,β




M∑

j=1
(S∗

α,jSj,β)



F ∗
αAFβ ,

and hence

(cΦ)α,β =
M∑

j=1
(S∗

α,jSj,β) .

If for each j, Tr[Vj ] = 0, then S(1,1),j = 0 for each j, and hence the first row and column 
of CΦ are zero.

On the other hand, if the first row and column of CΦ are zero, then

0 = (cΦ)(1,1),(1,1) =
M∑

j=1
|Sj,(1,1)|2 ,

and hence Sj,(1,1) = 0 for all j. This implies that Tr[Vj ] = 0. !

3.13 Lemma. For all s ∈ [0, 1], the subspaces ĤS and Ĥ⊥
S are invariant under the opera-

tion of taking the adjoint on Hδs .

Proof. Evidently it suffices to prove the invariance of ĤS . Let Φ(A) = XA + AY . Then 
Φ†(A) = Y ∗A + AX∗ and so

Φ∗,δs(A) = (∆−sY ∗)A + A(∆1−s(G)X∗) ∈ ĤS . ! (3.21)
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4. Self-adjointness for the KMS inner product

It is now very easy to determine the structure of CPKMS := CPδ1/2 . In this case, 
(3.15) becomes

(bΦ,m)α,β =
√

λα2(cΦ)α,β
√
λβ2 . (4.1)

Therefore, for Hermitian Φ, BΦ,KMS is positive semi-definite if and only if CΦ is positive 
semidefinite; i.e., if and only if Φ is CP.

4.1 Theorem. Let K be the real vector space consisting of all V ∈ MN (C) such that 
∆−1/2V = V ∗. The extremal elements Φ of CPKMS are precisely the elements of the 
form

Φ(A) = V ∗AV , V ∈ K . (4.2)

Every map in CPKMS is a linear combination of at most N2 such maps.

Proof. If Φ is extremal in the set of KMS self-adjoint CP maps, then necessarily CΦ and 
BΦ,KMS are rank one, because if BΦ,KMS is not rank one, its spectral decomposition 
would allow it to be written as a sum of two positive matrices B1 and B2, neither a 
multiple of the other, and each commuting with U , the anti-unitary operator defined 
in Theorem 3.6. By Theorem 3.6, this would induce a decomposition of Φ into the sum 
of two KMS self-adjoint CP maps. It follows that Φ is extremal in the set of KMS 
self-adjoint CP maps if and only if B = |u〉〈u| where u is an eigenfunction of U ; i.e., 
Uu = ±u. Then

(cΦ)α,β = 1√
λα2

uαuβ
1√
λβ2

Thus if we define Vu :=
∑

β

1√
λβ2

uβEβ , then Φ(A) = V ∗
uAVu .

Next, since

∆−1/2Eβ =
√
λβ2√
λβ1

Eβ ,

and hence, since uβ = ±uβ′ ,

∆−1/2Vu =
∑

β

1√
λβ1

uβEβ = ±
∑

β

1√
λβ1

uβ′Eβ = ±
∑

β

1√
λβ2

uβEβ′ = ±V ∗
u .

Now suppose that V is such that ∆−1/2V = ±V ∗, and Φ(A) = V ∗AV . Then Φ†(A) =
V AV ∗, and then by Lemma 3.4,
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Φ∗,KMS(A) = σ−1/2(V (σ1/2Aσ1/2)V ∗)σ−1/2 = (∆−1/2V )∗A∆1/2V = V ∗AV = Φ(A) .

Finally, observe that if ∆−1/2V = −V ∗, then ∆−1/2(iV ) = (iV )∗ and of course 
V ∗AV = (iV )∗A(iV ), so we need only concern ourselves with V such that ∆−1/2V = V ∗.

Now equip K with the inner product

〈V,W 〉K = Re (〈V,W 〉H) .

We will make use of the following orthonormal basis for K: Let {Eα} be a matrix unit 
basis associated to σ. First define

ωα := log λα1 − log λα2 , (4.3)

and note that ∆1/2Eα = eωα/2Eα. For α = (α1, α2) such that α1 < α2, define

Gα := 1
i
√

2 cosh(ωα/2)
(eωα/4Eα − e−ωα/4E∗

α) . (4.4)

For α = (α1, α2) such that α1 ≥ α2, define

Gα := 1√
2 cosh(ωα/2)

eωα/4Eα + e−ωα/4E∗
α . (4.5)

Then one readily checks that for all α,

∆−1/2(Gα) = G∗
α , (4.6)

and that {Gα}α∈JN is orthonormal in K.
We now show that {Gα}α∈JN is a basis for the real linear space in question. Suppose 

that V ∈ K. Let {Eα} be the modular basis out of which the orthonormal basis {Gα}
was constructed. We then expand

V =
∑

α

aαe
ωα/4Eα .

We compute

∆−1/2(V ) =
∑

α

aαe
−ωα/4Eα and V ∗ =

∑

α

aαe
ωα/4E∗

α =
∑

α

aα′eωα′/4Eα .

It follows that since ∆−1/2(V ) = V ∗, then aαe−ωα/4 = aα′eωα′/4 = aα′e−ωα/4, and 
hence aα = aα′ . Therefore, if aα = xα + iyα is the decomposition of aα into its real and 
imaginary parts,

aαe
ωα/4Eα + aα′eωα′/4Eα′ = xα[eωα/4Eα + e−ωα/4E∗

α] + iyα[eωα/4Eα − e−ωα/4E∗
α]
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Now consider any α = (α1, α2) with α1 > α2. Then we have

aαe
ωα/4Eα + aα′eωα′/4Eα′ = xαGα + yαGα′ ,

while if α1 = α2, aα = aα′ = xα and aαeωα/4Eα + aα′eωα′/4Eα′ = 2xαEα = xαGα. 
Hence V is a real linear combination of the {Gα}. !

4.2 Theorem. Let Φ and Ψ be two CP maps that are KMS self-adjoint. Let Φ(A) =∑M
j=1 V

∗
j AVj be a minimal Kraus representation of Φ with each Vj ∈ K. Then Φ − Ψ is 

CP if and only if there exists a real M ×M matrix T such that 0 ≤ T ≤ 1 and

Ψ(A) =
M∑

i,j=1
Ti,jV

∗
i AVj . (4.7)

Proof. Suppose that Φ − Ψ is CP. Then by Arveson’s Theorem, there exists a uniquely 
determined T with 0 ≤ T ≤ 1 such that (4.7) is valid. Since Ψ is KMS self-adjoint,

Ψ(A) =
M∑

i,j=1
Ti,jσ

−1/2Viσ
1/2Aσ1/2V j

j σ
−1/2 =

M∑

i,j=1
Ti,jV

∗
i AVj .

By the uniqueness, T is real.
Conversely, suppose that Ψ has the form specified in (4.7) with 0 ≤ T ≤ 1 and T is 

real. Then Φ is CP and KMS self-adjoint, and since T ≥ 0, Ψ is CP, and since T ≤ 1, 
Φ ≥ Ψ. Finally, since T is real, Ψ is KMS self-adjoint. !

4.3 Theorem. Let Φ be a unital CP map that is KMS self-adjoint and let Φ(A) =∑M
j=1 V

∗
j AVj be a minimal Kraus representation of Φ with Vj ∈ K for each j. Then 

Φ is an extreme point of the set of unital CP maps that are KMS self-adjoint if and only 
if

{V ∗
i Vj + V ∗

j Vi : 1 ≤ i ≤ j ≤ M} (4.8)

is linearly independent over the real numbers.

Proof. Suppose that the set in (4.8) is linearly independent over the real numbers. Sup-
pose that Ψ is unital, CP and KMS self-adjoint, and that for some 0 < t < 1, Φ − tΨ is 
CP. We must show that Ψ = Φ. By Lemma 4.2, there is a real M ×M matrix T such 
that 0 ≤ T ≤ 1 and

tΨ(A) =
M∑

i,j=1
Ti,jV

∗
i AVj .

Then
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t1 = tΨ(1) =
M∑

i,j=1
Ti,jV

∗
i Vj and t1 = tΦ(1) =

M∑

i,j=1
tδi,jV

∗
i Vj .

Therefore

0 =
M∑

i,j=1
(tδi,j − Ti,j)V ∗

i Vj .

Then by the linear independence, tδi,j − Ti,j = 0 for each i, j. Thus tΨ = tΦ, and Φ is 
extreme.

Now suppose that the set in (4.8) is not linearly independent over the reals. Then there 
is an M×M real symmetric matrix B such that Bi,j are not all zero and 

∑
i,j Bi,jV ∗

i Vj =
0. Choose some t > 0 such that

0 ≤ T := 1 + tB ≤ 21 ,

and define Ψ by

Ψ(A) =
M∑

i,j=1
Ti,jV

∗
i AVj .

Then Ψ is CP, KMS self-adjoint, and

Ψ(1) =
M∑

i,j=1
(δi,j + tBi,j)V ∗

i AVj =
M∑

i,j=1
δi,jV

∗
i 1Vj = Φ(1) = 1 .

Thus Ψ is unital and since Ψ ≤ 1
2Φ, Φ is not extreme. !

4.1. QMSKMS

The problem of determining the structure of QMS generators that are self-adjoint on 
HKMS has been studied in [6], but we give a simpler approach that goes further in one 
important aspect.

Let L ∈ QMSKMS and write it in the form

L (A) = (G∗A + AG) +
M∑

j=1
V ∗
j AVj (4.9)

where {V1, . . . , VM} is linearly independent, which we may always do for any QMS gen-
erator. Replacing each Vj by Vj − Tr[Vj ]1 and absorbing the difference into G, we may 
assume without loss of generality that for all j Tr[Vj ] = 0. By Lemma 3.12, Ψ, given by 
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Ψ(A) =
∑M

j=1 V
∗
j AVj belongs to Ĥ⊥

S . Under these conditions on {V1, . . . , VM}, (4.9) is 
the orthogonal decomposition of L into its components in ĤS and Ĥ⊥

S .
By Lemma 3.13, each component is individually self-adjoint. Let Φ denote the map 

Φ(A) = G∗A + AG. Then Φ†(A) = GA + AG∗ and hence

Φ∗,KMS(A) = (∆−1/2G)A + A(∆1/2G∗)

Furthermore, adding a purely imaginary multiple of 1 to G has no effect on the 
operation A ,→ G∗A + AG, and hence we may assume without loss of generality that 
Tr[G] ∈ R. Then Tr[∆−1/2G] ∈ R, and by Remark 3.11, we must have ∆−1/2G = G∗.

Thus, a QMS generator L is self-adjoint on HKMS if and only if it can be written in 
the form

L (A) = G∗A + AG +
M∑

j=1
V ∗
j AVj (4.10)

where Tr[G] ∈ R, {V1, . . . , VM} is linearly independent, ∆−1/2G = G∗ and ∆−1/2Vj = V ∗
j

as well as Tr[Vj ] = 0 for each j. As explained in the introduction, this much one finds 
in [6]. However, there is a compatibility question to be dealt with. Since L (1) = 0, we 
must have

0 = G∗ + G +
M∑

j=1
V ∗
j Vj . (4.11)

That is, writing G = H + iK, H and K self-adjoint,

H = 1
2

M∑

j=1
V ∗
j Vj . (4.12)

Now in general ∆−1/2(H) is not even self-adjoint, so that ∆−1/2(H) = H does not 
generally hold true.

This raises the following question: Given any CP map Ψ with a minimal Kraus rep-
resentation Ψ(A) =

∑M
j=1 V

∗
j AVj such that for each j ∆−1/2Vj = V ∗

j and Tr[Vj ] = 0, 
when does there exist a G such that

L (A) := G∗A + AG + Ψ(A) (4.13)

belongs to QMSKMS? By what has been noted above, we may as well require Tr[G] ∈ R, 
and then we must have ∆−1/2G = G∗, and we must have G = H + iK, H and K self-
adjoint, with H specified by (4.12). It turns out that there always exists a unique choice 
of K such that ∆−1/2G = G∗, and thus the answer to the question just raised is “always”.
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4.4 Theorem. There is a one-to-one correspondence between elements L of QMSKMS

and CP maps Ψ ∈ Ĥ⊥
S that are self-adjoint on HKMS. The correspondence identifies Ψ

with LΨ where

LΨ(A) = G∗A + AG + Ψ(A) (4.14)

where G = H + iK, H and K self-adjoint and given by

H := 1
2Ψ(1) (4.15)

and

K := 1
i

∞∫

0

e−tσ1/2(σ1/2H −Hσ1/2)e−tσ1/2dt . (4.16)

Furthermore, for all LΨ1 , LΨ2 ∈ QMSKMS, LΨ1−LΨ2 ∈ QMS if and only if Ψ1−Ψ2 ∈
CP ; i.e., LΨ1 ≥ LΨ2 if and only if Ψ1 ≥ Ψ2, and the extreme points of QMSKMS are 
precisely the generators of the form

L (A) := G∗A + AG + V ∗AV

where ∆−1/2V = V ∗ and where G = H + iK is given by (4.15) and (4.16) for Ψ(A) =
V ∗AV .

Proof. Consider such a set {V1, . . . VM} and define

Ψ(A) =
M∑

j=1
V ∗
j AVj . (4.17)

Since Tr[Vj ] = 0 for each j, RΨ is positive semidefinite, and since ∆−1/2Vj = V ∗
j for each 

j, Ψ is self-adjoint on HKMS . Then for any choice of G, L (A) = G∗A + AG + Ψ(A)
generates a CP semigroup, and it belongs to QMS if and only if L (1) = 0, and this 
is the case if and only if the self-adjoint part of H := 1

2 (G + G∗) is given by (4.14). 
Finally, L will be self-adjoint on HKMS if and only if K := −i1

2 (G − G∗) is chosen so 
that ∆−1/2(G) = G∗.

The equation ∆−1/2(G) = G∗ is equivalent to (H + iK)σ1/2 = σ1/2(H − iK), and 
rearranging terms we have

σ1/2K + Kσ1/2 = −i(σ1/2H −Hσ1/2) . (4.18)

This is a Lyapunov equation, and for any X self-adjoint, the unique solution K of 
σ1/2K + Kσ1/2 = X is given by
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K :=
∞∫

0

e−tσ1/2
Xe−tσ1/2dt .

Indeed,

σ1/2




∞∫

0

e−tσ1/2
Xe−tσ1/2dt



σ1/2 = −
∞∫

0

d
dte

−tσ1/2
Xe−tσ1/2dt = X .

Thus we must take K to be given by (4.16). Note that Tr[K] = 0 as an easy consequence 
of cyclicity of the trace, and hence Tr[G] ∈ R.

Now suppose LΨ1 , LΨ2 ∈ QMSKMS . Then LΨ1 − LΨ2 ∈ QMS if and only if its 
reduced density matrix is positive semidefinite. By Lemma 3.10 and Lemma 3.12, this is 
the case if and only if Ψ1−Ψ2 is CP. The final assertion now follows from Theorem 4.1. !

5. Self-adjointness for the GNS inner product

The other case of main interest that is easily handled is the case of self-adjointness 
for the GNS inner product. While the KMS inner product corresponds to the measure 
m = δ1/2, the GNS inner product corresponds to the measure δ0. It turns out that we 
may as well consider m = δs, s &= 1

2 ; the set of CP maps that are self-adjoint on Hδs

does not depend on s &= 1
2 . The structure of QMSGNS was worked out by Alicki, and 

his methods adapt well to the study of CP (1)GNS .

5.1 Theorem. The extremal rays in the cone of CP maps that are self-adjoint on Hδs , 
s &= 1

2 , are precisely the maps of the form

Φ(A) = eω/2V ∗AV + e−ω/2V AV ∗ (5.1)

where ∆V = eωV , ω > 0, or of the form

Φ(A) = V AV , (5.2)

∆V = V = V ∗ In particular, every CP map that is self-adjoint on Hδs is a positive 
linear combination of the operators specified in (5.1) and (5.2).

5.2 Remark. The restriction to ω > 0 in (5.1) is not essential; it is to avoid double 
counting, since the eigenvalues eω of ∆ with ω > 0 and with ω < 0 enter only in the 
precisely paired manner specified in (5.1). Also, note that replacing V by eiθV , θ ∈ R, 
has no effect on the map in (5.2). There do exist V that are not self-adjoint such that 
A ,→ V ∗AV is self-adjoint on Hδs and extremal even in the wider class of all CP maps. 
However, the theorem asserts that in this case one may replace V by an appropriate 
complex multiple and then V = V ∗.
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Proof. Specializing to m = δs, (3.14) becomes

(cΦ)α,β =
λs
α1λ

1−s
β1

λs
α2λ

1−s
β2

(cΦ)β′,α′ = esωα+(1−s)ωβ (cΦ)β′,α′ . (5.3)

As a consequence, (cΦ)β′,α′ = esωβ′+(1−s)ωα′ (cΦ)α,β = e−sωβ−(1−s)ωα(cΦ)α,β . Altogether,

e(1−2s)ωα(cΦ)α,β = (cΦ)α,βe(1−2s)ωβ . (5.4)

That is, CΦ commutes with the diagonal matrix Ω whose αth diagonal entry is e(1−2s)ωα . 
Of course this condition is vacuous for s = 1

2 , but otherwise it is a strong restriction on 
CΦ. Let us order the entries in such a manner that all indices α for which eωα has the 
same value are grouped together. Then CΦ will have a block structure. In any case, as a 
consequence of (5.4), for s &= 1

2 ,

ωα &= ωβ ⇒ (cΦ)α,β = 0 . (5.5)

The blocks correspond to the distinct eigenvalues of the modular operator. Let µ be 
such an eigenvalue and let Jµ = {α : eωα = µ }. Apart from µ = 1, which is always 
an eigenvalue, the eigenvalues come in pairs. Let µ′ := 1

µ ; then α ,→ α′ is a one-to-one 
map from Jµ onto Jµ′ . For α, β ∈ Jµ, (5.3) reduces to (cΦ)α,β = µ(1−2s)(cΦ)β′,α′ =
µ(1−2s)(cΦ)α′,β′ , or equivalently,

µ−(1−2s)/2(cΦ)α,β = µ(1−2s)/2(cΦ)α′,β′ . (5.6)

Hence, for µ &= 1, if Uα,β , α, β ∈ Jµ is a unitary that diagonalizes the block corresponding 
to the eigenvalue µ, Uα′,β′ is a unitary that diagonalizes the block corresponding to the 
eigenvalue 1

µ . For µ = 1, (5.3) further reduces to (cΦ)α,β = (cΦ)α′,β′ which means that 
this block of CΦ is diagonal in an orthonormal basis consisting of eigenvectors of this 
anti-unitary transformation. The eigenvectors v are such that

(
∑

α∈J1

vαEα

)∗

=
∑

α∈J1

vαE
′
α = ±

∑

α∈J1

vαE
′
α = ±

∑

α∈J1

vαEα ,

commutes with the anti-unitary transformation vα ,→ vα′ . Replacing v by −v as needed, 
we can arrange that 

∑
α∈J1

vαEα is self-adjoint. Then the µ = 1 block of CΦ can be 
diagonalized by a unitary Uγ,β such that for each γ ∈ J1, 

∑
β∈J1

Uγ,βEβ is self-adjoint.
Now we piece together all the unitary blocks into an N2 × N2 unitary that we still 

call U , being careful to use the “matched” unitaries in the adjoint blocks, as described 
above.

It follows that there is a unitary matrix U and non-negative numbers cγ such that

cα,β =
∑

γ

cγU
∗
α,γUγ,β =

∑

γ

cγUγ,αUγ,β
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and such that Uγ,β = 0 unless eωγ = eωβ , and defining Vγ :=
∑

β

Uγ,βEβ we have

∆Vγ = eωγVγ

for all γ and

{Vγ : γ ∈ JN} = {V ∗
γ : γ ∈ J ∗

N}

is an orthonormal basis of H. When working with this basis, we redefine the map α ,→ α′

by Vα′ = V ∗
α . This can only differ from the definition used with the matrix unit bases for 

indices in J1, and only if σ has at least two eigenvalues equal to one another, producing 
an “accidental” eigenvector of ∆ with the eigenvalue 1.

Then Φ(A) =
∑

α,β cα,βE
∗
αAEβ becomes Φ(A) :=

∑

γ

cγV
∗
γ AVγ . Since ∆σ(Vγ) =

eωγVγ and V ∗
α = Vα′

Φ∗,ms(A) =
∑

γ

σ−sVγσ
sAσ1−sV ∗

γ σ
−(1−s) =

∑

γ

cγe
−sωγe(s−1)ωγVγAV ∗

γ

=
∑

γ

cγ′eωγV ∗
γ AVγ .

By the uniqueness of the coefficients, Φ∗,ms = Φ if and only if for each γ

cγ = cγ′eωγ . (5.7)

Defining bγ = e−ωγ/2cγ , (5.7) is equivalent to bγ = bγ′ . Let S denote the spectrum of ∆, 
which is of course determined by the spectrum of σ. We can finally write Φ in the form

Φ(A) =
∑

γ∈J1

cγVγAVγ +
∑

µ∈S,µ>1

∑

γ∈Jµ

bγ
(
eωγ/2V ∗

γ AVγ + e−ωγ/2VγAV ∗
γ

)
. (5.8)

It remains to show that the maps specified in (5.1) are extremal. Suppose first that 
V = eiθV ∗ for some real θ. Then ω = 0, and (5.1) reduces to Φ(A) = V ∗AV which is 
extremal in the larger cone of all CP maps, and thus extremal among those that are 
self-adjoint on Hδs . Replacing V by e−iθ/2V we see that we may assume without loss of 
generality in this case that V = V ∗.

Next, suppose that V &= eiθV ∗ for any real θ, but ω = 0. Write V = X + iY , X, Y
self-adjoint. Then ∆X = X and ∆Y = Y and X &= Y . We compute

V ∗AV = (X − iY )A(X + iY ) = XAX + Y AY + i(XAY − Y AX)
V AV ∗ = (X + iY )A(X − iY ) = XAX + Y AY − i(XAY − Y AX) .

Thus Φ(A) = XAX + Y AY . Then A ,→ XAX and A ,→ Y AY are distinct CP maps 
that are self-adjoint on Hδs . Hence Φ is not extreme. In summary, when ∆V = V , the 
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necessary and sufficient condition for Φ to be extremal is that V ∗ = eiθV for some real 
θ, in which case we may replace V by an equivalent self-adjoint operator.

Now suppose that ∆V = eωV with ω &= 0. Then V and V ∗ are orthogonal. For 
convenience in what follows define W1 := e−(1−2s)ω/4V and W2 := e(1−2s)ω/4V ∗. Then, 
ignoring the trivial case V = 0,

Φ(A) = W ∗
1 AW1 + W ∗

2 AW2

is a minimal Kraus representation of Φ. Consequently, if Ψ is any CP map such that 
Φ − Ψ is CP, then Ψ has the form

Ψ(A) =
∑

i,j

Ti,jW
∗
i AWj

where T is a 2 × 2 matrix such that 0 ≤ T ≤ 1. Then,

Ψ∗,δs(A) =
∑

i,j

Ti,j(∆−sWi)A(∆1−sW ∗
j ) =

∑

i,j

Ti,je
−s(3−2i)ωe(1−s)(3−2j)ωWiAW ∗

j .

Since Ti,j = Tj,i, simple calculations yield

Ψ∗,δs(A) = T1,1W
∗
2 AW2 + T2,2W

∗
1 AW1 + T2,1e

−ωW1AW ∗
2 + T1,2e

ωW2AW ∗
1 .

Then with Ψ∗,δs = Ψ, by the uniqueness of the coefficients, T1,2 = T2,1 = 0 and T1,1 =
T2,2. This shows that T is a multiple of the identity, and hence that Ψ is a multiple of 
Φ. Hence Φ is extreme. !

The following notation will be useful going forward. For µ ∈ S, let dµ be the dimension 
of the corresponding eigenspace of ∆. As a consequence of Theorem 5.1, every CP map 
Φ that is self-adjoint on Hδs has a Kraus representation of the following form:

Let S ′ = {µ1, . . . , µd} be a subset of S such that 1 ≤ µ1 ≤ µ2 · · · ≤ µd. For each 
1 ≤ j ≤ d, let {V (j)

1 , . . . , V (j)
Mj

} be a linearly independent set of eigenvectors of ∆
with eigenvalue µj . Evidently, 1 ≤ Mj ≤ dj . Suppose further that if µ1 = 1, then 
{V (1)

1 , . . . , V (1)
M1

} is self-adjoint. Then, if d1 > 1, the Kraus representation is

Φ(A) =
d∑

j=1




Mj∑

k=1
(µ1/2

k V (j)∗
k AV (j)

k + µ−1/2
j V (j)

k AV (j)∗
k )



 , (5.9)

while if d1 = 1, it is

Φ(A) =
M1∑

k=1
V (1)
k AV (1)

k +
d∑

j=2




Mj∑

k=1
(µ1/2

j V (j)∗
k AV (j)

k + µ−1/2
j V (j)

k AV (j)∗
k )



 . (5.10)
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In either case, the minimality of the Kraus representation is a consequence of the linear 
independence required above. We call such a minimal Kraus representation of a CP map 
that is self-adjoint on Hδs , s &= 1

2 a canonical minimal Kraus representation.

5.3 Theorem. Let Φ be a CP map that is self-adjoint on Hδs , s &= 1
2 . Then if Ψ is another 

CP map that is self-adjoint on Hδs , Φ − Ψ is CP if and only if:
(1) If Φ has a canonical minimal Kraus representation of the form (5.9), there are ma-
trices T (1), . . . , T (d) where T (j) is an Mj × Mj matrix satisfying 0 ≤ T (j) ≤ 1 such 
that

Ψ(A) =
d∑

j=1




Mj∑

k,#=1
T (j)
k,#

(
µ1/2
j V (j)∗

k AV (j)
# + µ−1/2

j V (j)
# AV (j)∗

k

)


 , (5.11)

(2) If Φ has a canonical minimal Kraus representation of the form (5.10), there are 
matrices T (1), . . . , T (d) where T (j) is an Mj × Mj matrix satisfying 0 ≤ T (j) ≤ 1, and 
with T (1) real, such that

Ψ(A) =
M1∑

k,#=1
T (1)
k,# V

(1)
k AV (1)

# +
d∑

j=2




Mj∑

k,#=1
T (j)
k,#

(
µ1/2
j V (j)∗

k AV (j)
# + µ−1/2

j V (j)
# AV (j)∗

k

)


 .

(5.12)

Proof. Let us consider the case (1). For each j = 1, . . . , d, apply the Gram-Schmidt algo-
rithm to produce an invertible lower triangular Mj×Mj matrix L(j) and an orthonormal 
set {W (1)

1 , . . . , W (j)
Mj

} such that

V (j)
k =

Mj∑

#=1
L(j)
k,#W

(j)
# and hence (V (j))∗k =

Mj∑

#=1
L(j)
k,#(W (j))∗# .

Evidently {W (1)
1 , . . . , W (j)

Mj
} lies in the eigenspace of ∆ corresponding to µj . Then

Φ(A) =
d∑

j=1

( Mj∑

k,#=1

(
µ1/2
j [(L(j))∗L(j)]k,#W (j)∗

k AW (j)
#

+ µ−1/2
j [(L(j))∗L(j)]k,#W (j)

k AW (j)∗
#

)
)

.

One can read off from this expression the characteristic matrix CΦ with respect to the 
orthonormal basis obtained by extending, if necessary

{W (j)
k : 1 ≤ j ≤ d , 1 ≤ k ≤ Mj } .
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Let CΨ denote the characteristic matrix of Ψ with respect to this same basis. Then Φ −Ψ
is CP if and only if CΦ −CΨ ≥ 0. Thus, Φ −Ψ, which is certainly self-adjoint on Hδs , is 
CP if and only if there are matrices {R(1), . . . , R(d)} where for each j, R(j) is an Mj×Mj

matrix with 0 ≤ R(j) ≤ (L(j))∗L(j) such that

Ψ(A) =
d∑

j=1




Mj∑

k,#=1

(
µ1/2
j R(j)

k,#W
(j)∗
k AW (j)

# + µ−1/2
j R(j)

k,#W
(j)
k AW (j)∗

#

)


 .

Now defining T (j) = ((L(j))−1)∗R(j)(L(j))−1, we have the result in case (1) on account 
of the self-adjointness of each T (j).

The proof in case (2) is essentially the same, except for one point: Since {V (1)
1 , . . . ,

V (1)
M1

} is self-adjoint, for all i, j, Tr[(V (1)
i )∗V (1)

j ] = Tr[V (1)
i V (1)

j ] ∈ R.
Therefore, applying the Gram-Schmidt algorithm to {V (1)

1 , . . . , V (1)
M1

} yields a self-
adjoint orthonormal basis {W (1)

1 , . . . , W (1)
M1

} and a real lower triangular matrix L(1) such 

that V (1)
k =

∑Mj

#=1 L
(1)
k,#W

(1)
# . Also, since {W (1)

1 , . . . , W (1)
M1

} is a set of self-adjoint eigenvec-
tors of ∆ in the eigenspace with eigenvalue 1, 

∑M1
j=1 R

(1)
i,j W

(1)
i AW (1)

j is CP and self-adjoint 
on Hδs if and only if R(1) ≥ 0 and R(1) is real. Hence the matrix T (1) is real in addition 
to satisfying 0 ≤ T (1) ≤ 1. !

5.4 Theorem. Let Φ ∈ CP (1)δs , the set of unital CP maps that are self-adjoint on Hδs. 
Let Φ have a canonical minimal Kraus representation specified in terms of

{ {V (1)
1 , . . . , V (1)

M1
}, . . . , {V (d)

1 , . . . , V (d)
Md

} }

as in (5.9) or (5.10). Define

X(j)
k,# = µ1/2

j V (j)∗
k V (j)

# + µ−1/2
j V (j)

# V (j)∗
k .

The necessary and sufficient condition for Φ to be extremal in CP (1)δs is that for each 
1 ≤ j ≤ d,

{ X(j)
k,# : 1 ≤ k, $ ≤ Mj , 1 ≤ j ≤ d } (5.13)

is linearly independent.

Proof. Suppose first that Φ has a canonical minimal Kraus representation of the type 
(5.9). Let Ψ be a unital CP map that is self-adjoint on Hδs , and suppose that for some 
0 < t < 1, Φ − tΨ is CP. Then by Theorem 5.3, there are matrices T (1), . . . , T (d) where 
T (j) is an Mj ×Mj matrix satisfying 0 ≤ T (j) ≤ 1 such that tΨ(A) is given by the right 
side of (5.11). Since Ψ and Φ are both unital, tΨ(1) = tΦ(1), and then
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d∑

j=1




Mj∑

k,#=1
(T (j)

k,# − tδk,#)
(
µ1/2
j V (j)∗

k V (j)
# + µ−1/2

j V (j)
# V (j)∗

k

)


 = 0 .

Then, if the set specified in (5.13) is linearly independent, for each j, T (j) = t1, and 
hence tΨ = tΦ so that Ψ = Φ. Hence Φ is extremal.

For the converse, suppose that the set specified in (5.13) is linearly dependent. Then 
there are matrices {B(1), . . . , B(d)}, not all zero, such that

d∑

j=1




Mj∑

k,#=1
B(j)

k,#

(
µ1/2
j V (j)∗

k V (j)
# + µ−1/2

j V (j)
# V (j)∗

k

)


 = 0 . (5.14)

The adjoint of the N × N matrix on the left in (5.14) equals the matrix obtained by 
replacing each B(j) by its adjoint. Thus, we may assume without loss of generality that 
each B(j) is self-adjoint.

Now replacing each B(j) with tB(j) for some common t > 0, we may assume without 
loss of generality that ‖B(j)‖ ≤ 1 for each j. Now define T (j) := 1

2 (1 + B(j)). Then 
0 ≤ T (j) ≤ 1 for all j. Now, using these T (j), define Ψ by (5.11). Then by Theorem 5.3, 
Ψ is CP, self-adjoint on Hδs and Φ −Ψ is CP. By (5.14) and the fact that Φ is unital, Ψ
is unital. But since B(j) &= 0 for at least one j, Ψ is not a multiple of Φ. Hence Φ is not 
extremal.

The case in which Φ has a canonical minimal Kraus representation of the type (5.10)
is quite similar. !

6. Evenly self-adjoint maps

We say a map Φ is evenly self-adjoint in case it is self-adjoint on Hm for all even 
m. Let CPeven, CPeven(1) and QMSeven be the sets of evenly symmetric CP maps, 
unital CP maps and QMS generators respectively. We have seen that, for instance, 
CPGNS ⊂ CPeven ⊂ CPKMS , since when Φ ∈ CPGNS , Φ is self-adjoint on every Hm

whether m is even or not, and since the measure m defining the KMS inner product is 
even. For the same reason we have CPeven ⊂ CPBKM .

Using the next lemma, we will describe a natural way to construct elements of CPeven, 
CPeven(1) and QMSeven that do not belong to CPGNS, CPGNS(1) and QMSGNS re-
spectively:

6.1 Lemma. Let m ∈ P[0, 1] and suppose Φ is such that [Mm, Φ] = 0. Then 1
2 (Φ + Φ†)

and 1
2i (Φ − Φ†) are self-adjoint on Hm.

Proof. By Lemma 3.4, Φ is self-adjoint on Hm if and only if Mm ◦Φ = Φ† ◦Mm. Since 
M†

m = Mm, [Mm, Φ†] = 0. Then

Mm ◦ 1
2 (Φ† + Φ) = 1

2 (Φ† + Φ) ◦Mm = 1
2 (Φ† + Φ)† ◦Mm .
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The proof for 1
2i (Φ − Φ†) is the same. !

For 1 ≤ i, j ≤ N , let Ei,j :=
√
N |ui〉〈uj | where {u1, . . . , uN} is an orthonormal 

basis of CN consisting of eigenvectors of σ; σuj = λjuj . Recall that the Ei,j are an 
orthonormal basis of H consisting of eigenvectors of Mm with MmEi,j = (λi, λj)mEi,j . 
If m is not even, it can easily be that each eigenspace of Mm is one dimensional, and 
then Φ commutes with Mm if and only if it is a function of Mm itself.

However, when m is even, (λi, λj)m = (λj , λi)m for all i, j, and hence if i < j, 
Ei,j and Ej,i belong to the same eigenspace. For i < j, consider the map Φ defined 
by Φ(A) = Ei,jAEi,j . Note that Φ†(A) = Ej,iAEj,i. A simple calculation shows that 
Φ ◦Mm = (λi, λj)mΦ and Mm ◦Φ = (λj , λi)mΦ. Hence, whenever m is even, [Φ, Mm] =
0. For i &= j define the maps Ψi,j by

Ψi,j(A) :=
{

1
2 (Ei,jAEi,j + Ej,iAEj,i) i < j
1
2i (Ei,jAEi,j − Ej,iAEj,i) i > j .

(6.1)

Lemma 6.1 says that these maps are evenly self-adjoint.
Therefore, let Φ0 be a CP map that is self-adjoint on Hm for all m ∈ P[0, 1], and let 

T be a real N ×N matrix that is zero on the diagonal. Then

Φ = Φ0 +
∑

i+=j

Ti,jΨi,j (6.2)

is evenly self-adjoint, and is CP if and only if CΦ0+
∑

i$=j Ti,jΨi,j
≥ 0. Notice also that 

Ψi,j(1) = 0 for all i &= j, so that, if Φ0 is unital, then so is the operator Φ in (6.2). 
Likewise, if L0 is a QMS generator that is self-adjoint on Hm for all m ∈ P[0, 1], then

L = L0 +
∑

i+=j

Ti,jΨi,j (6.3)

is evenly self-adjoint, and is a QMS generator if and only if RL0+
∑

i$=j Ti,jΨi,j
≥ 0 where 

the reduced density matrix is computed with respect to any unital basis.
As we explain next, under a non-degeneracy condition on the spectrum of the mod-

ular operator, this construction not only gives us a class of examples, but a complete 
parameterization of the set of all evenly self-adjoint CP maps and QMS generators.

Suppose the eigenvalues {λ1, . . . , λN} of σ are such that the N2 − N numbers λi
λj

, 
i &= j are all distinct, which of course implies that the N eigenvalues of σ are all distinct. 
In this case we say that the modular operator has minimally degenerate spectrum – the 
eigenvalue 1 has multiplicity N and all other eigenvalues are simple.

6.2 Theorem. Suppose σ is such that ∆ has minimally degenerate spectrum. Let Φ be an 
evenly self-adjoint CP map. Then there exists a GNS self-adjoint CP map Φ0 and a real 
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N × N matrix T that is zero on the diagonal such that Φ is given by (6.2). If we also 
assume Φ ∈ CP (1), then Φ0 ∈ CP (1).

Furthermore, the extreme points of the set CPeven of evenly self-adjoint CP maps are 
of the form either

Φ(A) = V AV (6.4)

where ∆(V ) = V and V ∗ = V , in which case Φ is GNS self-adjoint, or, for some α such 
that α1 < α2,

Φ(A) = a
(
λα1Eα′AEα + λα2EαAEα′ +

√
λα1λα2(eiθEα′AEα′ + e−iθEαAEα)

)
(6.5)

where a > 0 and θ ∈ [0, 2π), in which case Φ is not GNS self-adjoint.

6.3 Theorem. Suppose σ is such that ∆ has minimally degenerate spectrum. Let L be 
an evenly self-adjoint QMS generator. Then there exists a GNS self-adjoint CP map 
L0 and a real N × N matrix T that is zero on the diagonal such that L is given by 
(6.3). Furthermore, the extreme points of the set QMSeven of evenly self-adjoint QMS 
generators are of the form either

L (A) = V AV − 1
2 (V 2A + AV 2) (6.6)

where ∆(V ) = V and V ∗ = V , in which case L is GNS self-adjoint, or, for some α
such that α1 < α2,

L (A) = a
(
λα1Eα′AEα + λα2EαAEα′ +

√
λα1λα2(eiθEα′AEα′ + e−iθEαAEα)

)

(6.7)

− a
√
N

2

(
(λα1Eα2,α2 + λα2Eα1,α1)A + A(λα1Eα2,α2 + λα2Eα1,α1)

)
, (6.8)

where a > 0 and θ ∈ [0, 2π), in which case L is not GNS self-adjoint.

The proofs of these theorems are very similar. We first record some useful lemmas.

6.4 Lemma. Let a, b, c, d > 0 with a ≤ b and c ≤ d. Then

(a, b)m
(c, d)m

(6.9)

is independent of the even measure m if and only if ac = b
d .
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Proof. Suppose ac = b
d = K. Then a = Kc and b = Kd so that for any m,

1∫

0

asb1−sdm =
1∫

0

(Kc)s(Kd)1−sdm = K

1∫

0

csd1−sdm ,

and the ratio in (6.9) is independent of m, even or not.
For the converse, suppose that the ratio in (6.9) is K for all even m. Then taking 

m = δ1/2 and m = 1
2 (δ0 + δ1), giving the geometric and arithmetic means respectively, 

we have

a + b = K(c + d) and
√
ab = K

√
cd ,

from which we deduce

(
√
a +

√
b)2 = K(

√
c +

√
d)2 and (

√
a−

√
b)2 = K(

√
c−

√
d)2

Since a ≤ b and c ≤ d,

√
a =

√
a +

√
b

2 +
√
a−

√
b

2 =
√
K

√
c +

√
d

2 +
√
K

√
c−

√
d

2 =
√
K
√
c ,

and likewise, 
√
b =

√
K
√
d. This implies that ac = b

d = K. !

6.5 Lemma. Let Φ be an evenly symmetric map. Suppose 1 ≤ i, j, k, $ ≤ N are such that 
there exist even m1 and m2 for which

(λi, λk)m1

(λj , λ#)m1

&= (λi, λk)m2

(λj , λ#)m2

(6.10)

Let CΦ be the characteristic matrix of L computed with respect to {Ei,j}. Then 
(cΦ)(i,j),(k,#) = 0.

Proof. By Theorem 3.6, for Φ to be self-adjoint on Hm1 ,

(cΦ)(i,j),(k,#) = (λi, λk)m1

(λj , λ#)m1

(cΦ)(#,k),(j,i) ,

while for Φ to be self-adjoint on Hm2 , the same relation must hold with m1 replaced by 
m2. By (6.10), this means that (cΦ)(i,j),(k,#) = 0. !

Proof of Theorem 6.2. Returning to the notation α = (α1, α2) and α′ = (α2, α1), by 
Lemma 6.5, (cΦ)α,β = 0 unless (λα1 ,λβ1 )m

(λα2 ,λβ2 )m is independent of m even. By Lemma 6.4, this 
means that either
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λα1

λα2

= λβ1

λβ2

or λα1

λβ2

= λβ1

λα2

.

Since the spectrum of ∆ is minimally degenerate, the first of these conditions is satisfied 
if and only if either (α = β) or (α = α′ and β = β′). The second of these conditions 
is satisfied if and only if α = β or α = β′. Thus, when ∆ has minimally degenerate 
spectrum and Φ is evenly self-adjoint, then (cΦ)α,β = 0 unless one of the following is 
satisfied:
(1) α = α′ and β = β′

(2) α = β

(3) α = β′

If we order the indices so that (1, 1), . . . , (N, N) come first, followed by consecutive 
pairs (i, j) and (j, i) with i < j, CΦ will have an N × N block in the upper left, and 
then a string of 

(N
2
)

2 × 2 blocks down the diagonal, with all other entries being zero. 
Consider one of these 2 × 2 blocks. The diagonal entries are (cΦ)α,α and (cΦ)α′,α′ for 
some α with α1 < α2. Again by Theorem 3.6, these are related by

(cΦ)α,α = λα1

λα2

(cΦ)α′,α′

Hence if we order the indices so that α comes before α′, the 2 × 2 block has the form

a

[
λα1 ζ

ζ λα2

]

for some a ≥ 0. Then if a &= 0, we must have |ζ|2 ≤ λα1λα2 if Φ is completely positive. 
If we write ζ = x + iy, x, y ∈ R, then

a

[
λα1 ζ

ζ λα2

]
= a

[
λα1 0
0 λα2

]
+ xΨα1,α2 + yΨα2,α1 . (6.11)

Applying this to all such blocks we see that Φ has the form

Φ = Φ0 +
∑

i+=j

Ti,jΨi,j (6.12)

where CΦ0 is the matrix obtained by setting all off diagonal elements of CΦ outside the 
upper left N × N block equal to zero. Since CΦ is positive semidefinite, so is CΦ0 . It 
follows that Φ0 is CP and GNS symmetric. Also note that Φ(1) = 1 is equivalent to 
Φ0(1) = 1, since the maps Ψi,j annihilate 1.

Maps of the form (6.4) are readily seen to be extreme points of CPeven, just as in the 
proof of Theorem 5.1. Other extrema Φ are obtained by letting the only non-zero entries 
in CΦ be those of a 2 × 2 block like (6.11) with |ζ| chosen as to give equality in the 
condition |ζ|2 ≤ λα1λα2 . These extreme points are those of the form (6.5). In particular 
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note that maps of the form (5.1), which were extreme in CPGNS, are not extreme in 
CPeven, since they can be obtained as convex combinations of two maps in the form 
(6.5) using opposite values of θ. !

Proof of Theorem 6.3. Just as in the proof of Theorem 6.2 above, we conclude that CL

for an evenly self-adjoint QMS generator L has the block structure of an upper-left 
N ×N block followed by 

(N
2
)

2 × 2 blocks down the diagonal in the form (6.11), which 
justifies the formula

L = L0 +
∑

i+=j

Ti,jΨi,j (6.13)

with L0 being GNS self-adjoint. It remain to prove that L0 is a QMS generator.
According to Lemma 2.8, the reduced characteristic matrix RL of L computed in 

some unital orthonormal basis must be positive semidefinite. Moreover, as a consequence 
of Lemma 2.2 and as described in Remark 2.6, RL can be obtained as the lower-right 
(N2 − 1)-dimensional block of the matrix C̃L = UCLU∗, where U is an unitary matrix 
containing a nonzero upper-left N×N block and the identity for its lower-right (N2−N) ×
(N2−N) block. In particular RL has a block structure with an upper-left (N−1) ×(N−1)
block and the same 

(N
2
)

2 × 2 blocks down the diagonal as CL , and by assumption each 
of these blocks is positive semidefinite, which implies the same condition |ζ|2 ≤ λα1λα2

described in the proof of the previous theorem. Meanwhile, RL0 also has a block structure 
with the same upper-left (N − 1) × (N − 1) block as RL (because the upper-left N ×N

blocks for CL and CL0 are the same), and with a diagonal lower-right (N2−N) ×(N2−N)
block. Hence RL0 is positive semidefinite, implying that L0 is a QMS generator.

The description of the extreme points of QMSeven follows the same reasoning as in 
the proof of Theorem 6.2 above. !

7. From KMS self-adjointness to BKM self-adjointness

Recall that MBKM denotes the operator on H given by

MBKM (A) =
1∫

0

σsAσ1−sds . (7.1)

Then

M−1
BKM (A) =

∞∫

0

1
t + σ

A
1

t + σ
dt , (7.2)

so that M−1
BKM is CP. Now define the unital CP map
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Ψ(A) =
∞∫

0

√
σ

t + σ
A

√
σ

t + σ
dt . (7.3)

7.1 Theorem. The map Φ ,→ Ψ ◦Φ is a one-to-one map from the set of KMS self-adjoint 
CP maps into the set of BKM self-adjoint CP maps, taking unital maps to unital maps.

Proof. Let Φ be KMS self-adjoint. Then

〈B,Ψ(Φ(A))〉BKM = Tr[B∗MBKM (Ψ(Φ(A)))] = Tr[B∗√σΦ(A)
√
σ]

= 〈B,Φ(A)〉KMS = 〈Φ(B), A〉KMS

= Tr[
√
σ(Φ(B))∗

√
σA] = Tr[M−1

BMK(
√
σ(Φ(B))∗

√
σ),MBKM (A)]

= 〈Ψ(Φ(B)), A〉BKM .

The rest follows from the fact that Ψ is invertible, CP, and unital. !

Evidently, a similar construction is possible for any m such that M−1
m is CP. This is 

not the case for every even m, but there are examples other than BKM and KMS:

7.2 Theorem. For s ∈ [0, 1] define ms := 1
2 (δs + δ1−s). Then for each s ∈ [0, 1], the 

operator M−1
ms

is completely positive for all σ ∈ S+.

Proof. By Lemma 3.2, for any m, for the standard matrix unit basis {Eα},

(cM−1
m

)α,β = (α1, β1)−1
m δα1,α2δβ1,β2 .

If we order the indices as usual so that (1, 1), . . . , (N, N) come first, CMm has the N×N

matrix Λ(m) defined by

Λ(m)
i,j := 1

(λi, λj)m
(7.4)

in its upper left block, and is zero elsewhere. By Lemma 2.4 M−1
m is CP if and only if 

Λ(m) is positive semi-definite. Specializing to the case m = ms for some s,

Λ(ms)
i,j = λ−s

i λ−s
j

2
λ1−2s
i + λ1−2s

j

.

Define κj = λ1−2s
j . Then

1
λ1−2s
i + λ1−2s

j

=
1∫

0

tκi+κj−1dt ,



430 É. Amorim, E.A. Carlen / Linear Algebra and its Applications 611 (2021) 389–439

and hence for any (z1, . . . , zn) ∈ Cn,

n∑

i,j=1
z∗i Λ(ms)

i,j zj = 2
1∫

0

∣∣∣∣∣

n∑

i=1
λ−s
i tκi− 1

2 zi

∣∣∣∣∣

2

dt ≥ 0 ,

proving that Λ(ms) is positive semidefinite. !

8. QMSm for N = 2, m even

The following lemma will facilitate the computations in this section:

8.1 Lemma. Let Φ be self-adjoint on Hm. Then, with respect to any matrix unit orthonor-
mal basis of H, the characteristic matrix CΦ of Φ satisfies

For α = α′, β = β′ , (cΦ)α,β = (cΦ)β,α , (8.1)

For α = α′, β &= β′ , (cΦ)α,β(λα2 , λβ2)m = (cΦ)β′,α(λα2 , λβ1)m , (8.2)

For α &= α′ , α = β′ , (cΦ)α,β(λα2 , λα1)m = (cΦ)α,β(λα1 , λα2)m , (8.3)

For α &= α′ , α = β , (cΦ)α,βλα2 = (cΦ)α,βλα1 , (8.4)

Proof. This is an immediate consequence of Theorem 3.6. !

In this section we determine the structure of QMSm for even m when N = 2. First 
consider any Hermitian L on M2(C) such that L (1) = 0. Then the fact that CL is 
self-adjoint, together with Lemma 2.9 constrain CL to have the form

CL =





−a ζ1 z ζ2
ζ1 −b ζ4 −z

z ζ4 b ζ3
ζ2 −z ζ3 a




, (8.5)

where a, b are real and z is complex and the relations among entries involving them are 
determined by Lemma 2.9 and self-adjointness, and where ζ1, . . . , ζ4 are complex, and 
the relations among entries involving them are constrained only by self-adjointness.

We next apply Lemma 8.1. By (8.1), ζ1 = ζ∗1 =: −x, and hence the upper-left block 
is real and symmetric for all choices of m. By (8.3), since (λ1, λ2)m = (λ2, λ1)m there is 
no restriction on ζ3.

Next we apply (8.2). Taking α = (1, 1) and β = (1, 2), and then α = (2, 2) and 
β = (2, 1), we see that

z = λ1
(λ1, λ2)m

ζ2 and − z = λ2
(λ2, λ1)m

ζ4 .
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Next we apply (8.4). Taking α = (1, 2) and β = (1, 2)

b = λ1
λ2

a .

We conclude that if we set µj := (λ1, λ2)m/λj , j = 1, 2, and replace a by λ2a,

CL =





−a −x z µ1z

−x −b −µ2z −z

z −µ2z b ζ3
µ1z −z ζ3 a




. (8.6)

Conjugating with the unitary U given in (2.11), and replacing z by 
√

2z, yields C̃L , 
the characteristic matrix for the associated unital basis:

C̃L =





−x− a
2 (λ1 − λ2)a2 (1 − µ2)z (µ1 − 1)z

(λ1 − λ2)a2 x− a
2 (1 + µ2)z (1 + µ1)z

(1 − µ2)z (1 + µ2)z λ1a ζ3
(µ1 − 1)z (1 + µ1)z ζ3 λ2a




. (8.7)

Defining νj = µj + 1, j = 1, 2 and dropping the subscript on ζ3, we have the reduced 
characteristic matrix

R̃L =




x− a

2 ν2z ν1z

ν2z λ1a ζ

ν1z ζ λ2a



 (8.8)

To break the homogeneity, let us fix Tr[RL ] = 1, which means x + a
2 = 1. For positivity, 

we must have x ≥ a
2 > 0, and hence 0 ≤ 1 ≤ a. We now determine the extreme points 

in the set of (a, z, ζ) for which R̃L is positive semidefinite.
If a = 0, then necessarily z = ζ = 0, so (a, z, ζ) = (0, 0, 0) is extreme. If a = 1, then 

x − a
2 = 0, and necessarily z = 0. Then extremality reduces to |ζ| =

√
λ1λ2. Thus,

(1, 0,
√
λ1λ2e

iθ)

yields a one parameter family of extreme points.
Now we turn to the cases in which 0 < a < 1. Suppose first that

|ζ| = a
√
λ1λ2 . (8.9)

As with a = 1, it is again the case that z = 0 is necessary for positivity of RL . To see 
this, define

A :=
[
λ1a ζ

ζ λ2a

]
, /v := (zν2, zν1) , /η := (η1, η2) and /Z := (t, η1, η2)



432 É. Amorim, E.A. Carlen / Linear Algebra and its Applications 611 (2021) 389–439

where η1, η2 ∈ C and t ∈ R. Then, again with x = 1,

〈/Z,RL
/Z〉 = t2(1 − a) + 2tRe (〈/v, /η〉) + 〈/η,A/η〉 .

Minimizing over t, we find 〈/η, B(z)/η〉 where

B(z) :=
[
aλ1 − |z|2

(1−a)ν
2
2 ζ − z2

(1−a)ν1ν2

ζ − z2

(1−a)ν1ν2 aλ2 − |z|2
(1−a)ν

2
1

]
.

When (8.9) is satisfied, A has rank one, and B(z) is the difference of two positive rank 
one matrices. Hence B(z) cannot be positive definite unless the two rank one matrices 
are proportional. Since the null space of A is spanned by w := (−

√
λ2, 

√
λ1eiθ) where 

ζ = |ζ|eiθ, when y &= 0, it is only possible for B(z) to be positive in case 〈v, w〉 = 0. 
However, |〈v, w〉| ≥ |z||

√
λ1ν1 −

√
λ2ν2|, and

|
√

λ1ν1 −
√

λ2ν2| =
( (λ1, λ2)m√

λ1λ2
− 1

)
|
√

λ2 −
√

λ1| .

Under the assumption λ1 &= λ2, this is non-zero unless m is the point mass at 1/2; i.e., 
in the KMS case.

Thus, when (8.9) is satisfied, except in the KMS case, z = 0 is necessary and sufficient 
for the reduced characteristic matrix to be positive semidefinite. We set aside the KMS 
case since we already have a complete description of it for general N . Then

(0, 0, 0) and (1, 0,
√
λ1λ2e

iθ) , 0 ≤ θ < 2π , (8.10)

are all of the extreme points where (8.9) is satisfied. Notice that they are exactly the 
ones that are evenly symmetric.

Now consider pairs (a, ζ) such that |ζ| < a
√
λ1λ2. Then B(0) > 0. Writing z =: |z|eiϕ

and holding ϕ fixed, there is r0 > 0 such that for |z| ≤ r0, B(|z|eiϕ) ≥ 0, but for |z| > r0, 
B(z) has a negative eigenvalue. It follows that a necessary condition for extremality is 
that det(B(|z|eiϕ)) = 0. Computing det(B(|z|eiϕ)) = 0 yields

r2
0 = (1 − a)(a2λ1λ2 − |ζ|2)

a(λ1ν2
1 + λ2ν2

2) − 2ν1ν2Re (ζei2ϕ) . (8.11)

Note that the denominator in this expression is strictly positive since |Re (ζei2ϕ)| ≤
a
√
λ1λ2 and hence

(
a(ν2

2λ2 + ν2
1λ1) − ν1ν22Re (ζei2ϕ)

)
≥

(
a(ν2

2λ2 + ν2
1λ1) − 2ν1ν2a

√
λ1λ2

)

= a(ν1
√

λ1 − ν2
√
λ2)2 > 0 .
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Thus the remaining extreme points are those given by

(a, r0eiϕ, r
√

λ1λ2e
iθ) 0 < a < 1 , 0 ≤ r < a , 0 ≤ θ, ϕ < 2π , (8.12)

with r0 given by (8.11).
To write L in the canonical form L (A) = G∗A +AG +Φ(A), we easily read off from 

(8.7):

G =
[

a
4 (3λ1 − λ2) − x

2
z√
2(µ1 − µ2)

z√
2(µ1 − µ2) a

4 (3λ2 − λ1) − x
2

]
+ 1√

2
(2 − µ1 − µ2)

[
0 z

−z 0

]
.

Thus writing G = H + iK, H and K self-adjoint, we have that

K := 1√
2i

(2 − µ1 − µ2)
[

0 z

−z 0

]

and by (8.6),

z = 〈u1,L (|u1〉〈u1|)u2〉 .

It is easy to check that in the KMS case, this formula for K coincides with that given by 
Theorem 1.9. To write Φ in Kraus form amounts to diagonalizing the 3 × 3 matrix RL

given by (8.8). Evidently this can be done in closed form, but the resulting formulas are 
complicated and shed little light on matters.

9. Appendix

In this appendix we recall some ideas of Arveson that were originally developed in 
the context of minimal Stinespring representation, but which have, in our finite dimen-
sional setting, a very simple expression in terms of minimal Kraus representations. This 
complements previous work by Choi [5]. The required background on Stinespring repre-
sentations can be found in the initial chapters of [12].

Let Φ be a completely positive map on the algebra A = MN (C), and let 

Φ(A) =
M∑

j=1
V ∗
j AVj be a Kraus representation of it. The same data can be cast as a 

Stinespring representation of Φ, which was actually Kraus’ starting point. Let HN,M

denote the Hilbert space consisting of all N ×M matrices X equipped with the Hilbert-
Schmidt inner product. Define a representation of MN(C) on HN,M by

π(A)X = AX . (9.1)

Define a linear transformation V : CN → HN,M by
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Vx = [V1x, . . . , VMx] , (9.2)

where [x1, · · ·xM ] denotes the N × M matrix whose jth column is xj. Then for X =

[x1, · · · , xM ] ∈ HN,M , 〈X,Vx〉HN,M = Tr[[x1, · · · , xM ]∗[V1x, . . . , VMx]] =
M∑

j=1
〈V ∗

j xj , x〉, 

from which it follows that

V∗X =
M∑

j=1
V ∗
j xj . (9.3)

Thus we have the Stinespring representation

Φ(A) = V∗π(A)V , (9.4)

in terms of a map V from CN into some other Hilbert space, and a representation of 
MN (C) on that Hilbert space. Stinespring’s Theorem says that every CP map is of this 
form.

The Stinespring representation (9.4) is minimal in case the closed span of

{π(A)Vx : A ∈ A , x ∈ CN}

is all of HN,M , the closure being irrelevant in this finite dimensional case.

9.1 Lemma. The Stinespring representation (9.3) specified by (9.2) is minimal if and only 
if {V1, . . . , VM} is linearly independent.

Proof. Suppose that W = [w1, . . . , wM ] is non-zero and orthogonal to π(A)Vx for all A ∈
A and all x ∈ CN . Then 0 = 〈W, AVx〉HN,M = 〈V∗A∗W, x〉, and hence the orthogonality 
is equivalent to the condition V∗A∗W = 0 for all A ∈ A .

Suppose that {V1, . . . , VM} is not linearly independent. Then there is a non-zero vector 
v such that 

∑M
j=1 vjV

∗
j = 0. Let x ∈ CN be arbitrary, and define W = [v1x, . . . , vMx]. 

Then A∗W = [v1A∗x, . . . , vMA∗x] and V∗A∗W =




M∑

j=1
vjV

∗
j



A∗x = 0. Thus, there 

exists a non-zero N ×M matrix W such that W is orthogonal to π(A)Vx for all A ∈ A
and all x ∈ CN , which proves the necessity of the condition.

Suppose W is a non-zero matrix such that V∗A∗W = 0 for all A ∈ A . Let r be 
the rank of W ; evidently 0 < r ≤ min{M, N}. Let W = QR be a QR factorization 
of W so that Q is an N × r matrix with orthonormal columns and R is an r × M

with linearly independent rows. Write Q = [q1, . . . , qr], and extend {q1, . . . , qr} to an 
orthonormal basis {q1, . . . , qN} of CN if r < N . Define an N ×N matrix B by Bqj = q1
for j ≤ r, and, in case r < N , Bqj = 0 for j > r. Then BQR = [q1, . . . , q1]R; 
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i.e., (BQR)i,j = (q1)i
r∑

k=1
Rk,j . Since the rows of R are linearly independent, the vector 

v ∈ CM with vj =
∑r

k=1 Rk,j is not zero. Hence for any w ∈ CN , taking A∗ = UB where 
U is an appropriate chosen unitary, we can arrange that A∗W = [v1w, . . . , vMw], and 
then

0 = V∗A∗W =




M∑

j=1
vjV

∗
j



w ,

and since w is arbitrary, this implies that 
∑M

j=1 vjV
∗
j = 0. This is impossible since 

{V1, . . . , Vm} are linearly independent, and hence W must be zero. This proves the 
sufficiency of the condition. !

The next theorems involve maps of the form

Ψ(A) =
M∑

i,j=1
Bi,jV

∗
i AVj (9.5)

where {V1, . . . , VM} ⊂ A , and B is an M × M matrix. Suppose that B is positive so 
that B = S∗S. Then writing Bi,j =

∑M
k=1 S

∗
i,kSk,j =

∑M
k=1 Sk,iSk,j ,

Ψ(A) =
M∑

k=1
W ∗

kAWk where Wk =
M∑

j=1
Sk,jVj .

It follows that whenever B ≥ 0, Ψ is CP, and this is true without any hypotheses on 
{V1, . . . , VM}.

Now suppose that {V1, . . . , VM} is linearly independent. The Gram-Schmidt procedure 
yields an orthonormal set {E1, . . . , EM} and an invertible lower triangular matrix L such 
that Vi =

∑M
j=1 Li,jEj . Then

Ψ(A) =
M∑

i,j=1
Bi,jV

∗
i AVj =

M∑

i,j,k,#=1
Bi,jLi,kE

∗
kALj,#E# =

M∑

k,#=1
(L∗BL)i,jE∗

kAE# .

Since {E1, . . . , EM} is orthonormal, Ψ is CP if and only if L∗BL is positive semidefinite. 
But since L is invertible, this is the case if and only if B is positive semidefinite. Moreover, 
we see that there is at most one matrix B for which Ψ can be written in the form (9.5)
since L∗BL is the characteristic matrix of Ψ for an orthonormal basis determined by 
{V1, . . . , VM}. This proves:

9.2 Lemma. Let Ψ be a map defined by (9.5) for some set {V1, . . . , VM} ⊂ MN (C) and 
some M×M matrix B. Then if B is positive semi-definite, Ψ is CP, and if {V1, . . . , VM}
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is linearly independent, Ψ is CP if and only if B is positive semi-definite, and in this 
case the correspondence between Ψ and B is one-to-one.

Now let Φ and Ψ be two CP maps. Then Φ − Ψ is CP if and only if CΦ − CΨ ≥ 0. 
Thus, the invertible transformation Φ ,→ CΦ identifies the order structure on CP (A )
with the order structure on MN (C)+, the positive semidefinite elements of MN (C). 
There is another characterization of this order relation due to Arveson that has several 
advantages.

9.3 Theorem. Let Φ be a completely positive map given by a minimal Kraus representation 
Φ(A) =

∑M
j=1 V

∗
j AVj. Then a CP map Ψ satisfies Φ ≥ Ψ if and only if there is a uniquely 

determined M ×M matrix T such that 0 ≤ T ≤ 1 and

Ψ(A) =
M∑

i,j=1
Ti,jV

∗
i AVj . (9.6)

Equivalently, in terms of the associated minimal Stinespring representation Φ(A) =
V∗π(A)V, there is a positive operator T̃ ∈ π(MN (C))′, the commutant of π(MN (C)), 
such that

Ψ(A) = V∗π(A)T̃V . (9.7)

9.4 Remark. Arveson [2, Theorem 1.4.2] proved the theorem in the second equivalent 
form, and discussed it as being a non-commutative Radon-Nikodym Theorem with the 
Radon-Nikodym derivative being the element T̃ of π(MN (C))′.

Proof. Let T be an M × M matrix, with 0 ≤ T ≤ 1, and let Ψ(A) be given by (9.6). 
Since T ≥ 0, Ψ is CP by Lemma 9.2, and

Φ(A) − Ψ(A) =
M∑

i,j=1
(δi,j − Ti,j)V ∗

i AVj .

Since 1 − T ≥ 0, by another application of Lemma 9.2, Φ − Ψ is CP.
Conversely, suppose that Φ −Ψ is CP. We again use the Gram-Schmidt procedure to 

produce an orthonormal set {E1, . . . , EM} and an invertible lower triangular matrix T
such that Vi =

∑M
j=1 Li,jEj . Then Φ(A) =

∑M
j=1(L∗L)i,jE∗

i AEj .
If M < N2, extend {E1, . . . , EM} to an orthonormal basis of MN (C) equipped with 

the Hilbert-Schmidt inner product. The characteristic matrix of Φ with respect to this 
basis, CΦ, has L∗L as its upper-left M × M block, and all other entries are zero. If Ψ
is a CP map such that Φ − Ψ is CP, then CΦ − CΨ is positive semidefinite. Hence for 
some M ×M matrix R with 0 ≤ R ≤ L∗L, Ψ(A) =

∑M
i,j=1 Ri,jE∗

i AEj . But then since 

Ej =
∑M

k=1 L
−1
j,kVk,
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Ψ(A) =
M∑

i,j=1
((L−1)∗RL−1)i,jE∗

i AEj .

Since 0 ≤ R ≤ L∗L, 0 ≤ (L−1)∗RL−1 ≤ 1. Hence we may define T := (L−1)∗RL−1 and 
we have the contraction. This completes the proof that a CP map Ψ satisfies Ψ ≤ Φ if 
and only if Ψ has the form specified in (9.6).

We now show that this is equivalent to Ψ having the form specified in (9.7). For an 
N ×M matrix X and an M ×M matrix B, define

π′(B)X = XBT ,

where BT denotes the transpose of B. It is easy to check that π′ is a ∗-representation 
of MM (C) on HN,M . It is immediately clear that π′(MM (C)) lies in the commutant of 
π(MN (C)) since π′ acts by right multiplication, and π acts by left multiplication, and 
it is easy to check that in fact (π(A ))′ = π′(MM (C)).

Now write X ∈ HN,M in the form X = [x1, . . . , xM ]. Then for any M ×M matrix R

M∑

j=1
[R1,jxj , . . . , RM,jxj ] = XRT .

Suppose now that Ψ has the form specified in (9.6). Then for all x, y ∈ CN ,

〈x,Ψ(A)y〉 =
M∑

i=1
〈Vix,A

M∑

j=1
Ti,jVjy〉 = 〈x,V∗π(A)π′(TT)Vy〉 .

Defining T̃ := π′(TT), we obtain (9.7).
Finally, assume that Ψ has the form (9.7). Since π(A )′ = π′(MM (C)) we can write 

T̃ = π′(TT) for some M ×M matrix T with 0 ≤ T ≤ 1. Then

Ψ(A) = V∗π(A)T̃V = Ψ(A) = V∗π(A)π′(TT)V = V∗π(A)W

where

Wx = [W1x, . . . ,WMx] and Wi =
M∑

j=1
Ti,jVj .

Then Ψ has the form specified in (9.6) !

We now turn to a question addressed by Arveson: A CP map is unital in case Φ(1) = 1. 
Evidently the set of unital CP maps is convex. An element Φ of this convex set is extremal 
in case whenever Ψ is another unital CP map such that for some t ∈ (0, 1), tΨ ≤ Φ, then 
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necessarily Ψ = Φ. What are necessary and sufficient conditions for a unital CP map Φ
to be extremal in the cone of unital CP maps?

Arveson’s answer is stated in terms of minimal Stinespring representations and the 
commutant of π(MN (C)), where π is the representation in the Stinespring representa-
tion. In our finite dimensional setting, there is a much simpler expression, due to Choi, 
of this condition in terms of a minimal Kraus representation:

9.5 Theorem. Let Φ be a unital CP map with a minimal Kraus representation Φ(A) =∑M
j=1 V

∗
j AVj. In order for Φ to be extremal in the cone of unital CP maps, it is necessary 

and sufficient that the M2 matrices

{ V ∗
i Vj : 1 ≤ i, j ≤ M } (9.8)

are linearly independent.

9.6 Remark. Choi [5, Theorem 5] gave an elementary proof of this result that bypasses 
the use of Arveson’s Radon-Nikodym Theorem. We give a very short matricial rendering 
of Arveson’s original proof [2, Theorem 1.4.6] using Theorem 9.3. It is worth noting, as 
Arveson did, that the proof applies, and yields the same result, if applied to the class of 
CP maps for which Φ(1) = K, for any fixed 0 ≤ K ≤ 1.

Proof. Suppose first that the set in (9.8) is linearly independent. Let Ψ be CP and unital 
with tΨ ≤ Φ for some 0 < t < 1. Then by Theorem 9.3, there is an M ×M matrix T
with 0 ≤ T ≤ 1 such that

tΨ(A) =
M∑

i,j=1
Ti,jV

∗
i AVj .

Taking A = 1, we get t1 =
M∑

i,j=1
Ti,jV

∗
i Vj , and then since t1 = tΦ(1) =

∑M
j=1 tV

∗
j Vj , we 

have 
∑M

i,j=1 Bi,jV ∗
i Vj = 0 where Bi,j = tδi,j −Ti,j . By the linear independence, Bi,j = 0

for each i, j, and hence T = t1. Thus tΨ = tΦ, and so Φ is extreme.
For the converse, suppose that Φ is extreme. The set in (9.8) is linearly independent 

if and only if the map B ,→
∑

i,j Bi,jV ∗
i Vj is injective. Because this map is Hermitian, 

to show that it is injective, it suffices to show that it is injective on the self-adjoint 
M × M matrices. Therefore, consider a self-adjoint B such that 

∑
i,j Bi,jV ∗

i Vj = 0. 
Replacing B with a positive multiple of itself, we may freely assume that ‖B‖ ≤ 1. 
Define T = 1

2 (1 + B), and then define Ψ by Ψ(A) =
∑M

i,j=1 Ti,jV ∗
i Vj . Ψ is CP with 

Ψ ≤ Φ by Theorem 9.3, and Ψ(1) = 1
21 since 

∑
i,j Bi,jV ∗

i Vj = 0. Therefore, defining 
Ψ̃ = 2Ψ, we have that Ψ̃ is unital, CP, and 1

2 Ψ̃ ≤ Φ. Since Φ is extreme, Φ̃ = Φ, and 
hence 2T = 1 and B = 0. !
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