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This paper describes the solution of a vector function around disconnected spheres
where the fields are governed by a hybrid between Stokes and Helmholtz equations.
The governing relation known as Brinkman equation typically appears to represent the
spatial variations in Darcy’s flow in porous medium as well as in unsteady Stokesian
hydrodynamics. The presented analysis provides a general solution technique of the
aforementioned field equation assuming inhomogeneous Dirichlet conditions at the sur-
face of the disconnected spheres and a decaying variation at infinity. The methodology
relies on the expansions in multiple sets of vector basis functions corresponding to each
sphere. The key result in the formulation is the mutual transformations between the basis
functions of two such sets. This allows the derivation of the matrix relations coupling the
unknown amplitudes with the given inhomogeneous boundary conditions. The presented
mathematical theory is validated by complementing numerical calculations. Accordingly,
the solution is constructed using the outlined method, and the error in the form of departure
from the intended boundary condition is evaluated. This error vanishes very quickly with
increasing number of basis solutions demonstrating high accuracy and exponential spectral
convergence of the numerical scheme. The versatility of the method is also demonstrated
by describing the flows under both steady and unsteady conditions around particles moving
in porous and liquid medium, respectively.

DOI: 10.1103/PhysRevFluids.5.104303

I. INTRODUCTION

The spatial variation in a vector field corresponding to many complex systems is often described
by Brinkman equation [1]. It is a hybrid between the Stokes and the Helmholtz equations, where
the spatial dependence of a solenoidal vector v is affected by the gradient of a scalar field p.
Accordingly, the governing field equations assume the following form:

−∇p + ∇2v = k2v, ∇ · v = 0, (1)

where both v and p are treated as the dependent variables with wave number k being a constant. In
absence of p, the first of the relations coincides with Helmholtz equation. In contrast, for k =0, the
pair of equalities in Eq. (1) represent Stokes equation.

In contemporary research, Brinkman equation is receiving a significant attention. Its renewed
relevance is due to the study of hitherto unexplored complicated phenomenon or complex systems.
For example, analysis of inherently unsteady mutual interactions between two Brownian particles
for nanofluidic [2–5] or microrheological [6–8] predictions requires consideration of Brinkman
equation. Similarly, the governing equation for flow simulations through porous materials is
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represented by Eq. (1) [9,10]. Moreover, the same can be relevant in unsteady viscoelasticity [11]
or electrodynamics [12] problems.

In this paper, we provide a mathematical formulation to solve Brinkman equation, where the
value of v is given at the surface of two or three neighboring spheres. Apart from the spherical
objects, the space is freely expanded implying a decaying v and p far away from these bodies. The
solution-technique can be viewed as a generalization of Many-body Stokesian dynamics [13–20],
though the proposed approach has wider scopes and more versatile context beside fluid mechanics.

Our findings would be immediately applicable in modeling thermal properties of dense nanoflu-
ids where heat conductivity enhances considerably due to hydrodynamically interacting Brownian
particles [3]. These suspended bodies undergoing random motion drag fluid along, and act as
numerous stirrers causing an increase in heat transfer rate. In Brownian dynamics, timescale for
temporal variation matches with viscous relaxation. Thus, effect of particulate motion on stochastic
mass transfer can only be accounted for if inertia-corrected unsteady Stokes equation is considered.
The key step in the mathematical formulation remains the solution of Brinkman equation which
appears when unsteady Stokes equation is Fourier transformed from temporal to frequency space.
The many-body problem addressed in this paper would represent pairwise interactions between
moving bodies and reveal the cumulative impact of their motions on thermal transport [21–24].

Similar studies of Brownian dynamics are also useful in microrheological applications. In
microrheology, the root-mean-square (RMS) displacement of a Brownian particle in a linearly
viscoelastic fluid is recorded as function of time, and then the viscoelasticity or complex viscocity of
the fluid is retrieved from the data [25]. This procedure is especially applicable to measure properties
of precious samples which can be destroyed if subjected to the stresses created by a conventional
rheometer. Microrheological predictions require solutions for inertia-corrected unsteady Stokes
equation to calculate viscoelastic stresses. To this end, the Brinkman equation obtained from
temporal Fourier transform is ultimately solved to derive the frequency-dependent mobility. The
experimental results are compared with the theoretical estimation to determine the rheological
constants as function of frequency. The many-body problem addressed here would suggest how
to correct the error introduced by any neighboring bodies [26], as many of these are often present in
the test liquid.

Furthermore, the multisphere solution of Brinkman equation can also help to calculate the
effective permeability of inhomogenous porous medium with permeable matrix and impermeable
obstacles [27,28]. Many filters are constituted by such materials where multicomponent interior
causes an effective filtration of suspended solutes with different sizes. The fluid velocity through this
medium can be modeled by Brinkman equation in a domain with a number of no-slip nonporous
obstacles. The solution technique developed in this article can be directly imported in such flow
simulation. At present, the similar problems are addressed by methodologies derived from Stokesian
dynamics [10] and lattice Boltzmann [29,30]. The proposed scheme builds on the existing ones
enhancing the computational accuracy substantially without incurring significant cost.

In our analysis of the many-sphere system, we expand v in different sets of vector basis functions
of Eq. (1) corresponding to each sphere. The most crucial result in our derivation is the mutual
transformations between the basis functions of these two sets. This allows us to cast the boundary
conditions in terms of matrix relations coupling the unknown amplitudes with given values of v
at the surface of the sphere. The presented mathematical theory is validated by complementing
numerical calculations that reveal diminishing errors with exponential convergence as the number
of basis functions is increased.

Accordingly, the article is organized in the following way. In Sec. II, the solution-technique
is outlined in such a way that it not only describes how to solve the specific two- or three-body
problems, but also elucidates how to generalize it for a different system. In Sec. III, the scheme
is validated by comparing computed hydrodynamic frictions with their known values and by
demonstrating the decay of the error in the form of departure from the intended boundary condition
with increasing number of basis solutions. The versatility of the method is illustrated in Sec. IV by
constructing the velocity field in a porous medium around two impermeable spheres as well as in
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FIG. 1. Schematic diagram of a two-sphere system and a three-sphere system.

viscous liquid between two oscillating particles. The article is summarized, and the conclusions are
drawn in Sec. V. The key derivations of two types of transformation coefficients are provided in two
accompanying appendices.

II. SOLUTION METHODOLOGY BASED ON BASIS FUNCTION EXPANSION

In our analysis, we primarily solve Eq. (1) in an unbounded domain where two spheres of radius
a1 and a2 have s as their center-to-center separation. The method is also extended to three-sphere
systems in one specific simulation. The center of the ith particle is situated at r = xi with r
being position vector from a chosen origin. This obviously suggests that s=|x1−x2| has to be
greater than (a1+a2). The entire formulation is considered in nondimensional form assuming
that the appropriate length scale for the space is available to normalize all relevant dimensions.
Hence, a1, a2, and s are treated as dimension-less quantities. The considered systems are described
schematically in Fig. 1.

Accordingly, the parameter k defined in Eq. (1) is interpreted as nondimensional wave number. In
general, it may be complex depending on the nature of the problem. For example, in unsteady Stokes
problem, γ =k2 would have a purely imaginary value making k a complex number with phase
angle π/4. In contrast, for steady flow in porous medium, γ is a positive definite quantity so that
k becomes real. For unsteady porous system, γ itself is a complex number leading to complicated
phase angle for k. Keeping in mind such versatile possibilities, our analysis considers both real and
imaginary values for γ .

The inhomogeneous Dirichlet boundary conditions at the the surface of two spheres complement
the governing equation in Eq. (1) completing the problem statement. The solution technique is
developed to accommodate any such boundary condition. Thus, we consider

@r = xi + aiêi
r, v = vi(θi, φi ), (2)

where vi is a given vector function of spherical angles θi and φi around the center of the ith sphere
situated at position vector xi. The unit normal vector in the radial direction of the ith sphere is êi

r .
Our numerical scheme accounts for any arbitrary but known vi.
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A. General field solution in terms of vector basis functions

The linearity of Eq. (1) implies that v can be expanded as the linear combination of appropriate
basis functions. The challenge is to identify these functions to form the complete set corresponding
to the problem of interest.

To address this issue, first we focus on the complete set of spherical basis functions vi±
lms centered

around an isolated ith sphere in free space, so that

vi±
lms = v±

lms(r−xi ). (3)

This means that vi±
lms can be expressed in terms of the spherical coordinates centered around the

point r=xi which is the location of the center of the ith particle.
The vector functions v±

lms in Eq. (3) are solutions of Brinkman equation whose translational
invariance ensures unique v±

lms irrespective of xi. The superscript “+” in v±
lms stands for regular

solutions which are finite at the origin of the local spherical coordinates, but diverge far from the
center. In contrast, superscript “−” denotes singular functions with singularity at the origin and
decaying nature at infinity. The subscripts l and m in v±

lms are the eigen indices corresponding to
spherical harmonics. The third index s can assume three values, 1 or 2 or 3 representing three
linearly independent vectors to form the complete set of basis in 3D space. These are akin to three
independent potential, vortical and pressure solutions for Stokes equation proposed by Lamb. For
Brinkman equation, we derive them as

v±
lm1(ri ) = ri × ∇ψh±

lm (ri ), v±
lm2(ri ) = ∇ × v±

lm1(ri ), v±
lm3(ri ) = ∇ψPI±

lm (ri ), (4)

where ri = r − xi and

ψPI+
lm (ri ) = rl

i Ylm, ψPI−
lm (ri ) = r−l−1

i Ylm, ψh+
lm (ri ) = g+

l (ri )

ri
Ylm, ψh−

lm (ri ) = g−
l (ri )

ri
Ylm,

(5)
with Ylm being the normalized spherical harmonics of order l and m. The index l =1, 2, 3 . . .

is related to the Legendre polynomial revealing variations along longitudes, whereas m=
0,±1,±2, . . . ,±l are the wave number along the latitudes. The functions g±

l are constructed from
the following recurrence relation:

g±
l (ri) = ri

d

dri
[g±

l−1(ri )/ri], (6)

starting from the initial ones: g+
0 (ri ) = sinh(kri ) and g−

0 (ri) = exp(−kri ). Here, ri, θi, and φi are
considered as the spherical coordinates centered around the point r = xi. The regularity of v+

lms
is enforced by g+

0 (ri ) = sinh(kri ), because it remains finite at ri =0 with continuous derivatives
of arbitrary order even after a division by ri. Likewise, the required decaying feature in v−

lms at
infinity is assured by the exponential decrease in all derivatives of arbitrary order involving g−

0 (ri ) =
exp(−kri ).

The general solution for v in presence of multiple spheres can be formed by pondering on two
facts. First, the existence of each sphere excludes its volume from the domain allowing possible
singularities at its center. These singular solutions cannot be represented by any regular functions
or singularities at a different location. Second, any regular solution vi+

lms centered around one point
can be expressed as the linear combination of v j±

lms with i �= j. Accordingly, we conclude that v can
be expanded as the linear combinations of all the singular functions corresponding to every sphere
and any one of the regular sets associated to one of the spheres:

v =
∑
lmsi

αi−
lmsv

i−
lms +

∑
lms

α1+
lmsv

1+
lms =

∑
lmsi

αi−
lmsv

i−
lms +

∑
lms

α2+
lmsv

2+
lms = · · · . (7)
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For unbounded space in absence of any confining boundaries, however, regular solutions cannot be
present in the expansion. Thus, for spheres in unbounded domain, we conclude

v =
∑
lmsi

αi−
lmsv

i−
lms, (8)

assuming all α
j+
lms are identically zero.

Thus, solution for v would be completely known if the unknown amplitudes αi−
lms are evaluated.

The focus of the subsequent analysis would be to achieve this by exploiting the boundary conditions.
The presented formulation is general so far for any many-body system with arbitrary number of
spheres. For our two-body problem, we need to only consider two values of i with 1 for the first
sphere and 2 for the second one.

B. Matrix representation for unknown amplitudes

The unknown amplitudes αi−
lms are evaluated by forming a matrix representation coupling αi−

lms
with given boundary conditions involving known vi. This matrix relation can be conveniently
constructed due to three simple observations.

The first convenient feature of the basis vectors vi±
lms is that these are separable functions in the

spherical coordinates corresponding to the ith particle. This implies that the dependence of vi±
lms on

radius ri and spherical angles θi, φi can be factorized:

vi±
lms =

∑
σ

[
f ±
lmsσ (ri)êi

lmσ (θi, φi )
]
. (9)

Here, the index σ assumes three values 1, 2, 3 making angle-dependent êi
lmσ a complete set of basis

for 3D vector space. These vectors are

êi
lm1 = ri × ∇Ylm, êi

lm2 = êriYlm, êi
lm3 = ri∇Ylm, (10)

which not only span 3D physical space but also account for all possible variations on a spherical
surface in functional space. Recasting Eqs. (4) and (5) in Eq. (9) we recognize

vi±
lm1 = g±

l (ri )

ri
êi

lm1, vi±
lm2 = − l (l + 1)

r2
i

g±
l (ri)êi

lm2 − g±′
l (ri)

ri
êi

lm3,

vi+
lm3 = lrl−1

i êi
lm2 + rl−1

i êi
lm3, vi−

lm3 = (−l − 1)r−l−2
i êi

lm2 + r−l−2
i êi

lm3. (11)

The scalar functions f ±
lmsσ can be conveniently arranged in a 3 × 3 matrix [F±

lm],

[F+
lm] =

⎡
⎢⎢⎣

g+
l (ri )
ri

0 0

0 − l (l+1)
r2

i
g+

l (ri ) − g+′
l (ri )

ri

0 lrl−1
i rl−1

i

⎤
⎥⎥⎦, [F−

lm] =

⎡
⎢⎢⎣

g−
l (ri )
ri

0 0

0 − l (l+1)
r2

i
g−

l (ri) − g−′
l (ri )

ri

0 (−l − 1)r−l−2
i r−l−2

i

⎤
⎥⎥⎦,

(12)

as the σ th element in the sth row. Crucially, [F±
lm] only depend on radial coordinates ri.

The second feature useful in construction of the matrix relation is that any vector function like
vi(θi, φi ) on the ith spherical surface can be expanded as a linear combination of êi

lmσ :

vi(θi, φi ) =
∑
lmσ

[
ai

lmσ êi
lmσ

]
. (13)

Here, ai
lmσ are constants which are treated as known quantities for given vi.

Third and finally, all basis functions in the set for one particle can be expressed always as a linear
combination of the basis vectors for another. If the original function is singular, then the validity of
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such equality would depend on the radius of convergence. Hence, one concludes

vi−
lms =

∑
l ′m′s′

[
Mi j=

lmsl ′m′s′v
j−
l ′m′s′

]
, (14)

for |r−x j | > |xi−x j |. More importantly, we can also claim

vi−
lms =

∑
l ′m′s′

[
Mi j∓

lmsl ′m′s′v
j+
l ′m′s′

]
, (15)

for |r−x j | < |xi−x j |. The relation in Eq. (15) allows us to cast the boundary conditions in a matrix
equation relating unknown amplitudes of singularities αi−

lms to known constants ai
lmσ .

Thus, for an N-sphere system with L number of singular basis, N ∗ L number of unknown
amplitudes are mutually coupled in exact same number of linear relations which the matrix would
ultimately represent. For two-particle system, Eq. (15) is first used to replace v2−

lms in Eq. (8) in terms
of v1+

lms. Then, the boundary condition at the surface of the first sphere becomes

a1
λμσ =

∑
s

[
α1−

λμs f −
λμsσ (a1)

] +
∑
lmss′

[
α2−

lmsM
21∓
lmsλμs′ f +

λμs′σ (a1)
]
. (16)

Also, substituting v1−
lms with v2+

lms in Eq. (8) recasts the boundary condition at the second sphere,

a2
λμσ =

∑
s

[
α2−

λμs f −
λμsσ (a2)

] +
∑
lmss′

[
α1−

lmsM
12∓
lmsλμs′ f +

λμs′σ (a2)
]
. (17)

The coupled relations in Eqs. (16) and (17) can be concisely described by assuming a row matrix
〈a| with elements a1

λμσ and a2
λμσ as well as another one 〈α| containing α1−

lms and α2−
lms. In all matrices,

the elements corresponding to each spheres are stacked together so that the respective subsets are
displayed as subrows

〈a| = 〈{
a1

λμσ

}
,
{
a2

λμσ

}∣∣, 〈α| = 〈{
α1−

lms

}
,
{
α2−

lms

}∣∣. (18)

The consequent matrix relation representing both Eqs. (16) and (17) becomes

〈a| = 〈α|[G]. (19)

The square matrix [G] is the grand mobility matrix with the following substructures:

[
G

] =
[

[F−
1 ] [M∓

12][F+
2 ]

[M∓
21][F+

1 ] [F−
2 ]

]
. (20)

Submatrix [F±
i ] has f ±

λμsσ (ai ) as its only nonzero elements arranged in 3 × 3 diagonal blocks formed

due to three values of s and σ , while [M∓
i j ] contains transformation coefficients Mi j∓

lmsλμs′ . For three
or more spheres, [G] can be built similarly by using [F−

i ] for ith sphere as the ith diagonal block
and [M∓

i j ][F
+
j ] for i, jth pair as the i, jth off-diagonal block.

C. Expressions of transformation coefficients

The most nontrivial step in our analysis is derivation of the transformation coefficients Mi j∓
lmsλμs′ or

construction of submatrix [M∓
i j ] in Eq. (20). The details of this analysis is described in the Appendix,

where its generality indicates that the same approach can solve different linear field equations in
other problems. In this subsection, however, we only outline the final expressions for [M∓

i j ] relevant
in the numerical implementation of the solution scheme.

In reality, [M∓
i j ] is a two-body quantity even for N > 2. So we exploit the inherent symmetry in

two-sphere system by defining the line joining the centers as the z axis of a cylindrical coordinate so
that the geometry becomes axi-symmetric with x1−x2 = sêz. The axial symmetry is retained even
in our three-body simulation by placing the spheres colinearly. It makes the matrix relation Eq. (19)
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block-diagonalized in m and μ meaning that the elements of [G] are identically 0 if m �=μ. Then,
we need to only find Mi j∓

lmsλμs′ for specific values of same m and μ. Moreover, if vi is induced by
pure translations and rotations, then only three m or μ remain relevant where either m=μ=0, or
m=μ=±1. Thus, we can assert

Mi j∓
lmsλμs′ = Mi jm∓

lsλs′ δmμ, (21)

so that the nonzero Mi jm∓
lsλs′ can be concisely stacked in a matrix [Mi j∓

m ]. It is created with nine square
submatrices in an 3 × 3 arrangement with each subblock corresponding to specific values of s and s′.
However, the elements of the submatrices represent different l and λ. More specifically, as s=1,2,3
and s′ =1,2,3, all elements of the submatrix at the location q-q′ in the 3 × 3 structure would have
s=q and s′ =q′. Then also, the ν-ν ′ location within the subblock for a specific element would relate
it to l =|m|+ν−1 and λ=|m|+ν ′−1.

The derivation elaborated in the Appendix is summarized to infer that

[
M12∓

m

] =
⎡
⎣[Hm] + s[Hm][Rm] s[Hm][Cm] 0

−k2s[Hm][Cm] [Hm] + s[Hm][Rm] 0

0 0 [Pm]

⎤
⎦. (22)

Here, the aforementioned submatrices shown in the 3 × 3 structure is constructed by the following
way. The submatrices [Rm] and [Cm] have simple forms where the former is a bidiagonal sparse
matrix, and the latter is a diagonal matrix. Accordingly, an element of [Rm] defined as Rm

lλ is given
by

Rm
lλ = −{(l − m + 1)/[(2l + 1)(l + 1)]}δ(l+1)λ + {(l + m)k2/[l (2l + 1)]}δ(l−1)λ, (23)

whereas a similar component Cm
lλ associated to [Cm] is

Cm
lλ = {im/[l (l + 1)]}δlλ. (24)

The expressions for remaining submatrices [Hm] and [Pm] are more involved. These are provided
for different relevent values of m sequentially below.

When m=0, we derive that

[H0] = [
Nh

1

]−1[
Nh

2

]
, where

[
Nh

1

] =

⎡
⎢⎢⎢⎢⎢⎣

〈e1|[I]

〈e1|[T0]

〈e1|[T0]2

· · ·
〈e1|[T0]l

⎤
⎥⎥⎥⎥⎥⎦,

[
Nh

2

] =

⎡
⎢⎢⎢⎢⎢⎣

〈e1|[T ′
0 ][Dh]

〈e1|[T ′
0 ][Dh][T0]

〈e1|[T ′
0 ][Dh][T0]2

· · ·
〈e1|[T ′

0 ][Dh][T0]l

⎤
⎥⎥⎥⎥⎥⎦. (25)

Here, the row 〈e1| = 〈1, 0, · · · , 0| has its first component to be 1 with all others being 0. Also,
submatrix [T0] is a bidiagonal matrix with elements as follows:

T 0
lλ = {(l + 1)/(2l + 1)}δ(l+1)λ + {lk2/(2l + 1)}δ(l−1)λ. (26)

In contrast, submatrix [Dh] is a diagonal matrix with elements

Dh
lλ = {g−

l (s)/g+
l (s)}δlλ (27)

dependent on radial functions defined in Eq. (6). We numerically compute [T ′
0 ] from [T0]:

[T ′
0 ] =

nmax∑
n=0

sn[T0]n/n!, (28)
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where the upper limit nmax has to be considerably greater than e ∗ s ∗ |k|/√2 for good convergence.
Similarly,

[P0] = [
NPI

1

]−1[
NPI

2

]
, where

[
NPI

1

] =

⎡
⎢⎢⎢⎢⎢⎣

〈e1|[I]

〈e1|[Q−
0 ]

〈e1|[Q−
0 ]2

· · ·
〈e1|[Q−

0 ]l

⎤
⎥⎥⎥⎥⎥⎦,

[
NPI

2

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈e1|[Q−′
0 ][DPI]

〈e1|[Q−′
0 ][DPI][Q+

0 ]

〈e1|[Q−′
0 ][DPI][Q+

0 ]2

· · ·
〈e1|[Q−′

0 ][DPI][Q+
0 ]l

⎤
⎥⎥⎥⎥⎥⎥⎦

. (29)

Here, submatrices [DPI], [Q−
0 ], and [Q+

0 ] are sparse matrices whose respective elements are

DPI
lλ = |s|−2l−1δlλ, Q0−

lλ = −(l + 1)δ(l+1)λ, Q0+
lλ = lδ(l−1)λ. (30)

This makes DPI a diagonal, [Q−
0 ] an upper-diagonal and [Q+

0 ] a lower-diagonal matrix. If submatrix
[Q−

0 ] is known, then we construct

[Q−′
0 ] =

nmax∑
n=0

sn[Q−
0 ]n/n!, (31)

which becomes diagonal dominant, but nonsparse matrix.
When m=1, we find

[H1] = [Ah]−1
[
Nh

1

]−1[
Nh

2

]
[Ah], [P1] = [

NPI
1

]−1[
NPI

2

]
[API]. (32)

Here, submatrix [Ah] is a bidiagonal matrix with elements Ah
lλ as

Ah
lλ =

(
− 1

2l + 1

)
δlλ +

(
k2

2l + 1

)
δ(l−2)λ, (33)

and lower-diagonal submatirx [API] is constructed with δ(l−2)λ as its component. In contrast, when
m=−1,

[H−1] = [Bh]−1
[
Nh

1

]−1[
Nh

2

]
[Bh], [P−1] = [BPI−]

[
NPI

1

]−1[
NPI

2

]
[BPI+], (34)

where bidiagonal [Bh] has the same structure like [Ah] so that

Bh
lλ = (l + 1)(l + 2)

(2l + 1)
δlλ − l (l − 1)

(2l + 1)
k2δ(l−2)λ, (35)

and diagonal [BPI−] is represented by

BPI−
lλ = −(l + 1)(l + 2)δlλ. (36)

Also, submatrix [BPI+] has elements BPI+
lλ as

BPI+
lλ = −l (l − 1)δ(l−2)λ, (37)

which makes it lower-diagonal.
The aforementioned results enable us to construct grand mobility matrix [G] after combining

with [F±
i ] in an appropriate way shown in Eq. (20). Thus, one can find the proper amplitudes αi−

λμs
corresponding to arbitrary boundary conditions given at the surface of both spheres from Eq. (19).

III. CONVERGENCE FOR THE NUMERICAL SCHEME AND VALIDATIONS

In this section, we first briefly outline the computational implementation of the mathematical
formulation. Then, we design numerical experiments to reveal the convergence feature of the
scheme as well as to validate our theory.
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A. Numerical implementation

We use the matrix relations derived in Sec. II to numerically solve for the vector field v, when
different boundary conditions are provided on the surface of the spheres. The computational scheme
essentially has three steps.

In the first step, the grand mobility matrix [G] defined in Eq. (19) is created using the expressions
described in Sec. II C. The size of the square submatrices corresponding to the indices l and λ

depends on their largest value referred as lmax. Ideally, lmax should tend to ∞, but the main objective
of our numerical investigation is to figure out what value of lmax should be taken as reasonably large.
We have seen that lmax =16 yields sufficiently accurate result even for the most difficult geometry
considered in our simulation.

The second step of the algorithm is to invert the grand mobility matrix [G]. For lmax =16, this
operation takes relatively less time than the previous task. However, if lmax is increased considerably,
the inversion would become the most time-consuming step, as the required time for it would scale
as l3

max in contrast to l2
max cost for construction.

The third and final task is to identify the row 〈a| in Eq. (19) for the given boundary condition.
The unknown amplitudes in 〈α| are obtained by premultiplying 〈a| to the inverse of [G].

The block-diagonalization implying m=μ for axisymmetric geometries is exploited in the last
step where rows 〈a| and 〈α| are constructed. It is to be noted that matrices [F−

i ] in Eq. (20) are
block-diagonalized over m and μ indices with m=μ like [M∓

12] as shown in Eq. (21). This means
that the grand mobility matrix [G] also exhibits similar block-diagonalization as in Eq. (21). Hence,
if we consider the following structure for two-body [G]

[G] =
[

[G11] [G12]

[G21] [G22]

]
, (38)

then an element of [Gi j] defined as Gi j
lmsλμs′ is given by

Gi j
lmsλμs′ = Gi jm

lsλs′δmμ. (39)

The quantities Gi jm
lsλs′ is used to construct smaller matrices [Gi j

m] for each value of m like the way we
form [Mi j∓

m ]. Such simplification prompts us to restructure matrices 〈a| and 〈α|, where the elements
with same value of index m (same as μ) are grouped together as subrows 〈a j

m| or 〈α j
m|. consequently,

relations involving quantities with specific m get decoupled from those with different m yielding the
following reduction:

〈〈
a1

m

∣∣, 〈a2
m

∣∣∣∣ = 〈〈
α1

m

∣∣, 〈α2
m

∣∣∣∣[[
G11

m

] [
G12

m

]
[
G21

m

] [
G22

m

]
]
. (40)

Thus, we identify element a jm
ls of 〈a j

m| for specific l and s corresponding to a boundary condition at
jth sphere on z axis, and find 〈α j

m| by inverting Eq. (40) for all relevant m. The outlined construction
can be easily extended to axi-symmetric configuration with three or more spheres by introducing
respective subblocks.

We specifically focus on the linear and angular motion of the spheres when both have centers
aligned on z axis. In such geometry, translation and rotation along z axis only contribute nonzero
elements in 〈a j

0| causing trivial rows for m �=0. For unit rectilinear velocity along z, the only nonzero
element in 〈a j

0| corresponds to l =1 and s=2, 3 so that the sole nontrivial components are given by

a j0
12 = a j0

13 = 1. (41)

Similarly, for unit rotational velocity, a j0
ls (l = 1, s = 1) is the only nonzero term in 〈a j

0|:
a j0

11 = 1. (42)
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In contrast, for same geometry, translation or rotation in x-y plane only involves 〈a j
±1| implying 〈a j

m|
to be null row for m �=±1. For a linear velocity ux êx +uyêy as well as an angular velocity ωx êx +ωyêy,
all nontrivial elements in 〈a j

±1| with l and s values as subscripts are listed in the following two
equations, respectively:

a j1
12 = a j1

13 = −ux/2 + iuy/2, a j−1
12 = a j−1

13 = ux + iuy, (43)

and

a j1
11 = −ωx/2 + iωy/2, a j−1

11 = ωx + iωy. (44)

The relations in Eqs. (41)–(44) provide all possible boundary conditions associated to the rigid body
motion. In the same way, analogous relations can be derived for any arbitrary more complicated
velocity field at spherical surfaces also.

B. Spectral convergence results for two-sphere systems

We design a number of numerical experiments to validate our methodology. Accordingly,
specific geometries are assumed with given separation between two spheres, and specific boundary
conditions are considered at their surfaces. Then, v is computed following the steps outlined in the
previous subsection for various values of the wave number k.

Our simulations consider spheres of similar size with a1 =a2 =a where three different separation
distances between their centers are chosen to create different geometries. The closest configuration
has s=2.1 ∗ a which means the surface-to-surface gap would be an order of magnitude less than
the spherical dimensions. We focus on such geometry because we have seen that very small gap
between two equal spheres causes most difficulties in convergence with increasing lmax. In addition,
s/a=2.25 and s/a=2.5 are also taken into account to demonstrate how convergence error decreases
with increasing s.

To maximize the contrast in relative motion, we keep one of the spheres fixed with zero
interfacial velocity, whereas the second one either translates or rotates. Accordingly, we investigate
four different independent motions of the moving particle yielding four problems with distinct
inhomogeneous boundary conditions. The first one is a normal translation with unit velocity along
the z axis which is the line of symmetry joining the centers. The second motion is tangential unit
linear velocity perpendicular to the line of symmetry along the x axis. The third and the fourth
inhomogeneous boundary conditions on the moving sphere correspond to normal and tangential
rotations along the z and x axes, respectively.

We compute the amplitudes of singularities 〈α| following the procedures outlined in Sec. III A
for each of the four problems corresponding to four motions of the second particle. Then, Eq. (8) is
used to construct the vector field v. Finally, we consider a series of tests to validate our mathematical
derivations and numerical methodology.

First, we use finite difference to check whether the solution from our basis expansion satisfies
the governing equations in Eq. (1). The finite difference provides the Laplacian and divergence of
v as well as ∇p. We investigate whether ∇2v−∇p and ∇ · v approaches k2v and 0, respectively.
This basic check has shown that the constructed v at any arbitrary point obeys both the momentum
and continuity relations in Eq. (1). It is an expected observation though, as this only verifies the
correctness of the basis functions used in Eq. (8).

Our second test is more complex where we demonstrate that the outlined scheme can ensure the
satisfaction of given boundary conditions at the spherical surface by constructing correct 〈α|. To this
end, we directly compute v according to Eq. (8) at the interfaces, and calculate errors by subtracting
it from the provided v as per boundary conditions. These deviations are presented in Figs. 2–5 for
the previously mentioned four motions of the second sphere. In all of these, two error norms are
obtained: (1) an RMS value derived from averaging over 100 grids distributed uniformly on the
spheres, (2) the maximum magnitude seen among all these points. Both are presented as functions
of the spectral size defined by lmax.
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FIG. 2. Spectral convergence for normal translation along z with RMS error (left panel) and maximum
error (right panel), where γ is i (thin dotted line), 1 (thin solid line), 10i (thick dotted line), and 10 (thick solid
line). The rows represent different separations s as displayed.

We illustrate the versatility of our method by considering four different wave number k for
all geometries described in Figs. 2–5. As often k2 =γ is the key parametric quantity in different
systems, we actually assign the value of γ . Two real and two imaginary values are selected keeping
in mind their relevance in inhomogeneous porous medium and unsteady Stokesian dynamics,
respectively. Also, we intend to see considerable differences between our simulation and standard
Stokesian computations. This is why magnitude of γ is chosen as either 1 or much greater than 1.
For given γ , there should be two values of k in complex plane. The roots of k with positive real
part is the one used in the simulation, as only this corresponds to physically valid solution with
appropriate decay at infinity.

In Fig. 2, we simulate v when the second sphere moves towards the first with a translation normal
to their surface at the location of minimum separation. This means that the motion is along the z axis
on which both centers reside. From steady Stokesian analysis [31–33], it is a common knowledge
that such normal motions to the separating surfaces in close contact are the most difficult for proper
satisfaction of boundary conditions. This is also evident for Brinkman equation according to Fig. 2.
The errors are most prominent for the normal motion especially when the particles are separated by
the smallest distance. Still, even the maximum error at the interface approaches to 1% for s/a=2.1,
when lmax is 16. The same error becomes less than 0.1% when spheres are more separated.

Unidirectional relative motion tangential to the separating distance incurs less error compared to
the normal translation. A tangential rectilinear or angular velocity along x or y direction produces
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FIG. 3. Spectral convergence for tangential translation along x with RMS error (left panel) and maximum
error (right panel) where γ is i (thin dotted line), 1 (thin solid line), 10i (thick dotted line), and 10 (thick solid
line). The rows represent different separations s as displayed.

relative motion between closely situated surface elements from two spheres along a single direction
on the plane. These cases are described by Figs. 3 and 4, respectively. The associated errors in
both are of the similar nature, and are consistently less than what we have seen in Fig. 2. The
errors decrease below 0.1% even for the tightest configuration, when lmax is 16. The axial symmetry
dictates that the plots should be identical between motions along x and y axes. We verified this fact
by representative computations.

In Fig. 5, we present spectral convergence for normal rotation of the second sphere along the z
axis. Such motion creates relative movement in tangential plane so that most proximate surface
elements of two spheres slide without unidirectional preference. In steady Stokesian dynamics,
the errors remain least in these situation compared to other cases. In Fig. 5 also, the errors are
consistently less than the same in Figs. 2–4.

All curves in Figs. 2–5 exhibit exponential convergence typical in spectral methods based on
basis function expansions. Thus, our scheme is especially efficient in simulating even difficult
geometries. We performed the simulation in 2.4 GHz laptop using Mathematica codes. The com-
putation time for a single geometry with such a set up is only order of a few seconds, when lmax

is considered as 16. This time can be further reduced by more efficient coding in more computing
friendly languages. Nevertheless, even with our codes and machines, we can describe many-body
Brownian dynamics with time-dependent hydrodynamic interactions.

In all cases, we also located the surface grid at which the error is maximum. As expected, this
region of substantial error on both spheres is in vicinity of the point which is nearest to the other
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FIG. 4. Spectral convergence for tangential rotation along x with RMS error (left panel) and maximum
error (right panel), where γ is i (thin dotted line), 1 (thin solid line), 10i (thick dotted line), and 10 (thick solid
line). The rows represent different separations s as displayed.

sphere. It is always difficult to construct v in the domain in between two particles by using spherical
basis functions. The position of maximum error is indicative of this fact.

Errors are more or less similar in magnitude for all γ . This shows that wave number does not
contribute substantially in computational complexities as long as its inverse remains of the same
order of surface-to-surface separation.

C. Spectral convergence results for three-sphere systems

In our next validation test, we consider a system with equally sized spheres (radius a1 =a2 =
a3 =a) whose centers are located on the z axis. The middle particle is equally separated by a
distance s from the two at the extreme. Thus, the geometry has both axial symmetry about z axis
and reflectional symmetry about the middle sphere across its diametrical plane perpendicular to the
central line. The system is schematically presented in Fig. 1. We choose s as 2.1 ∗ a which is the
most difficult geometry to simulate among the ones considered in the two-body analysis due to small
surface-to-susrface separation.

The velocity field is generated by the axial translation of two extreme spheres while the middle
one remained fixed. As seen in Sec. III B, such axial motions presents most difficult convergence
challenges due to normal relative motion between two separate surfaces at the region of closest
proximity. There are two cases considered in the simulation. In the first problem, the translating
spheres are moving in the same direction, whereas the second one assumes their opposing motion.
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FIG. 5. Spectral convergence for normal rotation along z with RMS error (left panel) and maximum error
(right panel), where γ is i (thin dotted line), 1 (thin solid line), 10i (thick dotted line), and 10 (thick solid line).
The rows represent different separations s as displayed.

We are interested in computing the velocity field at the surface of the static sphere in the middle.
If the simulation is accurate with correct transformation coefficients and basis functions, then the
velocity at this surface should approach 0 with increasing lmax. Any nonzero interfacial velocity
should be viewed as the measure of computational error. This is why we calculate its RMS and
maximum value at the grid points on the intermediate spheres like in two-body simulation, and
plot these as functions of lmax. Like before in Figs. 2–5, four values of γ are chosen. These
spectral convergence plots for both unidirectional and opposing motions of two extreme spheres
are presented in Fig. 6.

For large spectral order lmax, the curves in Fig. 6 exhibit similar convergence characteristics as in
Fig. 2 with s=2.1. Like before, the relative error seems to be less than 1% when lmax is 16 or more.
This proves the applicability of our methodology for systems with large number of spheres.

For smaller lmax, however, curves in Figs. 2 and 6 have a distinct difference. In two-body systems,
the error decreases consistently always. In contrast, three-body simulations exhibit “saw tooth”-type
convergence with intermittent reversal in trend. Thus, for small values of lmax, increase in spectral
order by a value 1 may cause decrease in accuracy. This is a generic trend in spectral schemes in
presence of multiple interfaces observed also in the past studies [19,20]. The reason behind such
anomalous behavior is cancellations of higher order multipolar contributions from symmetrically
situated neighboring bodies. As a result, odd lmax is relatively better for unidirectional motion
because even order multipoles from two peripheral spheres tend to nullify each other causing an
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FIG. 6. Spectral convergence for three-sphere system along z with RMS error (left panel) and maximum
error (right panel), where γ is i (thin dotted line), 1 (thin solid line), 10i (thick dotted line), and 10 (thick solid
line). The first row and the second row represent two extreme spheres translating with the same phase and
opposite phase, respectively.

unexpected gain in accuracy. In contrast, even order lmax produces a relatively better results for
opposing translation, as odd order multipoles from two moving spheres partially cancel effects of
each other.

D. Validation with Stokesian results

In the final test, we verify our solution technique for Brinkman equation by calculating two-body
friction coefficients and comparing these with their known values. The force and torque on a body
due to specified motion of unit magnitude forms the component of friction tensors. Benchmark
values of these are readily available in Stokesian dynamics analysis and complementing lubrication
theories. However, for k → 0, quantities derived from Brinkman equation should coincide with
Stokesian findings. We exploit this fact to add another additional validation for the developed
technique.

We choose a very small value (0.001) for k, and use the outlined scheme to produce the velocity
field in a two-sphere system as described in Fig. 1 and in Sec. III B. In the specific problem, one
of the sphere is fixed whereas the second one is moving along the line joining two centers with
unit speed. The force on moving sphere is referred to as self friction, whereas the one on the static
particle due to the induced flow around it is known as mutual coefficient. The symmetry of the
geometry dictates that both would be along the same direction of the translational motion.

The values of the self and the mutual frictions are calculated two ways. First, Stokesian algorithm
along with lubrication subtractions provides the force on each sphere. Second, the respective
surface integrals of hydrodynamic stress corresponding to the velocity and the pressure field for the
Brinkman equation solution renders another set of values for the same quantity. This comparison is
presented in Table 1 for five different center-to-center distances s.
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TABLE I. Normal friction obtained from Stokesian analysis and new solution technique.

Normal Fself
tt Normal Fmutual

tt

Stokesian New scheme k =0.001 Stokesian New scheme k =0.001

s = 2.1 −76.003 −76.021 63.734 63.716
s = 2.2 −49.783 −49.801 37.407 37.389
s = 2.3 −40.463 −40.481 27.982 27.964
s = 2.4 −35.552 −35.571 22.969 22.950
s = 2.5 −32.472 −32.491 19.787 19.768

The first set of data is obtained using converged Stokesian results with accelerated convergence
caused by application of higher order lubrication theory. Then, we use lmax =20 in the solution
technique for Brinkman equation without any theoretically calculated lubrication analysis to create
the second set of values. It is evident in Table 1 that the two sets of findings coincide emphatically.

IV. VISUALIZATION OF FLOWS GOVERNED BY BRINKMAN EQUATION

This section demonstrates relevance of our solution scheme for Brinkman equation in a wide
range of fluid mechanics problems. The versatility of our scheme is showcased by describing two
apparently unrelated flow phenomena. We present the solution of the velocity field obtained by the
outlined algorithm in streamline diagrams for both cases.

A. Fluid squeezed by two impermeable spheres in porous medium

In our first simulation, we consider two impermeable spheres inside a porous medium filled with
viscous liquid. The porosity of the domain is defined by γ =1 representing a relatively relaxed and
soft matrix. The spheres are squeezing the fluid slowly by approaching towards each other with a
nondimensional speed 0.5. The velocity scale is such that the spheres are displaced very little during
the observation timescale so that we can assume a quasisteady hydrodynamic field despite the slow
change in geometry.
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FIG. 7. Streamlines for flow field in a porous medium around two impermeable spheres moving towards
each other (γ = 1) with center-to-center separation s = 2.5 ∗ a and s = 2.25 ∗ a.
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In Fig. 7, we show the velocity field around the spheres using streamlines with flow-strength
shade plots. Two initial separations are chosen to depict the quasisteady flow.

When the particles are relatively more separated, the flow-strength shade plot reveals a maximum
velocity of 0.5 which coincides with the speed of the spheres. In contrast, when these are closer to
each other, the maximum velocity in the domain increases considerably. This happens because the
velocity in the contact region perpendicular to the line joining the centers enhances significantly,
as the closely situated solid bodies squeezes the fluid out. The proper depiction of such lubrication
flow without any explicit contribution from any asymptotic analysis shows both the accuracy and
capacity of the developed algorithm.

In both plots in Fig. 7, one can notice four vortices in four quadrants. The vortices in adjacent
quadrants are counter-rotating to each other. Such feature conforms with intuitive understanding of
the flow field where the squeezed out fluid has to circulate back by the far-field flow compensating
the volume displaced by the translating spheres.

B. Unsteady velocity field created by two oscillating spheres with opposite phase

Our second study focuses on small amplitude oscillation of two closely situated spheres in
free viscous fluid. The particles are vibrating along the line joining their centers. Their sinusoidal
motions have opposite phase so that they either squeeze or stretch the liquid in between. The period
of oscillation matches with viscous timescale making γ = i or k =√

i.
The separation s is the average distance between two centers or the gap at the equilibrium position

during the course of the sinusoidal motion. The amplitude of oscillation is considered very small
causing subdominant convection as well as negligible change in geometry. Two values of s are
chosen to explore the impact of equilibrium distance on flow.

The considered flow phenomenon involves an inherently unsteady velocity field induced by small
amplitude but quickly fluctuating translations of the spheres. However, such dependence on time can
be represented by two temporally independent fields. The solution of the Brinkman equation with
γ = i is a time-invariant complex function with both real and imaginary parts. When these functions
are coupled with sinusoidal temporal variations, one can generate the desired velocity as function
of both space and time.

In Fig. 8, we present both the real and imaginary parts of complex v for two equilibrium
separations by using streamlines and flow-strength shades. The physical interpretation of the real
part of v is the instantaneous velocity field created when both particles are at their equilibrium
position with maximum speed during their course of sinusoidal motion. In contrast, the imaginary
part represents the fluid motion when both spheres reach their extremum positions. At that point,
the two bodies are momentarily static, though the liquid far from these can still moves due to the
inertial effect. This manifestation of inertia is a key difference between the systems under current
consideration and the Stokesian dynamics.

When oscillating particles are at the equilibrium position with maximum speed, the instantaneous
velocity field represented by the real part of v in Fig. 8 is very similar to the plots in Fig. 7. The
vortices as well as more enhanced flow in narrower gap are almost identical, though the actual values
in reality varies within 10% between two systems. Such similarities are expected because these are
essentially same flows from physical perspective.

In contrast, the flow-structures around the momentarily static spheres at their extreme locations
represented by the imaginary part of v are quite different than the ones seen when the solid bodies
are moving. There are mainly three significant differences. First, the purely inertial flow with no
active drag by moving particles is weaker in strength as manifested by the color bar for the shade
plots. Second, the lubrication region exhibits nearly no flow as the liquid is trapped between two
static spheres. Finally, the counter-rotating vortices are further away from the immobile solids, as
inertial effect is only prominent away from these.
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FIG. 8. Streamlines created by two oscillating spheres with opposite phase, where k =√
i and center-to-

center equilibrium separation s = 2.5 (left panel) and s = 2.25 (right panel). The first row and the second
row correspond to real part and imaginary part of the velocity field which represent the instantaneous flow at
equilibrium and the extreme positions of the particles, respectively.

V. SUMMARY AND CONCLUDING REMARKS

This article describes a novel methodology to solve for a vector field governed by Brinkman
equation where inhomogeneous boundary conditions are provided at the surface of many spheres in
proximity. The wave number associated to the governing equation can be either real or imaginary or
complex depending on the specific phenomenon from which it is derived. For example, in a steady
flow in heterogeneous porous medium the square of the wave number assumes real values, whereas
in unsteady Stokes problem the same remains a purely imaginary quantity. The outlined scheme is
valid for all these wide ranging problems.

The method is based on the expansion of the dependent variable, vector v, in the basis functions
of Brinkman equation centered around each particle. This is similar to the many-body simula-
tion involving either steady Stokes flows or potential harmonic fields, though the scope of the
outlined scheme is much wider than its predecessors. The most important and nontrivial step in
our mathematical formulation is the derivation of the transformation coefficients which relate basis
functions around one point in terms of the same around another. This allow us to couple the reflected
contribution in v from one particle to the field induced at the surface of others. Consequently, we
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can construct a matrix representation where inhomogeneous boundary conditions on all spheres are
simultaneously satisfied.

Our scheme is applied to simulate a two- and three-sphere systems. The main purpose of these
computations are to demonstrate the accuracy and the efficiency of the proposed technique. This
goal is achieved by the simplest possible way. First, we check whether the computed v satisfies the
governing relation by using finite difference. Then, we quantify how much the constructed v deviates
from the prescribed boundary conditions. The maximum and the RMS values of such interfacial
error are plotted with increasing number of considered basis functions to estimate the accuracy and
to investigate the convergence rate. Also, the new technique is used to calculate Stokesian friction
values under appropriate limits for purpose of comparison.

For different geometries as well as for different wave numbers, the simulation results demonstrate
a consistent convergence characteristics of exponential nature. Even if the surface-to-surface sepa-
ration is one order of magnitude less than the spherical dimensions, a spectral size with maximum
value of the harmonic index lmax =16 is enough to ensure less than 1% error. The number of involved
basis functions are then such that a simulation can be completed within a second using mathematica.
The efficiency of computation makes the formulated method ideal for flow-analysis in larger systems
like many-particle transient Brownian medium or multicomponent porous filter.

The geometry plays a crucial role in incurring error or determining computation time. A closely
situated pair of spheres is more difficult to simulate, because it is problematic to reproduce v inside
the gap between two particles. In such situation, increased number of basis functions would be
needed. In contrast, fields around widely separated spheres can be accounted for much faster with
reduced number of basis functions. This contrast opens up further enhancement in efficiency for
many-body simulation, where the spectral size in a matrix block is dictated by the mutual separations
between particles.

The value or nature of the wave number does not have significant impact on the computational
time or numerical accuracy. The errors are more or less similar for both real and complex wave
numbers.

The outlined methodology can be a very useful computational tool in simulation of numerous
complex systems. This assertion is proven by flow simulations involving two apparently different
systems. In the first study, the velocity field is created due to impermeable spheres squeezing
liquid in a porous medium. In the second investigation, unsteady transport around two sinusoidally
oscillating particle is described. This demonstrates the versatility and potential applicability of our
method.

Noticing the unique capability of the developed algorithm, we are planning to use it to quantify
the cumulative effect of many Brownian particles on the fluctuating microscale flow dragged by
the suspended species. Such phenomenon is akin to a medium where multiple stirrer enhances the
heat transfer if a temperature gradient is established. As a result, we will be able to provide a
quantitative theory for nanofluidic properties. Similarly, the same multiparticle interactions causes
error in microrheological prediction of viscoelastic properties of a solvant, if several tracer Brownian
bodies are present in the system. In the near future, we can correct this inaccuracy by estimating the
transient effect of one particle on another.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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APPENDIX: DERIVATION OF TRANSFORMATION COEFFICIENTS

This Appendix derives the transformation coefficients Mi j∓
lmsλμs′ coupling singular and regular

solutions as the elements of [M∓
12] defined in Eq. (20). The derivation, however, depends on Mi j=

lmsλμs′
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which relate two sets of singular solutions. Accordingly, we arrange Mi j=
lmsλμs′ in the matrix [M=

12]

as its elements, and construct it first. Then, the expressions in Sec. II C for Mi j∓
lmsλμs′ or [M∓

12] are
subsequently obtained as the final results.

1. Tansformation Matrix between singular solutions

To derive [M=
12], we consider a few crucial identities which are outlined below. These can be

easily proved from the properties of the associated Legendre polynomial involved in the spherical
harmonics appearing as a separable factor in the basis functions.

The first identity is

∂ψh±
lm (ri )

∂z
=

(
l − m + 1

2l + 1

)
ψh±

(l+1)m(ri ) +
(

l + m

2l + 1

)
k2ψh±

(l−1)m(ri ), (A1)

where ri =r−xi is the relative position vector of an observation point with respect to the center of
the ith sphere situated at r=xi. The matrix relation below represents Eq. (A1):

∂

∂z

∣∣ψh±
m (ri )

〉 = [Tm]
∣∣ψh±

m (ri )
〉
, (A2)

where the column |ψh±
m (ri )〉={ψh±

|m|m(ri ), ψh±
(|m|+1)m(ri ), · · · , ψh±

lm (ri )}T lists functions ψh±
lm with

varying l as elements for specific m. Sparse and bidiagonal [Tm] contains elements T m
lλ :

T m
lλ = (l − m + 1)

(2l + 1)
δ(l+1)λ + (l + m)k2

(2l + 1)
δ(l−1)λ. (A3)

Equation (A3) is what we first introduced in Eq. (26).
Similarly, the second identity is

∂ψPI−
lm (ri )

∂z
= −(l − m + 1)ψPI−

(l+1)m(ri ). (A4)

Also, we convert this relation to a matrix expression,

∂

∂z

∣∣ψPI−
m (ri )

〉 = [Q−
m]

∣∣ψPI−
m (ri )

〉
. (A5)

Here, [Q−
m] is a sparse matrix whose elements are

Qm−
lλ = −(l − m + 1)δ(l+1)λ, (A6)

coinciding with Eq. (A6), and the column |ψPI−
m (ri )〉 is {ψPI−

|m|m(ri ), ψPI−
(|m|+1)m(ri ), · · · , ψPI−

lm (ri )}T.
The third and fourth identities below complete the required relations for our derivations:

vi±
lm1 = −k2∇ × vi±

lm2, (A7)

and

êz × ∇ψh±
lm (ri ) = im

l (l + 1)
vi±

lm2 − (l − m + 1)

(2l + 1)(l + 1)
vi±

(l+1)m1 + (l + m)

(2l + 1)l
k2vi±

(l−1)m1. (A8)

The last identity corresponds to the following matrix relation:

êz × ∇∣∣ψh±
m (ri )

〉 = [Rm]
∣∣vi±

m1

〉 + [Cm]
∣∣vi±

m2

〉
. (A9)

Here, |vi±
ms〉 has similar form like |ψh±

m (ri )〉, so that |vi±
ms〉 = {vi±

|m|ms, vi±
(|m|+1)ms, · · · , vi±

lms}T. The
sparse diagonal matrix [Rm] and diagonal matrix [Cm] have elements as

Rm
lλ = − (l − m + 1)

(2l + 1)(l + 1)
δ(l+1)λ + (l + m)k2

(2l + 1)l
δ(l−1)λ, (A10)
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and

Cm
lλ = im

l (l + 1)
δlλ. (A11)

These are mentioned in Eqs. (23) and (24) in the earlier narration, respectively.
After all the necessary identities are identified, transformation matrix [M=

12] can be derived in
the following way. For the region |r2| > |s|, we are allowed to expand column |ψh−

m (r2 + sêz )〉 in
Taylor series. Also, from Eqs. (A2) and (A9), we find that∣∣v1−

m1

〉 = r1 × ∇∣∣ψh−
m (r1)

〉 = (r2 + sêz ) × ∇∣∣ψh−
m (r2 + sêz )

〉
= (r2 + sêz ) × ∇

(∣∣ψh−
m (r2)

〉 + s

∣∣∣∣∂ψh−
m (r2)

∂z

〉
+ · · · + sn

n!

∣∣∣∣∂nψh−
m (r2)

∂zn

〉)

= r2 × ∇(
[T ′

m]
∣∣ψh−

m (r2)
〉) + sêz × ∇(

[T ′
m]

∣∣ψh−
m (r2)

〉)
= [T ′

m]
∣∣v2−

m1

〉 + s[T ′
m][Rm]

∣∣v2−
m1

〉 + s[T ′
m][Cm]

∣∣v2−
m2

〉
. (A12)

Here, matrix [T ′
m] is constructed in the following relation:

[T ′
m] =

nmax∑
n=0

sn

n!
[Tm]n, (A13)

where the upper limit nmax has to be considerably greater than e ∗ s ∗ |k|/√2 for good convergence.
The relation Eq. (A13) is first displayed in the main text as Eq. (28). In the next step, we take curl
of Eq. (A12) and use Eq. (A7) to derive∣∣v1−

m2

〉 = [T ′
m]

∣∣v2−
m2

〉 + s[T ′
m][Rm]

∣∣v2−
m2

〉 − k2s[T ′
m][Cm]

∣∣v2−
m1

〉
. (A14)

Thus, the homogeneous basis solutions of Brinkman equation centered around two different spheres
are coupled by Eqs. (A12) and (A14).

We also find the relations between two sets of particular integrals for Brinkman equation
constructed as the gradient of the scalar field |ψPI−

m . To this end, for |r2| > |s|, we expand column
|ψPI−

m (r2 + sêz )〉 in a Taylor series, and use Eq. (A5) to derive the following:

∣∣v1−
m3

〉 = ∇∣∣ψPI−
m (r2 + sêz )

〉 = ∇
(∣∣ψPI−

m (r2
)〉 + s

∣∣∣∣∂ψPI−
m (r2)

∂z

〉
+ · · · + sn

n!

∣∣∣∣∂nψPI−
m (r2)

∂zn

〉)

= ∇
(∣∣ψPI−

m (r2)
〉 + s[Q−

m]
∣∣ψPI−

m (r2)
〉 + · · · + sn

n!
[Q−

m]n
∣∣ψPI−

m (r2)
〉)

= ∇(
[Q−′

m ]
∣∣ψPI−

m (r2)
〉) = [Q−′

m ]
∣∣v2−

m3

〉
. (A15)

Here, [Q−′
m ] becomes a diagonal dominant, but nonsparse matrix, where

[Q−′
m ] =

nmax∑
n=0

sn[Q−
m]n/n!. (A16)

We have introduced Eq. (A16) in Eq. (31) of the main text also.
Finally, we use a matrix expression to combine Eqs. (A12), (A14), and (A15) concluding

[
M12=

m

] =

⎡
⎢⎣

[T ′
m] + s[T ′

m][Rm] s[T ′][Cm] 0

−k2s[T ′
m][Cm] [T ′

m] + s[T ′
m][Rm] 0

0 0 [Q−′
m ]

⎤
⎥⎦. (A17)

Here, matirx [M12=
m ] is the block in transformation matrix [M=

12] for a specific m. So matrix [M=
12]

can be derived by combining submatrices [M12=
m ] for all different values of m.
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2. Transformation matrix between singular solution and regular solution

Next, [M∓
12] is constructed from [M=

12]. Complexity of a general submatirx [M12=
m ] for any

arbitrary m will obscure the key results. Instead, we only take into account matrix [M12∓
m ] for

m = 0,±1 and consider them separately, as these are only relevant m’s for our systems. The
derivation requires a few additional identities involving the basis solutions of Brinkman equation.
These relations are classified into two groups.

First, we need an identity analogous to Eq. (A4) with only ψPI+
lm replacing ψPI−

lm :

∂ψPI+
lm (ri )

∂z
= (l + m)ψPI+

(l−1)m(ri ). (A18)

The corresponding matrix representation for this identity is

∂

∂z

∣∣ψPI+
m (ri )

〉 = [Q+
m]

∣∣ψPI+
m (ri )

〉
. (A19)

Here, [Q+
m] is a lower-diagonal matrix whose elements are

Qm+
lλ = (l + m)δ(l−1)λ, (A20)

which is also displayed in Eq. (30).
The second group of identities helps us to derive results for different values of m from the ones

associated to m=0. These use raising and lowering operators in quantum mechanics, where m is
increased or decreased by the operation. Our two sphere system specifically uses two such identities.
The first includes the scalar potential for the homogeneous solution:(

∂

∂x
+i

∂

∂y

)∣∣ψh±
0 (ri )

〉= [Ah]
∣∣ψh±

1 (ri )
〉
, and

(
∂

∂x
−i

∂

∂y

)∣∣ψh±
0 (ri )

〉= [Bh]
∣∣ψh±

(−1)(ri )
〉
. (A21)

Here submatrix [Ah] and [Bh] are bidiagonal with elements Ah
lλ and Bh

lλ, respectively:

Ah
lλ =

( −1

2l+1

)
δlλ+

(
k2

2l+1

)
δ(l−2)λ, Bh

lλ = (l+1)(l+2)

(2l + 1)
δlλ− l (l−1)k2

(2l + 1)
δ(l−2)λ. (A22)

These are what we first introduced in Eqs. (33) and (35), respectively. Similarly raising and lowering
operators can act on the scalar potential for the particular integral so that(

∂

∂x
+i

∂

∂y

)∣∣ψPI±
0

〉= [API±]
∣∣ψPI±

1

〉
and

(
∂

∂x
−i

∂

∂y

)∣∣ψPI±
0

〉= [BPI±]
∣∣ψPI±

(−1)

〉
. (A23)

The elements of the submatrices [API+], [API−], [BPI+], [BPI−] are as below

API+
lλ =δ(l−2)λ, API−

lλ =δlλ, BPI+
lλ =−l (l−1)δ(l−2)λ, BPI−

lλ =−(l+1)(l+2)δlλ. (A24)

Noting [API−] is simply the identity matrix, [API+] is referred as [API] in the main article. The
remaining components in Eq. (A24) are also furnished there as Eqs. (36) and (37).

The aforementioned identities are first utilized in derivation of [M12∓
m ] for m = 0. For this

purpose, we conclude from Eqs. (A2) and (A13) that Taylor series expansion yields∣∣ψh−
0 (r1)

〉 = [T ′
0 ]

∣∣ψh−
0 (r2)

〉
, (A25)

when |r2| > |s|. With a similar rationale, we argue that when |r2| < |s|,∣∣ψh−
0 (r1)

〉 = ¯[T ′
0 ]

∣∣ψh+
0 (r2)

〉
, (A26)

where ¯[T ′
0 ] is a transformation matrix we need to derive later. Since ψh±

00 (ri ) are isotropic functions
without any angular variation, Eqs. (A25) and (A26) should converge to the same value when
l = 0, m = 0, |r2| → |s|. This statement is represented by

〈e1|[T ′
0 ]

∣∣ψh−
0 (s)

〉 = 〈e1| ¯[T ′
0 ]

∣∣ψh+
0 (s)

〉
, (A27)
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where the first element of the row 〈e1|=〈1,0,· · ·, 0| is 1 and others are 0. Also, when |r2|=s,∣∣ψh−
0 (s)

〉 = [Dh]|ψh+
0 (s)〉. (A28)

The elements of diagonal [Dh] are

Dh
lλ = {g−

l (s)/g+
l (s)}δlλ, (A29)

first introduced in Eq. (27).
Combining Eqs. (A27) and (A28) we find

〈e1|[T ′
0 ][Dh]

∣∣ψh+
0 (s)

〉 = 〈e1| ¯[T0]
∣∣ψh+

0 (s)
〉 ⇒ 〈e1|[T ′

0 ][Dh] = 〈e1| ¯[T0] (A30)

to be self evident. Replacing the conclusion of Eq. (A30) in Eq. (A26), one infers〈
e1

∣∣ψh−
l0 (r1)

〉 = 〈e1|[T ′
0 ][Dh]

∣∣ψh+
l0 (r2)

〉
, (A31)

when |r2| < |s|. Then, if we take the derivative ∂
∂z on both sides of Eq. (A31), Eq. (A2) ensures

〈e1[T0]
∣∣ψh−

l0 (r1)
〉 = 〈e1|[T ′

0 ][Dh][T0]
∣∣ψh+

l0 (r2)
〉
. (A32)

Similarly, successive higher-order derivatives ∂ l

∂zl on both sides of Eq. (A31) provide a series of
equations similar to Eq. (A32). The matrix representation of these relations would be[

Nh
1

]∣∣ψh−
0 (r1)

〉 = [
Nh

2

]∣∣ψh+
0 (r2)

〉 ⇒ ∣∣ψh−
0 (r1)

〉 = [
Nh

1

]−1[
Nh

2

]∣∣ψh+
0 (r2)

〉
,

where
[
Nh

1

] =

⎡
⎢⎢⎢⎢⎣

〈e1|[I]

〈e1|[T0]

〈e1|[T0]2

· · ·
〈e1|[T0]l

⎤
⎥⎥⎥⎥⎦,

[
Nh

2

] =

⎡
⎢⎢⎢⎢⎣

〈e1|[T ′
0 ][Dh]

〈e1|[T ′
0 ][Dh][T0]

〈e1|[T ′
0 ][Dh][T0]2

· · ·
〈e1|[T ′

0 ][Dh][T0]l

⎤
⎥⎥⎥⎥⎦, (A33)

as long as |r2| < |s|. The relations in Eq. (A33) is also narrated in Eq. (25).
Finally, we combine Eqs. (A12) and (A33) to derive∣∣v1−

m1

〉 = [
Nh

1

]−1[
Nh

2

]∣∣v2+
m1

〉 + s
[
Nh

1

]−1[
Nh

2

]
[Rm]

∣∣v2+
m1

〉
for |r2| < |s|, m = 0. (A34)

Also from the defination of basis solutions in Eq. (4), one finds∣∣v1−
m2

〉 = [
Nh

1

]−1[
Nh

2

]∣∣v2+
m2

〉 + s
[
Nh

1

]−1[
Nh

2

]
[Rm]

∣∣v2+
m2

〉
for |r2| < |s|, m = 0. (A35)

These render parts of the transformation relation involving the homogeneous solutions of regular
and singular types for Brinkman equation, when m=0.

A similar strategy can also be applied to obtain the relation between particular integrals |v1−
m3〉

and |v2+
m3〉. Accordingly, Eqs. (A9) and (A16) imply a Taylor series when |r2|> |s|:∣∣ψPI−

0 (r1)
〉 = [Q−′

0 ]
∣∣ψPI−

0 (r2)
〉
. (A36)

Also, when |r2| < |s|, we assume ∣∣ψPI−
0 (r1)

〉 = ¯[Q−′
0 ]

∣∣ψPI+
0 (r2)

〉
, (A37)

where ¯[Q−′
0 ] is to be constructed.

As ψPI±
00 (ri ) are also isotropic functions like ψh±

00 (ri ), Eqs. (A36) and (A37) should converge to
the same value when l = 0, m = 0, |r2| → |s|. This infers

〈e1|[Q−′
0 ]

∣∣ψPI−
0 (s)

〉 = 〈e1| ¯[Q−′
0 ]

∣∣ψPI+
0 (s)

〉
. (A38)

When |r2| = |s|, we also have ∣∣ψPI−
0 (s)

〉 = [DPI]
∣∣ψPI+

0 (s)
〉
, (A39)
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where elements DPI
lλ = |s|−2l−1δlλ of diagonal [DPI] are first introduced in Eq. (30). From Eqs. (A38)

and (A39), we conclude 〈e1|[Q−′
0 ][DPI] = 〈e1| ¯[Q−′

0 ] which is analogous to Eq. (A30) for homoge-
neous solutions. Combining this with Eq. (A37), we derive the following when |r2| < |s|:〈

e1

∣∣ψPI−
0 (r1)

〉 = 〈e1|[Q−′
0 ][DPI]

∣∣ψPI+
0 (r2)

〉
. (A40)

Next, taking the derivative ∂
∂z on both sides of Eq. (A40) yields

〈e1[Q−
0 ]

∣∣ψPI−
0 (r1)

〉 = 〈e1|[Q−′
0 ][DPI][Q

+
0 ]

∣∣ψPI+
0 (r2)

〉
. (A41)

Similarly, higher-order derivatives ∂ l

∂zl of Eq. (A40) provide matrix equation like Eq. (A41),[
NPI

1

]∣∣ψPI−
0 (r1)

〉 = [
NPI

2

]∣∣ψPI+
0 (r2)

〉 ⇒ ∣∣ψPI−
0 (r1)

〉 = [
NPI

1

]−1[
NPI

2

]∣∣ψPI+
0 (r2)

〉
,

where
[
NPI

1

] =

⎡
⎢⎢⎢⎢⎢⎣

〈e1|[I]

〈e1|[Q−
0 ]

〈e1|[Q−
0 ]2

· · ·
〈e1|[Q−

0 ]l

⎤
⎥⎥⎥⎥⎥⎦,

[
NPI

2

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈e1|[Q−′
0 ][DPI]

〈e1|[Q−′
0 ][DPI][Q+

0 ]

〈e1|[Q−′
0 ][DPI][Q+

0 ]2

· · ·
〈e1|[Q−′

0 ][DPI][Q+
0 ]l

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A42)

Then, combining Eqs. (4) and (A42), one can conclude∣∣v1−
m3

〉 = [
NPI

1

]−1[
NPI

2

]∣∣v2+
m3

〉
for |r2| < |s|, m = 0. (A43)

This reproduces the earlier results involving harmonic functions given by Ref. [34].
In the end, Eqs. (A34), (A35), and (A43) are combined to derive

[
M12∓

0

] =
⎡
⎣[H0] + s[H0][R0] 0 0

0 [H0] + s[H0][R0] 0

0 0 [P0]

⎤
⎦. (A44)

Here, [H0] = [Nh
1 ]−1[Nh

2 ] and [P0] = [NPI
1 ]−1[NPI

2 ], while submatrix [R0] is defined in Eq. (A10).
The expression for matrix [M12∓

0 ] in Eq. (A44) exactly corresponds to Eq. (22) for m = 0.
The subsequent analysis would focus on finding [M12∓

1 ] first and [M12∓
−1 ] next. The expression

of [M12∓
0 ] with m=0 can be used to construct the similar transformation with m = ±1. For this

purpose, we utilize the raising and lowering operators discussed earlier. The mathematical procedure
closely follows the technique used in quantum mechanics commonly involving the aforementioned
operators.

We take derivative (∂/∂x + i∂/∂y) on both sides of Eq. (A33) and use Eq. (A21) to find∣∣ψh−
1 (r1)

〉 = [H1]
∣∣ψh+

1 (r2)
〉
. (A45)

Here, [H1] = [Ah]−1[Nh
1 ]−1[Nh

2 ][Ah] is first mentioned in Eq. (32). Then, Eqs. (A12) and (A45) are
combined to infer∣∣v1−

m1

〉 = [H1]
∣∣∣∣v2+

m1

〉 + s[H1][Rm]
∣∣v2+

m1

〉 + s[H1][Cm]
∣∣v2+

m2

〉
for |r2| < |s|, m = 1. (A46)

Also, we conclude from the definition of basis solutions in Eq. (4) that∣∣v1−
m2

〉 = [H1]
∣∣∣∣v2+

m2

〉 + s[H1][Rm]
∣∣v2+

m2

〉 − k2s[H1][Cm]
∣∣v2+

m1

〉
for |r2| < |s|, m = 1. (A47)

Similarly, Eq. (A23) implies∣∣ψPI−
1 (r1)

〉 = [
NPI

1

]−1[
NPI

2

]
[API]

∣∣ψPI+
1 (r2)

〉
, (A48)

if the same derivative (∂/∂x + i∂/∂y) is operated on both sides of Eq. (A42) as a raising operator.
Consequently, for |r2| < |s| and m = 1, Eq. (4) allows one to convert Eq. (A48) to the following
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relation: ∣∣v1−
m3

〉 = [P1]
∣∣v2+

m3

〉
, (A49)

assuming a matrix [P1] defined as [P1] = [NPI
1 ]−1[NPI

2 ][API] which is also stated in Eq. (32). Finally,
we combine Eqs. (A46), (A47), and (A49) to conclude

[
M12∓

1

] =
⎡
⎣[H1] + s[H1][R1] s[H1][C1] 0

−k2s[H1][C1] [H1] + s[H1][R1] 0

0 0 [P1]

⎤
⎦, (A50)

where matrix [M12∓
1 ] represents the Eq. (15) for |r2| < |s|, m = m′ = 1. Here, matrix [M12∓

1 ] is
the same matrix first introduced in Eq. (22) for m = 1. Submatrices [R1] and [C1] are defined in
Eqs. (A10) and (A11) for m=1, respectively.

For transformation matrix [M12∓
m ] corresponding to m = −1, we could apply the same method

as the one we followed in derivation of [M12∓
1 ]. According to Eq. (A21), the derivative ( ∂

∂x − i ∂
∂y )

on both sides of Eq. (A33) yields ∣∣ψh−
(−1)(r1)

〉 = [H−1]
∣∣ψh+

(−1)(r2)
〉
. (A51)

Here, matrix [H−1] = [Bh]−1[Nh
1 ]−1[Nh

2 ][Bh], which is first mentioned in Eq. (34). Then combining
Eqs. (A12) and (A51), one finds∣∣v1−

m1

〉 = [H−1]
∣∣∣∣v2+

m1

〉 + s[H−1][Rm]
∣∣v2+

m1

〉 + s[H−1][Cm]
∣∣v2+

m2

〉
for |r2| < |s|, m = −1. (A52)

Also from the definition of basis solutions in Eq. (4), we conclude that∣∣v1−
m2

〉 = [H−1]
∣∣∣∣v2+

m2

〉 + s[H−1][Rm]
∣∣v2+

m2

〉 − k2s[H−1][Cm]
∣∣v2+

m1

〉
for |r2| < |s|, m = −1. (A53)

At the same time, Eq. (A23) ensures that the derivative ( ∂
∂x − i ∂

∂y ) on both sides of Eq. (A42) renders
the following relation: ∣∣ψPI−

(−1)(r1)
〉 = [BPI−]

[
NPI

1

]−1[
NPI

2

]
[BPI+]

∣∣ψPI+
(−1)(r2)

〉
. (A54)

Using Eq. (4), Eq. (A54) can be rewritten as∣∣v1−
m3

〉 = [P−1]
∣∣v2+

m3

〉
for |r2| < |s|, m = −1, (A55)

where matrix [P−1] is defined as [P−1] = [BPI−][NPI
1 ]−1[NPI

2 ][BPI+] as defined in Eq. (34). Finally,
we combine Eqs. (A52), (A53), and (A55) to conclude

[
M12∓

−1

] =
⎡
⎣[H−1] + s[H−1][R−1] s[H−1][C−1] 0

−k2s[H−1][C−1] [H−1] + s[H−1][R−1] 0

0 0 [P−1]

⎤
⎦, (A56)

where matrix [M12∓
−1 ] expresses the transformation coefficients in Eq. (15) for |r2| < |s|, m = m′ =

−1. Matrix [M12∓
−1 ] is identical to the one in Eq. (22) for m = −1. Submatrices [R−1] and [C−1] are

defined in Eqs. (A10) and (A11) for m=−1, respectively.
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