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Simplified approach to the repulsive Bose gas from low to high densities and its numerical accuracy
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In 1963, a simplified approach was developed to study the ground-state energy of an interacting Bose gas
with a purely repulsive potential. It consists in the derivation of an equation, which is not based on perturbation
theory and which gives the exact expansion of the energy at low densities. This equation is expressed directly
in the thermodynamic limit and only involves functions of three variables, rather than 3N . Here, we revisit this
approach, introduce two more equations, and show that these yields accurate predictions for various observables
for all densities for repulsive potentials with positive Fourier transform. Specifically, in addition to the ground-
state energy, we have shown that the simplified approach gives predictions for the condensate fraction, two-
point correlation function, and momentum distribution. We have carried out a variety of tests by comparing the
predictions of the equations with quantum Monte Carlo calculations for exponential interaction potentials as
well as a different, finite range potential of positive type, and have found remarkable agreement. We thus show
that the simplified approach provides an alternative theoretical tool to understand the behavior of the many-body
Bose gas, not only in the small and large density ranges, which have been studied before, but also in the range
of intermediate density, for which much less is known.
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I. INTRODUCTION

Bose gases are one of the foundational objects in the statis-
tical mechanics of quantum systems, and have been the focus
of much scrutiny, dating back to the early days of quantum
mechanics [1]. Nevertheless, there are still several important
problems to be solved, in the case of interacting Bose gases,
in which the correlations between particles make the analysis
very difficult. In this case, observables may be computed by
either performing numerical computations using finite-size
approximations and extrapolations, or by devising effective
theories which capture some of the correlations between par-
ticles, while remaining integrable. In this paper, we present an
effective theory which goes back to 1963 [2], and which we
have found gives accurate predictions in the thermodynamic
limit at all densities that have been verified numerically by
quantum Monte Carlo (QMC) computations. This remark-
able agreement leads us to suggest that this may be a new
way of understanding and analyzing the quantum many-body
problem.

In the low density regime, an effective theory which has
proved to be extremely successful is due to Bogolubov [3],
who devised a scheme in which the many body-Hamiltonian
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is reduced to a quadratic operator, which captures pair corre-
lations rather well, and, at the same time, can be explicitly
diagonalized (see Ref. [4] for a review). By applying Bo-
golubov’s scheme to an idealized Hamiltonian in which the
interaction potential v is replaced by a localized pseudopo-
tential, Lee, Huang and Yang derived a large collection of
predictions for the Bose gas at low density. In particular, they
computed that the ground-state energy per particle should
behave as [5, (25)]

e0 = 2πρa0

(
1 + 128

15
√

π

√
ρa3

0

)
, (1)

where ρ is the particle density, a0 is the scattering length
of v (throughout this paper, we will take h̄ = m = 1). The
leading order term 2πρa0 is originally due to Lenz [1]. The
Lee-Huang-Yang formula (1) can also be derived from the
computation done by Bogolubov [3,6]. This expansion is uni-
versal, in that it only depends on the scattering length a0,
and not on the details of the potential. Lee, Huang, and Yang
also made a prediction for the ground-state noncondensed
fraction η0, that is, the fraction of particles that are not in the
Bose-Einstein condensate [5, (41)]:

η0 =
8
√

ρa3
0

3
√

π
. (2)

After much work over more than sixty years, it was finally
proved [7–14] that (1) is asymptotically correct at low den-
sities. The formula for the noncondensed fraction (2) has, to
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this day, not been proved to hold for the interacting Bose gas
in the thermodynamic limit, though it has been confirmed by
numerical experiments [15].

Concerning the ground-state energy at high densities, it
has been shown [2] that if the potential is of positive type
(non-negative with a non-negative Fourier transform), then,
as ρ → ∞,

e0 ∼ ρ

2

∫
dx v(x). (3)

The positivity of the Fourier transform of the potential is
required for this to hold. In fact, Sütő [16] has proved that,
for the classical Bose gas (at asymptotically large densities,
for many potentials, the classical ground state coincides with
the quantum one), the high-density ground state is uniform
for positive type potentials, but it exhibits periodic patterns
for certain potentials that are not of positive type. In the latter
case, (3) cannot possibly hold. In Sec. V, we will discuss a
simple example of a potential that is not of positive type for
which e0/ρ → 0. From now on, we will restrict our attention
to potentials of positive type. The asymptotic formula (3)
coincides with the ground-state energy in Hartree theory, in
which all Bosons are assumed to be condensed. Note that,
whereas Hartree theory is accurate at asymptotically large
densities, there are various effective theories that produce
accurate results for large finite densities, such as those based
on the random phase approximation and the mean spherical
approximation (MSA) [17].

Therefore the Bose gas is described by Bogolubov theory
at low density and Hartree theory or the MSA at high density.
In this paper, we will discuss another effective theory for the
ground state of the repulsive Bose gas with a positive type
potential, which is highly accurate at all densities, which is
exact at low and high densities, and highly accurate at all
intermediate densities. In other words, it is a physically de-
scriptive interpolation between Bogolubov and Hartree theory.
To justify our claim that it is in good quantitative agreement
with the physics at all densities, we rely on with QMC simula-
tions of the Bose gas for intermediate densities. This equation
was originally introduced in 1963 [2] and studied for the high
density jellium [18] and in one dimension [19]. There has been
no research progress since then. The merit of this equation is
twofold. First, it provides a tool to study the Bose gas at inter-
mediate densities, about which little is known, and, since the
Bose gas is strongly correlated in this regime, we expect the
physical behavior of the system to be significantly different
from the low and high density limits. Second, the approach
leading to this equation is quite different from Bogolubov
theory, so it may shine a new light on the low density physics
of the system, and, perhaps, lead to progress in the proof of
the existence of Bose-Einstein condensates at small positive
densities. The effective theory described in this paper gives a
prediction for a function derived from the ground-state wave
function ψ0 of the Bose gas in the thermodynamic limit, which
is automatically symmetric and non-negative:

g2(x1 − x2) := lim
N,V → ∞

N
V = ρ

∫ dx3
V · · · dxN

V ψ0(x1, x2, · · · , xN )
∫ dy1

V · · · dyN
V ψ0(y1, · · · , yN )

.

(4)

The function g2 can be interpreted as the two-point correla-
tion function of the probability distribution ψ0 ! 0 (suitably
normalized). Note that this is different from the quantum
probability distribution |ψ0|2. The effective theory gives a pre-
diction, denoted by u, for an approximation of 1 − g2(x − y).
This prediction satisfies the following equation [2]:

[−% + v(x)]u(x) = v(x) − ρ[1 − u(x)][2K (x) − ρL(x)]

(5)

with

K (x) :=
∫

dy u(y − x)S(y) ≡ u ∗ S(x), (6)

S(x) := (1 − u(x))v(x), (7)

L(x) :=
∫

dydz u(y)u(z − x)
(

1 − u(z) − u(y − x)

+ 1
2

u(z)u(y − x)
)

S(z − y). (8)

This equation will be called the full equation, as we will also
be considering a hierarchy of three approximations to this
equation.

(1) The big equation (which will be rendered in plots in
yellow), in which we neglect the 1

2 u(z)u(y − x) term in (8):

−%u(x) = (1 − u(x))(v(x) − 2ρK (x) + ρ2Lbigeq(x)) (9)

with

Lbigeq := u ∗ u ∗ S − 2u ∗ (u(u ∗ S)). (10)

(2) The medium equation (green), in which we further
neglect the 2u ∗ (u(u ∗ S)) term in (10), and drop the u(x) in
the (1 − u(x)) prefactor of K and Lbigeq in (9):

−%u(x) = (1 − u(x))v(x) − 2ρK (x) + ρ2Lmueq(x) (11)

with

Lmueq := u ∗ u ∗ S. (12)

(3) The simple equation (blue), in which we further ap-
proximate S by δ(x) 2ẽ

ρ
in (6) and (12):

(−% + v(x) + 4ẽ)u(x) = v(x) + 2ẽρu ∗ u(x) (13)

with

ẽ = ρ

2

∫
dx (1 − u(x))v(x). (14)

The basis for making these approximations is discussed in
Sec. II. The big equation is easier to solve numerically than
the full equation, yet it remains very accurate. However, the
mathematical analysis of the full, big, and medium equations
is quite difficult and so far has not been accomplished. In this
regard, the situation is much better for the simple equation, for
which a well-developed mathematical study has been carried
out in Refs. [20,21], and it is also quite simple to investigate
its solutions numerically. The medium equation also has this
latter advantage; it has a simpler structure than the big equa-
tion and is considerably easier to solve numerically. As we
show here it gives good results over a wider range of densities
than the simple equation.
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FIG. 1. The energy as a function of density for the potential
e−|x| (top) and 16e−|x| (bottom). We compare the predictions of the
big, medium, and simple equations to a QMC simulation. For com-
parison, we also plot the Lee-Huang-Yang (LHY) energy (1). (All
quantities plotted in this and the following figures are dimensionless).

The simple equation nonetheless gives accurate results at
least for low and high densities, for which it yields asymptoti-
cally correct results. In a previous publication [20], we proved
that the simple equation predicts an energy that coincides
asymptotically with (1) at low density, and with (3) at high
density. In another paper [21], released concurrently with the
present paper, we prove that the condensate fraction predicted
by the simple equation agrees asymptotically with (2) at low
density.

In the present paper, we discuss some more quantitative
results, with more of a focus on the big equation, which
we have found to be very accurate by comparing its predic-
tions to quantum Monte Carlo simulations. We will consider
potentials that are of positive type, with a special focus on
exponential potentials of the form αe−|x|. We have found that
the prediction for the energy is very accurate for all densities,
see Fig. 1. In the case α = 1, the relative error compared to the
QMC simulation is as small as 0.1%, and is comparable to the
error made by a Bijl-Dingle-Jastrow function ansatz [22–24],
see Fig. 2, even though the solution of the big equation is
much easier to compute numerically than the Bijl-Dingle-
Jastrow optimizer. The prediction for the condensate fraction
is less accurate in the intermediate density regime, though still
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FIG. 2. Relative error for the energy ẽ−eQMC
eQMC

compared to the

QMC simulation as a function of density for the potential e−|x| (top)
and 16e−|x| (bottom). The red crosses are the result for the optimal
Bijl-Dingle-Jastrow (BDJ) function.

remarkably good for small values of α, see Fig. 3. For larger
α, the big equation is off the mark, see Fig. 9, although the
qualitative features of the condensate fraction are still well

0

0.01

0.02

0.03

0.04

0.05

0.06

10−6 10−4 10−2 1 102

η̃

ρ

simple
med
big

QMC
Bog

FIG. 3. The noncondensed fraction as a function of the density
for the potential 1

2 e−|x|. We compare the predictions of the big,
medium, and simple equations to a QMC simulation. The prediction
of Bogolubov theory (2) is also plotted for comparison (Bog).
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FIG. 4. g̃2(x) for the potential 16e−|x| at ρ = 0.0001 (top) and
ρ = 0.02 (bottom). We compare the predictions of the big, medium,
and simple equations to a QMC simulation.

reproduced. We have also carried out similar computations for
the hard core potential, for which we also find good agree-
ment, see Fig. 8.

Because computing with the big equation is relatively easy
from a computational point of view, we have been able to
probe some observables in the intermediate density regime,
far from the low density Bogolubov regime and the high
density mean field regime. Comparing to QMC simulations,
we have found that g2 [see Eq. (4)] is accurately predicted
by both the simple and the big equations at low density, but,
as the density is increased, the prediction from the simple
equation drops away abruptly, but the big equation remains
accurate: see Fig. 4. When this occurs, a maximum that is
>1 appears, thus indicating that there is a new length scale
appearing in the problem, at which there is a small increase
in the probability of finding a particle. This picture also holds
for the usual quantum two-point correlation function, which
we can also predict rather accurately, see Fig. 5. This suggests
a nontrivial, strongly coupled phase at intermediate densities,
which was thus predicted by the big equation and validated
by QMC simulations. Naturally, this is not the first investiga-
tion into strongly coupled Bose gases. Indeed, there has been
much interest lately in the unitary Bose gas, in which case
the interaction potential is a Dirac delta function (a contact
interaction), and the scattering length is taken to infinity (see
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FIG. 5. C̃2
ρ2 for the potential e−|x| at ρ = 0.0001 (top) and

ρ = 0.02 (bottom). We compare the predictions of the big, medium,
and simple equations to a QMC simulation.

Ref. [25] for a review). Increasing the scattering length results
in nontrivial many-particle effects, such as the appearance of
Efimov trimers [26–28]. This can be seen [29–33] in terms of
the universal Tan relation [34], which states that the momen-
tum distribution M(k) satisfies, at large k,

M0(k) ∼ c2

|k|4
, c2 = 8πa2

0
∂e0

∂a0
. (15)

For the big and simple equations discussed in this paper, we
have found that this relation holds in the range

√
ρa0 ( |k| ( 1 (16)

which is another confirmation of the accuracy of the effective
equation at small densities. However, if

√
ρ " 1, then the

universal Tan regime does not exist, and the picture in terms
of strongly coupled few-particle configurations inherent to the
analysis of unitary Bose gases [29,31] breaks down, as the
Bose gas transitions to a strongly correlated liquid. This is
confirmed for the prediction of the big equation, see Fig. 6.

As further evidence of the breakdown of universality in
the intermediate density regime, we have also compared the
ground-state energy for two very different potentials, which
have the same scattering length and the same integral. We have
found that the energy for these two potentials is significantly
different in the intermediate density regime, see Fig. 7. For
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FIG. 6. The prediction of the big equation for the momentum
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and corresponds to a |k|−4 behavior, whereas the dark green dotted
line has a slope −12, and corresponds to |k|−12.

0

5

10

15

20

25

30

35

40

10−4 10−2 1 102 104

e
ρ

ρ

big v(0)
32

big Φ
QMC v(0)

32
QMC Φ

LHY

FIG. 7. The prediction of the energy by the big equation for the
potentials v(0)

32 and )(x) ≡ αe−β|x| with α ≈ 907.2 and β ≈ 6.873.
The potentials are chosen to have the same scattering length, a0 ≈
0.5878, as well as the same value for their integrals, so they coincide
at low and at high densities. They differ signinficantly at intermediate
densities. We compare each curve to a few QMC points, which fit
well. We also plot the Lee-Huang-Yang (LHY) energy (1).

these two potentials, we have also found that the quantum
Monte Carlo data fits very well with the prediction of the
big equation. The rest of the paper is structured as follows.
In Sec. II, we detail the approximation needed to get from
the many-body Bose gas to the full fquation, and then discuss
the approximations leading to the big, medium, and simple
equations. In Sec. III, we compare various physical quantities
predicted by these equations to QMC simulations of the Bose
gas. In Sec. IV, we treat the hard core potential. In Sec. V, we
discuss the limitations of the approximations.

II. DERIVATION OF THE FULL EQUATION
AND ITS APPROXIMATIONS

Let us now discuss the derivation of the full equation,
which follows [2], and the approximations that lead to the
big, medium, and simple equations. Whereas this derivation
is based on uncontrolled approximations, it is justified by the
remarkable accuracy of the resulting predictions compared to
QMC computations. We start from the many-body Hamilto-
nian: denoting the number of particles by N ,

H = −1
2

N∑

i=1

%i +
∑

1!i< j!N

v(xi − x j ) (17)

(we set h̄ = m = 1). We confine the N particles in a cubic
box + of volume V , and impose periodic boundary conditions.
Later on, we will take the thermodynamic limit N,V → ∞,
N
V = ρ fixed.

In the derivation presented here, we will rely on the trans-
lation invariance of the Hamiltonian, which does not allow us
to study a system with a trapping potential at this time.

Let EN denote the ground-state energy and let
ψN (x1, . . . , xN ) denote the ground-state wave function
so that

Hψ0(x1, . . . , xN ) = ENψN (x1, . . . , xN ), (18)

where v ! 0 is an integrable pair potential. Instead of taking
the scalar product of both sides of the equation with ψ0, which
would yield an expression relating the ground-state energy
to the one-particle reduced density matrix, we will simply
integrate both sides of the equation, and find that, using the
translation invariance of the system,

EN

N
= N − 1

2V

∫
dx v(x)g(N )

2 (x) (19)

with

g(N )
n (x2 − x1, . . . , xN − x1)

:=
∫ dxn+1

V · · · dxN
V ψ0(x1, · · · , xN )

∫ dx1
V · · · dxN

V ψ0(x1, · · · , xN )
. (20)

In particular, note that the kinetic term has disappeared en-
tirely. Furthermore, by the Perron-Frobenius theorem, ψ0 ! 0,
so g(N )

n can be interpreted as the n-point correlation function
of the probability distribution ψ0 (suitably normalized) which
is not the usual quantum probability distribution.
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We can then express g(N )
2 by integrating (18) with respect to x3, . . . , xN : using the translation invariance of the system,

−%g(N )
2 (x − y) + v(x − y)g(N )

2 (x − y) + N − 2
V

∫
dz (v(x − z) + v(y − z))g(N )

3 (y − x, z − x) + (N − 2)(N − 3)
2V 2

×
∫

dzdt v(z − t )g(N )
4 (y − x, z − x, t − x) = E0g(N )

2 (x − y). (21)

This equation relates g2 to g3 and g4. By proceeding in the
same way, we can derive equations for g3 and g4 in terms of
g5 and g6, and so on. In this way, we obtain a hierarchy of
equations for all the g(N )

n .
The full equation is an approximation in which we truncate

this hierarchy at the lowest level, by assuming that g3 and
g4 can be expressed in terms of g2, which turns (21) into an
equation for g(N )

2 alone. Remembering that gn can be inter-
preted as a correlation function, it is natural to approximate g3
and g4 by

g(N )
3 (x2 − x1, x3 − x1) = g(N )

2 (x2 − x1)g(N )
2 (x3 − x1)g(N )

2

× (x3 − x2) (22)

and

g(N )
4 (x2 − x1, x3 − x1, x4 − x1)

=
∏

i< j

(
g(N )

2 (x j − xi ) + R(x j − xi )
)

(23)

in which the correction term R(x j − xi ) = O(V −1) is relevant
because g(N )

4 appears in (21) in a term that diverges as V in
the thermodynamic limit. This correction term is computed
by ensuring that

∫
dx3dx4 g(N )

4 = V 2g(N )
2 :

R(x − y) = − 2
V

g(N )
2 (x − y)

∫
dz

(
1 − g(N )

2 (z − x)
)

×
(
1 − g(N )

2 (z − y)
)
+ O(V −2). (24)

Taking the thermodynamic limit N,V → ∞, N
V = ρ, we find

(5) by defining

g2(x) =: 1 − u(x). (25)

Furthermore, by (19), the prediction for the ground-state
energy is

ẽ = ρ

2

∫
dx (1 − u(x))v(x). (26)

The factorization assumption (22)-(23) simply states that
many-body correlations of ψ0 reduce to pair correlations. If
ψ0 were Gaussian, this would hold exactly. If ψ0 were a Bijl-
Dingle-Jastrow function [22–24], that is, if

ψ0 =
∏

i< j

e−βϕ(xi−x j ) (27)

then the factorization property at long distances would be
equivalent to the fact that the classical statistical mechani-
cal model with interaction ϕ satisfies the clustering property
[35]. One can expect this to be true at low densities, where
the Bijl-Dingle-Jastrow function might be a good approxima-
tion of the ground state. At high densities, since the system

approaches a mean-field regime, one might also suppose that
the factorization assumption may not be so far off.

The full equation we have derived is quite difficult to study,
even numerically. As was discussed in Sec. I, we will in-
troduce further approximations to simplify the equation. The
first approximation is to neglect the 1

2 u(z)u(y − x) term in
(8), which is the most difficult term, from a computational
point of view. We expect that, at low densities, this term is
expected to be of order ρ3/2 uniformly in x, whereas the
leading order term in L should be of order ρ. This leads us
to the big equation defined in (9). This equation is easier to
solve numerically than the full equation, because in Fourier
space, it involves only two convolution operators, whereas the
full equation contains three, which makes it computationally
heavier. Nevertheless, this equation is still difficult to study
analytically, so we make further approximations

Following the same idea, we can further neglect the 2u ∗
(u(u ∗ S)) term in (10). Furthermore, we expect u to decay as
|x|−4, so if we focus on distances that are appreciably large,
we can approximate 1 − u by 1 in the prefactor of K and L in
(9). This leads to the Medium Eq. (11).

To arrive at the simple equation, we take advantage of a
separation of scales that occurs at low density. On account of
(19), the function S(x) defined in (6) satisfies

∫
dx S(x) = 2ẽ

ρ
(28)

which is just another way of stating (26). There are two dif-
ferent length scales in the problem: the first is the scattering
length of the potential a0 and the second is the interparticle
distance ρ−1/3. At sufficiently low densities, we will have

a0 ( ρ−1/3 (29)

and if the length scale ρ−1/3 is characteristic of the solution u
of (5), as we argue below, then we can expect u(x) to satisfy
a bound of the form |∇u(x)| # Cρ1/3 uniformly in x. When
integrating S(x) against such a slowly varying function, we
may as well replace it with 2ẽ/ρ times a delta function:

S(x) ≈ 2ẽ
ρ

δ(x). (30)

Making this approximation in (6) and (12), we arrive at the
simple Eq. (13). Notice the energy per particle ẽ appears as
an explicit parameter in the simple equation, unlike the full
equation.

III. COMPARISON WITH QUANTUM
MONTE CARLO SIMULATIONS

Exact ground-state properties of finite N-boson systems
can be calculated arbitrarily well numerically with QMC
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methods. At zero temperatures, it is convenient to first intro-
duce a trial wave function, ψtrial, containing parameters which
are numerically optimized by minimizing the corresponding
variation energy evaluated by variational Monte Carlo (VMC)
calculations [36]. Subsequently, the exact ground-state wave
function ψ0 is accessed stochastically by imaginary time pro-
jection [37–39].

Here, we have performed ground-state QMC calculations
for N bosons in a periodic box interacting with an exponential
potential, αe−|x|. Our calculations are based on a pair-
product (Bijl-Dingle-Jastrow) trial wave function, ψtrial ∝
exp(−

∑
i< j ϕ(|xi − x j |)), where ϕ is parametrized via lo-

cally piecewise-quintic Hermite interpolants in real space and
Fourier coefficients in reciprocal space.

In variational Monte Carlo, ψ2
trial is sampled by Metropolis

Monte Carlo, and the optimal variational parameters of ϕ
are determined by minimizing a linear combination of the
energy and its variance. Using the optimized ψtrial as a guiding
function, the mixed distribution ψ0ψtrial is then stochastically
sampled by diffusion Monte Carlo (DMC). Linear extrapo-
lation is used to reduce the mixed-estimator bias occurring
for observables different from the ground-state energy [40].
In principle, the mixed-estimator bias can be controlled either
by systematic improvement of the trial wave function [41] or
by different projection Monte Carlo methods, e.g., reptation
Monte Carlo [39]. For the system under consideration, the
mixed estimator bias of the pair-product wave function was
found to be sufficiently small, the overall precision being lim-
ited rather by the finite system size of the QMC calculations.

In contrast to the computation of the big, medium, and
simple equations, QMC calculations require an explicit nu-
merical extrapolation from finite to infinite system size, which
is frequently one of the main bottlenecks of the method. Finite
size errors in the kinetic and potential energy can be quantified
based on two-body correlation functions [42]. In addition,
we have performed VMC and DMC calculations for various
system sizes, ranging from N = 8 to 512 bosons, to accurately
extrapolate to the thermodynamic limit.

In the figures, errors of the QMC calculations are smaller
than the size of the crosses in the plots, see Fig. 1. QMC
results for hard core Bosons are taken from Ref. [15].

A. Energy

Of the observables considered in this paper, the ground-
state energy is the most straightforward to compute: by (26),
the prediction for the energy is

ẽ =
∫

dx (1 − u(x))v(x). (31)

In our notation, e0 is the ground-state energy per particle for
the exact ground state of the Bose gas, and ẽ is the prediction
for the ground-state energy by the big, medium, or simple
equation.

In Fig. 1, we show a comparison of the prediction ẽ with
a QMC simulation for the exponential potential αe−|x|. In
Ref. [20], we proved that the energy prediction of the simple
equation is asymptotically correct in both the low and high
density limits. The numerics confirm this for all three equa-
tions. For α = 1, the simple equation is somewhat accurate,

although the Medium and big equations are much closer to the
QMC simulation. For α = 16 this is even clearer, and one sees
that the Medium equation is more accurate at large densities
than at small ones.

A more quantitative comparison can be found in Fig. 2,
where we plot the relative error, that is, (ẽ − eQMC)/eQMC,
where eQMC is the quantum Monte Carlo prediction for the
energy. We find that, for α = 1, the relative error is, at most,
5% for the simple equation, 1% for the Medium equation, and
0.1% for the big equation. For α = 16, all equations are less
accurate, with a relative error of 60% for the simple equation,
10% for the Medium equation, and 2% for the big equation.

In addition, in Fig. 2, we compare with the error made
by the optimal Bijl-Dingle-Jastrow function. A Bijl-Dingle-
Jastrow function is an ansatz for the ground-state wave
function of the form (27). Finding the optimal function ϕ
which minimizes the energy is a computationally intensive
operation, which is used as a first approximation when run-
ning the diffusion QMC simulation used in Fig. 1. We find
that the optimal Bijl-Dingle-Jastrow function gives a predic-
tion for the ground-state energy which is about as accurate
as the big equation. Of note is the fact that solving the big
equation numerically is computationally much less difficult
than computing the optimal Bijl-Dingle-Jastrow function. In
addition, in Fig. 2, we see that the full equation and the big
equation produce very similar results.

B. Condensate fraction

The approximations leading to the Big, Simple and
Medium equations reduce the number of degrees of freedom
from 3N in the many body Bose gas to just 3. In doing so,
we lose some information, and, in particular, we do not obtain
a prediction for the many-body wave function ψ0. Therefore
computing observables other than the ground-state energy is
not entirely straightforward. To compute the condensate frac-
tion, we first express it in terms of the energy of an auxiliary
system, from which we derive an approximation following
the prescriptions in Sec. II. Specifically, the noncondensed
fraction of the many-body ground state ψ0

η0 := 1 − 1
N

N∑

i=1

〈ψ0|Pi|ψ0〉 (32)

is expressed in terms of the projector Piψ0 :=
∫ dxi

V ψ0 onto
the condensate wave function (which is the constant function):
which we re-express in terms of the modified Hamiltonian

Hµ = −1
2

N∑

i=1

%i +
∑

1!i< j!N

v(xi − x j ) − µ
1
N

N∑

i=1

Pi, (33)

whose ground-state energy per particle is denoted by e0,µ:

η0 = 1 + ∂µe0,µ

∣∣
µ=0. (34)

Following the approximation scheme in Sec. II, we compute
an approximation ẽµ for e0,µ (following the convention used
before, e0,µ is the energy for the exact many-body ground
state and ẽµ is the prediction of the big, medium, and simple
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equations):

(−% + 2µ)uµ(x) = (1 − uµ(x))(v(x) − 2ρK (x) + ρ2L(x))

(35)

ẽµ =
∫

dx (1 − uµ(x))v(x) (36)

[compare this to (5)]. This leads to an approximation η̃ for the
noncondensed fraction η0:

η̃ := 1 + ∂µẽµ

∣∣
µ=0. (37)

Proceeding as in Sec. II, we obtain predictions for the big,
simple, and Medium equations.

In the case of the simple equation, we can relate η̃ and the
solution u of the Eq. (13) directly:

η̃ =
∫

dx v(x)Kẽu(x)
1 − ρ

∫
dx v(x)Kẽ(2u(x) − ρu ∗ u(x))

, (38)

where Kẽ is the operator

Kẽ := (−% + 4ẽ(1 − ρu∗) + v)−1. (39)

In Ref. [21], we study this operator in detail, and derived the
low density limit of η̃:

η̃ ∼
ρ→0

8
√

ρa3
0

3
√

π
, (40)

which agrees with the prediction of Bogolubov theory (2)
[5, (41)].

For the big and Medium equations, we carried out nu-
merical computations, the results of which are reported in
Fig. 3. Whereas all three approximate equations agree with
one another very well at low densities, the simple equation
becomes less accurate at intermediate densities. However, the
big and Medium equations make rather accurate predictions
(though not as accurate as for the energy), compared to the
QMC simulation. We find, as expected, that all particles are

condensed both at zero density and at infinite density, where
the Bose gas becomes a mean-field system. The location of
the maximum of the noncondensed fraction (or the minimum
of the condensed fraction) is accurately predicted by the big
and Medium equations.

C. Two-point correlation function

The two-point correlation function in the ground state is
defined as

C2(y − y′) :=
N∑

i, j=1

〈ψ0|δ(y − xi )δ(y′ − x j )|ψ0〉. (41)

We first note that this can be rewritten in a way that makes
the translation invariance of C2 more apparent, by denoting
x := y − y′ and taking an average over y′:

C2(x) := 2
V

∑

1!i< j!N

〈ψ0|δ(x − (xi − x j ))|ψ0〉, (42)

which we can rewrite as a functional derivative of the ground-
state energy per particle e0:

C2(x) = 2ρ2 δe0

δv(x)
. (43)

The prediction C̃2 of the big and Medium equations for the
two-point correlation function are therefore defined by differ-
entiating ẽ in (26) with respect to v:

C̃2(x) := 2ρ2 δẽ
δv(x)

. (44)

In the case of the simple equation, we will proceed differ-
ently. If we were to define C̃2 as in (44), we would find that
C̃2 would not converge to ρ2 as |x| → ∞, which is obviously
unphysical. This comes from the fact that first approximating
S as in (30) and then differentiating with respect to v is less
accurate than first differentiating with respect to v and then ap-
proximating S. Defining C̃2 following the latter prescription,
we find that, for the simple equation,

C̃2(x) = ρ2g̃2(x) + ρ2 Kẽv(x)g̃2(x) − 2ρu ∗ Kẽv(x) + ρ2u ∗ u ∗ Kẽv(x)
1 − ρ

∫
dx v(x)Kẽ(2u(x) − ρu ∗ u(x))

, (45)

where Kẽ is the operator defined in (39). Defined in this way,
C̃2 → ρ2 as |x| → ∞.

C2 is the physical correlation function, using the probabil-
ity distribution |ψ0|2, but, as we saw in Sec. II, ψ0 can also
be thought of a probability distribution, whose two-point cor-
relation function is g2, defined in (20). The Big, Medium and
simple equations make a natural prediction for the function
g2: namely 1 − u(x).

In Fig. 4, we compare the prediction g̃2 produced by
the big, medium, and simple equations to the QMC sim-
ulation. We find that for low enough densities, the three
predictions are consistent with one another, and accurately
reproduce the result of the QMC simulation. However, as
the density is increased, there is a transition to a situation
in which the predictions from the big, medium, and simple

equations start to differ significantly from one another. In
particular, in the case of the simple equation, g̃2 # 1, whereas
for the big and Medium equations, g̃2 has a maximum that
is >1. The prediction of the big equation remains quite ac-
curate, when compared to the QMC simulation, which also
exhibits a bump in g2. The presence of this local maxi-
mum in g2 shows that, in the probability distribution ψ0,
there is a larger probability of finding pairs of particles that
are separated by a certain fixed distance. This indicates the
appearance of a new physical length scale at intermediate
densities, and indicates that the system exhibits a nontriv-
ial physical behavior in this regime. Note that this behavior
was observed for the stronger potential 16e−|x|, but seems
to be absent for e−|x|. Note, also, that, as will be dis-
cussed next, this maximum is also present in the two-point
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correlation C2, and is, therefore, the manifestation of a physi-
cal phenomenon.

In Fig. 5, we compare the prediction C̃2 to the QMC sim-
ulation. At low densities, the prediction of the big equation
agrees rather well with the QMC simulation. The Simple and
Medium equations are not as accurate. At larger densities, the
simple and Medium equations are quite far from the QMC
computation, and the big equation is not as accurate as in
the case of g̃2, but it does reproduce some of the qualitative
behavior of the QMC computation. In particular, there is a
local maximum in the two-point correlation function, which
occurs at a length scale that is close to that observed for
g̃2. This suggests the emergence of a nontrivial phase, which
resembles a liquid. At small x, C̃2 is negative, which is clearly
not physical, and those values should be discarded.

D. Momentum distribution

Next, we study the momentum distribution M0(k). Com-
putations carried out for the contact Hamiltonian [28,43]
suggest that M0 should satisfy the asymptotic relation (15)

M0(k) ∼ c2

|k|4
, c2 = 8πa2

0
∂e0

∂a
(46)

and we will now discuss whether this holds for the big, sim-
ple, and Medium equations. To compute a prediction for the
momentum distribution, we proceed in the same way as for
the condensate fraction above. First of all, the momentum
distribution is defined as

M0(k) := 1
N

N∑

i=1

〈ψ0|Fi(k)|ψ0〉 (47)

where Fi is the projection onto the state eikxi . Thus, defining a
modified Hamiltonian,

Hλ = −1
2

N∑

i=1

%i +
∑

1!i< j!N

v(xi − x j ) + λ
1
N

N∑

i=1

Fi (48)

whose ground-state energy per particle is denoted by e0,λ(k):

M0(k) = ∂λe0,λ(k)
∣∣
λ=0. (49)

Proceeding as in Sec. II, this implies the following definition
for the modified full equation [compare to Eq. (5)]: for k /= 0,

(−% + v(x))uλ(x) = v(x) − ρ(1 − uλ(x))(2K (x) − ρL(x))

− 2λû(k) cos(kx), (50)

where û(k) is the Fourier transform of u|λ=0, and

ẽλ(k) =
∫

dx (1 − uλ(x))v(x). (51)

The prediction M̃ for the momentum distribution M0 is then

M̃(k) := ∂λẽλ(k)
∣∣
λ=0. (52)

We showed in Ref. [21] that, in the case of the simple
equation, (15) holds in the limit in which |k|, ρ → 0 while
|k|

2
√

ẽ
→ ∞. This suggests that the Tan relation (15) only holds

in the range
√

ρ ( |k| ( 1 (53)

and, in particular, that if
√

ρ " 1, then the Tan relation does
not hold at all, which means that the physics of the Bose gas at
intermediate densities is of a different nature from that studied
in the context of the unitary Bose gas.

In Fig. 6, we show a numerical computation of M̃(k) for
the big equation, at a very low density, and a larger one. As
was predicted for the simple equation, we find that the Tan
universal relation (15) holds at low density, provided |k| is
small enough. At larger values of |k|, the decay of v̂(k) kicks
in, and the momentum distribution decays much faster. As
the density is increased, the domain in which M̃(k) ∼ |k|−4

shrinks to nothing, and the Tan universal relation completely
disappears.

Here, we have not attempted a direct comparison of the
momentum distribution with QMC calculations. From the
previous comparisons of the energy, pair correlations, and
condensate fraction, we expect that, at the two densities
considered in Fig. 6, the deviation of the prediction of the
big equation from the exact ground state are expected to
be smaller than the stochastic error limiting the precision
of QMC calculations of the momentum distribution. This is
particularly true in the region in which |k|−4 transitions to
|k|−12.

E. Nonuniversal behavior at intermediate densities

The low density asymptotics of the energy, given by the
Lee-Huang-Yang formula (1), only depend on the potential
through the scattering length. At high density (3), they only
depend on the potential through

∫
dx v(x). In this sense, the

low and high density behavior of the Bose gas is universal.
In this section, we show that, at intermediate densities, the
energy does not only depend on the scattering length and the
integral of the potential, thus suggesting that the behavior of
the Bose gas at intermediate densities is not universal.

To that end, we have compared the predictions of the big
equation for the energy for two potentials that have the same
scattering length, and the same integral. The first potential v(0)

32
is defined in the next section, see (58), and the second is an
exponential potential

)α,β (x) := αe−β|x| (54)

where α and β are chosen in such a way that the scattering
length and integral of ) are equal to those of v(0)

32 . The scat-
tering length of v(0)

32 was computed numerically and found to
be ≈0.5878, and its integral is 64π2

9 . The scattering length of
)α,β is

1
β



log
α

β2
+ 2γ + 2

K0
(
2
√

α
β2

)

I0
(
2
√

α
β2

)



, (55)

where γ is the Euler constant and K0 and I0 are modi-
fied Bessel functions. The integral of )α,β is 8πα

β3 . We thus
find that, in order to make the scattering length and integral
of v(0)

32 and )α,β coincide, we must choose α ≈ 907.2 and
β ≈ 6.874.

The prediction of the energy for these two potentials is
plotted in Fig. 7. We find that, as expected, the energies
coincide at low and high density, but they differ significantly
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in the intermediate density regime. We have confirmed this
fact by QMC computations, and found good agreement of the
QMC data with our prediction for both potentials.

IV. HARD-CORE POTENTIAL

The numerical computations discussed above as well as the
proofs in Refs. [20,21] heavily use the assumption that the
potential v is integrable, which a priori excludes the case of
a hard-core potential, which is infinite inside a radius 1. We
have investigated two directions to get around this restriction.

The first, and most straightforward, is to consider the hard-
core potential as a limit of soft core potentials. Obviously,
this approach will not be accurate at densities approaching
close-packing, but as we will see, is rather accurate at smaller
densities. As was mentioned in Sec. I, it is preferable to only
use potentials of positive type (that is, non-negative potentials
with a non-negative Fourier transform). With this in mind, we
consider the sequence of potentials

v(0)
n (|x|) := /(1 − |x|)αn

2π

3
(|x| − 1)2(|x| + 2), (56)

where /(x) is the Heaviside function, which is equal to 1 for
x > 0 and 0 otherwise, and αn → ∞. This potential can also
be written as

v(0)
n (|x|) = αn

∫
dy /

(
1
2

− |y|
)

/

(
1
2

− |x − y|
)

, (57)

which shows that it is of positive type because it is the con-
volution of the function /( 1

2 − |x|) with itself. In addition,
we fix the scattering length of the potential to 1, by rescaling
space: denoting the scattering length of v(0)

n by an, we take the
potential to be

vn(x) := v(0)
n

( |x|
an

)
. (58)

The second method is to solve the big, medium, and simple
equations for |x| > 1, with the boundary condition u(x) = 1
at |x| = 1. From a computational standpoint, the big and
Medium equations were too difficult to solve quickly on our
hardware. In the case of the simple equation, the computation
is much longer than in the case of a soft-core potential, but
it is not excessively long. The reason for which solving the
equation for |x| > 1 is computationally much more difficult
than the soft core case, is that in the latter case, we carry out
the computation in Fourier space, in which the big, simple,
and Medium equations have fewer integrals. For the hard-
core potential, the Fourier transform of u does not decay fast
enough for the numerics to be precise, so we work in real
space instead, which is computationally more difficult.

In Fig. 8, we compare the predictions for the energy and
condensate fraction made using the big, medium, and simple
equations to the QMC computation carried out in Ref. [15].
The plots are shown for densities up to the close packing
density, which is the maximal allowed density for the hard
core potential. All three equations are quite accurate at low
density, but the error becomes larger as the density in ramped
up. Nevertheless, for the energy, the big equation stays quite
close to the QMC simulation. As the density approaches close
packing, the potential vn becomes inadequate. The effects
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FIG. 8. The energy (top), relative error in the energy ẽ−eQMC
eQMC

(middle), and noncondensed fraction (bottom) as a function of the
density for the hard core potential. The circles were computed by
solving the hard core simple equation for |x| > 1 (simple hc). The
lines were computed by approximating the hard core potential by the
potential v512(x), see (58). We compare the predictions of the big,
medium, and simple equations to QMC results reported [15]. The
prediction of Bogolubov theory (2) is also plotted for comparison
(Bog). The right edge of the plots correspond to the close-packing
density ρcp =

√
2 [44].
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FIG. 9. The noncondensed fraction as a function of the density
for the potential 16e−|x|. We compare the predictions of the big,
medium, and simple equations to a QMC simulation. The prediction
of Bogolubov theory (2) is also plotted for comparison (Bog).

of this are most visible for the simple equation. For smaller
densities, for the simple equation, we see that the predictions
made using vn are rather close to those made by restricting the
equation to |x| > 1.

V. LIMITS OF VALIDITY OF THE SIMPLE EQUATIONS

As we have seen above, the big, medium, and simple
equations are, in some cases very accurate (especially the big
equation). In this section, we discuss the situations in which
these equations make predictions that are far from the QMC
simulations, or even unphysical.

First of all, the big, medium, and simple equations are
only accurate at high densities if the potential is of positive
type, that is, if its Fourier transform is non-negative. Indeed,
as we proved for the simple equation in Ref. [20] and as
the numerics show for the Big and Medium equations, as
ρ → ∞, ẽ ∼ ρ

2

∫
dx v(x). For the Bose gas, this was proved

to hold if v is of positive type [2]. It is quite easy to find a
counter-example if v is not of positive type. For instance, if
v(x) = 0 for all |x| < 1, then, consider a wave function ψ
that is smooth and supported on |x1|, · · · , |xN | < 1

2 . Since all
particles are at a distance that is <1, the potential energy of
such a wave function is 0, and its kinetic energy is O(N ). Thus,
the energy per particle is of order 1, which, for large ρ, is
( ρ

2

∫
dx v(x). [Note that a nontrivial, non-negative potential

with v(x) cannot be of positive type if v(0) = 0, since the
maximum of a positive type function is attained at 0].

In addition, we observed that the predictions made by the
big, medium, and simple equations get less accurate if the po-
tential is made stronger. Comparing the relative error in Fig. 2

between the potential e−|x| and 16e−|x| shows that the error
is roughly 10 times worse. For the condensate fraction, the
situation deteriorates further, as can be seen in Fig. 9, in which
we see that, even though the big equation still reproduces the
qualitative features of the condensate fraction curve, it yields
an unphysical result, with a negative condensate fraction. This
is further confirmed by the computations for the hard core
potential, in which we see from Fig. 8 that the condensate
fraction becomes rather inaccurate at large densities.

VI. CONCLUSIONS

In this paper, we show the good agreement in the pre-
dictions of the ground-state energy, condensate fraction and
correlation function of the repulsive Bose gas given by the
simplified approach developed in 1963 [2] with the values
obtained by quantum Monte Carlo calculations, for the poten-
tials e−|x| and 16e−|x|. The simplified approach was thought to
be accurate only at low densities, in complete agreement with
other analyses of the time. Here, we show that it is accurate
at all densities. This establishes an alternative approach to
many body bosonic physics. Combining this analysis with the
exact results in Refs. [20,21] leads us to conjecture that the
simplified approach is accurate for any repulsive potential of
positive type with a scattering length and an integral that is
not too large.

We have discussed three different approximations, the big,
medium, and simple equations. The big equation is the most
accurate, but also the most difficult to solve. The Medium
equation is obtained by neglecting terms of higher order in
u, which makes it much more easy to compute with, while re-
maining rather close to the big equation. The simple equation
is then obtained by approximating g2(x)v(x) by a Dirac-delta
function. This drastically simplifies the equation, but is also
less accurate at intermediate densities (while the low and high
densities are still asymptotically exact).

The simplified approach provides a framework to study the
many-body Bose gas directly in the thermodynamic limit, in
terms of an equation involving a function of just three vari-
ables. The method provides a promising avenue to approach
singular potentials, such as the hard core. In addition, this
allows us to approach various physical questions, such as
Bose-Einstein condensation, even in the intermediate density
regime, away from the dilute and dense limits.
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