

1 **Impact of Larval Behaviors on Dispersal and Connectivity of Sea**
2 **Scallop Larvae over the Northeast U.S. Shelf**

4 Changsheng Chen¹, Liuzhi Zhao¹, Scott Gallager², Rubao Ji², Pingguo He¹, Cabell
5 Davis², Robert C. Beardsley³, Deborah Hart⁴, Wendy C. Gentleman⁵, Lu Wang¹, Siqi Li¹,
6 Huichan Lin¹, Kevin Stokesbury¹, David Bethoney⁶

7

8 ¹School for Marine Science and Technology, University of Massachusetts-Dartmouth, MA
9 02744

10 ²Department of Biology, Woods Hole Oceanographic Institute, MA 02543

11 ³Department of Physical Oceanography, Woods Hole Oceanographic Institute, MA 02543

12 ⁴Northeast Fisheries Science Center, NOAA, Woods Hole, MA 02543

13 ⁵Department of Engineering Mathematics and Internetworking, Dalhousie University,
14 Halifax, NS, Canada, B3J 1Y9

15 ⁶Commercial Fisheries Research Foundation, RI 02874

16

17

18 **Highlights:**

- 19 • Larval swimming within the ocean mixed layer affected the interannual variability
20 of scallop larval dispersal and settlement.
- 21 • Ignoring larval swimming behavior in the ocean mixed layer likely overestimates
22 the larval connectivity between Georges Bank (GB) and the Middle Atlantic Bight
23 (MAB).
- 24 • Climate-induced warming tends to alter the circulation in ways that intensify larval
25 retention over GB and restrict larval transport from GB to the MAB.

Abstract

39 Sea scallops (*Placopecten magellanicus*) are a highly fecund species that supports one of
40 the most commercially valuable fisheries in the northeast U.S. continental shelf region.
41 Scallop landings exhibit significant interannual variability, with abundances widely varied
42 due to a combination of anthropogenic and natural factors. By coupling a pelagic-stage
43 Individual-Based scallop population dynamics Model (hereafter referred to as Scallop-
44 IBM) with the Northeast Coastal Ocean Forecast System (NECOFS) and considering the
45 persistent aggregations over Georges Bank (GB)/Great South Channel (GSC) as source
46 beds, we have examined the dispersion and settlement of scallop larvae over 1978-2016.
47 The results demonstrated that the significant interannual variability of larval dispersal was
48 driven by biophysical interactions associated with scallop larval swimming behaviors in
49 their early stages. The duration, frequency, and stimulus of larval vertical migration in the
50 ocean mixed layer (OML) affected the residence time of larvae in the water column over
51 GB. It thus sustained the persistent aggregations of scallops in the GB/GSC and Southern
52 New England region. In addition to larval behavior in the OML, the larval transport to the
53 Middle Atlantic Bight (MAB) was also closely related to the intensity and duration of
54 northeasterly wind in autumn. There was no conspicuous connectivity of scallop larvae
55 between GB/GSC and MAB in the past 39 years except in the autumn of 2009. In 2009,
56 the significant larval transport to the MAB was produced by unusually strong northeasterly
57 winds. Ignoring larval behavior in the OML could overestimate the scallop population's
58 connectivity between GB and the MAB and thus provide an unrealistic prediction of
59 scallop larval recruitment in the region. Both satellite-derived SST and NECOFS show
60 that the northeast U.S. shelf experienced climate change-induced warming. The extreme
61 warming at the shelfbreak off GB tends to intensify the cross-isobath water temperature
62 gradient and enhance the clockwise subtidal gyre over GB. This change can increase the
63 larval retention rate over GB/GSC, facilitating enhanced productivity on GB.

64

65

66

67

68

1. Introduction

69
70
71 Sea scallops (*Placopecten magellanicus*), which occur on the northeast continental
72 shelf of North America, support the most valuable wild scallop fishery in the world
73 (Shumway and Parsons, 2016). Georges Bank (GB) is one of two areas with the highest
74 scallop abundances in the Northwest Atlantic (Stokesbury *et al.*, 2004; Hart and Rago,
75 2006; NFSC, 2018) (Fig.1). Based on drop-camera surveys with a coverage area of 27×10^3
76 km² over the period 2016-2018, Stokesbury and Bethoney (2020) estimated the scallop
77 population over the northeast shelf, accounting for ~34 billion individual scallops, ~71%
78 of which were on GB. Over GB, the scallop landings exhibited considerable interannual
79 variability, with an annual value of hundreds of million dollars (Naidu and Robert, 2006;
80 NFSC, 2018). Benefiting from the implementation of closed areas as well as fishing effort
81 and gear restrictions, U.S. sea scallop stocks rapidly recovered from a period of severe
82 overfishing during the 1990s (Murawski *et al.*, 2000; Hart and Rago, 2006; Hart *et al.*,
83 2013; Davies *et al.* 2015; NFSC, 2018). However, even in light of the recovery, sea scallop
84 abundances have varied significantly, largely due to high recruitment variability affected
85 by a combination of anthropogenic and natural factors (Hart and Rago 2006; NFSC, 2018).

86 Recruitment, which is estimated by the survivorship of scallop larvae in their early life
87 stages, is crucial in determining the population size. The early scallop life stages consist
88 of pelagic and benthic phases. Adult scallops spawn eggs near the bottom. After external
89 fertilization, trochophores hatch within 1-2 days, develop small cilia a few hours after
90 hatching, and then start to migrate upward towards the sea surface (McGarvey *et al.*, 1992;
91 *Hart and Chute*, 2004; Cragg, 2006). Once arriving at the sea surface, they undergo vertical
92 migrations within the surface oceanic mixed layer (OML) (Tremblay and Sinclair, 1990a,
93 1990b; Gallager *et al.*, 1996). The veliger stage is reached over 4-5 days with the
94 development of shell velum (Silva-Serra, 1995; Pearce *et al.*, 2004). At the ages of 30-35
95 days, veligers develop into pediveligers with foot and byssus development (Stewart and
96 Arnold, 1994). Pediveligers can actively swim across the thermocline and descend towards
97 the bottom for settlement (Tremblay *et al.*, 1994). During this pelagic phase, changes in the
98 flow-driven larval dispersal and retention are primary factors in controlling interannual
99 variability in spatfall and abundance (McGarvey *et al.* 1993). After settlement, the
100 survivorship of spat (settled larvae) and juveniles crucially influences the adult sea scallop

101 population size and distribution (*Caddy*, 1975; *Hart and Chute*, 2004). During this benthic
102 phase, the substrate motility, water temperature, currents/storms, predation, and starvation
103 can affect the survivorship of newly settled spat and juveniles (*Merrill and Edwards* 1976;
104 *Larsen and Lee* 1978, *Hart* 2006, *Shank et al.* 2012).

105 The interannual variability of scallop abundance and recruitment on GB/GSC is
106 influenced considerably by changes in both physical and biological processes (*Hart and*
107 *Chute*, 2004). Understanding the driving mechanisms of these variabilities and their
108 connectivity with the Middle Atlantic Bight (MAB) can provide insights into the
109 biophysical reasons for persistently high scallop abundance over GB/GSC and primary
110 factors attributing to abundance reductions. It can also scientifically guide the management
111 of rotationally closed areas, optimal seeding of sea scallops, and protection of seeded sea
112 scallop's settling regions. It is a significant challenge to predict environment-driven
113 variability in the GB/GSC scallop population. The environmental factors reflect the
114 complex nonlinear physical-biological interaction processes, such as global warming,
115 climate-induced shelf-basin scale interactions, local wind/tidal mixing, ocean acidification,
116 ecosystem regime shift, and prey/predator fields, etc. (*Hart and Rago*, 2006; *Shank et al.*
117 2012; *Stokesbury et al.*, 2016; *Rheuban et al.*, 2018).

118 The sea scallop fishery in the U.S. Northeast is currently managed using fishing effort
119 limitations combined with rotational closures (*Hart and Rago* 2006). Areas are closed
120 based on observations of strong recruitment from surveys, and then reopened to fishing
121 after the scallops have grown to more optimal sizes for harvesting. There have been a few
122 modeling studies carried out to assess the marine environmental impact on recruitment
123 processes (reproduction, the timing of spawning, pre and post-settling larval stages) on
124 GB/GSC (*Tian et al.*, 2009a, 2009b, 2009c; *Gilbert et al.*, 2010; *Davies et al.*, 2014, 2015)
125 and in the MAB (*Munroe et al.*, 2018, *Hart et al.*, 2020). *Tian et al.* (2009a) developed a
126 scallop population individual-based model (hereafter referred to as Scallop-IBM). The
127 model was coupled with the unstructured grid, Finite-Volume, Community Ocean Model
128 (FVCOM) for the Gulf of Maine (GoM) (hereafter referred to as GoM-FVCOM) (*Tian et*
129 *al.* 2009a, 2009b, 2009c). Spawning on GB in autumn, they ran this coupled Scallop-
130 IBM/GoM-FVCOM model for 1995-2005. The dispersal of simulated scallop larvae varied
131 interannually, with significant transport to the MAB (*Tian et al.*, 2009c). Driving a

132 simplified passive and pycnocline-seeking, temperature-dependent, scallop larval transport
133 model by FVCOM-simulated monthly climatological flow and temperature fields, *Gilbert*
134 *et al.* (2010) examined the influences of flow-driven retention and larval vertical migration
135 on the larval dispersion in the GB/GSC region for both fall and spring spawning seasons.
136 They found that pycnocline-seeking behavior could alter the larval dispersal by factors of
137 2-5, and thermal history could significantly affect the planktonic larval duration.

138 The flow and temperature fields used in previous scallop larval transport simulations
139 (e.g., *Tian et al.*, 2009a, 2009b, 2009c; *Gilbert et al.*, 2010) were from the first-generation
140 GoM-FVCOM for the region, which did not consider the physical processes relating to
141 regional-scale climate forcing. Specifically, the GoM-FVCOM hydrodynamics missed two
142 remote boundary conditions: 1) the advective transport from the upstream Labrador Sea
143 and the Arctic Ocean, and 2) the Gulf Stream-shelf interactions along the southeastern part
144 of the domain (Fig. 1). Regarding the population dynamics, although Scallop-IBM
145 included the pre-settling pycnocline-seeking behaviors of scallop larvae, age-at-size-
146 specific pre- and post-settling swimming within the OML or near the bottom were not taken
147 into account (*Stewart and Arnold*, 1994; *Gallager*, 1996; *Gallager et al.*, 1986a,
148 1986b, 1996). Additionally, the spawning distribution for the 1995-2005 simulations was
149 based only on a scallop dataset produced by video surveys from the University of
150 Massachusetts/School for Marine Science and Technology (UMASS-D/ SMAST)
151 (*Stokesbury et al.*, 2004). This dataset does not contain the data from either the Canadian
152 waters over the eastern flank of GB or NOAA surveys conducted independently every
153 year with records back to 1979. The larval behaviors and spatial distributions of spawning
154 are known to have a significant role in the bulk transport of larvae (*Gilbert et al.* 2010). It
155 is necessary to conduct an in-depth analysis of the responses of dispersal patterns to
156 different behaviors by using a model initialed with complete coverage of spawning
157 locations from all available scallop data.

158 High levels of adult biomass on GB/GCS, including the closed areas over Nantucket
159 Lightship Closed Area (NLCA), Closed Area I (CA-I), Closed Area II (CA-II), and Habitat
160 Area of Particular Concern (HAPC) in the northern part of CA-II are well established (*Hart*
161 *and Rago* 2006; *Hart et al.* 2013; *Stokesbury et al.*, 2015; *Gallager*, 2016). For data mining,
162 we collected the scallop abundance data from NOAA, Canadian, and SMAST surveys, and

163 expanded the database to cover a period from 1979 to 2017. For model development, we,
164 a joint research team at UMASS-D and Woods Hole Oceanographic Institution (WHOI),
165 developed the Northeast Coastal Ocean Forecast System (NECOFS). The 39-year (1978-
166 2016) hindcast simulation of NECOFS was conducted using a global-regional nested
167 FVCOM system, which improved the numerical simulation of the regional circulation by
168 including the Gulf Stream-shelf interaction and flows from the upstream Labrador Sea and
169 the Arctic Ocean. The availability of a complete scallop abundance dataset and 39-year
170 NECOFS hydrodynamic fields allows us to re-examine the influences of physical processes
171 and scallop larval behaviors on the early life stages of scallop larvae in the region. In
172 particular, how do the Gulf Stream-shelf interaction and flows from the upstream Labrador
173 Sea and the Arctic Ocean influence the transport of larval in GB/MAB in the context of
174 realistic larval motility? How do these factors change the population connectivity between
175 GB, Southern New England (SNE) shelf, and the MAB compared to previous estimates?
176 Does the short-term vertical migration affect the dispersal and settlement of scallop larvae
177 in their early life stages? What is the relative importance of these physical and biological
178 factors for understanding and predicting changes due to dispersal and retention? Ultimately,
179 could a coupled physical and individual-based fishery model reproduce and predict
180 biophysical processes in terms of interannual variability and future management
181 implications?

182 In this research, we have upgraded the Scallop-IBM with improvements of larval
183 behavior parameterizations in the pre-settling stage and coupled it with the third version of
184 GoM-FVCOM of NECOFS (hereafter referred to as GoM3-FVCOM). Using this upgraded
185 coupled model, we examined the dispersal and settlement of scallop larvae with eggs
186 spawning on GB over 39 years from 1978 to 2016. The NECOFS-produced hourly physical
187 fields include the Gulf Stream-shelf interaction and the upstream flows from the Labrador
188 Sea and the Arctic Ocean. The simulation aimed to assess the impacts of various migrating
189 larval behaviors within the surface OML on the scallop larvae's dispersal and settlement
190 in their early life stages.

191 The remaining sections are organized as follows. Section 2 describes the data and the
192 model. Section 3 presents the results of model simulations, including the discussion on the
193 sensitivity of larval dispersal and retention to larval behaviors in constant and varying
194 OMLs and the scallop population's connectivity between GB/GSC, SNE, and MAB.
195 Section 4 highlights the biological and physical processes affecting the interannual
196 variability of larval dispersal. Finally, section 5 summarizes the findings with conclusions.

198 **2. The Coupled NECOFS-Scallop-IBM Model and Data**

199 2.1. NECOFS

200 NECOFS is an integrated atmosphere, surface wave, and ocean forecast model system
201 designed for the U.S. northeast coastal region. For the NECOFS version used in this study,
202 the computational domain covers the continental shelf with boundaries over the northern
203 coast of Chesapeake Bay on the south and the Scotian Shelf on the north, including a
204 portion of the MAB (Fig. 2). NECOFS was placed in experimental 24/7 forecast operations
205 in late 2007. The present version of NECOFS includes 1) a community mesoscale
206 meteorological model named “Weather Research and Forecasting (WRF-AWR)”; 2) the
207 regional ocean model of FVCOM (GoM3-FVCOM) (*Chen et al.* 2003); 3) the
208 unstructured-grid surface wave model (FVCOM-SWAVE) with the same domain as GoM-
209 FVCOM (*Qi et al.*, 2009); 4) the Mass Coastal FVCOM with the inclusion of estuaries,
210 inlets, harbors, and intertidal wetlands; and 5) four subdomain coupled wave-current
211 FVCOM inundation forecast systems in Scituate, MA; Boston Harbor, MA; Hampton-
212 Seabrook Estuary, NH, and Saco Bay, ME. The GoM3-FVCOM grid covers the scallop
213 aggregation areas over GB/GSC, SNE, and the MAB. The grid is constructed using
214 unstructured triangular meshes with a resolution of ~ 0.3-25 km in the horizontal and 45
215 layers in the vertical.

216 The 39-year (1978-2016) hindcast simulations of NECOFS were conducted using a
217 global-regional nested FVCOM system with the core models of Global-FVCOM and
218 GoM3-FVCOM (Fig. 2). Global-FVCOM is a fully coupled atmosphere-ice-wave-ocean,
219 unstructured-grid primitive equation global ocean model with a horizontal resolution
220 varying from ~2 km within the Canadian Archipelago, shelfbreak, and coastal region to
221 ~50 km in the interior open ocean. This model was driven by *a*) astronomical tidal forcing

222 with eight constituents (M_2 , S_2 , N_2 , K_2 , K_1 , P_1 , O_1 , and Q_1), *b*) surface wind stress, *c*) net
223 heat flux at the surface plus shortwave irradiance in the water column, *d*) surface air
224 pressure gradients, *e*) precipitation (P) minus evaporation (E), and *f*) river discharges (*Chen*
225 *et al.*, 2016; *Zhang et al.*, 2016a, 2016b). A 39-year NECOFS hourly hindcast product is
226 now available on the NECOFS Web Map Server ([http://porpoise1.smast.umassd.edu:8080/
227 fvcomwms/](http://porpoise1.smast.umassd.edu:8080/fvcomwms/)). This database includes meteorological and oceanic components. The
228 meteorological database includes hourly fields of physical variables such as wind velocity,
229 air pressure, precipitation minus evaporation, shortwave radiation, longwave radiation,
230 sensible and latent heat fluxes, and air temperature, etc. The oceanic database contains
231 hourly fields of three-dimensional water currents, temperatures, salinity, horizontal/
232 vertical turbulent diffusion rates, and surface elevation.

233 The NECOFS-simulated physical fields were validated through comparisons with
234 available observations. It has demonstrated success in capturing tidal- and shelfbreak
235 density fronts, residual clockwise gyres, wind-driven upwelling, buoyancy-driven river
236 plume, the Gulf Stream-shelf interaction (*e.g.*, warm-core rings), and volume and mass
237 transports entering the Gulf of Maine over the Nova Scotia shelf from the upstream
238 Labrador Sea or even the Arctic Ocean. The model-data comparisons included 1) water
239 elevations at tidal gauges (*Chen et al.*, 2011, *Sun et al.*, 2013), 2) temperature and salinity
240 in the water column (*Li et al.*, 2015), 3) hurricane and extratropical storms (*Chen et al.*,
241 2013, *Beardsley et al.*, 2013), 4) the surface currents measured by CODAR from 2000 to
242 2008 (*Sun et al.*, 2016), and 5) upstream conditions in the Arctic Ocean (*Chen et al.*, 2009;
243 *Chen et al.*, 2016; *Zhang et al.*, 2016a,b). The success of scallop-IBM depends on the
244 accuracy and reality of the flow fields predicted by the physical model. We have conducted
245 a model-drifter comparison to validate the reliability of the FVCOM-produced flow field
246 over 1995-2013. Six hundred eighty-four drifters were deployed in the GoM and GB
247 regions, which returned valuable trajectory data (J. Manning, personnel communication).
248 A non-parametric Kolmogorov-Smirnov test was used to judge “good” and “bad”
249 comparisons (*Van Sebille et al.*, 2009). The results showed that 75% of drifters were in fair
250 comparison with the model-predicted drifter trajectories (*Sun*, 2014). These validation
251 experiments provide us with confidence in using the NECOFS-produced flow field to study

252 the impact of physical processes on the interannual variability of sea scallop recruitment
253 over GB/GSC, SNE, and MAB.

254 2.2. Scallop-IBM

255 The model used in this study is an upgraded Scallop-IBM coupled with the GoM3-
256 FVCOM model. Scallop-IBM consists of four phases: egg, trochophore, veliger, and
257 pediveliger (Fig. 3). Ages defined individual development in each stage: eggs <2 days,
258 trochophores 2–4 days, veligers 5–40 days, and pediveligers >40 days (*Stewart and Arnold*,
259 1994). We used fixed development times on pelagic stages under the assumption that the
260 relatively small interannual changes in water temperature would produce insignificant
261 modulation in larval development times. Similarly, the food limitation was not considered
262 for larvae since that food was abundant during the pelagic stages.

263 Modeled larval behavior and their vertical migrations were considered for each life
264 stage based on our empirical understanding. Eggs are spawned on the seabed, neutrally
265 buoyant, and drift passively via vertical currents and turbulence but without vertical
266 migration (*Culliney*, 1974; *Silva and O'Dor*, 1988; *Tremblay*, 1988; *Tremblay et al.*, 1994).
267 Trochophores have no directionality in their swimming and only randomly spin (*Tian et*
268 *al.*, 2009a), and so were also treated passively. Laboratory experiments have found that
269 once the first shell formed (*prodisoconch*) and the larvae appear in a 'D' configuration,
270 their gravity centers are below the velum, causing them to swim upwards across the
271 thermocline (*Gallager*, 1993; *Gallager et al.*, 1996). Veligers are subject to horizontal drift
272 in the surface OML above the thermocline, in which they actively switched between
273 upward swimming and sinking to produce a distinct vertical migration pattern. Veligers are
274 sensitive to light transitions, not to any prolonged state of light intensity like day or night
275 (*Gallager et al.*, 1996). Larvae between the ages of 5 and 40 days vertically migrate within
276 the OML with various patterns such as thermocline-seeking aggregation (*Tremblay and*
277 *Sinclair*, 1990a), diel (*Tremblay and Sinclair*, 1990b), and semidiurnal cells (*Gallager et*
278 *al.*, 1996; *Manuel et al.*, 1996). *Tremblay and Sinclair* (1990b) used a pump to make profile
279 samplings of scallop larval abundance at eight stations on GB in October 1986 and 1987,
280 respectively. Four of the stations were located in the stratified region. They observed an
281 aggregation of bivalve scallop larvae in the thermocline at a depth of the subsurface
282 chlorophyll maximum. In laboratory mesocosm experiments, over a diel cycle, veligers

283 stayed near the surface at night, moved down, and remained at the thermocline during the
 284 day (Manuel et al., 1996) (Fig. 4). Over semidiurnal migration cycles, they stayed near the
 285 surface when daybreak, moved to the thermocline around noon, came up towards the
 286 surface at sunset, and were back to the thermocline around mid-night, forming bio-
 287 convective cells within the OML after dark (Manuel et al. 1996) (Fig.4). Larvae also
 288 respond to turbulence's ephemeral pulses greater than 10^{-7} W.Kg $^{-1}$ by withdrawing their
 289 velum and sinking rapidly until the turbulent energy has subsided (Pearce et al., 1998).
 290 The currents in the GB/GSC region are dominated by the semidiurnal M₂ tidal currents.
 291 During the autumn, the thermocline varied significantly due to winds. The flow differed at
 292 the surface and thermoclines so that migration behaviors influenced larval retention.
 293 However, these extensive suites of swimming behaviors have never been captured in a
 294 model to date. In the past, the larvae were treated as particles with a random walk (e.g.,
 295 Stewart and Arnold, 1994; Tian et al., 2009a) or simple thermocline seeking behavior
 296 (Gilbert et al., 2010; Davies et al., 2014, 2015; Munroe et al. 2018). Swimming behaviors
 297 could contribute significantly to the overall larval transport potential since they are always
 298 responding to the stimuli by changing their depth (Gallager et al., 1996). Late-stage
 299 pediveligers (>40 days) migrate downwards to settle on the seabed (1.7 mm s $^{-1}$), but may
 300 remain at the thermocline for more than 100 days and delay metamorphosis if thermal
 301 conditions are not suitable (Pearce et al., 1996). Such a delay in the settlement could lead
 302 to higher retention if larvae are in a gyre circulation. Mortality throughout the pelagic phase
 303 is carefully parameterized based on data and conditions provided in the literature (e.g.,
 304 Gallager et al., 1986a,b, 1988; McGarvey et al. 1992).

305 The Scallop-IBM consists of a super-individual tracking equation given as

$$306 P_i(\vec{x}_{n+1}, t_{n+1}) = P_i(\vec{x}_n, t_n) + \int_{t_n}^{t_{n+1}} \vec{v}(\vec{x}, t) dt + W_b(x, y, t_n) \Delta t + R_H + R_K \quad (1)$$

307 where $P_i(\vec{x}, t)$ is the egg or larval number in the i th super-individual at the location $\vec{x} =$
 308 $x\vec{i} + y\vec{j} + z\vec{k}$ at the time t ; x , y , and z are the east, north and vertical axes of the Cartesian
 309 coordinates; \vec{i} , \vec{j} , and \vec{k} are unit vectors in x, y and z directions; subscript n represents the
 310 n th time step; \vec{v} is the three-dimensional velocity vector; Δt is the time step equaling
 311 $t_{n+1} - t_n$; W_b is the vertical migration speed due to larval behavior; R_H and R_K are the
 312 horizontal and vertical random walks as functions of model-produced horizontal and

313 vertical diffusion coefficients. The formulations of R_H and R_K were described in *Tian et al.*
314 (2009c). Eq. (1) is solved by the 4th-order, 4-stage explicit Runge-Kutta (ERK) method
315 with the detail given in the FVCOM User Manual (*Chen et al.*, 2013). The time step used
316 in larval tracking was 120 sec, with the random walk time step of 6 sec.

317 The super-individual approach is commonly used in larval transport studies (*Scheffer*
318 *et al.*, 1995; *Bartsch and Coombs*, 2004; *Woods*, 2005; *Tian et al.*, 2009a), which has a
319 similar meaning as the simulated larvae defined in *North et al.* (2008). A super-individual
320 was defined as an ensemble particle containing a total of 1.0×10^8 individual eggs. In the
321 Scallop-IMB, the spawning undergoes two phases before and after larval release (*Tian et*
322 *al.* 2009c), and the larval numbers in each super-individual are given as

$$323 P_i(\vec{x}, t) = \begin{cases} N_s E_s \int_{t_o}^t \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{t-t_m}{\sigma})^2} dt & \text{Spawning period} \\ P_i(n, t - \Delta t) e^{-Mt} & \text{Release period} \end{cases} \quad (2)$$

324 where N_s is the total adult scallops in a spawning cell at \vec{x} ; E_s is the total eggs spawned by
325 an individual scallop; t_o is the initial time at which the i th super-individual forms; t_m is the
326 maximum spawning time; σ is the standard deviation; Δt is the numerical integration time
327 step. M is the instantaneous mortality rate given as a constant of 0.25 d^{-1} . This constant
328 number was adopted from *McGarvey et al.* (1992) and *Tian et al.* (2009c). A super-
329 individual formed as total spawned eggs reached 1.0×10^8 . The super-individual approach
330 helps us reduce the requirement for a computer's memory to handle a large number of
331 particles.

332 2.3. Data

333 We obtained the sea scallop biomass and distribution data in the study region over
334 1979-2017. The data were from three sources: 1) SMAST/UMASSD, 2) U.S. NOAA, and
335 3) Bedford Institution of Oceanography (BIO). The SMAST/UMASSD drop camera data
336 covered 2003-2017, NOAA dredge survey data covered 1979-2017, and BIO dredge
337 survey data covered 2003-2017. The BIO data covered the survey areas on the eastern flank
338 of GB in Canadian waters. We received these data from the Bedford Institute of
339 Oceanography (BIO), Population Ecology Division (PED), Department of Fisheries and
340 Oceans (DFO), Canada.

341 2.4. Design of numerical experiments

342 We have conducted a set of the coupled scallop-IBM/NECOFS model experiments to
343 examine 1) how sensitive the dispersal and settlement of scallop larvae are to the
344 parameterizations of scallop larval behavior in the early stages, 2) how the interannual
345 variability of the subtidal circulation can influence the settlement of scallop larvae, and 3)
346 what are the physical processes affecting the larval connectivity between GB/GSC and
347 MAB. The simulation covered the period 1978-2016. Physical variables and parameters
348 include the flow-induced advection, water temperature, mixing intensity, and OML depth.
349 To distinguish the physical and biological impacts, we drove the Scallop-IBM by spawning
350 based on the multiyear-averaged abundance and distribution of adult sea scallops over
351 1979-2017 (Fig. 5). The scallop data used to create the multiyear-averaged field included
352 video and dredge surveys from SMAST/UMASSD, NOAA, and BIO/Canada. Different
353 efficiency estimates were made for video and dredge data.

354 Adult sea scallops spawn in the spring and fall seasons, with the dominant spawning in
355 the autumn (*Posgay and Norman, 1958*). Here we only consider the fall spawning season.
356 Following the previous approach used in *Tian et al. (2009a)*, in each year, we specified the
357 scallop spawning to satisfy a normal distribution starting at 00:00 GMT, September 1 and
358 ending at 24:00 GMT, October 10 (Fig. 6). Peak spawning was set on September 20, with
359 a 1-week standard deviation. The major spawning, which accounted for an amount of 95%
360 of the total spawning, was completed over four weeks, a spawning time range observed in
361 the field measurements (*Posgay and Norman, 1958; Posgay, 1976; Mullen and Morning,*
362 *1986; DiBacco et al., 1995*).

363 The simulation was repeated yearly. Each year, Scallop-IBM was integrated over three
364 months from September 1 to November 30, considering a time scale of ~40 days for larval
365 settlement. Two types of experiments were made (hereafter referred to as "Exp-I and Exp-
366 II"). For Exp-I, the model parameters were the same as those used in *Tian et al. (2009a)*.
367 Active vertical migration was specified for each life stage. At the age of 2 days, the larvae
368 started migrating upward towards the surface at a speed of 0.3 mm/s. At the age of 5 days
369 or later, the rate of upward larval migration was decreased to 0.1 mm/s. At the age of 40
370 days, veligers developed into pediveligers, which actively migrated downwards to the
371 seabed at a speed of 1.7 mm/s and settled on a suitable substrate. For Exp-II, in addition to
372 the parameters considered in Exp-I, we included the vertical migration of scallop larvae

373 during early stages within the surface OML following the schematic patterns shown in Fig.
374 4. Once larvae entered the OML, the upward larval migration speed was replaced by larval
375 vertical migration behaviors specified in the OML in all Exp-II cases. During the spawning
376 period in September, the water was generally well mixed in the shallow regions (< 40 m)
377 over GB and stratified in the deeper water between tidal mixing and shelfbreak fronts (~40-
378 100 m) on the southern flank of GB. During that period, the wind-induced surface OML
379 could deepen to ~20-40 m in the stratified region. We included a vertical larval migration
380 in the model to examine how this type of larval behavior may affect larval settlement after
381 40 days.

382 The numerical experiments were done for eight cases (Table 1). C#1 is defined as the
383 case for Exp-I in which vertical migrations in the OML were not included. Exp-II was
384 made for seven cases. C#2, C#3, C#4, and C#5 are defined as the cases with diel or
385 semidiurnal vertical migration behavior in a fixed 10 or 30-m depth OML, respectively.
386 C#6 and C#7 refer to the cases with diel and semidiurnal vertical migration behaviors in
387 the physical model's predicted, spatiotemporally-varying OML. We also did an experiment
388 by constraining larvae at the bottom of the model-predicted OML after they migrated
389 upward to the surface at the age of 5 days, and referred it to as a "thermocline-seeking
390 behavior" case (C#8). For C#6, C#7, and C#8, the hourly OML depth was determined by
391 vertical profiles of the model-simulated water density through an empirical method
392 described in Appendix A. The calculated OML depth was validated via modeled
393 temperature, salinity, and density profiles, with examples shown in Figs. A1-A4.

394 3. Influences of the Surface OML on Larval Dispersal

395 3.1. Comparisons between the cases with and without constant thickness OMLs

396 The results indicate that the dispersal and settlement of scallop larvae varied
397 significantly with scallop larval behaviors in their early stages and the thickness of the
398 OML. It is elucidated from the abundance distributions of pediveliger settling at the seabed
399 for the cases with and without diel or semidiurnal migration (C#1, C#2, C#3, C#4, and
400 C#5). Examples are displayed here for 2008, 2009, 2012, and 2013 simulated numbers and
401 concentrations of settled super-individual particle/larvae (Figs. 7-10). During the autumn
402 of these four years, the top of GB and in other shallow regions was vertically well-mixed
403 by tides. The OML depth in the mixed areas was equal to the local water depth. In the

405 following discussion, the positive and negative signs of the flow and transport referred to
406 x - and y -directions in rotated figures (e.g., Figs. 7-10: lower panels).

407 In 2008, for C#1, the scallop larvae were all retained on GB and the SNE shelf, with
408 about 49.1. and 50.9% settling in these two areas, respectively. The larvae were most
409 abundant on the eastern side of GSC and the northeast flank of GB as well as inside the
410 cold pool area (Fig.7f). The cold pool is a relatively uniform cold water body ($< 13^{\circ}$ C)
411 near the bottom that persists from spring through fall over the mid and outer shelf regions
412 (Lentz, 2017). For C#2 and C#3, for a specified 10-m OML, the diel or semidiurnal larval
413 migration in the OML strengthened the larval retention within the clockwise residual gyre,
414 resulting in 75.8 and 80.5% settling on GB/GSC, respectively (Figs. 7g, 7h). Although the
415 difference in larval retention rates on GB/GSC for these two cases was only $\sim 4.7\%$, the
416 spatial distributions of settled larvae differed considerably. For C#2, highly abundant
417 larvae were settled on the western GB and within the GSC and the cold pool areas over the
418 Nantucket Shoal. For C#3, in addition to these three areas, a large portion of larvae was
419 settled down on the northern flank of GB. Without considering vertical migrations in the
420 OML, many larvae were advected southward within the cold pool to the SNE shelf, with a
421 southmost boundary off Long Island. When vertical migrations in the OML are taken into
422 account, the larvae entering the SNE significantly reduced, accounting for $\sim 24.2\%$ for the
423 diel migration case and 19.5% for the semidiurnal migration case. In both cases, a relatively
424 high abundance zone shifted northward and even entered the Long Island Sound.

425 When the OML was deepened to 30 m, the distributions of settled larvae significantly
426 changed (Figs. 7i, 7j). The larvae tended to settle within tidal mixing and shelfbreak front
427 zones. Although the settled larval number remained high around the clockwise gyre over
428 GB, the highest larval abundance concentrated around the western and eastern shelves of
429 GSC. The settled larval number reduced to 56.2% and 71.5% on GB/GSC and increased to
430 43.8% and 28.5% over the SNE shelf for C#4 and C#5, respectively. The OML deepening
431 enhanced the larval retention around the GSC, and restricted the southward larval transport
432 from GB/GSC toward the MAB. In the diel migration case, the larvae over Nantucket Shoal
433 were advected to the shelf break. That did not happen in the semidiurnal migration case.
434 The differences shown in abundance for C#1-C#5 were observed alternatively from the
435 larval density distributions shown in Figs. 7a-e).

436 The model predicts that the dispersal and settlement of scallop larvae varied
437 significantly from year to year, which was evident in a comparison between 2009 and 2008.
438 In 2009, regardless of larval vertical behaviors, many scallop larvae were advected to the
439 SNE shelf and entered the MAB (Fig. 8). The main difference among C#1-C#5 was the
440 distributions of larval settling locations, abundance, and pathways from GB/GSC to the
441 MAB. The distributions of larval density in C#1, C#2, and C#3 were similar (Figs. 8f, 8g,
442 8h), except for the higher density spots occurring east of Long Island and over the MAB in
443 C#2 and C#3. As the OML was deepened to 30 m, the larval dispersal dramatically changed.
444 Over GB, a large portion of larvae was settled and concentrated within the mixed area in
445 the diel migration case (C#4) (Fig. 8i), while they expanded to cover the most area of the
446 bank in the semidiurnal migration case (C#5) (Fig. 8j). Furthermore, the OML deepening
447 caused larvae to shift toward the shelfbreak on their journey to the MAB. The highest larval
448 density was found in the MAB in C#5, but not in C#4. Although significant larvae were
449 advected southward to the MAB, the cases with larval vertical migration behaviors in the
450 OML still provided a higher larval retention rate on GB. In C#1, 33.0% of larvae were
451 settled over GB/GSC. The retention rate varied with the OML depth and larval behaviors.
452 For C#2-C#4, it was increased from 39.6% to 56.2% when the OML deepened from 10 m
453 to 30 m, while for C#5, it remained similar for the 10- and 30-m OML cases. The features
454 described here can be viewed alternatively from the larval density distributions for C#1-
455 C#5 shown in Figs. 8a-e.

456 2012 was a warm year during which the nearshore sea temperature increased by ~1.0-
457 2.0°C. Warming intensified the cross-isobath gradients of the bottom temperature over the
458 middle shelf and shelfbreak. The settlement of larvae is influenced considerably by larval
459 behaviors in the OML and the OML depth. For C#1, many larvae were transported to the
460 SNE shelf and even entered the MAB, with the highest abundance over GB and within the
461 cold pool south of Long Island (Figs. 9a, 9f). When diel and semidiurnal larval vertical
462 migration behaviors were considered in a fixed 10-m depth OML (C#2 and C#3), the larvae
463 over GB were aggregated around GSC, with a portion entering the SNE shelf (Figs. 9b, 9g,
464 9c, 9h). Although the larval distribution patterns for C#2 and C#3 were similar, the larval
465 dispersal was more extensive in the semidiurnal migration case than in the diel migration
466 case. As the OML depth deepened to 30 m, most larvae were retained on GB and around

467 GSC. No larvae were advected southward to enter the MAB. For a given OML depth, the
468 larval distributions varied with larval behaviors in the OML. For C#4, the settled larvae
469 showed a dispersive distribution on GB, with the highest abundance in the cold pool area
470 over Nantucket Shoal west of GSC (Figs. 9d, 9i). For C#5, the larvae were settled around
471 the tidal-mixing front on GB, with a dense aggregation around GSC (Figs. 9e, 9j). The
472 results for C#4 and C#5 were correlated well with the extremely high recruitment found in
473 NLCA from 2012 (*Bethoney et al.*, 2016).

474 Changes in the larval dispersal and settlement with the OML depth and larval behaviors
475 in 2013 were similar to that found in 2012 (Fig. 10). Either ignoring larval behaviors in the
476 OML (C#1) or having larval behaviors in a thin OML (C#2 and C#3) overestimated the
477 southward larval transport. The deeper OML favored larval retention over GB/GSC and
478 Nantucket Shoal (C#4 and C#5). For a given 30-m OML, the larval dispersals significantly
479 differed for the diel (C#4) and semidiurnal (C#5) migration cases. For C#4, the highest
480 larval aggregation area was on the SNE (Figs. 10d, 10i), while for C#5, it was around the
481 GSC (Figs. 10e, 10j). Over GB, similar to 2012, the settled larvae were distributed on the
482 top and western areas in the C#4 case, while they occupied the entire bank in the C#5 case.

483 The significant difference among C#1-C#5 for 2008, 2009, 2012, and 2013 illustrates
484 that the larval dispersal and settlement varied not only by the changes in physical
485 environments but also with larval behaviors in the OML. Larval behaviors in the OML
486 made larvae stay longer in the vertical column before settling, increasing the larval
487 residence time on GB. Thus, ignoring it will overestimate the larval transport to the SNE
488 shelf and MAB.

489 **3.2. Influences of larval behaviors in the varying-thickness OML**

490 The OML depth varied significantly in time and space, especially during spring and
491 autumn (Flagg, 1987). In these two seasons, it was in a range of 10-40 m over the shelf (*Li*
492 *et al.*, 2020). The vertically well-mixed and stratified areas were distinct in the model-
493 predicted mean water density profilers throughout September-November. In 2013, for
494 example, the water was vertically well-mixed in areas where bottom depths were shallower
495 than 50 m over GB and Nantucket Shoal, while it was strongly-stratified on the southern
496 flank of GB, in GSC, and over middle/outer shelves of SNE and MAB (Fig. 11). Three
497 sections labeled A, B, and C were selected to show the variability of the OML on the

498 eastern and southern flanks of GB and the SNE shelf over September-November (Fig. 12).
499 Over GB, in the areas between tidal and shelfbreak fronts, the OML depth was ~10 m in
500 September and then gradually increased to ~30-40 m or deeper in November (Fig.12: see
501 A and B). Within the shelfbreak front, the OML depth remained steady after October. On
502 Section-B, the OML thinned rapidly in November, suggesting a local scale onshore
503 intrusion of the stratified Gulf Stream water during that period. The temporal variability of
504 the OML at Section-C over the SNE shelf was similar to that at Section-A on the eastern
505 flank of GB.

506 To examine the influence of larval behaviors in a varying OML on the dispersal and
507 settlement of scallop larvae, we repeated the 2013-2016 experiments with the real-time
508 OML provided hourly from NECOFS (C#6 and C#7). We also ran the model with a
509 thermocline-seeking larval behavior in the same model-predicted OML (C#8). These
510 additional cases were conducted over the same period, starting on September 1 and ending
511 on November 30. The comparison was made among results obtained for eight cases (C#1-
512 C#8) with and without the inclusion of larval behaviors.

513 The results showed that the variability of the OML had a marked influence on the
514 scallop larval dispersal. An example was exhibited here for 2013 simulation results.
515 Although the settled larval distributions were similar between C#6 (Figs. 13a, 13d) and
516 C#4 (Figs. 10d, 10i) and also between C#7 (Figs. 13b, 13e) and C#5 (Figs. 10e, 10j), the
517 spatiotemporal variation of the OML pushed larvae in the highly abundant area northward
518 to the Nantucket Sound in C#6 (Figs. 13a, 13d) and aggregated larvae on the western shelf
519 of GSC in C#7 (Figs. 13b, 13e). C#8 considered a case for constraining larvae at the bottom
520 of the OML. In this case, most of the larvae aggregated on southern and western flanks of
521 GB, within the region between 50- and 100-m isobaths (Figs. 13c, 13f). The highest larval
522 density area was in the GSC area, but the abundance was much smaller than those found
523 for C#7. For C#7 and C#8, either semidiurnal migration or thermocline-seeking behavior
524 consistently predicted a larval aggregation in the closed area around GSC. This feature was
525 not captured in the case without larval behaviors in the OML.

526 Changes in the residence time of larvae in the water column on GB were one of the
527 reasons for distinct differences in the larval dispersal and settlement for C#1-C#8. For
528 example, tracking a super-individual originating from the same initial location on GB for

529 these eight cases, we examined horizontal and vertical movements of this super-individual
530 under different biophysical environments (Fig. 14). In each case, the tracking period was
531 41 days, with its trajectory sampled daily. For C#1, the super-individual migrated upward
532 to the sea surface at the 5-day age and then stayed there until they grew to the 40-day age.
533 The near-surface flow rapidly advected this super-individual southward along the shelf,
534 with a residence time of ~15 days on GB (Fig.14a). When larval behaviors in the OML
535 were considered, the daily larval trajectory varied with the sampling method. Here
536 sampling was taken at noon each day. At this time, the larvae were mainly at the bottom of
537 the OML regardless of diel, semidiurnal, and thermocline-seeking larval behaviors.

538 For C#2 and C#3, the super-individual migrated upward to the subsurface at a depth of
539 10 m at the 5-day age and moved southward following a daily mean trajectory at the bottom
540 of the OML (Figs. 14b, 14c). After 40 days, it settled to the seabed around GSC. Compared
541 with the diel migration behavior, the semi-diurnal migration behavior favored retaining the
542 larvae on GB, even though their trajectories almost coincided during the first 7 days. As a
543 result, the super-individual settled on the western shelf of GSC in C#2, but within the GSC
544 in C#3 (Fig. 14b).

545 Similar features were also found for C#4 and C#5 when the OML depth was deepened
546 to 30 m. In the diel vertical migration case (C#4), after the super-individual migrated
547 upward to enter the OML, it followed a daily trajectory at the bottom of the OML to move
548 southward along the bank (Fig. 14c). This super-individual then settled down near the shelf
549 break of the SNE shelf. Differing from C#4, the super-individual in C#5 was trapped
550 locally after 8 days and eventually settled around 60-m isobath area on the southern flank
551 of GB after 40 days (Fig. 14c). For a given fixed-depth OML, the longer distance in vertical
552 migration tended to make the larvae move slowly in the horizontal. This feature was also
553 observed in the spatiotemporally-varying OML cases, even though horizontal and vertical
554 trajectories of the super-individual significantly differed.

555 The diel vertical migration behavior (C#6) was less favorable to retain the larvae on
556 GB compared with semidiurnal (C#7) and thermocline-seeking (C#8) vertical migration
557 behaviors (Fig. 14d). For C#6, the super-individual followed the clockwise gyre circulation
558 to drift along the bank during the first 35 days, then turned northward on the western GB,
559 and eventually settled at the seabed east of the GSC. The trajectory of this super-individual

560 varied significantly in the vertical before settling. For C#7 and C#8, the semidiurnal or
561 thermocline-seeking vertical migration pushed the super-particle offshore toward the
562 shelfbreak front, retained it in the deeper depth, and eventually made it settle on the
563 southeastern flank of GB, an area close to its origin. In these two cases, the thermocline-
564 seeking behavior was more favorable to restrain the horizontal movement than the
565 semidiurnal behavior. It explains why similar aggregation patterns were found for C#7 and
566 C#8 around the GSC. The comparison of horizontal and vertical trajectories of the same
567 super-individual in these eight cases again highlights the importance of including larval
568 behaviors in the OML in the Scallop-IBM, especially for the early life stage simulation.

569 **3.3. Statistics and connectivity of scallop larvae over GB/GSC, SNE, and the MAB**

570 Dividing the model domain into 2×2 km boxes, we statistically calculated the mean,
571 percentage, and standard deviation of larval density over 39 years from 1978 to 2016 for
572 C#1-C#5, respectively. Probability is represented by the settling percentage of larvae in
573 each box over 39 years, ranging from 0 (0%) to 1 (100%). Standard deviation was estimated
574 relative to the 39-year mean, which illuminated the range of the interannual variability. For
575 C#1, the mean larval density remained high over GB/GSC and SNE, with a significant
576 interannual variability occurring in the SNE and MAB region (Figs. 15a-c). In this case,
577 the probability rate of larvae entering the MAB was up to 50%. For C#2 and C#3, the diel
578 vertical larval migration tended to retain larvae over GB/GSC and SNE, with maximum
579 interannual variability occurring over the SNE shelf and northern area of the MAB (Figs.
580 15d-i). In these two cases, the model showed that including the larval behavior in the OML
581 considerably reduced the probability rate of larvae entering the MAB. The major difference
582 between these two cases was in the spatial distribution of settled larvae over GB/GSC and
583 SNE. In the semidiurnal case, more larvae accumulated in the eastern portion of NLCA
584 and the center of GB. For C#4 and C#5, deepening of the OML favored the larval retention
585 over GB/GSC and SNE and restricted larval transport from entering the MAB, even though
586 it happened occasionally (Figs. 15j-o). Similar to the 10-m OML case, the primary
587 difference between diel and semidiurnal migration cases was in the spatial distribution of
588 settled larvae. The semidiurnal migration behavior in the OML led to denser larval
589 accumulation in the three closed areas, especially in the northern portion of CA-II over the
590 northeastern flank of GB. Regardless of whether larval swimming behaviors in the OML

591 were considered, the SNE was a region featuring the maximum larval interannual
592 variability.

593 We estimated the percentage of larvae settling in three geographic zones of GB/GSC,
594 SNE, and the MAB (see the boundary of each zone in Fig. 1) for C#1-C#5, respectively.
595 The model consistently predicted that GB/GSC was a high retention area (Fig. 16 and Table
596 2). C#2 and C#3, also C#4 and C#5, exhibited a similar interannual variability pattern. On
597 GB/GSC, the mean differences over 1978-2016 were 7.0% between C#2 and C#1, and up
598 to 10.2 between C#3 and C#1, indicating that the semidiurnal migration behavior increased
599 the retention by ~3.2% (Fig. 16a). When the OML depth was deepened to 30 m, the
600 retention rate on GB/GSC was decreased by 3.7% for the diel migration case and 7.0% for
601 the semidiurnal migration case. The SNE shelf was also a high aggregation area of scallop
602 larvae (Fig. 16b). In this region, considering larval behaviors in the OML increased the
603 larval settlement rate. The rate became higher as the OML deepened. The 39-year mean
604 difference was 6.9% between C#2 and C#1, and 5.6% between C#3 and C#1. The
605 difference was up to 23.3% between C#4 and C#1, and 18.8% between C#5 and C#1.

606 The most considerable difference among C#1, C#2, C#3, C#4, and C#5 was the larval
607 settlement rate in the MAB. For C#1, the model predicted a sizeable larval transport to the
608 MAB, with a 39-year mean of 22.1% and a maximum of up to 40% (Fig. 16c). The larval
609 transport to the MAB was considerably reduced by taking larval behaviors in the OML into
610 account. Except for 2009, it was about 10% or less than for C#2 and C#3, 5% or less for
611 C#4, and close to zero for C#5. The 39-year means for C#2-C#5 were 8.2, 6.3, 1.8, and
612 0.7%, respectively. These results suggest that the GB/GSC and MAB scallop populations
613 were poorly connected by larval transport. The high scallop abundance observed in the
614 MAB might have been produced by a high recruitment rate of larvae spawned in the local
615 region.

616 We started implementing a method to determine the real-time OML depth in the
617 simulation in 2013. The experiments for varying OML were done for 2013-2016. The
618 statistics of these four-year results for C#6-C#8 showed that regardless of vertical
619 migration patterns, the GB/GSC and SNE had high scallop larval settlement, with the
620 maximum interannual variability occurring over the SNE shelf (Fig. 17, Table 3). In
621 particular, the spatiotemporal variability of the OML led to denser larval accumulation in

622 the NLCA. No larvae were advected into the MAB in all three cases of C#6, C#7, and C#8.
623 We also estimated the percentage of larvae settling in three geographic zones of GB/GSC,
624 SNE, and the MAB for these three cases and compared the results with C#5. For the
625 semidiurnal migration case, the interannual variability for C#5 and C#7 exhibited a similar
626 pattern in the GB/GSC and SNE regions (Fig. 18). The spatiotemporally-varying OML
627 produced a high retention rate on GB/GSC, with a 5.4% difference between GB/CSC and
628 SNE regions for these two cases. Also, C#7 predicted less larval transport to the MAB than
629 C#5, even the transports for both cases were close to zero. For the diel migration case,
630 although the settled larvae percentages in the GB/GSC and SNE regions showed a similar
631 variation for C#6 and C#4, the spatiotemporally-varying OML produced a more favorable
632 condition to retain the larvae on GB/GSC than the fixed-depth OML. The difference was
633 up to 9.5% between GB/GSC and SNE regions for these two cases. The larval settlement
634 showed relatively large variability in C#8. The mean percentages over 2013-2016 were
635 62.9% over GB/GSC, 37.2% over the SNE shelf, and 0.0% entering the MAB.

636

637

4. Discussion

638 Our results indicate that the larval vertical migration in the OML can significantly
639 influence the dispersal and settlement of scallop larvae over GB/GSC and SNE, as well as
640 larval transport to the MAB. In the GB/GSC and SNE regions, although the 39-year mean
641 difference was in the range of ~10% or less between C#1 and C#2-C#5, their dispersal
642 patterns differed considerably. Vertical migration made scallop larvae stay longer in the
643 water column on GB/GSC as compared to passive larvae, because it exposed them to
644 different currents in the deeper water, which were slower and more cyclonic (Werner *et al.*,
645 1993; Page *et al.*, 1999). As a result, the larvae originating from eggs spawned on GB,
646 mainly drifted around the bank following the clockwise residual flow and eventually settled
647 on GB and surrounding SNE areas. Only a few moved southwards to enter the MAB.

648 The conclusions in Tian *et al.* (2009a, 2009c) were similar to our findings for C#1
649 (without swimming behaviors) but very different from the results for C#2-C#8 (swimming
650 that oscillated between subsurface depths). We believe that the difference was due to the
651 physics and larval behaviors. Tian *et al.*'s (2009a-c) simulations did not include the Gulf
652 Stream-shelf interaction and inflow from the upstream Labrador Sea and the Arctic Ocean.

653 The currents used to drive the Scallop-IBM significantly differed from the NECOFS fields
654 used in this study, especially at the shelf break where the Gulf Stream influences were
655 significant. *Tian et al.* (2009c) implemented a thermocline-seeking larval behavior in the
656 Scallop-IBM. They assumed that the OML depth remained constant, with thermoclines
657 always at a depth of 23 m. Once larvae migrated to 23 m, they drifted as passive particles
658 along with the horizontal flow at that depth. The simulation covered 1995-2005, and the
659 results showed significant larval transport to the MAB in 1998, 2001, 2004, and 2005.
660 Especially in 2005, the larval settlement in the MAB was even more than larvae settled
661 over GB/GSC. Comparing our simulation results with *Tian et al.* (2009a, 2009c) for the
662 same period 1995-2005, we found that no matter how the OML depth was specified, the
663 models predicted a high aggregation over GB/GSC and SNE, and a weak connection
664 between GB/GSC and the MAB. Even in 2005, the larval transport to the MAB was only
665 around 10% for C#2 and C#3 and close or equal to zero for C#4 and C#5. Over 2013-2016,
666 we repeated the thermocline-seeking larval behavior experiment (C#8) with a similar
667 approach used in *Tian et al.* (2009c), but we considered the spatiotemporal variation of the
668 OML depth (Fig.17). In this case, larval transport to the MAB was non-existent.

669 *Tian et al.* (2009c) argued that vertical migration played a less critical role in the
670 dispersal and settlement of scallop larvae originating from GB/GSC. Their argument was
671 based on two pieces of evidence observed by *Gallager et al.* (1996) and *Tremblay and
672 Sinclair* (1990a). *Gallager et al.* (1996) detected the larvae migration in the OML,
673 aggregating twice at the sea surface during the night and at the bottom of the OML during
674 the day (e.g., Fig. 4). The measurements were made in a thin OML of ~4 m (mesocosm).
675 *Tian et al.* (2009c) assumed that such a short-distance vertical migration would not affect
676 the larval dispersal since the horizontal drifting velocity zone or the residence time
677 remained unchanged. The fact was that the OML depth varied significantly in autumn,
678 especially during a storm event (*Li et al.*, 2020). *Tremblay and Sinclair's* profiler sampling
679 showed a high larval abundance within thermoclines at depths varying in the range of 12-
680 23 m on GB. Based on this observation, *Tian et al.* (2009c) questioned whether active larval
681 vertical migration was a general feature on GB. The fact was that profiler sampling was
682 done at different times, and each was completed in 74 min. A few in-situ observations were
683 not sufficient to cover the daily migration period. Small amplitude diel vertical migration

684 was also found in a shallow area of < 25 m off Grand Mann Island in the Gulf of Maine by
685 *Tremblay and Sinclair* (1990b). Therefore, it may have been premature to conclude that no
686 vertical migration of larvae existed in the region.

687 The scallop larval dispersal and settlement results for cases with semidiurnal and
688 thermocline-seeking migrations (C#7 and C#8) suggest that there was almost no larval
689 connectivity between GB/GSC and the MAB. Although the larval distributions for these
690 two cases differed and the settlements showed more considerable variability in C#8 than
691 in C#7, the 4-year mean settled larval percentages in either GB/GSC or SNE regions were
692 5.4% or less for these two cases.

693 Our simulation results with larval migrations within the OML show that 2009 was a
694 year with a significant larval transport from GB/GSC to the MAB. Since that year, the
695 retention rate of migrating larvae in the GB/GSC and SNE regions remained a high value,
696 with almost no larvae transporting southward into the MAB. The bottom temperature over
697 the northeast shelf was characterized by a cold pool, forming in spring, and gradually
698 decaying through autumn (*Lentz et al.*, 2003, *Lentz*, 2017). Although this cold pool's
699 intensity was considerably weak in autumn, it was still visible as a relatively uniform cold
700 temperature region bounded by 12-13°C contours in Fig.19. Compared with the
701 climatological mean bottom temperature over 1978-2008 (Fig. 19a), in 2009, the cold pool
702 area expanded onshore over the SNE shelf and shrank towards the shelfbreak south of Long
703 Island (Fig. 19b). 2012 was a warm year with a ~2°C rise of the bottom temperature in the
704 tidally well-mixed area of GB and nearshore regions (Fig. 19c). Warming significantly
705 shrank the area of the cold pool and pushed it offshore. The well-defined cold pool
706 disappeared on the southern flank of GB due to the warming-induced intensification of the
707 cross-isobath gradient of bottom temperature. This feature was sustained over 2013-2016
708 (Fig. 19d). The cold pool functioned as an index for the GB/GSC, SNE, and MAB
709 connectivity. The weakening of the cold pool's intensity and intensified cross-isobath
710 gradient of bottom temperature tends to enhance the clockwise gyre circulation over GB,
711 which indirectly supported our finding: warming has restricted the larval transport from
712 GB/GSC to the MAB.

713 The warming tendency was evident in the satellite-derived sea surface temperature
714 (SST) change over the U.S. northeastern shelf in the past decades (Fig. 20). Significant

warming occurred in 2012. After that, the water remained warmer. The yearly warming rate of the SST averaged over the shelf bounded at the 300-m isobath was ~ 0.04 over 1982-2020 (Fig. 20a). Assuming 2012 as a year for warming regime shift, the mean SST after that was about 1.0°C higher than the climatological SST mean averaged over 1982-2011. This warming feature was captured in the NECOFS simulation. The warming rate in the region varied significantly in space, with the maximum around the shelfbreak off GB (Fig. 20b). We examined the NECOFS-predicted subtidal flow field in the region and found a branch of the Gulf Stream that flowed northeastward towards GB. This branch flow has been intensified significantly in recent years, causing extreme warming at the shelfbreak off GB. As we detected in the NECOFS-simulated temperature and flow fields, the warming has intensified the cross-isobath gradient of water temperature on the southern flank of GB and thus strengthened the clockwise gyre over the bank.

The model predicted extensive southward water transports in the autumn of 2009. Selecting a cross-shelf section over the SNE shelf (see the location in Fig. 1), we calculated the water transport through that section over 1978-2016. Across that transect, the 39-year mean transport was -0.46×10^{-3} Sv (Sv = $10^6 \text{ m}^3/\text{s}$). The anomaly exhibited relatively large positive (northward) and negative (southward) phases in 2008 and 2009, respectively, and remained positive since 2011 (Fig. 21). The anomaly's interannual variability explains why the larval transport to the MAB was most extensive in 2009, and no connectivity between GB/GSC and the MAB had occurred since 2010. The wind was a primary driver for the sizeable southward transport in autumn of 2009. The wind records at Buoy#44008 show that differing from other years, the northeasterly wind prevailed over the northeast shelf during autumn of 2009, with a maximum speed of $>16 \text{ m/s}$ (Fig. 22). The extreme northeasterly or northerly winds tended to push the water onshore. It enhanced the southward along-shelf flow under a balance between the pressure gradient and earth rotation-induced Coriolis forces. The flow intensification was the reason why a large number of larvae drifted to the MAB in that year. This result suggests that in addition to larval vertical migration behaviors in the OML, the GB/GSC and MAB connectivity also depends on the intensity and duration of northeasterly winds during the fall spawning season.

745 It should be pointed out that scallop spawning over GB/GSC varies interannually. This
746 variability has not been taken into account in this study. We have not considered any size-
747 dependency of spawning either (Davies *et al.*, 2014). No experiments were done for the
748 case of spawning in the MAB. as it is unlikely that the larvae could be transported
749 northward to SNE, against the prevailing southward along-shelf flow. Recent observations
750 revealed persistent warming in the region. NECOFS shows that warming has produced a
751 positive anomaly of water transport over the SNE shelf since 2011. An enhanced northward
752 flow in autumn could advect larvae in the MAB to the upstream SNE region. It is worth
753 examining these questions in the future using the 39-year hourly hindcast NECOFS product,
754 which can provide insights into the biophysical processes attributing to the mixing and
755 exchanges of larvae between the GB and MAB scallop populations in the SNE region.

756 We did not consider the spring spawn in our experiments. The spawning time of sea
757 scallops varies latitudinally across its range, extending from the Strait of Belle Isle,
758 Newfoundland, to Cape Hatteras, North Carolina (Posgay, 1957; Barber and Blake, 2006;
759 Stokesbury and Bethoney, 2020). Annual autumn spawning is typical in Newfoundland
760 (MacDonald and Thompson, 1986), whereas semi-annual spawning is characteristic of the
761 MAB (DuPaul *et al.*, 1989). On GB, the autumn spawn is dominant, while spring spawning
762 varies in magnitude and temporally (Chute *et al.*, 2012; Hennen and Hart, 2012; Davis *et*
763 *al.*, 2014; Thompson *et al.*, 2014; Davis *et al.*, 2015). Depending on mortality estimates,
764 spring-spawning contributes minimally up to about one-third of the annual total larval
765 settlement (Davis *et al.*, 2014). For example, Chute *et al.* (2012) examined 14 scallops with
766 stable isotopes, 13 of which were fall spawned, including 6 from GB and Nantucket Shoals.
767 The one that was spring spawned was likely spawned in the MAB. The spawning cycle,
768 fertilization success, larval survival, and dispersion are all influenced heavily by the
769 environment. As oceanographic conditions change on GB, spring-spawning may become
770 increasingly important as it is in the MAB. It could also affect the larval connectivity
771 between the GB/GSC and the MAB like that detected by Davies *et al.* (2014).

772 Our studies considered various larval swimming behaviors, which require additional
773 field confirmation. Recently, Norton *et al.* (2020) examined the impact of ocean conditions
774 on the recruitment of Dungeness crab (*Metacarcinus magister*) in the U.S. Pacific
775 Northwest. Their studies examined six swimming behaviors. Considering these behaviors

776 in a generalized linear model (GLM) with superior fits to the observations, they found that
777 the ensemble solution with various swimming behaviors in the larval IBM model could
778 improve predicting larval crab dispersion. This ensemble approach could be adopted in the
779 larval scallop simulation, especially in a condition with various unconfirmed swimming
780 behaviors.

781

782 **5. Conclusions**

783 With spawning based on multiyear-averaged abundance and distribution of adult sea
784 scallops over GB/GSC, we examined the impacts of physical processes and larval
785 swimming behaviors within the OML on the interannual variability of the scallop larval
786 dispersal and settlement in the GB/GSC, SNE, and MAB regions over 1978-2016. The
787 study was conducted using the coupled Scallop-IBM and NECOFS model. The results
788 indicate that in addition to the flow-induced advection, larval behaviors in the OML
789 significantly affected larval dispersal and settlement by altering the flow-induced advection
790 experienced at different depths. The thermocline-seeking, diel or semidiurnal migration
791 behaviors of larvae in the OML increased the larval residence time in the water column
792 over GB/GSC. These behaviors led to persistent larval aggregations in the GB/GSC and
793 SNE regions. In addition to larval behaviors, larval transports to the MAB were also closely
794 related to the intensity and duration of northeasterly wind in autumn. No functional
795 connectivity of larvae between GB/GSC and the MAB occurred in the past 39 years, except
796 in the autumn of 2009, during which an extreme northeasterly wind prevailed. Neglecting
797 larval behaviors in the OML can exaggerate the connectivity scale of the GB and MAB sea
798 scallop populations. Our studies suggest this connectivity will only matter in intense wind
799 scenarios as expected with future climate change.

800 SNE is the region featuring a maximum interannual variability of larval settlement.
801 The NECOFS has captured the climate change-induced warming over the U.S. northeastern
802 shelf. The extreme warming at the shelfbreak off GB has significantly intensified the cross-
803 isobath gradient of water temperature and enhanced the clockwise subtidal gyre over the
804 bank. This change tends to increase the larval retention rate over GB/GSC, suggesting
805 higher scallop recruitment in the future.

806

807 **Appendix A: A method to calculate the thickness of the ocean mixed layer**

808 The thickness of the surface ocean mixed layer (OML) is defined as a depth above
 809 which the water density remains essentially unchanged in the vertical. In practice, it is
 810 usually determined using a threshold approach with a criterion relative to a reference value
 811 (e.g., *de Boyer Montégut et al.*, 2004). Here we introduced a method based on the density
 812 profile.

813 Defining H as the bathymetric depth at a particular geographic location, ρ as the water
 814 density that varies vertically from $z = 0$ at the surface to $z = -H$ at the bottom and ρ_o as
 815 the surface water density, we can estimate the mixed layer depth (h_m) by

816
$$h_m = H - \sqrt{2h_{diff}/\gamma} \quad (\text{A.1})$$

817 where $h_{diff} = h - \rho_o H$; $h = \int_{-H}^0 \rho dz$; and γ is defined as the maximum increase rate of
 818 the density with depth. Once γ is determined from a density profile, we can precisely
 819 estimate h_m . To demonstrate how this method work, examples are given below for three
 820 idealized cases.

821 Case 1: A vertically well-mixed case with a density profiler shown in Fig. A1. In this
 822 case, ρ is constant throughout the water column, so that

823
$$\rho = \rho_o; h = \rho_o H; \text{ and } h_{diff} = 0.$$

824 Substituting h and h_{diff} into (A.1), we have $h_m = H$. Note here that $\gamma = 0$. For a real
 825 application, one can directly assume h_m equals the local depth.

826 Case 2: A stratified case with a linear density profiler shown in Fig. A2. In this case,

$$\rho = \rho_o - (\rho_H - \rho_o)z/H.$$

Substituting it into (A.1), we have

827
$$h = \int_{-H}^0 [\rho_o - (\rho_H - \rho_o)z/H] dz = (\rho_H + \rho_o)z/H; h_{diff} = 0.5 (\rho_H - \rho_o)H.$$

828 Also, $\gamma = (\rho_H - \rho_o)/H$, so that $h_m = H - \sqrt{2h_{diff}/\gamma} = 0$.

829 Case 3: A two-layer with a density profiler shown in Fig. A3. In this case, the density
 830 profiler is given as

831
$$\rho = \begin{cases} \rho_o, & -h_m \leq z \leq 0 \\ \rho_o - (\rho_H - \rho_o)(z + h_m)/(H - h_m), & z \leq -h_m \end{cases}$$

832 and $\gamma = (\rho_H - \rho_o)/(H - h_m)$, then, we have

833

834
$$h = \rho_o h_m + 0.5 (\rho_H + \rho_o)(H - h_m)$$

835 and

836
$$h_{diff} = h - \rho_o H = \frac{\rho_H - \rho_o}{2} (H - h_m),$$

837 so that

838
$$h_m = H - \sqrt{2h_{diff}/\gamma} = H - (H - h_m) = h_m.$$

839 With demonstrations from these three idealized cases, we applied this method to
840 calculate the thickness of the OML based on the NECOFS-produced hourly density profile.
841 The result was validated by comparing it with the simulated temperature, salinity, and
842 density profiles at nodes of the triangular mesh. Examples are shown in Fig. A4 for selected
843 three sites across GB. Using (A.1), we calculated h_m at these sites. They equaled 14.8, 5.0,
844 and 9.1 m, respectively. Marking the calculated h_m using red dashed lines in the profiles,
845 we found that they matched well with the depth of model-simulated OML.

846

847 Acknowledgment

848

849 This work was supported by the NOAA RSA Program with grant number NA17NMF-
850 4540042 for C. Chen, L. Zhao, P. He, R. C. Beardsley, and S. Gallager, NA19NMF450023
851 for C. Chen, P. He, R. C. Beardsley, and K. Stokesbury, NOAA Fishery Climate Program
852 with grant number NA17OAR4310273 for R. Ji and C. Davis, with WHOI subcontract
853 number A101376 for C. Chen, and L. Zhao. The NOAA-funded IOOS NERACOOS
854 program supported the NECOFS product under subcontract numbers NA16NOS0120023,
855 NERACOOS A007, and NERACOOS A008. W. C. Gentlemen was supported by the
856 Natural Science and Engineering Research Council of Canada. We thank the Department
857 of Fisheries and Oceans (DFO), Canada, for providing Canadian scallop survey data. We
858 also would like to thank Jessica Sameoto and Freya Keyser in DFO for their kindly helps
859 in creating and delivering a well-organized Canadian dataset available to us and NOAA
860 scientists and staff who made the NOAA dredge survey data available for this study. Dr.
861 Brian Rothschild has given many valuable suggestions and comments on our works. His
862 help is greatly appreciated. We also want to thank two reviewers for their constructive
863 comments and suggestions, which helped improve the quality of this paper.

References

864

865 Barber B. J. Blake, N. J., 2006. Reproductive physiology. In: *Shumway SE (ed) Scallops: biology, ecology and aquaculture*. Elsevier, Amsterdam, p 377-428.

866

867 Bartsch, J., Coombs, S. H., 2004. An individual-based model of the early life history of

868 mackerel (*Scomber scombrus*) in the eastern North Atlantic, simulating transport,

869 growth, and mortality. *Fisheries Oceanography* 13, 365–379.

870 Beardsley, R. C., Chen, C., Xu, Q., 2013. Coastal flooding in Scituate (MA): a FVCOM

871 study of the Dec. 27, nor'easter. *J. Geophys. Res.-Oceans*, 118, doi: 10.1002/

872 2013JC008862.

873 Bethoney N. D., Asci, S. C., Stokesbury, K. D. E., 2016. Implications of extremely high

874 recruitment events into the US sea scallop fishery. *Mar. Ecol. Prog. Ser.* 547, 137-

875 147.

876 Caddy, J. F., 1975. Spatial model for an exploited shellfish population, and its application

877 to the Georges Bank scallop fishery. *Journal of Fisheries Research Board of*

878 *Canada* 32, 1305-1328.

879 Chen, C., Liu, H., Beardsley, R. C., 2003. An unstructured, finite-volume, three-

880 dimensional, primitive equation ocean model: application to coastal ocean and

881 estuaries. *Journal of Atmospheric and Oceanic Technology* 20, 159-186.

882 Chen, C., Huang, H., Beardsley, R. C., Xu, Q., Limeburner, W. Cowles, G. W., Sun, Y.,

883 Qi, J., Lin, H., 2011. Tidal dynamics in the Gulf of Maine and New England Shelf:

884 An application of FVCOM. *J. Geophys. Res.-Oceans* 116, C12010, doi:

885 10.1029/2011 JC007054.

886 Chen, C., Beardsley, R. C., Cowles, G., Qi, J., Lai, Z., Gao, G., Stuebe, D., Liu, H., Xu, Q.,

887 Xue, P., Ge, J., Ji, R., Hu, S., Tian, R., Huang, H., Wu, L., Lin, H., Sun, Y., Zhao,

888 L., 2013. An unstructured-grid, finite-volume community ocean model FVCOM

889 user manual (4th edition), *SMAST/UMASSD Technical Report-13-0701*, University

890 of Massachusetts-Dartmouth, pp 404.

891 Chen, C., Gao, G., Zhang, Y., Beardsley, R. C., Lai, Z., Qi, J., Lin, H., 2016. Circulation

892 in the Arctic Ocean: Results from a high-resolution coupled ice-sea nested Global-

893 FVCOM and Arctic-FVCOM system. *Progress in Oceanography* 141 (2016), 60-

894 80, doi: 10.1016/j.pocean.2015.12.002.

895 Chen, C., Gao, G., Qi, J., Proshutinsky, A., Beardsley, R. C., Kowalik, Z., Lin, H.,
896 Cowles, G., 2009. A new high-resolution unstructured grid finite volume Arctic
897 Ocean model (AO-FVCOM): An application for tidal studies. *Journal of*
898 *Geophysical Research-Oceans* 114, C08017, <https://doi.org/10.1029/2008JC004941>.

900 Culliney, J. L., 1974. Larval development of the giant sea scallop *Placopecten*
901 *magellanicus* (Gmelin). *Biological Bulletin*, 147, 321-33

902 Chute A. S., Wainwright, S. C., Hart, D. R., 2012. Timing of shell ring formation and
903 patterns of shell growth in the sea scallop *Placopecten magellanicus* based on stable
904 oxygen isotopes. *Journal of Shellfish Research*, 31(3), 649-662.

905 Cragg, S. M., 2006. Development, physiology and ecology of scallop larvae. In: S.E.
906 Shumway and G.J. Parsons (Eds.) *Scallops: Biology, Ecology and Aquaculture*.
907 *Elsevier, Amsterdam*, pp. 45-122.

908 Davis, K. T. A., Gentlemen, W. C., Johnson, C. L., DiBacco, C. 2014. Relative contribution
909 of bi-seasonally spawned larvae to scallop population connectivity on Georges
910 Bank: importance of the spring spawns. *Mar. Ecol. Prog. Ser.*, doi: 10.3354/meps
911 10975

912 Davies, K. T. A., Gentlemen, W. C., DiBacco, C., Johnson, C. L., 2015. Fisheries closed
913 area strengthen scallop larval settlement and connectivity among closed areas and
914 across international open fishing grounds: a model study. *Environmental*
915 *Management*, pp.16, doi: 10.1007/s00267-015-0526-9.

916 de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., Iudicone, D., 2004. Mixed
917 layer depth over the global ocean: an examination of profile data and a profile-
918 based climatology, *J. Geophys. Res.-Oceans* 109, C12003. doi:10.1029/2004JC002378.

920 DiBacco, C., Robert, G., Grant, J., 1995. Reproductive cycle of the sea scallop, *Placopecten*
921 *magellanicus* (Gmelin, 1791), on northeast-ern Georges Bank. *Journal of Shellfish*
922 *Research* 14: 59–69.

923 DuPaul W., Kirkley, J., Schmitzer, A., 1989. Evidence of a semiannual reproductive cycle
924 for the sea scallop, *Placopecten magellanicus* (Gmelin, 1791), in the mid-Atlantic
925 region. *Journal of Shellfish Research*, 8, 173-178.

926 Flagg, C. N., 1987. Hydrographic structure and variability. In: *Georges Bank*, R. H.
927 Backus, ed, the MIT Press, 108-124.

928 Gallager, S. M., Mann, R., 1986a. Growth and survival of larvae of *Mercenaria mercenaria*
929 (L.) *Crassostrea virginica* (Gmelin) and *Placopecten magellanicus* relative to lipid
930 content of eggs and broodstock conditioning. *Aquaculture* 56(2): 105-121.

931 Gallager, S. M., Mann, R., Sasaki, G. L., 1986b. Lipid as an index of growth and viability
932 in three species of bivalve larvae. *Aquaculture* 56(2), 81-103.

933 Gallager, S. M., 1988. Visual observations of particle manipulation during feeding in larvae
934 of bivalve molluscs. *Bull. Mar. Sci.* 43(3), 344-365.

935 Gallager, S. M., 1993. Hydrodynamic disturbances produced by small zooplankton: a case
936 study for veliger larvae of bivalve molluscs. *J. Plankton Res.* 15(11), 1277-1296.

937 Gallager, S. M., 1996. Ciliary suspension-feeding and particle selection in mollusc larvae.
938 *J. Shellfish Res.* 15(2), 506-510.

939 Gallager, S. M., Manuel, J. L., Manning, D. A., O'Dor, R., 1996. Ontogenetic changes in
940 the vertical distribution of scallop larvae *Placopecten magellanicus* in 9 m-deep
941 mesocosms as a function of light, food, and temperature stratification. *Mar.*
942 *Biol.* 124, 679-692.

943 Gallager, S. M, 2016. Report to the Scallop PDT August 30, 2016 on scallop resource and
944 biomass in the Closed Area II HAPC. NEFC website <http://www.nefmc.org/>.

945 Gilbert, C. S., Gentleman, W. C., Johnson, C. L., DiBacco, C., Pringle, J. M., Chen, C.,
946 2010. Modelling dispersal of sea scallop (*Placopecten magellanicus*) larvae on
947 Georges Bank: The influence of depth-distribution, planktonic duration and
948 spawning seasonality. *Progress in Oceanography* 87(1-4), pp.37-48.

949 Hart, D. R., 2006. Effects of sea stars and crabs on sea scallop *Placopecten magellanicus*
950 recruitment in the Mid-Atlantic Bight (USA). *Marine Ecology Progress Series* 306,
951 pp.209-221.

952 Hart, D. R., Rago, P. J., 2006. Long-term dynamics of U.S. Atlantic sea scallop
953 *Placopecten magellanicus* populations. *N. Am. J. Fish. Manag.* 26, 490-501,
954 <https://doi.org/10.1577/M04-116.1>.

955 Hart, D. R., Chute, A. S., 2004. Essential Fish Habitat Source Document: Sea Scallop,
956 *Placopecten magellanicus*, Life History and Habitat Characteristics, 2nd Ed. NOAA
957 Tech. Mem. NMFS-NE-189.

958 Hart, D. R., Jacobson, L. D., Tang, J., 2013. To split or not to split: assessment of Georges
959 Bank sea scallops in the presence of marine protected areas. *Fisheries Research*,
960 144, 74-83.

961 Hart, D. R., Munroe, D. M., Caracappa, J. C., Haidvogel, D., Shank, B. V., Rudders, D. B.,
962 Klinck, J. M., Hofmann, E. E., Powell, E. N., 2020. Spillover of sea scallops from
963 rotational closures in the Mid-Atlantic Bight (United States). *ICES J. Mar. Sc.i*,
964 77(5), 1992-2002.

965 Hennen, D. R., Hart, D. R., 2012. Shell height-to-weight relationships for Atlantic sea
966 scallops (*Placopecten magellanicus*) in offshore U.S. waters. *Journal of Shellfish
967 Research*, 31(4), 1133-1144.

968 Larsen, P. F., Lee, R. M., 1978. Observations on the abundance, distribution and growth
969 of postlarval sea scallop, *Placopecten magellanicus*, on Georges Bank. *The Nautilus*
970 92, 112-116.

971 Leising, A. W., J. J. Pierson, S. Cary, B. W. Forst, 2005. Copepod foraging and predation
972 risk within the surface layer during night-time feeding forays. *Journal of Plankton
973 Research* 27(10), 987-1001, doi: 10.1093/plankt/fbi084.

974 Lentz, S. J. 2017. Seasonal warming of the Middle Atlantic Bight Cold Pool. *Journal of
975 Geophysical Research: Oceans*, 122(2):941–954, [https://doi.org/10.1002/2016
976 JC012201](https://doi.org/10.1002/2016JC012201).

977 Lentz, S., Shearman, K., Anderson, S., Plueddemann, A., Edson, J., 2003. Evolution of
978 stratification over the New England shelf during the Coastal Mixing and Optics
979 study, August 1996–June 1997, *J. Geophys. Res.-Oceans* 108(C1), 3008, doi:10.
980 1029/2001JC001121.

981 Li, Y, Fratantoni, P. S., Chen, C., Hare, J., Sun, Y., Beardsley, R. C., Ji, R., 2015. Spatio-
982 temporal patterns of stratification on the Northwest Atlantic shelf. *Prog. Oceanogr.*
983 134, 123-127.

984 Li, S., Chen, C., Wu, Z., Beardsley, R. C., and Li, M., 2020. Impacts of oceanic mixed
985 layer on hurricanes: A simulation experiment with Hurricane Sandy. *J. Res.-*
986 *Oceans*, 125, e2019JC015851. <https://doi.org/10.1029/2019JC015851>

987 MacDonald, B. A., Thompson, R. J., 1986. Influence of temperature and food availability
988 on the ecological energetics of the giant scallop *Placopecten magellanicus*. III.
989 physiological ecology, the gametogenic cycle and scope for growth. *Mar Biol.*, 93,
990 37-48.

991 Manuel, J. L., Gallager, S. M., Pearce, C. M., Manning, D. A. O'Dor, R. K., 1996. Veligers
992 from different populations of sea scallop *Placopecten magellanicus* have different
993 migration patterns. *Mar. Ecol. Prog. Ser.*, 142, 147-163.

994 McGarvey, R., Serchuk, F. M., McLaren, I. A., 1992. Statistics of reproduction and early
995 life history survival of the Georges Bank sea scallop (*Placopecten magellanicus*)
996 population. *J. Northwest Atl. Fish. Sci.* 13, 83-99.

997 McGarvey, R., Serchuk, F. M., McLaren, I. A., 1993. Spatial and parent-age analysis of
998 stock-recruitment in the Georges Bank sea scallop (*Placopecten magellanicus*)
999 population. *Can. J. Fish. Aquat. Sci.* 50, 564-574.

1000 Merrill, A. R., Edwards, R. L., 1976. Observation on mollusks from a navigation buoy with
1001 special emphasis on the sea scallop *Placopecten magellanicus*. *The Nautilus* 90,
1002 54-61.

1003 Mullen D. M., Morning, J. R., 1986. Species profiles: Life histories and environmental
1004 requirements of coastal fishes and invertebrates (North Atlantic) sea scallop.
1005 *Biological Report of US Fish Wildlife Service*, 1986, 21p.

1006 Munroe, D. M., Haidvogel, D., Caracappa, J. C., Klinck, J. M., Powell, E. N., Hofmann, E.
1007 E., Shank, B. V., Hart, D. R., 2018. Modeling larval dispersal and connectivity for
1008 Atlantic sea scallop (*Placopecten magellanicus*) in the Middle Atlantic Bight.
1009 *Fisheries Research* 208, pp.7-15.

1010 Murawski, S. A., Brown, R., Lai, H. L., Rago, P. J., Hendrickson, L., 2000. Large-scale
1011 closed areas as a fishery-management tool in temperate marine systems: The
1012 Georges Bank experience. *Bulletin of Marine Science* 66, 775-798.

1013 Naidu, K. S., Robert, G., 2006. Fisheries sea scallop. *Placopecten magellanicus*. In: 1014 *Shumway S. E., Parsons G.J. (eds) Scallops: biology, ecology and aquaculture*. 1015 Elsevier, Amsterdam, p 869–905.

1016 North, E. W., Schlag, Z., Hood, R. R., Li, M., Zhong, L., Goss, T., Kennedy, V. S., 2018. 1017 Vertical swimming behavior influences the dispersal of simulated oyster larvae in 1018 a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. *Mar. 1019 Ecol. Pro. Ser.*, 359. 99-115. doi: 10.3354/meps07317.

1020 Northeast Fisheries Science Center (NFSC), 2018. 65th Northeast Regional Stock 1021 Assessment Workshop (65th SAW) Assessment Report. US Dept Commer, 1022 Northeast Fish. Sci. Cent. Ref. Doc. 18-08, 43 pp.

1023 Norton, E., Siedlecki, S. A., Kaplan, I. C., Hermann, A. J., Fisher, J., Morgan, C., Officer, 1024 S., Saenger, C., Alin, S. A., Newton, J., Bednarsek, N., and Feely, R.A., 2020. The 1025 importance of environmental exposure history in forecasting Dungeness crab 1026 megalopae, occurrence using J-SCOPE, a high-resolution model for the US Pacific 1027 Northwest. *Frontiers in Marine Science*, 7, 102.

1028 Page, F. H., Sinclair, M., Naimie C. E., Loder, J. W., Lozier, R. J., Berrien, P. L., Loug, R. 1029 G, 1999. Cod and haddock spawning on Georges Bank in relation to water 1030 residence times. *Fish Oceanogr.* 8: 212-226.

1031 Pearce, C. M., O'Dor, R.. K., Gallager, S. E., Manning, D. A., Bourget, E., 1996. Settlement 1032 of sea scallop *Placopecten magellanicus* larvae in 9 m deep mesocosms as a 1033 function of food distribution, thermoclines, depth, and substratum. *Mar. Biol.* 1034 124(4), 693-706.

1035 Pearce, C. M., Gallager, S. M., Manning, D. A., O'Dor, R. K., Bourget, E., 1998. Effect of 1036 thermoclines and turbulence on depth of larval settlement and spat recruitment of 1037 the giant scallop *Placopecten magellanicus* larvae in 9 m-deep laboratory 1038 mesocosms. *Mar. Ecol. Progr. Ser.* 165, 195-215.

1039 Pearce, C. M., J. L. Manuel, J. L., S. M. Gallager, S. M., D. A. Manning, D. A., R. K. 1040 O'Dor, R. K., Bourget, E., 2004. Depth and timing of settlement of veligers from 1041 different populations of giant scallop, *Placopecten magellanicus* (Gmelin), in 1042 thermally stratified mesocosms. *Journal of Experimental Marine Biology and* 1043 *Ecology* 312, 187-214.

1044 Posgay, J. A., 1957. The range of the sea scallop. *The Nautilus*, 71, 55-57.

1045 Posgay, J. A., 1976. Population assessment of the Georges Bank sea scallop stocks. *ICES Document CM 1976/K*: 34.

1046

1047 Posgay, J. A., Norman, K. D., 1958. An observation on the spawning of the sea scallop, *Placopecten magellanicus* (Gmelin), on Georges Bank. *Limnology and Oceanography* 3: 478.

1048

1049

1050 Qi, J., Chen, C., Beardsley, R. C., Perrie, W., Cowles, G. W., Lai, Z., 2009. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. *Ocean Modelling*, doi:10.1016/j.ocemod.2009.01.007.

1051

1052

1053

1054 Rheuban, J. E., Doney, S. C., Cooley, S. R., Hart, D. R., 2018. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (*Placopecten magellanicus*) fishery. *PLoS One* 13(9), p.e0203536.

1055

1056

1057 Scheffer, M., J. M. Baveco, J. M., D. L. DeAngelis, D. L., K. A. Rose, K. A., and E. H.

1058 Van Nes, E. H., 1995. Super-individual a simple solution for modeling large

1059 populations on an individual basis. *Ecological Modelling* 80: 161–170.

1060

1061

1062 Shank, B. V., Hart, D. R., Friedland, K., D., 2012. Post-settlement predation by sea stars and crabs on the sea scallop in the Mid-Atlantic Bight. *Marine Ecology Progress Series* 468, pp.161-177.

1063

1064 Shumway, S. E., Parsons, G. L. (eds.). 2016. *Scallops, Biology, Ecology, Aquaculture, and Fisheries*. Elsevier, Amsterdam, Oxford and Cambridge. 1214 pp.

1065

1066

1067 Silva-Serra, M. A., 1995. Early life history traits of *Placopecten magellanicus* (Gmelin): behaviours, lipid condition and vertical distribution of veligers at micro- and meso-scales. Ph.D. thesis, Dalhousie University, Halifax, Nova Scotia, Canada.

1068

1069

1070 Silva M. A. and R. K. O'Dor, 1988. Active depth regulation by the sea scallop larvae of *Placopecten magellanicus*? *Bulletin of the Canadian Society of Zoologists*, 19(2), 36p (Abstract).

1071

1072 Sinclair, M., 1988. Marine Populations: An essay on population regulation and speciation. Washington Sea Grant Program, 252 pp.

1073 Stewart, P. L. Arnold, S. H., 1994. Environmental requirements of the sea scallop
1074 (*Placopecten magellanicus*) in eastern Canada and its response to human impacts.
1075 *Can. Tech Rep. Fish. Aquat. Sci.* 2005, 1– 36.

1076 Stokesbury, K. D. E., Harris, B. P., Marino II, M. C., Nogueira, J. I., 2004. Estimation of
1077 sea scallop abundance using a video survey in off-shore USA waters. *J. Shellfish*
1078 *Res.* 23, 33-44.

1079 Stokesbury, K. D. E., Chen, C., He, P., Zhao, L., Harris, B. P., 2015. Survey of persistent
1080 scallop aggregation and an examination of their influence on recruitment using the
1081 FVCOM oceanographic model. Final report of Sea Scallop Research under NOAA
1082 Grant Number: NA13NMF4540017.

1083 Stokesbury, K. D. E., O'Keefe, C. E., Harris, B. P., 2016. Fisheries Sea Scallop,
1084 *Placopecten magellanicus*. In S. E. Shumway and G.J. Parsons, editors. *Scallops: biology, ecology and aquaculture*. Amsterdam: Elsevier. Pp719-732.

1085 Stokesbury K. D. E, Bethoney, N. D., 2020. How many sea scallops are there and why does
1086 it matter? *Frontier in Ecology and Environment*, doi: 10.1002/fee.2244.

1087 Sun, Y., 2014. Long-and short-term oceanographic responses to atmospheric forcing over
1088 the Gulf of Maine and New England Shelf. Ph.D. Thesis, University of
1089 Massachusetts, 209 pp.

1090 Sun, Y., Chen, C., Beardsley, R. C., Xu, Q., Qi, J.: Lin, H., 2013. Impact of current-wave
1091 interaction on storm surge simulation: A case study for Hurricane Bob. *J. Geophys.*
1092 *Res.-Oceans* 118, 2685-2701, doi:10.1002/jgrc.20207.

1093 Sun, Y., Chen, C., Beardsley, R. C., Ullman, D., Butman, B., , Lin, L., 2016. Surface
1094 circulation in Block Island Sound and adjacent coastal and shelf regions: A
1095 FVCOM-CODAR comparison. *Progress in Oceanography* 143 (2016), 26–45.

1096 Thompson, K. J., Inglis, S. D., Stokesbury, K. D. E., 2014. Identifying spawning events of
1097 the sea scallop *Placopecten magellanicus* on Georges Bank. *Journal of Shellfish*
1098 *Research*, 33(1), 77-87.

1099 Tian, R. C., Chen, C., Stokesbury, K. D. E., Rothschild, B. J., Xu, Q., Hu, S., Cowles, G.
1100 W., Harris, B. P., Marino II, M. C., 2009a. Dispersal and settlement of sea scallop
1101 larvae spawned in the fishery closed areas on Georges Bank. *ICES Journal of*
1102 *Marine Science* 66(10), 2155-2164, doi: 10.1093/icesjms/fsp175.

1103

1104 Tian, R. C., Chen, C., Stokesbury, K. D. E., Rothschild, B. J., Xu, Q., Cowles, G. W.,
1105 Harris, B. P., Marino II, M. C., 2009b. Sensitivity analysis of sea scallop
1106 (*Placopecten magellanicus*) larvae trajectories to hydrodynamic model
1107 configuration on Georges Bank and adjacent coastal regions. *Fish. Oceanogr.* 18,
1108 173-184.

1109 Tian, R. C., Chen, C., Stokesbury, K. D. E., Rothschild, B. J., Cowles, G. W., Xu, Q.,
1110 Harris, B. P., Marino II, M. C., 2009c. Modeling the connectivity between sea
1111 scallop populations in the Middle Atlantic Bight and over Georges Bank. *Mar.*
1112 *Ecol. Prog. Ser.* 380, 147-160

1113 Tremblay, M. J. 1988. A summary of the proceedings of the Halifax sea scallop workshop,
1114 August 13-14, 1987. Canadian Technical Report of Fisheries and Aquatic Sciences,
1115 No. 1605, 12 pp.

1116 Tremblay, M. J., Sinclair, M., 1990a. Sea scallop larvae *Placopecten magellanicus* on
1117 Georges Bank: Vertical distribution in relation to water column stratification and
1118 food. *Marine Ecology Progress Series* 61(1-2):1-15, doi: 10.3354/meps061001

1119 Tremblay, M. J. Sinclair, M., 1990b. Diel migration of sea scallop larvae *Placopecten*
1120 *magellanicus* in a shallow embayment. *Marine Ecology Progress Series* 67, 19-25.

1121 Tremblay, M. J., Loder, J. W., Werner, F. E., Naimie, C. E., Page, F. H., and Sinclair, M.
1122 M. 1994. Drift of sea scallop larvae *Placopecten magellanicus* on Georges Bank: a
1123 model study of the roles of mean advection, larval behavior and larval origin. *Deep-*
1124 *Sea Research* II, 41: 7-49.

1125 Van Sebille, E., Van Leeuwen, P. J., Biastoch, A., Barron, C. N., Ruijter, D., 2009.
1126 Lagrangian validation of numerical drifter trajectories using drifting buoys:
1127 Application to the Agulhas system. *Ocean Modelling* 29, 269-276.

1128 Werner, F. E., Page, F. H., Lynch D. R., Loder J. W. and others, 1993. Influence of mean
1129 3-D advection and simple behavior on the distribution of cod and haddock early
1130 life stages on Georges Bank. *Fish Oceanogr.* 2: 43-64.

1131 Woods, J., 2005. The Lagrangian ensemble metamodel for simulating plankton systems.
1132 *Progress in Oceanography* 67: 84-159

1133 Zhang, Y., Chen, C., Beardsley, R. C., Gao, G., Lai, Z., Curry, B., Lee, C. M., Lin, H.,
1134 Qi, J., Xu, Q., 2016. Studies of the Canadian Arctic Archipelago water transport

1135 and its relationship to basin-local forcings: Results from AO-FVCOM. *Journal of*
1136 *Geophysical Research-Oceans* 121, doi:10.1002/2016JC011634., 121.
1137 Zhang, Y., Chen, C., Beardsley, R. C., Gao, G., Qi, J., Lin, H., 2016. Seasonal and
1138 interannual variability of the Arctic sea ice: a comparison between AO-FVCOM
1139 and observations. *Journal of Geophysical Research-Oceans* 121, doi: 10.1002/
1140 2016JC011841.

1141

1142 **Figure Captions**

1143

1144 Figure 1: Schematic of the near-surface (red arrows) and deep (white arrows) flows over
1145 the US northeast shelf. GB: Georges Bank, GSC: Great South Channel, SNE:
1146 Southern New England, MAB: Middle Atlantic Bight. The red color patch
1147 represents the Gulf Stream northward meander water. Red color rings represent the
1148 warm-core ring separated from the Gulf Stream. Gray thick lines are the boundaries
1149 between GB/GSC, SNE, and MAB. The solid black thin line is the transect where
1150 the transport was calculated. The 3-D icon represents the NOAA buoy, and the
1151 number on the right is the buoy number.

1152

Figure 2: The unstructured meshes for Global-FVCOM and GoM-FVCOM. The cells
1153 marked with red colors represent the common cells nesting between Global-
1154 FVCOM and GoM-FVCOM.

1155

Figure 3: Structures of the scallop-IBM early life stage model. Four pelagic stages are
1156 considered: 1) egg, 2) trochophore, 3) veliger, and 4) pediveliger. U , V , and W are
1157 the x, y, and z components of the water velocity. T is the water temperature, and K_m
1158 is the vertical eddy viscosity. The dashed line box presents the pelagic stages, and
1159 the gray shadow area indicates benthic stages.

1160

Figure 4: The diel and semidiurnal larval vertical migration sub-models in the surface
1161 mixed layer during the period of 5 through 40 days from eggs to veliger stages. Diel
1162 and semi-diurnal vertical migration patterns were based on the observations made
1163 by Tremblay and Sinclair (1990b), Manuel *et al.* (1996), and Gallager *et al.* (1996).
1164 The number in the figure indicates the time of a day defined by a 24-hour clock.

1165

Figure 5: Scallop abundance (scallop#/m²) (a) and gridded density (individual/m²) (b) for

1166 spawning The individuals in each cell were determined using the combined scallop
1167 data from BIO, NOAA, and SMAST. In the upper panel, shapes bounded by red
1168 lines are the closed areas; CA-I: closed area I, CA-II: closed area II, and NLCA:
1169 Nantucket Lightship closed area. In the lower panel, the dashed thick line is the
1170 boundary between the US and Canadian waters.

1171 Figure 6: Illustration of the egg spawning period starting at 00:00 September 1 and ending
1172 at 24:00 October 10. The spawning process satisfies a normal probability
1173 distribution with the maximum on September 20 and a one-week standard deviation.

1174 Figure 7: Distributions of the settled larval density (a-e) and locations/ abundances of
1175 settled super-individuals (f-j) for the cases C#1 (No OML), C#2 (10 m-OML: diel),
1176 C#3 (10 m-OML: semidiurnal), C#4 (30 m-OML: diel), and C#5 (30 m-OML:
1177 semidiurnal). The results were from the 2008 simulation. Two thick gray lines are
1178 the boundaries between GB/GSC, SNE, and MAB. Gray lines with labels are 50,
1179 100, and 200-m isobath contours.

1180 Figure 8: Distributions of the settled larval density (a-e) and locations/ abundances of
1181 settled super-individuals (f-j) for the cases C#1 (No OML), C#2 (10 m-OML: diel),
1182 C#3 (10 m-OML: semidiurnal), C#4 (30 m-OML: diel), and C#5 (30 m-OML:
1183 semidiurnal). The results were from the 2009 simulation. Two thick gray lines are
1184 the boundaries between GB/GSC, SNE, and MAB. Gray lines with labels are 50,
1185 100, and 200-m isobath contours.

1186 Figure 9: Distributions of the settled larval density (a-e) and locations/ abundances of
1187 settled super-individuals (f-j) for the cases C#1 (No OML), C#2 (10 m-OML: diel),
1188 C#3 (10 m-OML: semidiurnal), C#4 (30 m-OML: diel), and C#5 (30 m-OML:
1189 semidiurnal). The results were from the 2012 simulation. Two thick gray lines are
1190 the boundaries between GB/GSC, SNE, and MAB. Gray lines with labels are 50,
1191 100, and 200-m isobath contours.

1192 Figure 10: Distributions of the settled larval density (a-e) and locations/ abundances of
1193 settled super-individuals (f-j) for the cases C#1 (No OML), C#2 (10 m-OML: diel),
1194 C#3 (10 m-OML: semidiurnal), C#4 (30 m-OML: diel), and C#5 (30 m-OML:
1195 semidiurnal). The results were from the 2013 simulation. Two thick gray lines are
1196 the boundaries between GB/GSC, SNE, and MAB. Gray lines with labels are 50,

1197 100, and 200-m isobath contours.

1198 Figure 11: Ratio of the model-simulated mixed layer to the local depth averaging over
1199 September-November, 2013. The right lower panel shows the cross-isobath
1200 distributions of temperature and salinity on GB. The solid black thick line is the
1201 location of the section. Black lines are 50, 100, and 200-m isobath contours.

1202 Figure 12: Cross-isobath sections (thick white lines) labeled "A, B, and C" and the depths
1203 of the monthly averaged OML for September, October, and November 2013 on
1204 Sections A, B, and C, respectively. Red line: September, blueline: October, and
1205 blackline: November. Black lines are the isobath contours matching with depth
1206 images.

1207 Figure 13: Distributions of the settled larval density (a-c) and locations/ abundances of
1208 settled super-individuals (d-f) for the cases C#6 (varying OML: diel), C#7 (varying
1209 OML: semidiurnal), and C#8 (thermocline-migration). The results were from the
1210 2013 simulation. Two thick gray lines are the boundaries between GB/GSC, SNE,
1211 and MAB. Gray lines with labels are the 50, 100, and 200-m isobath contours.

1212 Figure 14: Horizontal and vertical trajectories of a super-individual originating from the
1213 same site on the southeastern flank of GB. a: C#1 (No OML); b: C#2 and C#3 (10
1214 m-OML); c: C#4 and C#5 (30 m-OML); d: C#6, C#7, and C#8 (Varying OML). t_d :
1215 diel; t_{sd} : semidiurnal; m_b : thermocline-seeking. The results were from the 2013
1216 simulation. Black lines are the isobath contours matching with depth images.

1217 Figure 15: The 39-year mean, percentage, and standard deviation of settled scallop larvae
1218 over 1978-2016 for C#1-C#5. a-c: C#1 (No OML); d-f: C#2 (10 m-OML: diel); g-
1219 i: C#3 (10 m-OML: semidiurnal); j-l: C#4 (30 m-OML: diel); m-o: C#5 (30 m-
1220 OML: semidiurnal). Two thick gray lines are the boundaries between GB/GSC,
1221 SNE, and MAB. Gray lines are the 50, 100, and 200-m isobath contours (see Fig.
1222 11 for isobath labels).

1223 Figure 16: Model-predicted percentages of the scallop larvae settling in the GB/GSC (a),
1224 SNE (b), and MAB (c) regions, respectively, over 1978-2016 for C#1 (solid black
1225 line), C#2 (solid blue line), C#3 (dashed blue line), C#4 (solid red line), and C#5
1226 (dashed red line).

1227 Figure 17: The 4-year mean, percentage, and standard deviation of settled scallop larvae

1228 over 2013-2016 for C#6, C#7, and C#8. a-c: C#6 (varying OML: diel); d-f: C#7
1229 (varying OML: semidiurnal); g-i: C#8 (thermocline-migration). Two thick gray
1230 lines are the boundaries between GB/GSC, SNE, and MAB. Gray lines are the 50,
1231 100, and 200-m isobath contours (see Fig. 11 for isobath labels).

1232 Figure 18: Model-predicted percentages of the scallop larvae settling in the GB/GSC (a)
1233 and SNE (b) regions, respectively, over 2013-2016 for the cases C#4 (30 m-OML:
1234 diel), C#5 (30 m-OML: semidiurnal), C#6 (varying OML: diel), C#7 (varying OML:
1235 semidiurnal), and C#8 (thermocline-migration).

1236 Figure 19: Distributions of the three-monthly averaged bottom temperature in the region
1237 covering GB, SNE, and the MAB over September-November. a: 1978-2008-
1238 averaged; b: 2009; c: 2012; d: 2013-2016 averaged.

1239 Figure 20: b: distribution of the yearly surface temperature increase rate calculated based
1240 on the satellite-derived SST data over 1982-2020. The temperature increase rate
1241 was estimated based on the annual increase rate calculating over two consecutive
1242 years. a: the change of the satellite-derived SST over the shelf bounded by the 300-
1243 m isobath over 1982-2019. Solid black dots: the yearly averaged SST for each year;
1244 thick red line: the linear regression fitting line; thick blue dashed lines: averaged
1245 SSTs over 1982-2011 and 2012-2020, respectively.

1246 Figure 21: Anomalies of the water transport through an across-shelf section over the SNE
1247 shelf (see the location in Figure 1) over 1978-2016. The value listed in the upper-
1248 right area is the 39-year mean water transport.

1249 Figure 22: The wind rose plot at NOAA buoy 44008 for September-November, 2009.

1250 Figure A1: Illustration of the density profile under a vertically well-mixed condition for
1251 Case 1.

1252 Figure A2: Illustration of a linear density profile under a stratified condition for Case 2.

1253 Figure A3: Illustration of a two-layer system in which the water density is constant in the
1254 upper layer and linearly increases with depth in the lower layer for Case 3.

1255 Figure A4: Vertical profiles of sea temperature (red), salinity (blue), and density (black) at
1256 three sites across GB at 00:00 GMT, September 1, 2013. The thick dashed line
1257 represents the OML depth calculated using Eq. A.1 in Appendix A.

1258

1259

Table 1: Types of numerical experiments made in this study

Parameters Case	OML	Larva behavior
Case 1 (C#1)	No	No
Case 2 (C#2)	10 m	diel migration
Case 3 (C#3)	10 m	semidiurnal migration
Case 4 (C#4)	30 m	diel migration
Case 5 (C#5)	30 m	semidiurnal migration
Case 6 (C#6)	varying	diel migration
Case 7 (C#7)	varying	semidiurnal migration
Case 8 (C#8)	varying	thermocline-seeking

1260

1261
1262**Table 2:** Mean percentages and standard deviations of larvae settling in GB/GSC, SNE, and MAB over 1978-2016 for C#1-C#5.

Zone Case	GB/GSC	SNE	MAB
C#1: No OML	43.7±12.4	34.2±12.5	22.1±13.9
C#2: 10-m OML: diel	50.7±6.5	41.1±6.3	8.2±6.3
C#3: 10-m OML: semidiurnal	53.9±7.5	39.8±5.8	6.3±4.9
C#4: 30-m OML: diel	40.7±7.0	57.5±6.6	1.8±2.7
C#5: 30-m OML: semidiurnal	46.3±7.2	53.0±7.5	0.7±2.8

1263

1264
1265**Table 3:** Mean percentages and standard deviations of larvae settling in GB/GSC, SNE, and MAB over 2013-2016 for C#6, C#7, and C#8.

Zone Case	GB/GSC	SNE	MAB
C#6: Varying OML: diel	53.5±7.0	46.5±7.1	0.0±0.1
C#7: Varying OML: semidiurnal	57.7±6.1	42.5±6.1	0.0±0.0
C#8: Varying OML: thermocline-seeking	62.9±8.8	37.1±8.8	0.0±0.0

1266

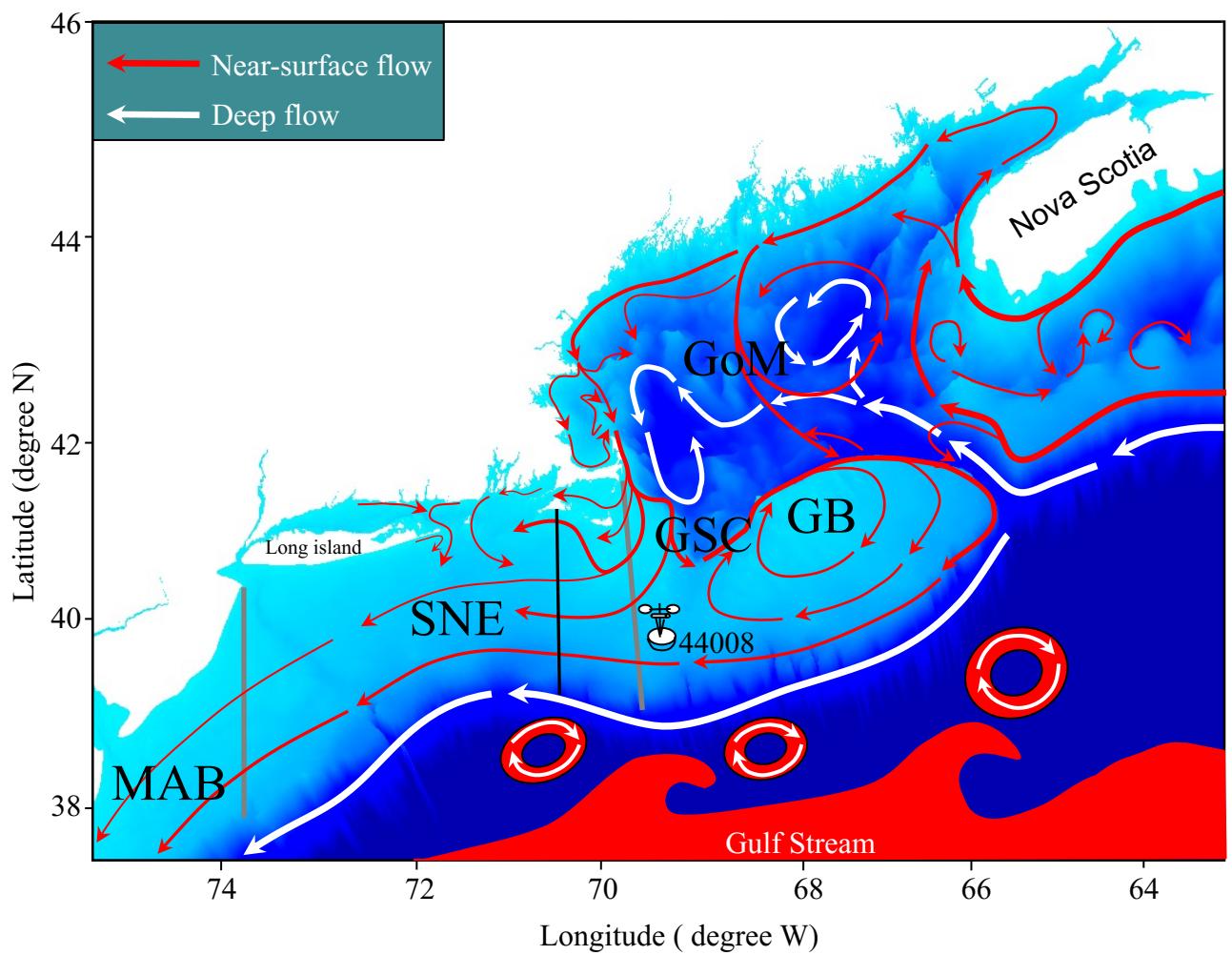


Figure 1

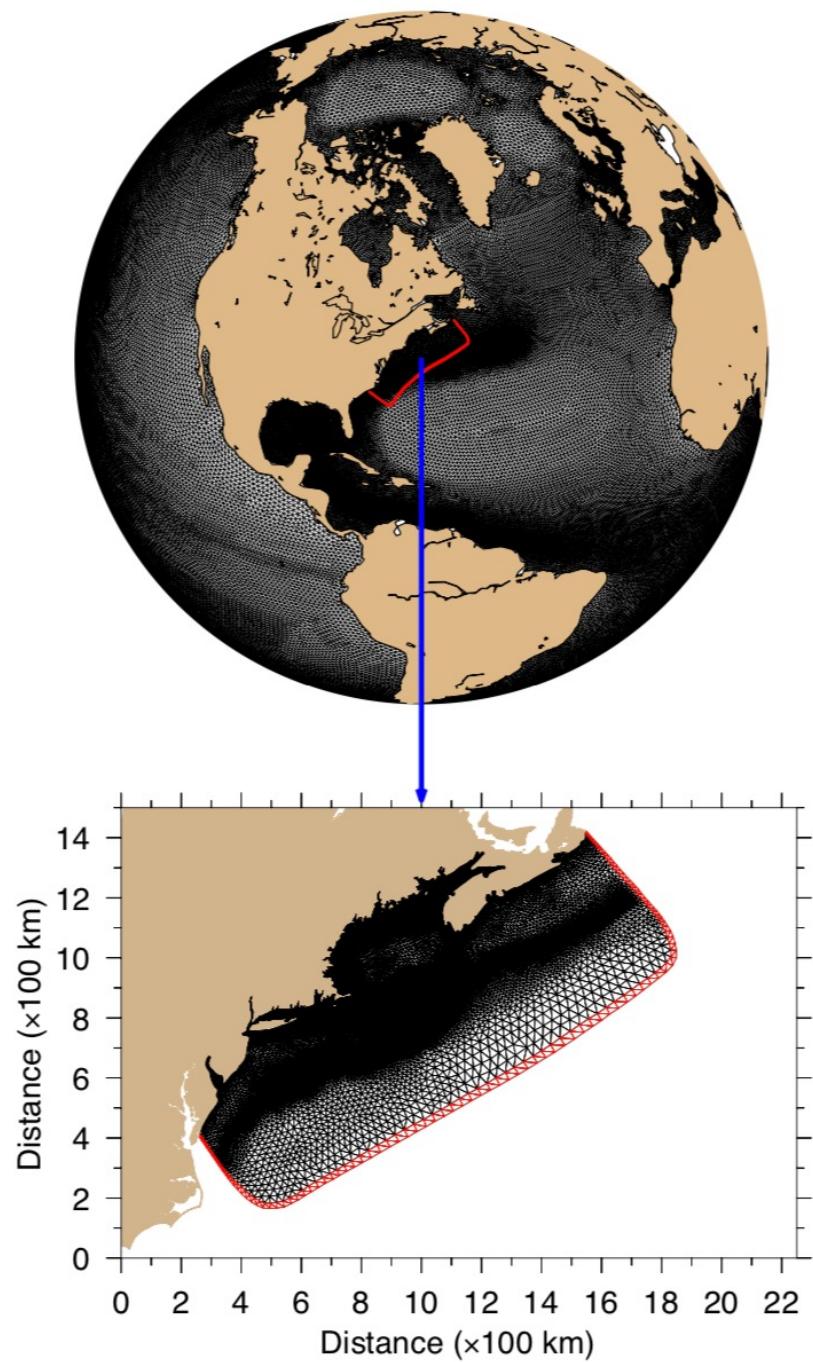


Figure 2

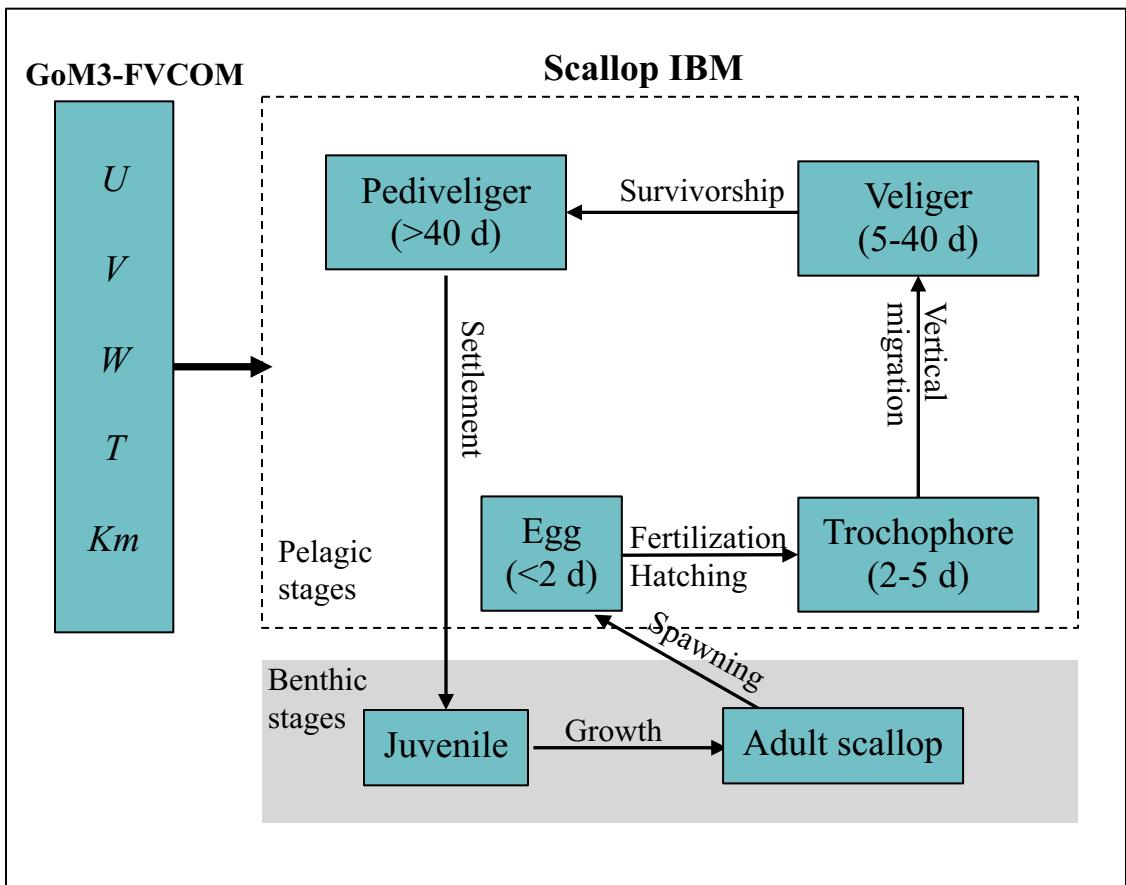


Figure 3

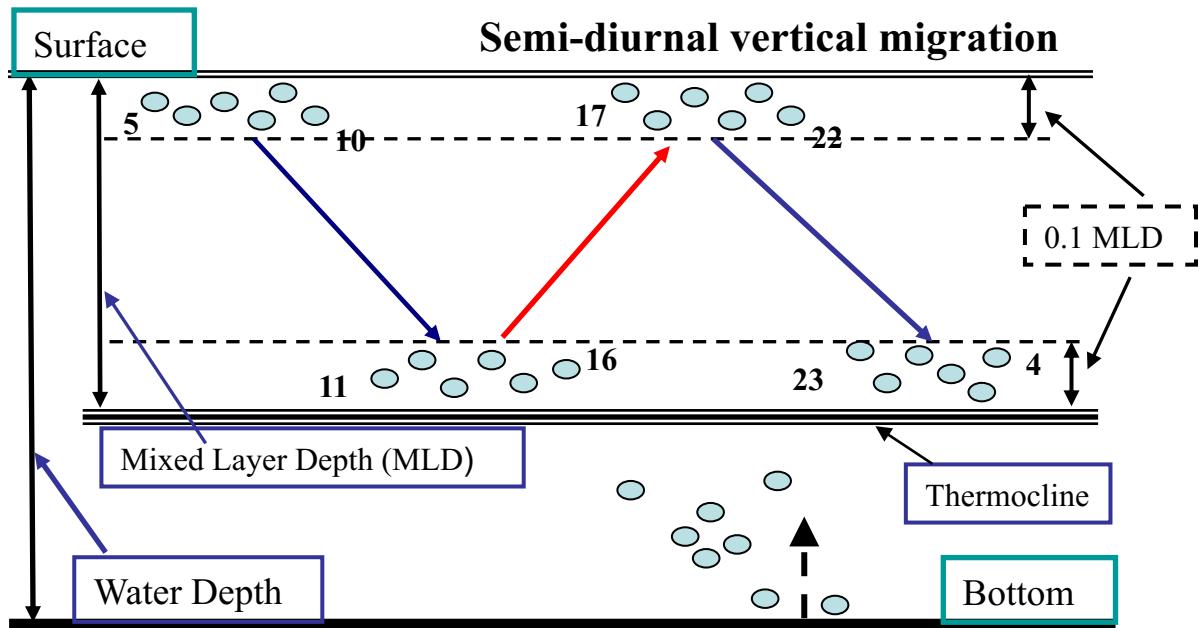
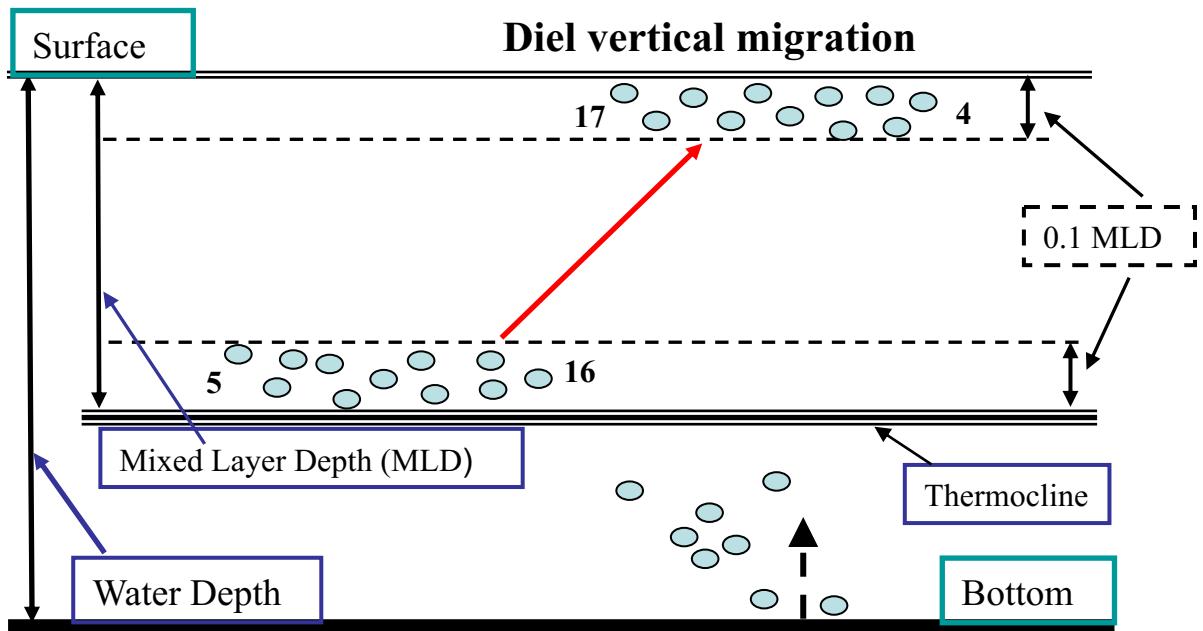



Figure 4

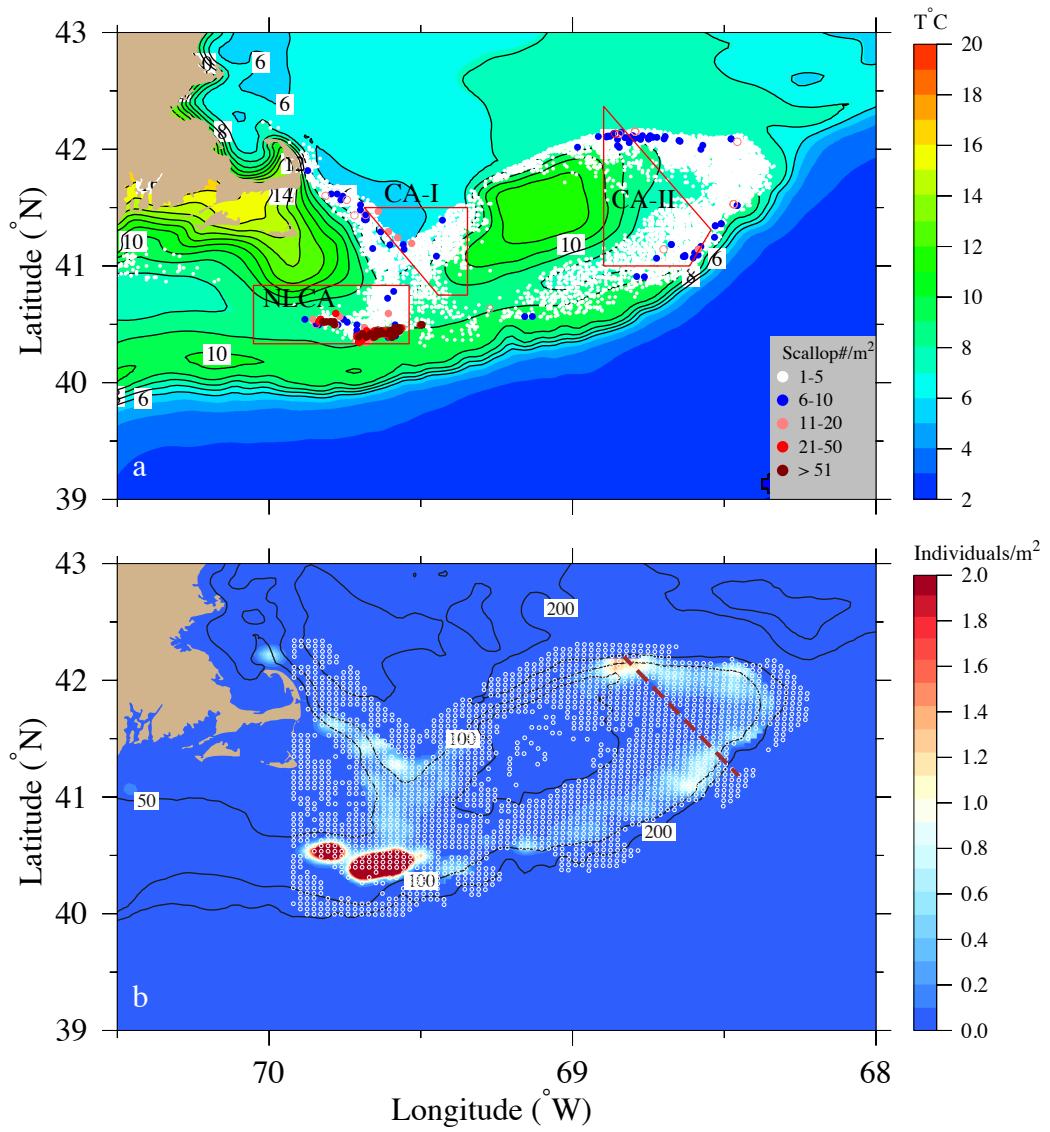


Figure 5



Figure 6

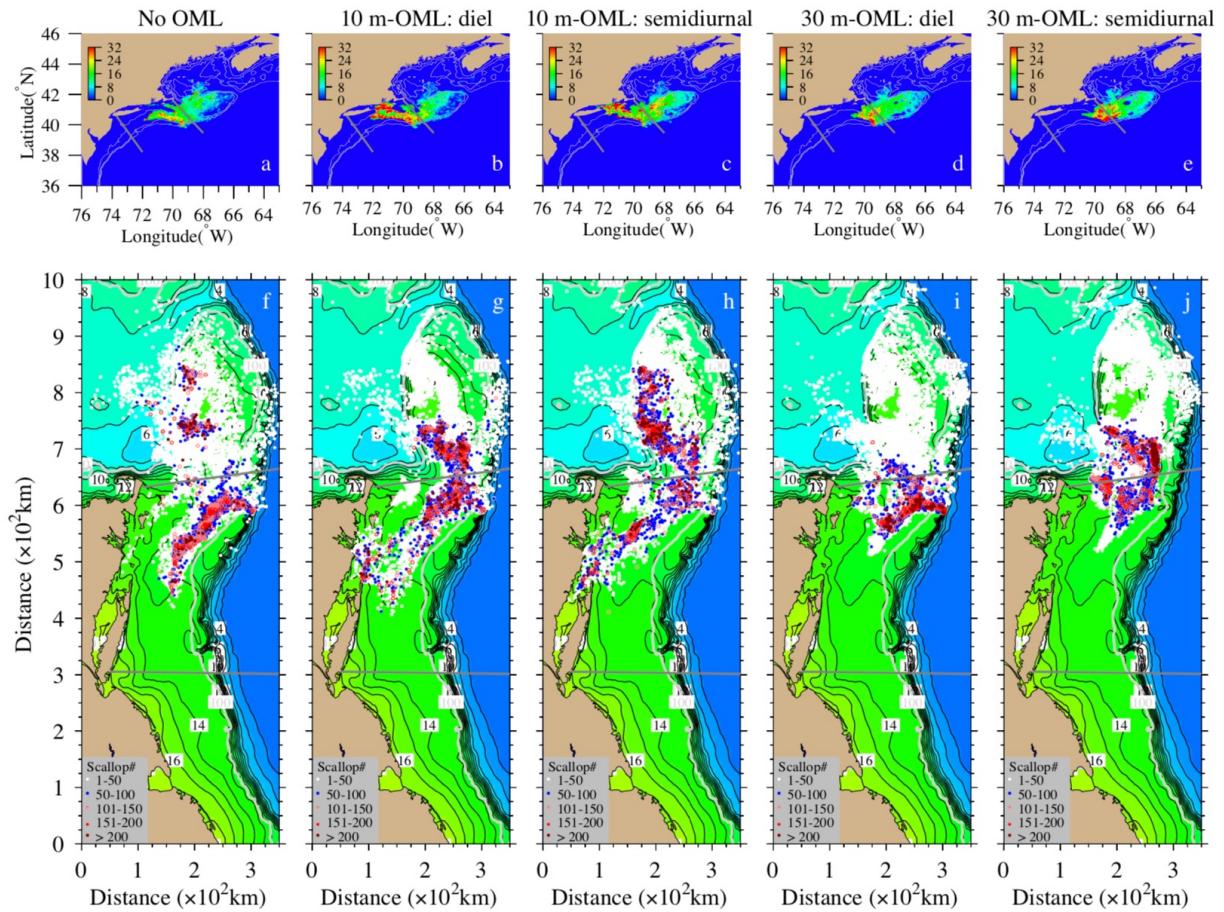


Figure 7

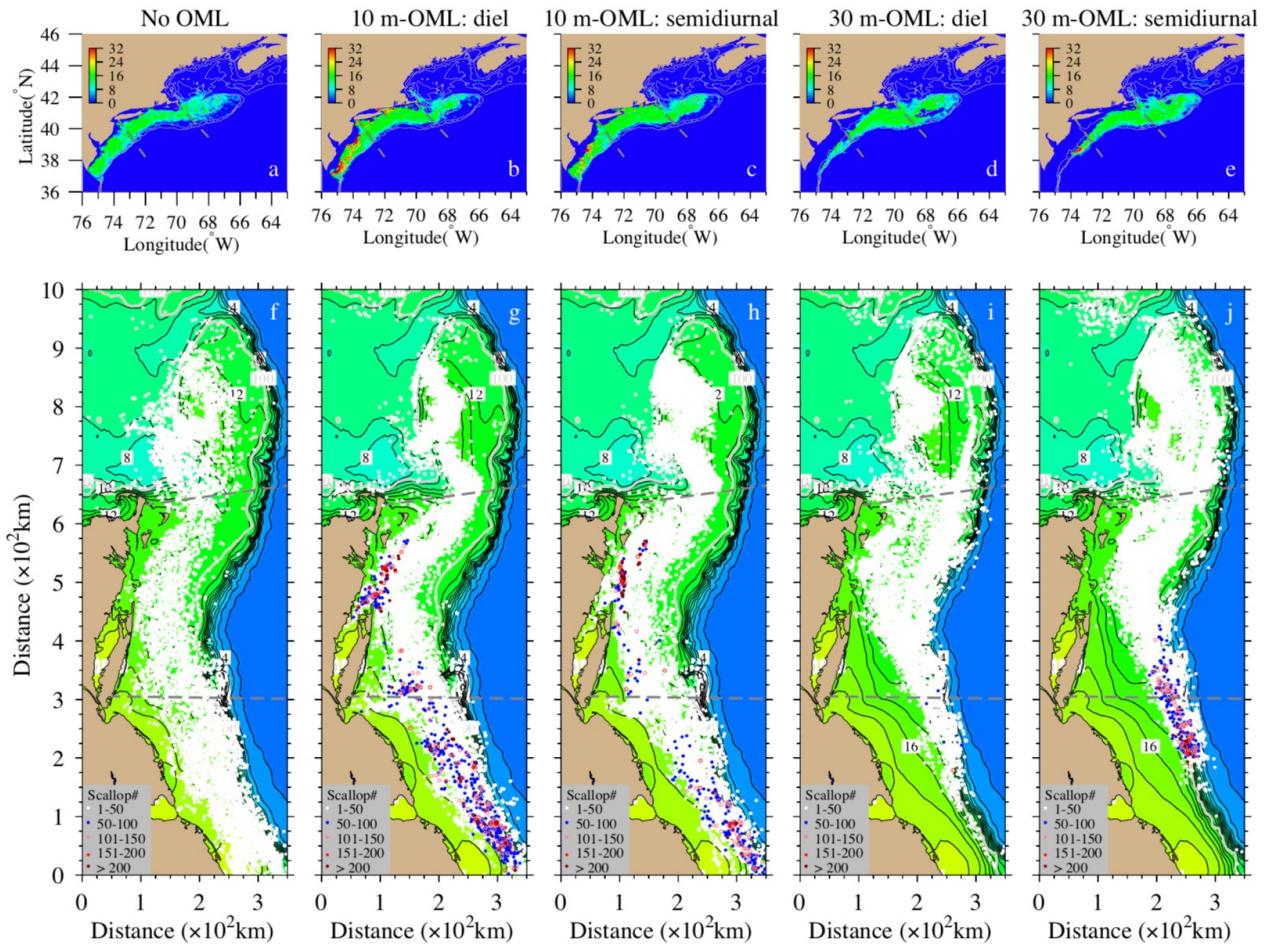


Figure 8

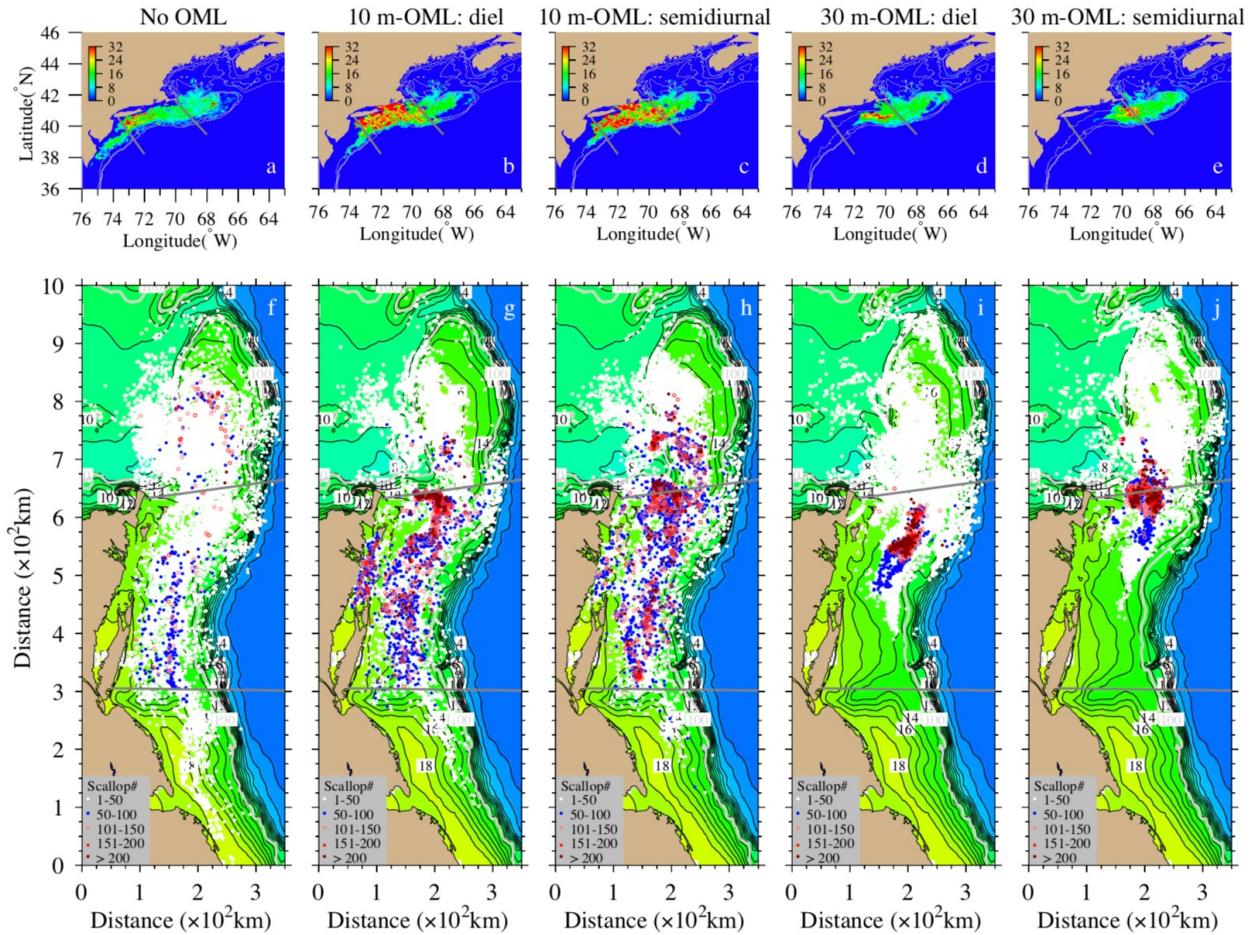


Figure 9

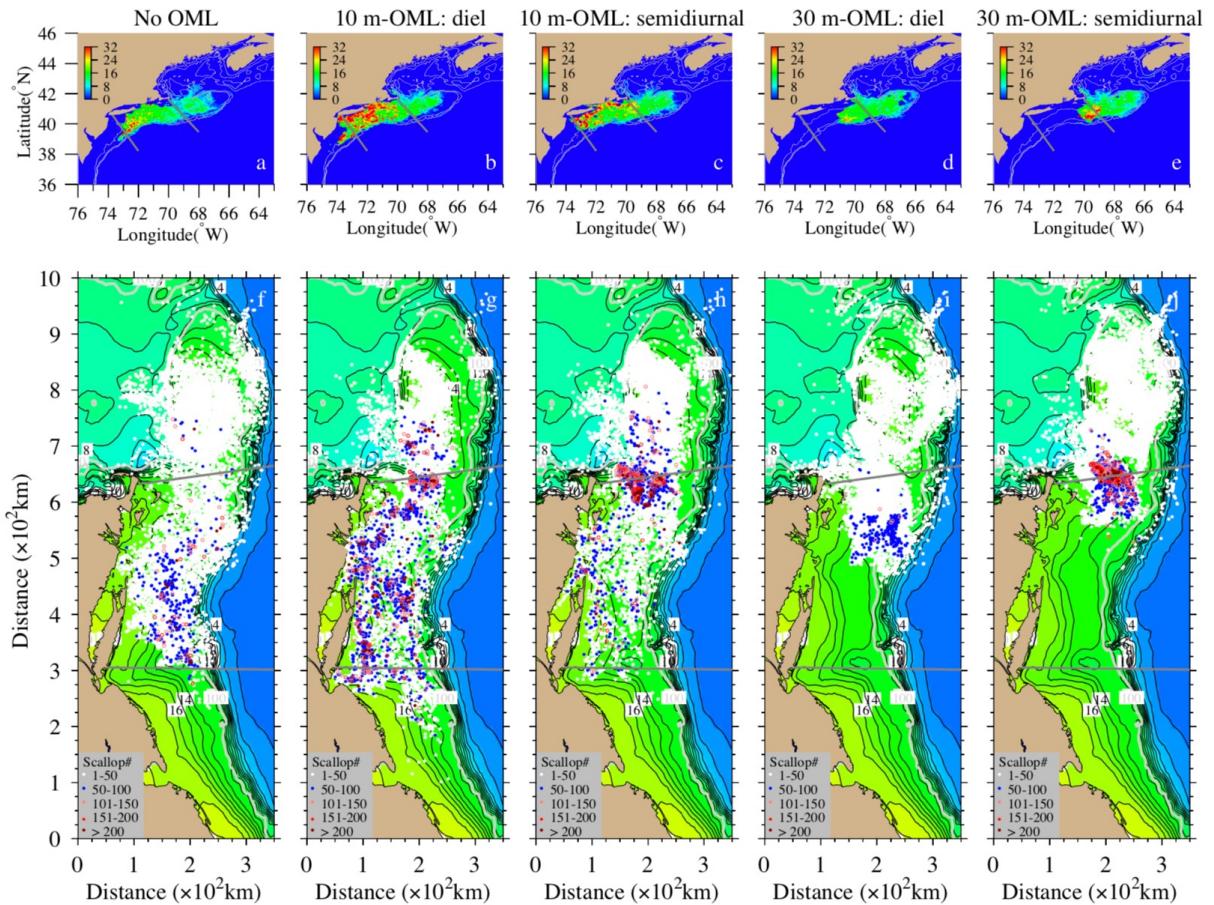


Figure 10

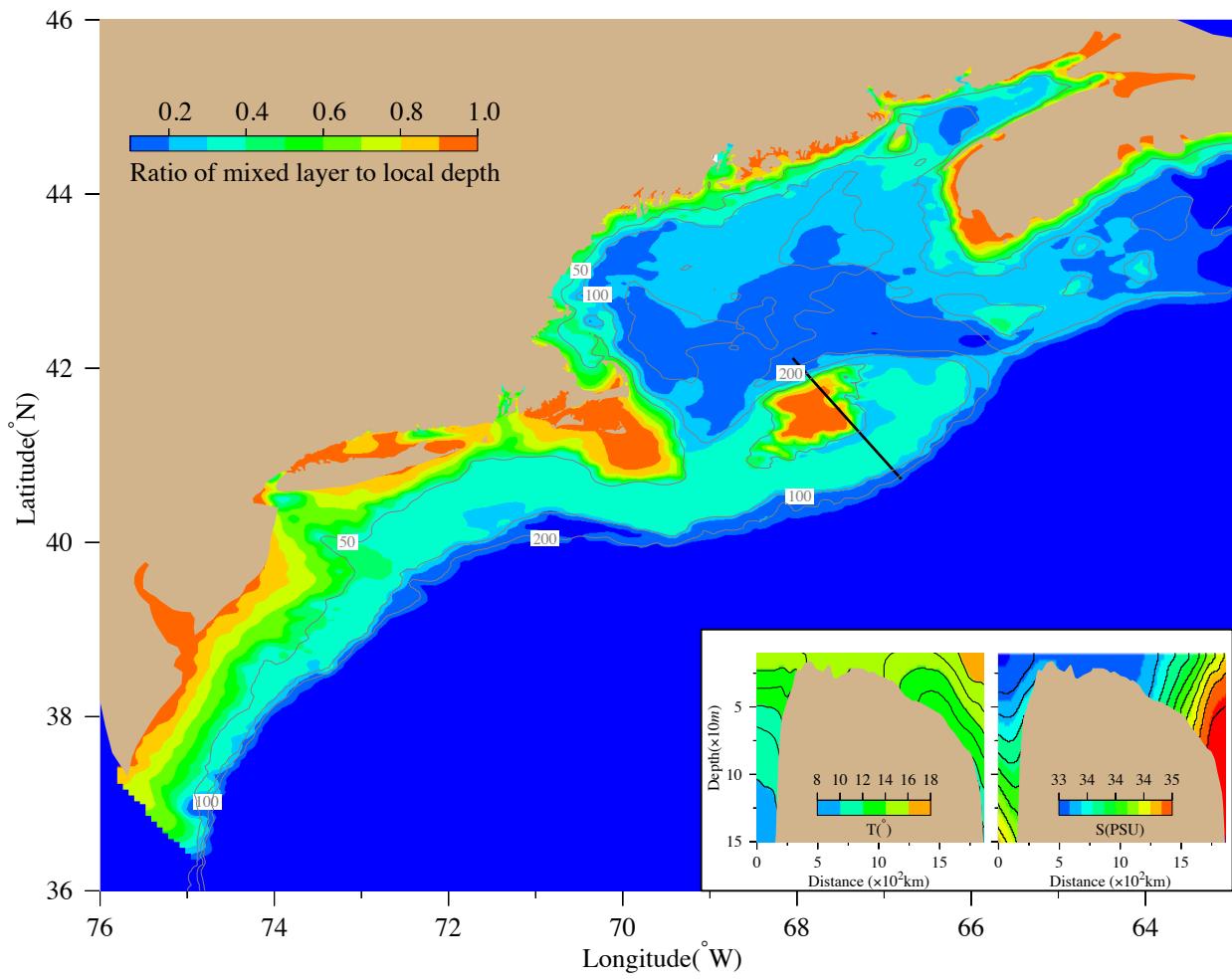


Figure 11

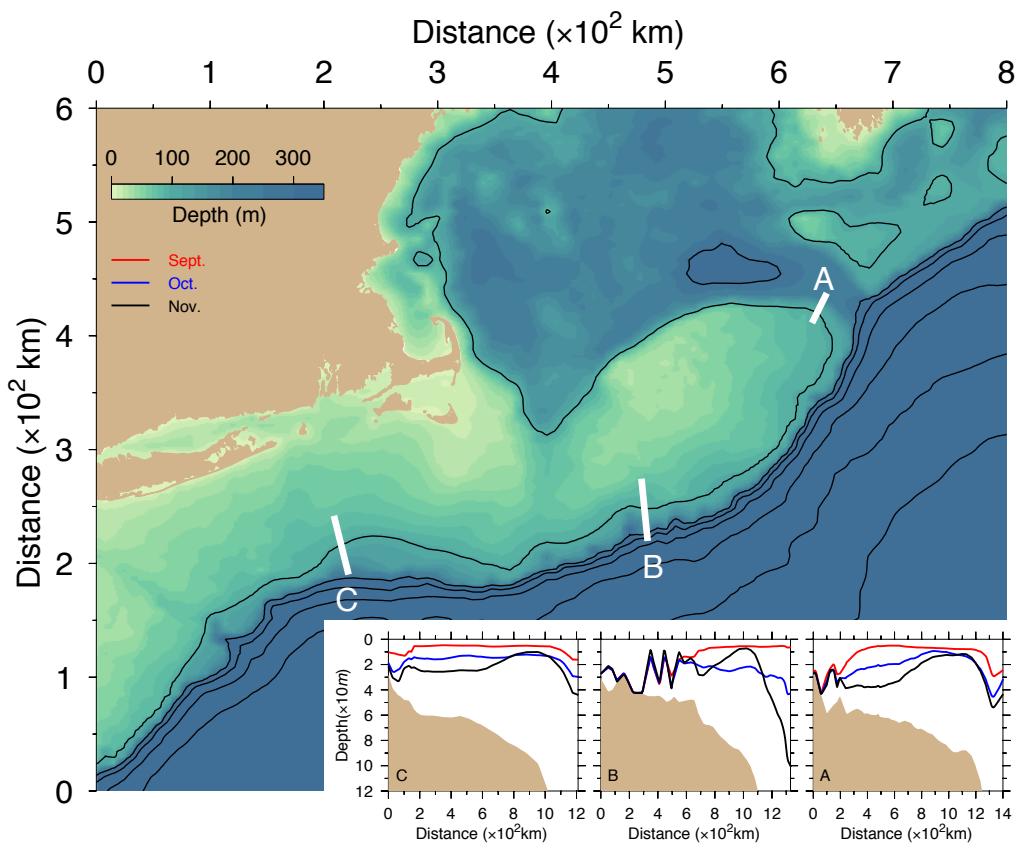


Figure 12

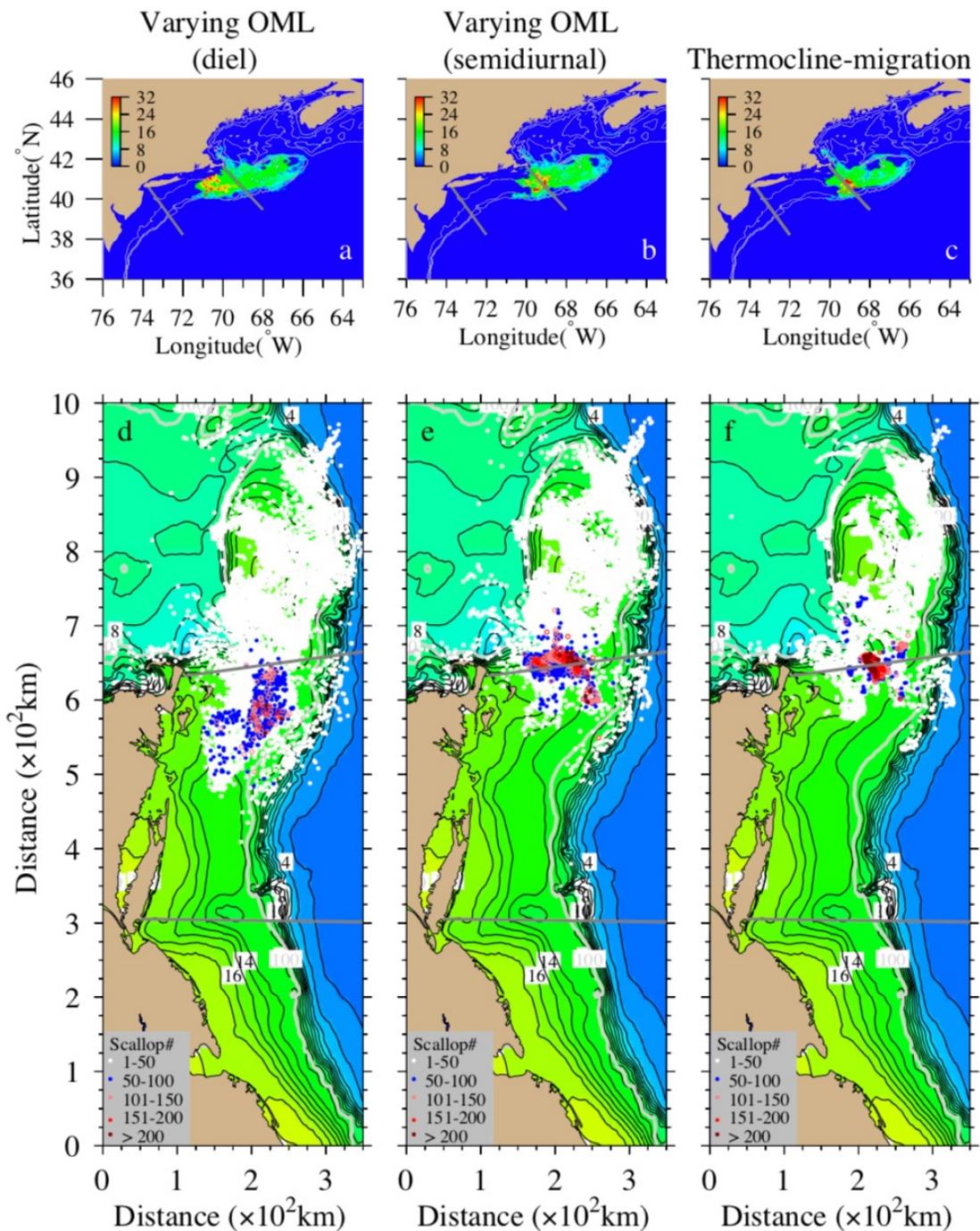


Figure 13

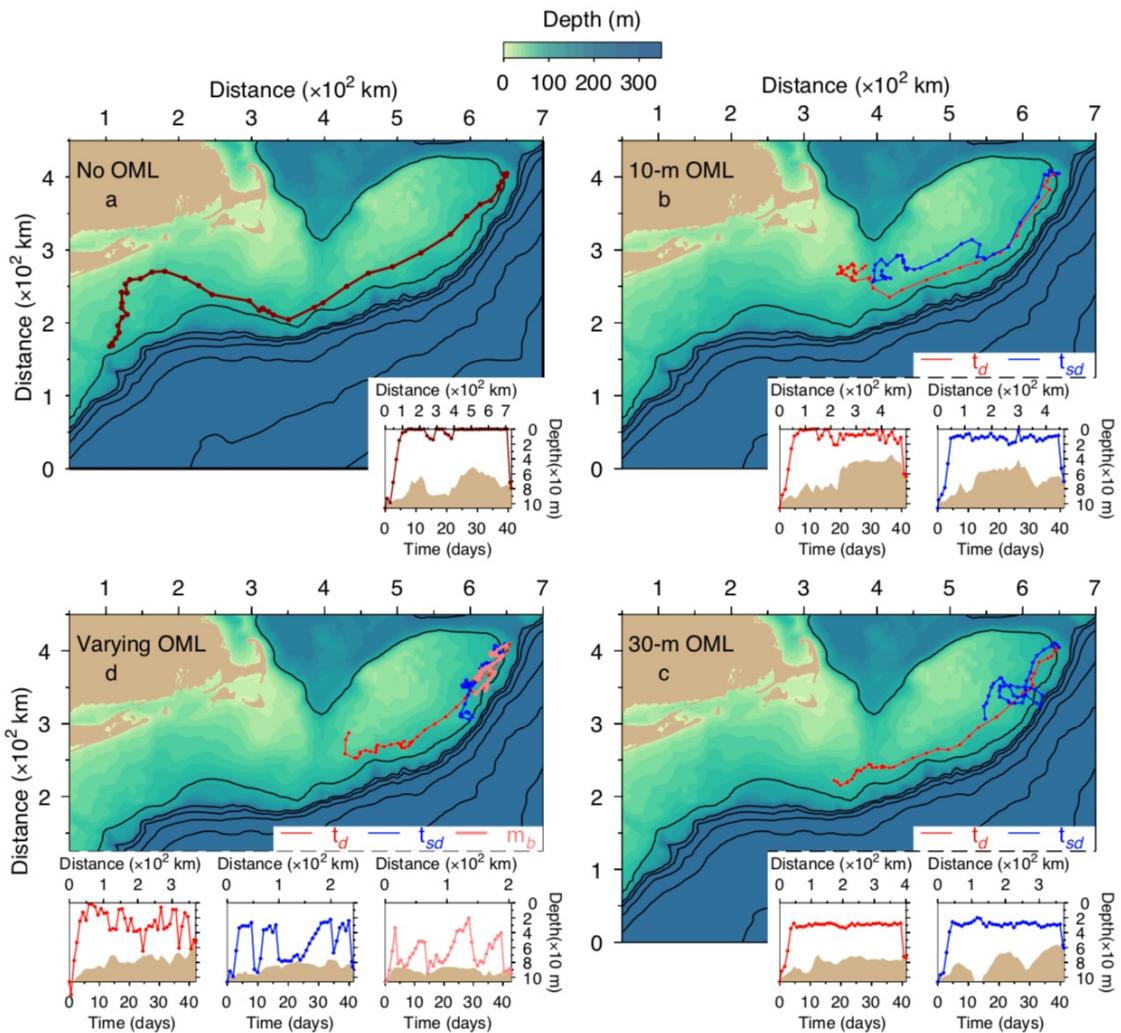


Figure 14

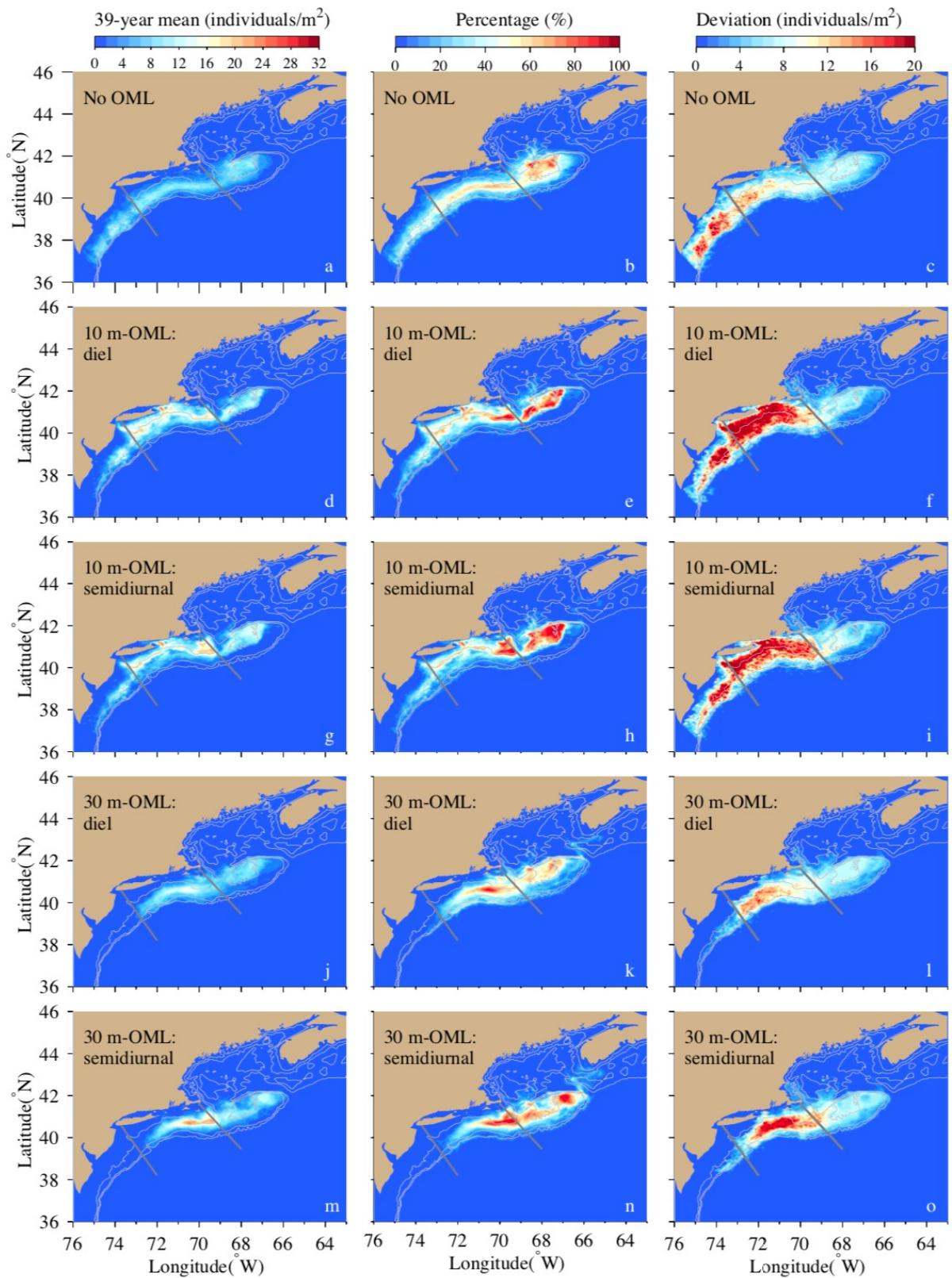


Figure 15

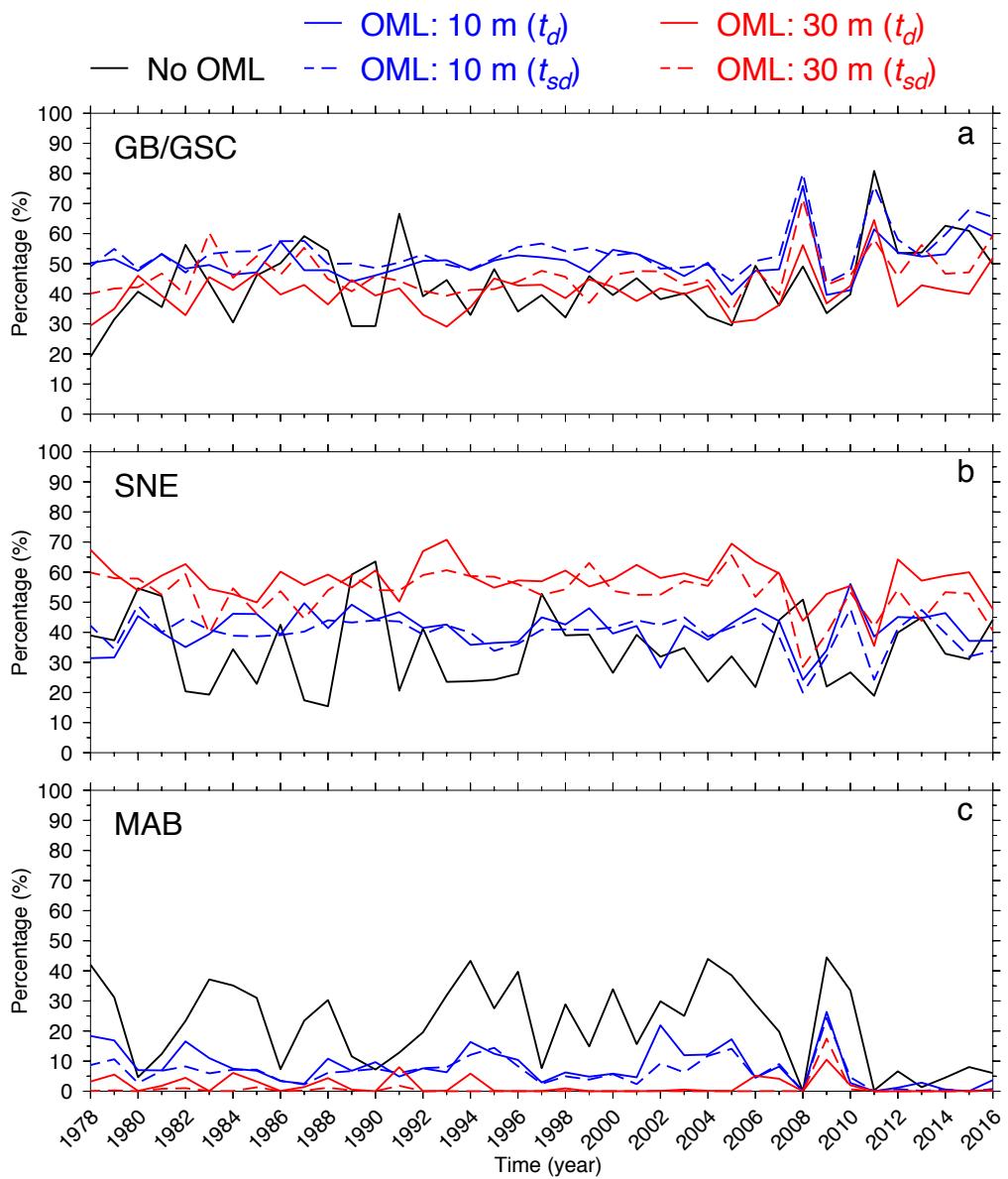


Figure 16

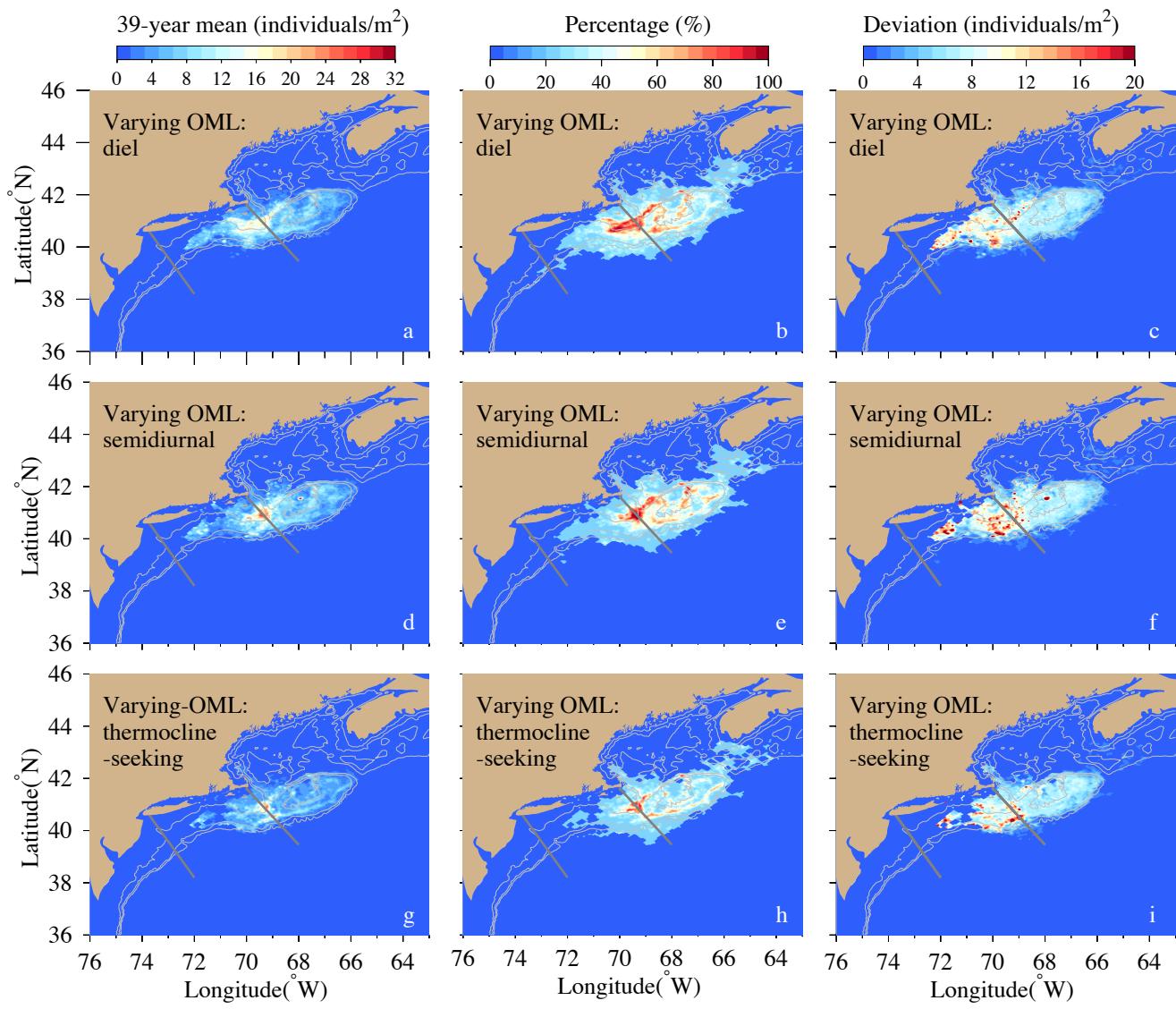


Figure 17

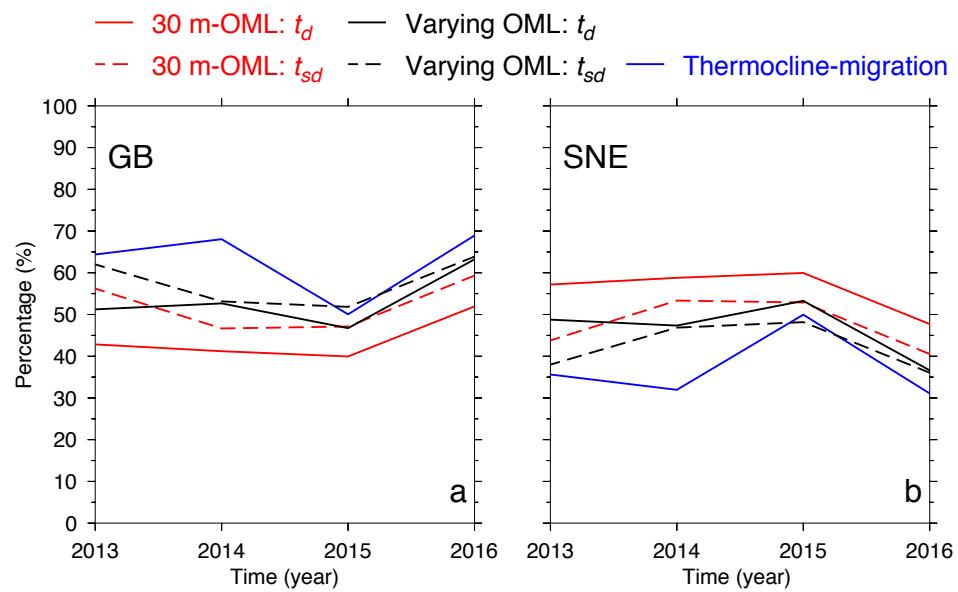


Figure 18

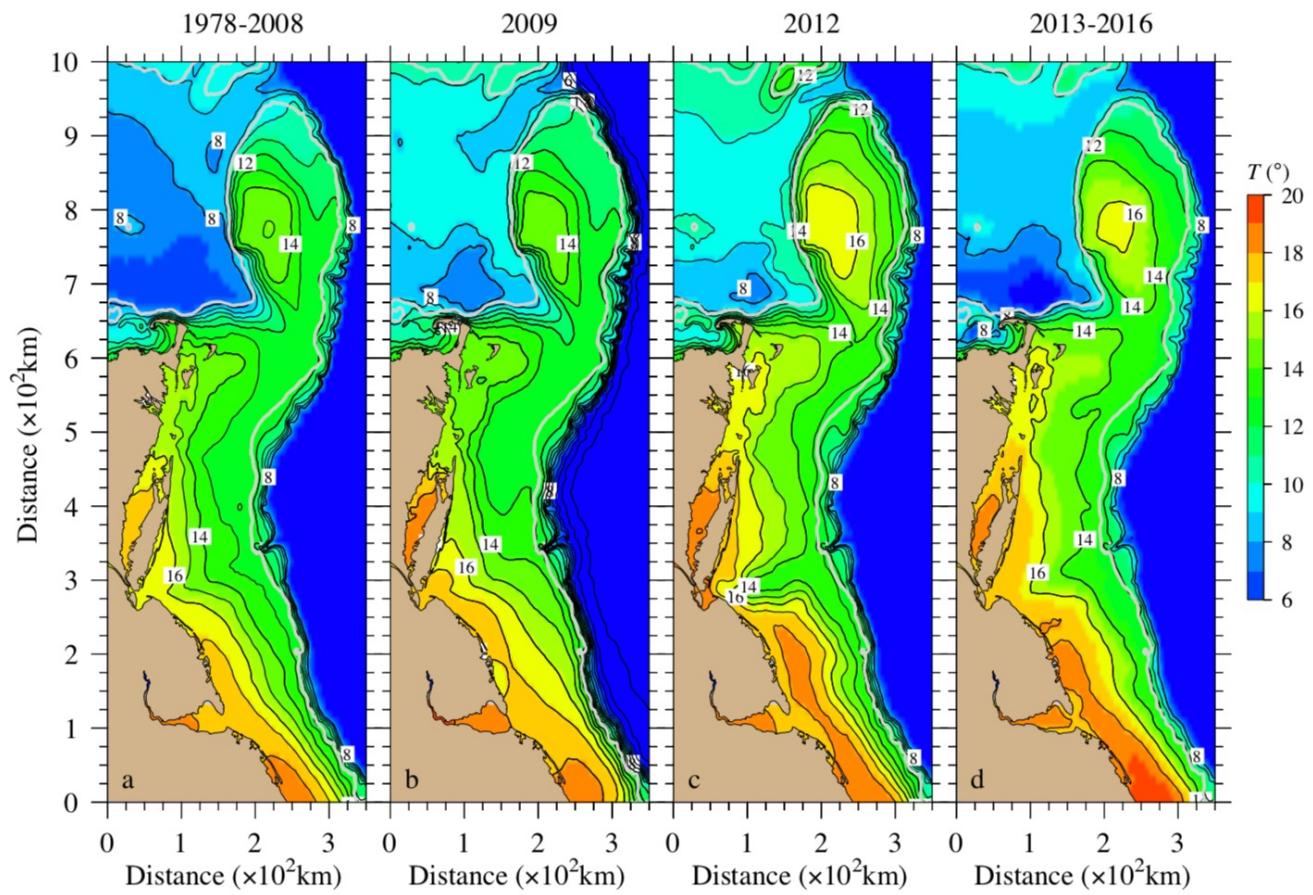


Figure 19

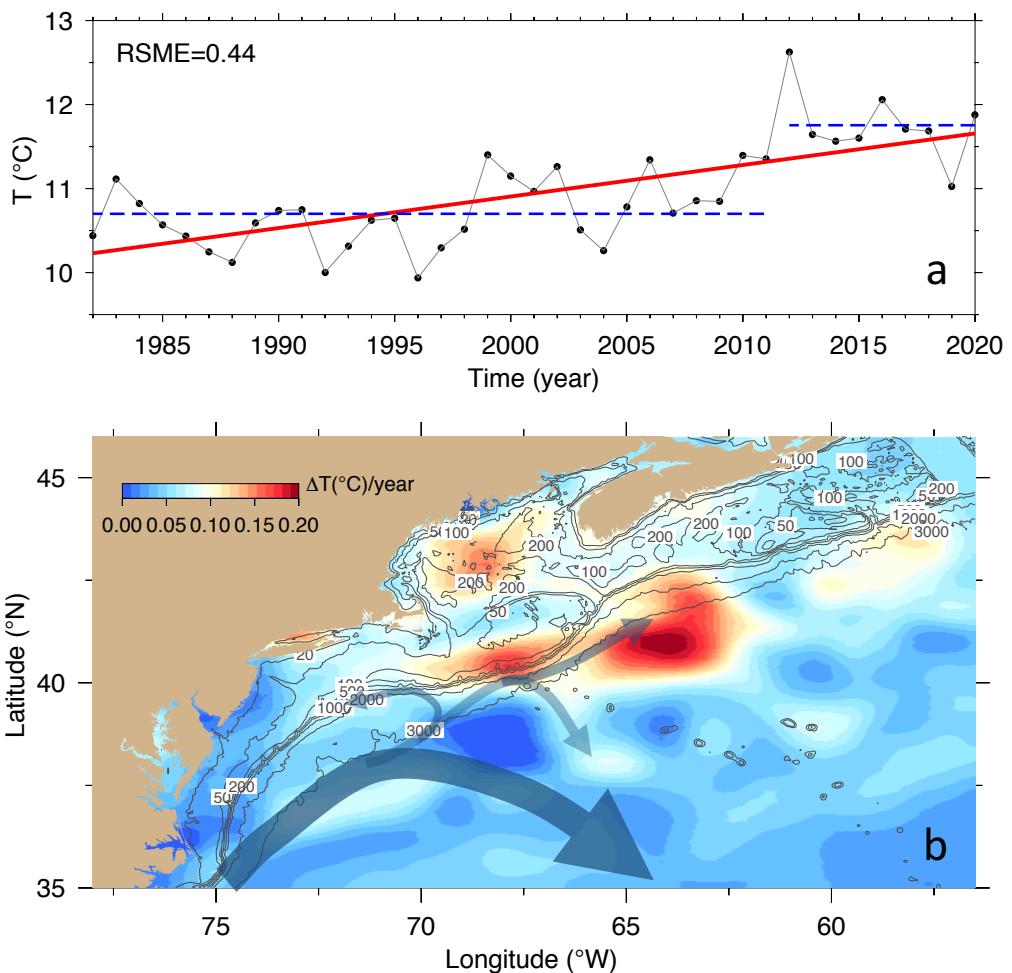


Figure 20



Figure 21

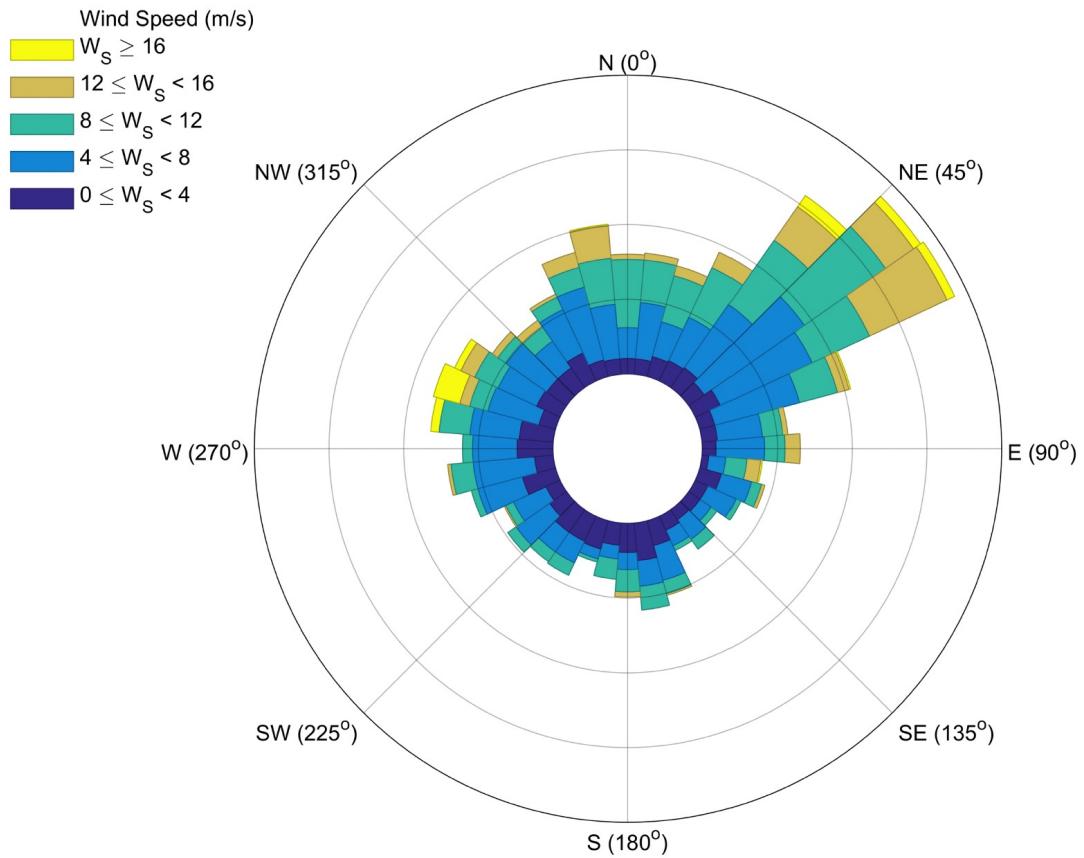


Figure 22

Figure A1

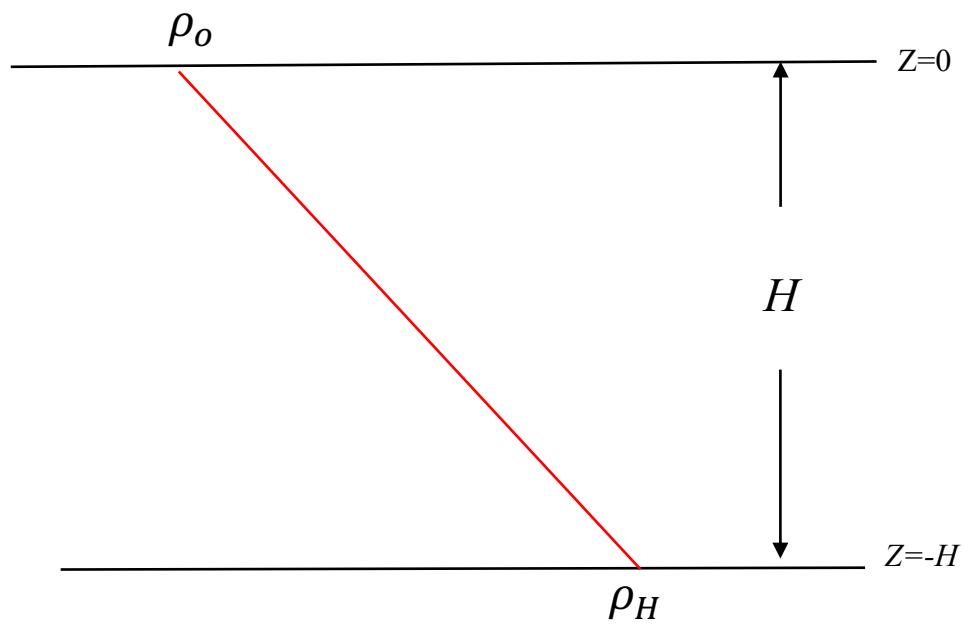


Figure A2

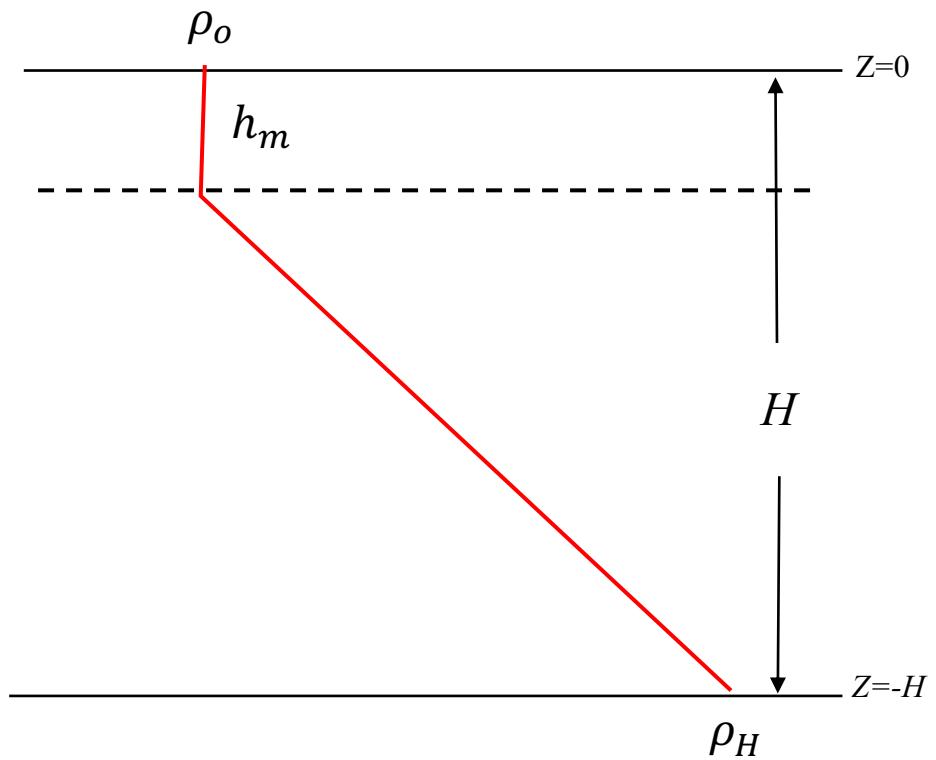


Figure A3

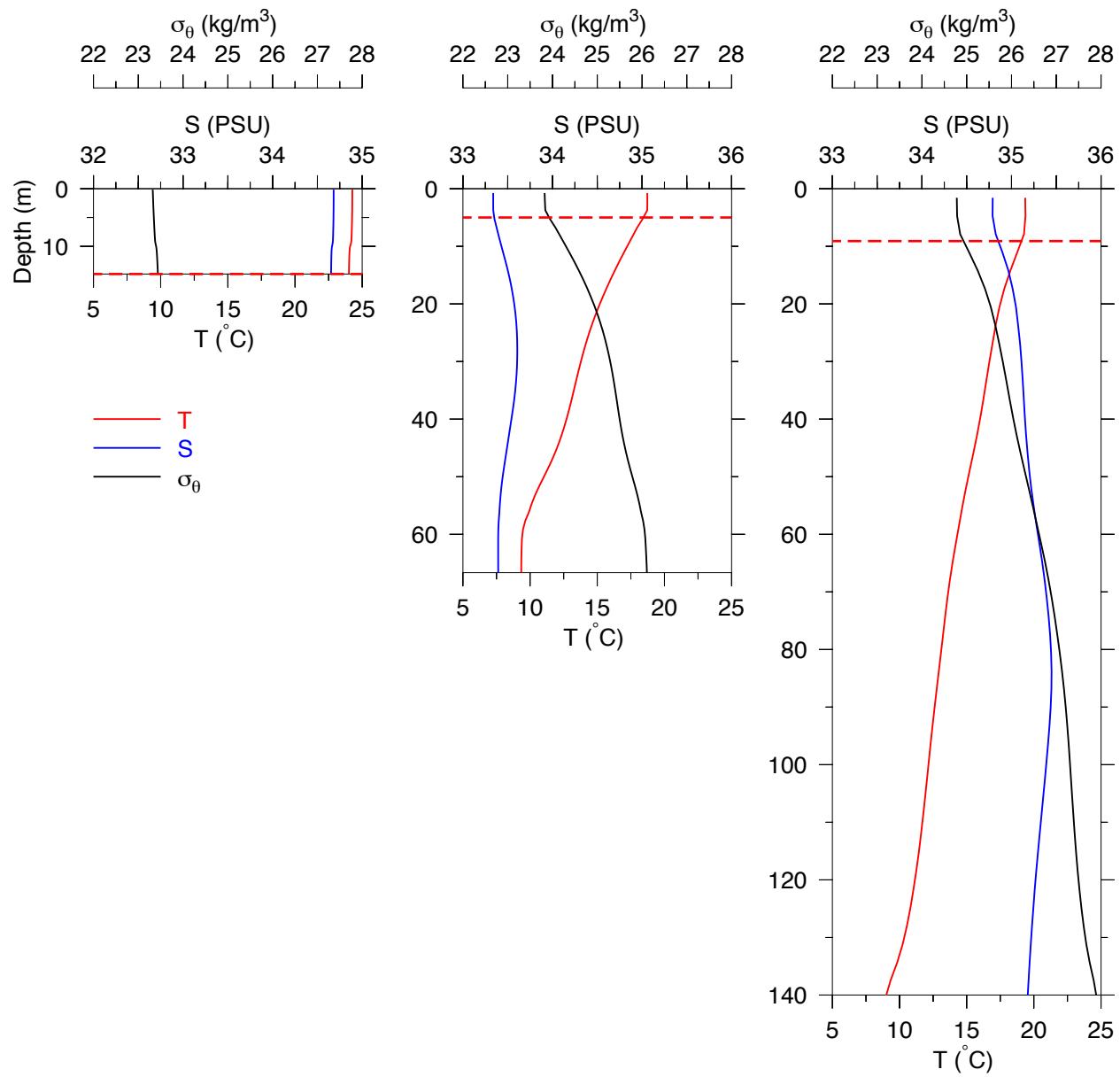


Figure A4