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Abstract

We develop an efficient method for computing thermal partition functions of weakly
coupled scalar fields in AdS. We consider quartic contact interactions and show how to
evaluate the relevant two-loop vacuum diagrams without performing any explicit AdS
integration, the key step being the use of Kallén-Lehmann type identities. This leads
to a simple method for extracting double-trace anomalous dimensions in any spacetime

dimension, recovering known first-order results in a streamlined fashion.
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1. Introduction

It is interesting both for its own sake and in connection to the AdS,41/CFT, cor-
respondence to ask how the spectrum of a weakly coupled quantum field theory in AdS
behaves as a function of its coupling. On the AdS side, this amounts to computing binding
energies of multi-particle states [1]-[11], while on the CFT side it corresponds to comp-
uting anomalous dimensions of multi-trace operators. Much effort has gone into such
computations in the context of the bootstrap program following [12], in which the anom-
alous dimensions, along with the OPE coefficients, comprise the CFT data. The original
approach to extracting anomalous dimensions is to expand a correlation function in con-
formal blocks. While straightforward in principle, in practice the details can be rather
messy, particularly for odd d, where the conformal blocks do not have closed form express-
ions. Notably though, a major simplification for handling tree level exchange diagrams is
provided by the Lorentzian inversion formula [13], which bypasses the need to compute
the full Witten diagram [13][14][15][16][17][18]. Furthermore, as we discuss in Appendix C,
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for the type of interactions considered in this paper powerful harmonic analysis techniques
are available that do not require the explicit conformal blocks. Another approach offering
some simplifications is to compute energy shifts using standard quantum mechanical per-
turbation theory [19],[20].

In this paper we develop a different approach: we compute thermal partition functions
and extract anomalous dimensions by expanding bulk vacuum diagrams in characters.! We
focus on quartic contact diagrams, with various numbers of derivatives. Given that our
method is designed to extract anomalous dimensions but not OPE coefficients, one might
expect that it involves less work than a correlation function based approach, and we indeed
find this to be the case. It is easy to work out results in arbitrary spacetime dimension,
as we illustrate with various worked examples. A key simplification is that the conformal
characters have simple graphical AdS representations, allowing one to expand the partition
function in characters without having to perform any integrals. This simplification is
similar to the one provided by the use of geodesic Witten diagrams [22].

Since the main elements in our approach, and their implementation, are simple to
explain, in the remainder of this section we describe all the steps involved in extracting the
anomalous dimensions for the basic A\¢* interaction, and also indicate how to incorporate
derivative interactions, with full details provided in the main body of the text.

1.1. General method and summary of results

Thermal AdSg4; is described by the Euclidean signature line element

ds® =

= (dp® + dt* +sin® pdQ3_,) (1.1)

with periodic imaginary time,
t=t+ 0. (1.2)
Here and elsewhere we are setting the AdS radius to unity. We consider some weakly

interacting quantum field theory with coupling constant A living on this background ge-
ometry, and seek to compute the thermal partition sum

Z(B) = Tre PH | (1.3)

where H denotes the Hamiltonian generating translations of ¢.2 The form of Z(3) is
dictated by the isometry group of AdS;y;. The spectrum can be organized into unitary

! Constraints on the AdS3/CFTs spectrum implied by modular invariance of the partition
function form the basis of the modular bootstrap program [21]. Modular invariance (for d = 2)
will play no role for us, since we focus on the low energy spectrum without regard to issues of UV
completion.

2 A more general partition sum Z(8, 1a) would include chemical potentials p, conjugate to
the Cartan generators of the SO(d) rotation group, as in Appendix A. We mainly focus on Z(53).
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irreducible representations of the Lorentzian isometry group. Each such representation
is labelled by a scaling dimension® A and representation R of the SO(d) rotation group
acting on the angular coordinates in (1.1). The lowest energy (primary) states in each
representation obey H|A; R) = A|A; R), and excited states are obtained by acting with
generators P, (a = 1,2,...d), each of which raises the eigenvalue of H by one unit.* The
character of a given representation labelled by (A, R) is then given by

drq®

XA,R(B) - TI'A,RG_’BH = W s (14)

where dp is the dimension of the SO(d) representation R, and
g=¢e". (1.5)
The general partition sum may be expressed as a sum of characters,

Z(B) =1+ Narxar(B) (1.6)

AR

where Na r denotes the multiplicity.

In the free theory at A = 0 the Hilbert space is a Fock space of single and multi-
particles states. For example, consider a free scalar field of mass m. As is well known,
the single particle primary is an SO(d) singlet and carries energy A related to m? by the
equation m? = A(A —d). Two-particle primaries are described by bound states with radial
quantum number n = 0, 1,2, ... and angular momentum quantum number J. J denotes a
symmetric traceless tensor representation of SO(d). Due to Bose symmetry, J takes only
even (non-negative) integer values, J = 0, 2,4, .... The scaling dimensions are 2A +2n+J.
The partition sum of such a free scalar is therefore

oo
ZB)=1+xa0+ Y, > Xoatantss(B)+--- (1.7)
J=0,2,...n=0
where ... denotes the contribution from states with three or more particles. In the

AdS441/CFEFTy correspondence, the CFT states dual to the one and two particles states in
the bulk are created by “single-trace” and “double-trace” operators, whose representation
labels match the above (A, R) assignments. Schematically, [0O],, ; ~ Od,, ...d,,(0*)"O.

We now turn on the coupling constant A, which we take to vanish in the large-N limit.
This preserves the symmetry group and so the partition function can still be expanded

3 so-called because H can alternatively be realized as the dilatation generator acting on R?.

4 Certain representations, as arise in the case of gauge fields, have null states and so this

statement requires modification, but this will not be relevant to our considerations.
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in characters as in (1.6). The SO(d) representations cannot change continuously, but the
scaling dimensions A can. What is meaningful is the relation between the energies of the
multi-particle states and the single particle states. We think of keeping the single particle
dimension A fixed as we turn on ); alternatively, we trade the two parameters (m?2, \) for
(A1_particle; A). The partition sum (1.7) is then modified by the replacement

204+ 2n+J = 2A +2n+ J +v(n,J). (1.8)

The energy shift v(n, J) is interpreted in the dual CF'T as an anomalous dimension acquired
by the double trace operator [O0],, ;. More generally, to first order in A we can write

23(68) = Zo(®) + Y Nan SRy, gy (19)
AR

If we can set up the computation of Z,(3) such that it naturally takes the form (1.9),
then we can easily read off the corresponding anomalous dimensions. We now describe the
strategy for doing so.

We will compute the partition function from the functional integral in thermal AdS;4;.
A simple relation of central importance here is the bulk representation of the character
Xa,7(B). These characters correspond to diagrams in which a spin-J particle winds once
around the thermal circle, the precise relation being

xXa,.7(8) = / dm’?] /dd+1m\/§Tr |:HA{]7J<LL),IIB> . (1.10)
m3

Here IIa, j(z,y) (indices suppressed) is the spin-J bulk-bulk propagator;® zg = (t +
B, p, 2) denotes the bulk coordinate x displaced by one thermal translation, and the relation

between the mass and scaling dimension is
m% =As(Ay—d)—J. (1.11)
The integral in (1.10) is over thermal AdS. We therefore have

—8ngj(/3) =—(2A, —d) /dd+1a:\/§Tr Ma, s(z,25)] - (1.12)

To summarize our method: to find anomalous dimensions, we expand bulk diagrams in

the object above and then read off the coefficients. Being the bulk dual of %’j(m, the

integrated propagator here is analogous to the geodesic Witten diagram in the context of

5 Note that in the spin-0 case we often write IIa o(z,y) = Ga(z,y).
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correlation functions [22]. This new way of computing anomalous dimensions therefore has
similar advantages to geodesic Witten diagram methods.

In this work we focus on scalar fields interacting via quartic contact interactions with
any number of derivatives. To explain the basic idea for treating these, we first consider
the simplest case of a single scalar field ¢ with Siny = A [d¥T'z,/g¢*. At order X the

partition function, obtained by Wick contraction, is
In Zy(8) = In Zo(8) — 37 / 4 /GG (2, 2) G (2, 7) (1.13)

Here Gg(x, x) is the scalar thermal bulk-bulk propagator, which can be constructed from
the global propagator by summing over thermal images, Gg (z,2) =307 Ga(z,xnp),
with x,3 = (t + nf, p,Q). We focus on two-particle states, since effects on states with
more than two particles requires going to higher order in A. Since the nth term in the
sum corresponds to a particle winding n times around the thermal circle, and hence to an
n particle state if viewed at an instant of time, for two-particles states we keep only the

n = +1 terms from each image sum. Each gives the same contribution, and so we have

In Zk(ﬂ) =1In Zo(ﬁ) — 12)\/dd+1$\/§GA(IB,$5)GA(IL’,$g) +... (1.14)

the ... now denoting contributions from states of three or more particles.
We now make the link to (1.9) by using the identity

Ga(z,y)Galz,y) =Y allGonron(z,y) (1.15)

n=0

with coefficients a%o) given below in 1.23. The existence of such an identity, which can be

thought of as a version of a Kéllén-Lehmann representation [23][24][19] (we note that the
latter two references use this identity in a context similar to ours), is readily understood
by comparing terms in a series expansion in the inverse geodesic distance®. Using this
identity, together with (1.12), we have

s (0)
an aXA O(ﬂ)
InZ =InZ 6 : 1.16
nZx(p) = InZo(B) + nz_:omun—dm OA  laagan (1.16)
From (1.9) we then read off the anomalous dimensions to first order in A as
(0)
6an’ A
= 1.1
100 = S o —da (1.17)

6 The existence of this identity can also be understood from properties of harmonic functions,
for which we refer the reader to [25],[26].



and with (n J) = 0 for J > 0. An especially simple case is AdSs (d = 2) for which
Ga(z,y) = e 2o@y) /(1 — 6_2"(”0 )Y, where o(z,) is the geodesic distance. It is then
a triviality to see that al) = ﬁ satisfies (1.15). This illustrates how relatively little
work is required in this approach. Using 1.23, with s = 0 and Ay = Ay = A, gives
the spin-0 anomalous dimensions for general d, in agreement with the known result [19].
The corresponding result for a pair of scalar fields with interaction A [(¢; $2)? follows from
(1.17) once we divide by 3 (due to the single Wick contraction) and replace 2A — A; +A,.

For vertices with derivatives we will need a generalized version of the identity (1.15).
We write the scalar propagator as G (u), where u = u(x,y) is the (half) chordal-distance,

related to the geodesic distance as
u(x,y) = —1+ cosho(z,y) . (1.18)

In terms of this variable the scalar propagator is
_A d—1 2
Ga(u) = Ca(2u)2F A,A—T,2A—d+1;—— (1.19)
U

with
['(A)

21420 (A +1 - 9)

Ca = (1.20)

and where F' denotes the 5 F} hypergeometric function. The general identity we need is

G(S) (8) Z a(s)G(Agz+A2+2n+s( ) (1.21)

where we are using the notation

dS

G(S)( ) = e

Ga(u) . (1.22)

Again, the existence of the relation (1.21) follows from comparing the expansions in 1/u,
and the coefficients are found to be

(=2)*(h + s)n (AL 4+ Ao +2n+25)1_p_o(AL + Ay —2h +n+ 1),

a%) - 2mhn! (A1 +n+8)1-n-s(Do+n+8)1-ns(A+As—h+n+s),
(1.23)
with h = d/2 and the Pochhammer symbol is (a), = F(a+n).
For example, consider the interaction Sy, = A fdd+1x\/_¢2( . V,,0)? with J =
2,4,6,.... Such a vertex is known to give rise to anomalous dlmensmns for double-trace

operators of spin s = 0,2,....J. As we’ll see, the highest spin contribution is very easy
to extract using our approach. We need to expand the product of two differentiated
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scalar propagators in terms of spinning propagators and their derivatives. The spinning
propagators can be expressed in terms of the scalar propagator, which will lead us to the
identity (1.21). The result for the spin-J anomalous dimensions is simply

8.J1al") \

- . 1.24
") = A T h (1.24)

This result matches that in [12], which was obtained by decomposing a four-point function
in the Regge limit. The anomalous dimension for spins s < J are also straightforward to
extract in principle, although the details require more bookkeeping. We work out the full
details in the case of two and four derivative interactions, the former requiring two distinct
fields in order to be nontrivial (i.e. not reducible to ¢* after using integration by parts
and the free field equations). The four derivative example gives results for general d which
reproduce a known expression for d = 2. Another interaction which is easily handled is
Sint = Afddﬂx\/gwwm(vm . V,,0)? with J = 2,4,6,.... This 2J + 2 derivative
interaction gives rise to anomalous dimensions of operator up to spin-J and, as before,
it is simple to extract the highest spin result. The result for y(n,.J) is given by (1.24)
multiplied by a factor m3% (A, s), where A, ; = 2A + 2n + J. In summary, compared
to previous approaches, the partition function based approach proves to be efficient and
involves relatively elementary ingredients.

The remainder of this paper is organized as follows. In section 2 we recall some
basic facts about CFT characters and partition functions. In section 3 we show how to
derive free field partition functions in AdS from the path integral. This computation is
not strictly needed for the rest of the paper, but we have included it since it is a basic
result, and one that we have not seen presented in general spacetime dimension. In section
4 we show how to compute anomalous dimensions using our approach applied to several
choices of contact interaction. In section 5 we review needed facts about AdS propagators
for massive symmetric tensor fields. In section 6 we discuss the general procedure for
studying an arbitrary quartic contact interaction, and then apply this to another example
in section 7. Some discussion appears in section 8. In Appendix A we show how to include
angular potentials into our free field partition function computation. Appendix B sketches
the computation of the free partition function of a massive spin-1 field. Appendix C
discusses an alternative approach to extracting anomalous dimensions, based on applying
harmonic analysis techniques to the boundary four-point function.

2. CFT partition functions

We consider CFT defined on S?~! x R. The basic partition function is
Z(B) = Tre PH (2.1)
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where H is the Hamiltonian generating time translations. More generally, we can cons-
ider Z(5;u;), where p; are angular chemical potentials conjugate to the Cartan gener-
ators of SO(d). The Hilbert space is described via the state-operator map, and can be
decomposed into irreducible representations of the Lorentzian conformal group SO(d,2).
Each representation is specified by a primary operator Oa g, where R denotes a SO(d)
representation, corresponds to a state (or rather an SO(d) multiplet of states) of energy A,
H|A; R) = A|A; R). The characters were written down in (1.4), and the partition function
is given as a sum of characters as in (1.6).

In a large N CFT, dual to a weakly coupled theory in AdS, the spectrum of primary
operators can be organized into single trace primaries and their multi-trace products. This
corresponds in the bulk to a description of the Hilbert space in terms of single-particle and
multi-particle states. Consider a spinless single trace primary operator Oa. In the large
N limit there exist double trace primary operators of schematic form [OO]aat2n+7,7 ~
O, ... 0,,(0%)"O. These operators transform in the rank-J symmetric, traceless tensor
representation of SO(d), and Bose symmetry requires J to be an even integer. There
similarly exist triple trace, quadruple trace, ..., primary operators. The contribution to
the partition function from such operators is most easily written down by thinking (simply
as a mnemonic) in terms of the dual bulk description. Quantizing a free scalar field in the
bulk yields single particle states with quantum numbers in correspondence with those of
the primary operator Oa and its conformal descendants, (P;)™! ... (P;)™-Oa. Focusing
on a mode with specified {m,} the contribution to the partition function corresponds to

summing over the occupation number k,

il 1
Z{ma} = q(A+Za el = . (2.2)
kz—o 1 - gAt2.m

The total contribution to the partition from the scalar field is then obtained by taking the
product over all modes,

1
Z=1] Zwm.y =11 e S (2.3)
{ma} {ma} 1 =@ =

We rewrite this as

mZ=-3 m(1-¢*"2m)
{ma)

DD BTN (2.4)

{ma} k=1
kA

Ao



The contribution to Z from n particle states is identified by an overall factor of ¢"®
For example, the contribution to the partition functions from states of fewer than three
particles is

_ ¢ 1 1 1 21
Z_1+—(1—q)d+2((1—q2)d+(1—q)2d>q + ... (2.5)

We can read off the spectrum of double trace operators by writing the ¢?2 term as

1 1 1 )
5((1_q2)d+(1_q)2d)qA= Z ZX2A+2n+JJ) (2.6)

J=0,2,4,..

where
q2A+2n+J

X2a+2n+4,0(0) = dyxeatents,0(q) = dJW7 (2.7)
is a spin-J character written in terms of the spin-0 character and

T(d+J)  T(d+J-2)

dr = T(dT(J+1) D(dD(J—1)

(2.8)

is the dimension of the rank-J symmetric traceless tensor representation of SO(d). The
right hand side of (2.6) is thus identified with the expected sum over primary operators, one
for each even J, with the factor 1/(1 —¢)¢ in (2.7) coming from the sum over descendants.

Now we go to the next order in the 1/N expansion. This corresponds to introducing
an interaction term in the bulk with some coupling constant A\ and working to first order
in A. By convention, we continue to write the dimension of the single trace operator as A,
absorbing any A\ dependence into the definition of A. The multi-trace operators pick up

anomalous dimensions. We write the dimension of the double trace operators as
2A 4+ 2n+J +y(n, J) (2.9)

with y(n,J) = O(X). We can therefore write the partition function to first order in A as

3XA J
InZ = an{A ot Z Z )A:2A+2n+J7(n7 J)+ ..., (2.10)
J=0,2,4,..

where again we are only including single and double trace operators. This is the expression
we will use to read off anomalous dimensions. We will compute In Z to first order in A and
write the result in the form (2.10), and thereby read off v(n, J).

Alternatively, we can consider a pair of scalar primary operators, O; and Q5. We form
double trace operators as before, [O102]a, 1A, +2n+0,0 ~ O10,, ... 0y, (9*)" O except that
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now .J runs over all non-negative integers, since there is no Bose symmetry. The anomalous
dimensions are read off from the expression

3XA J
mZ=mz|,_,+ Z Z ‘A:A1+A2+2n+J7(n’ I+ (211)
J=0,1,2,.

3. Computation of free field partition functions in AdS;;;

For completeness, in this section we discuss the path integral computation of free
field partition functions in thermal AdS. These computations will in fact not be needed
for the main goal of this work, which is the extraction of anomalous dimensions from the
interacting theory. The reason is that the contribution from the interaction vertex will
automatically take the form (2.10)-(2.11). Nevertheless, it is a useful exercise to see how
the free scalar field partition function arises from the path integral, which as far as we
know this has not been done in general dimension d. See [27][28][29][30] for some previous
computations of various free field partition functions in related contexts.

As usual, we consider thermal AdS; 1

ds® = = (dp® + dt* + sin? pdQ3_,) (3.1)
with ¢ 2t + 3, and a free scalar field,
1
§=3 A /gd(—=VZ 4+ m?)g . (3.2)

The mass is related to the scaling dimension as

m? = A(A —d) . (3.3)
The partition function is
InZ = —%Tr In(—V? 4 m?). (3.4)
Noting that
o3 InZ = —%TI‘_VQ;W (3.5)

we can write

1 oo
InZ = 5/ dm? /d?’x\/ﬁ(}’i(x,x) (3.6)

mZ
where the propagator is

GA(2,y) = (2| —



The integration in (3.6) is over thermal AdS. The propagator must respect the thermal
periodicity, which can be implemented by a sum over images. If Ga(z,z’) is the global
AdS propagator then we can write

Gﬁ (x,9) Z Ga(T,Ynp) (3.8)
Here y,,3 denotes the bulk point related to y = (¢, p, 2,) by n thermal translations, y,sz =
(t + np, p, Q). Plugging this into (3.8), the divergent n = 0 term can be cancelled by a
cosmological constant counterterm, leaving

InZ = / dm? /dde\/EGA(z,a:ng) ; (3.9)

where we used the symmetry under n — —n. To proceed, we need a convenient form for
the propagator that will allow us to carry out the integration over AdS. The standard form
of the propagator is

d d
Ga(z,y) = Cae 2°F <A, 2 A+1-— 5;6_20) , (3.10)

with
I'(A)

Ca = .
27 2rdT(A+1 - 9)

(3.11)

F denotes the o F} hypergeometric function and o = o(x,y) is the geodesic distance bet-
ween x and y. For d = 2 the hypergeometric function greatly simplifies and it is straight-
forward to carry out the AdS integration. This can in principle be extended to all even d
where it is possible to write the hypergeometric function in terms of elementary functions.
However, for odd d this is not possible, and the required integrals are very challenging.
Another option is to use a heat kernel representation as in [30]; however, this is again
efficient only for d even, since in odd d the heat kernel only has an integral representation;
e.g. [31].

Instead, we will use a “spectral” representation of the propagator [25]. This arises
from decomposing the propagator into harmonic functions, writing the harmonic functions
in the split representation as an integral over the AdS boundary, and then doing the
boundary integrals. This yields

%0 de 1 1 dtdt , . —ph— . B
G — —h et th+ct (t—|—t) 2utt ) 312
alu)=m / 2w D(OT(—¢) (A —h)? — 2 /0 t (3:.12)

The variable u is related to the geodesic distance as
u(z,y) = —1+cosho(z,y) . (3.13)
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The parameter h is related to the AdS;y; dimension as h = d/2. The advantage of this
expression is that the dependence on AdS coordinates is simple, allowing the AdS bulk
integral to be performed easily. The equivalence of (3.10) and (3.12) can be established
using the Mellin-Barnes representation of the hypergeometric function; see [25].

We focus on a single term in the sum of (3.9) with fixed n. The geodesic distance
between the points x and x,4 is

cosho(x,zng) = —tan®p . (3.14)

It will be convenient to change variables from p to the coordinate w defined as

w = cosho(z,x,3) — cosh(np)

3.15
= M — tan? p — cosh(np) . (319
cos? p

The AdS integration now takes the form

da/g(..) = 1_q /dt/de 1/ dw(2w) T (...) | (3.16)

where ¢ = e™? as usual. This gives

d+1 —2ttu(z,xnp) _ _h Bqnd n\—h —2(cosh(n/3)—1)t¥
A" x\/ge =T =gt qn)d(tt) e ) (3.17)

where we have used f dQg_1 = F?dL/hQ). The dtdt integration can be done using the formula

/ dijt ~Ce—t*—T' —2cosh(nB)tt _ ['(c)I'(—c) cosh(npc) , (3.18)
0

which can be derived by Taylor expanding e‘zCOSh(”B)tz, doing the integrals term by term,
and resumming. Using these results we have

nd o) 100 d h
an:QZ 1ﬁ_qq / dA(A—h)/_in—;%. (3.19)

The remaining integrals are elementary, and we find

InZ = Z

1 s (3.20)

in agreement with (2.4).
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3.1. Higher spin fields

We now comment on the generalization to symmetric, traceless, tensor fields. The
expression (3.9) is replaced by

InZ = Z/ dm? /dd+1x\/§Tr A j(x,zn8)] , (3.21)
n=17m3

where the trace refers to contraction of pairs of indices associated to the two distinct pos-
itions appearing in the spin-J propagator 115 ;. For a rank-.J tensor the scaling dimension
A is related to the mass parameter appearing in the action as m% = A(A —d) — J. The
expected result is proportional to the scalar result, with the proportionality factor given
by the number of spin states (2.8),

001 nA

q
n=1

To proceed we can again use the spectral representation. The generalization of (3.12)

is

1 [" de > dtdt dJ2—c (44T)? —2(Tu _
Tr [, (u)] / ——f(e) / 7#1/%%“ e~ (D =20tup, (4 47)  (3.23)
0

= d/2 ;
xd/2 | . 2mi

where we are writing
1

1= FarComa — e =

(3.24)

and P j(u,tt) is a polynomial in w and ¢f. In appendix B we use this to evaluate the
J =1 partition, obtaining (3.10) with d; = d.
Note that if we consider the n =1 term in (3.10) we get the character,

XA,J:/ dm? /dd+1x\/§Tr M. s(z,25)] , (3.25)
m?

a result which will be used in the following.

4. Quartic contact interactions: simple examples

In this section we discuss some simple examples of anomalous dimensions coming from
bulk contact interactions. We will consider a pair of scalar fields (¢1, ¢2) with quartic
contact interactions involving some number of derivatives. At zero bulk coupling this
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theory has spin-J double trace operators of dimension A; + As 4+ 2n + J. The idea is to
write the partition function, computed to first order in the interaction, in the form

oxa,J
nZ=nz|_, + Z Z ’A:A1+A2+2n+ﬂ(”’ T+ ... (4.1)
J=0n=0

This identifies the coefficients v(n, J) as the double-trace anomalous dimensions. To write
the bulk result in this form we will use (3.25). Using m% = A(A —d) — J we have

6XA7J
A = —(2A — d) /dd+1m\/§Tr[HA’J] , (4.2)

so that the anomalous dimensions may be identified according to

— _ _ d+1
nZ=mnz|,_, J§:Oj n§:0j ((QA d) /d z/gTr [, J}) ’A:A1+A2+2n+ﬂ(n’ J) +
(4.3)

This is quite useful, since it will be easy to massage the partition function into this form.

4.1. Non-derivative interaction

We consider the action
1 1
S = /dde\@ (§¢1(—V2 +m3)¢1 + §¢2(—V2 +mi)ps + A(¢1¢2)2) : (4.4)
To first order in A the thermal partition function is
nZ=mZ,_ -\ /dd“:z:\/g(}il (z,2)GR, (z,2) + O(N?) . (4.5)
The thermal propagators are given as a sum over images, as in (3.8). We focus here on
anomalous dimensions for double trace operators, which are obtained from the n = +1
terms in the image sum. Using the symmetry under n — —n, we retain just the n =1
terms and multiply the result by 4 to get

InZ=Inz|,_,—4X /dd“x\/gGAl(:c,xﬁ)Gm (z,28) + ... . (4.6)

where the ... now include both terms with n > 1 and higher order in A.
To proceed we note the following form of the scalar propagator

Ga(z,y) = Ca(2u) 2F (A,A— %,2A—d+1;—%) (4.7)
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related to (3.10) by a standard hypergeometric identity, and v = —1 + cosho(z,y) as
before. Writing

G, (2,y)Ga, (2, y) = (0d1(2)p2(2) 1 (y) P2(y)]0) (4.8)

and inserting a complete set of two-particle states built on primaries of dimension Ay +

Ag + 2n it is clear that there exists an identity of the form

Ga, (,9)Ga,(,y) = > alVCGa,ya,20(7,y) - (4.9)
n=0

The coefficients are readily determined by comparing terms in the 1/u expansion, and are
given by (1.23) with s = 0. Using this result in (4.6) gives

mZ=mz|_,—4x) al /dd“x\/gGAﬁAﬁgn(x? ) (4.10)
n=0
Comparing to (4.3), we identify the double-trace anomalous dimensions as

Qa%O))\
A1+A2—|—2n—h ’

v(n,0) = (4.11)

4.2. Two-derivative interaction

Using integration by parts and the equations of motion we can take the two-derivative
interaction to be

Sint = A [ dT /g1 VD162V 2 (4.12)

The contribution to the partition function at first order in A is

mZ=Mm2z|,_, - )\/dd+1x\/§g””Vf})Gil(m,x)V(Vl)GiQ (z,2) + ... (4.13)

where Vl(}) denotes differentiation with respect to the first argument of the propagator.
As in the last subsection, the thermal propagator is given by a sum over images, and we
retain only the n = 41 terms corresponding to double trace operators. Using the identities

GA(QC,y) = GA(yvx) ) GA(I‘,-fﬂ_ﬁ) :GA($5?$) (414)
we have
Vi Gale,w—g) = V) Galz,25) = V) Caleyy)] - (4.15)
=z

Using this we obtain

InZ =1In Z},\:o — 2\ /ddﬂx\/gg“”VLl)GAl(m,xg)v,(jl)GAQ (x,25)
(4.16)
—2) /dd“x\/ﬁgWVf})GAl (2,23)VPCa,(z,25) + ...
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We tackle the two terms in succession.
For the first term, if we apply (V(1)? to the identity (4.9), and use (V(1)2Ga(z,y) =
A(A — d)Ga(z,y) we have

9"V IGA, (2,25 VNG, (z,25) = D cVCa, 1 ay42n (@, 7p) (4.17)

n=0
where we defined

0 = %[(Al + Ag 4+ 2n) (A1 + Ay + 20— d) — Ay (A — d) — Ag(Ay —d)|alD . (4.18)

Turning to the second term, we seek an identity of the form

VG, (z,y) VP G, (2,y)

= o (4.19)
= Z agzl)HN;V(Al + Ao +2n + 152, y) + Z bgLO)vg)vz(/Q)GA1+A2+2n(xa y) .

n=0 n=0

Here 11, (A;z,y) is the spin-1 propagator. It obeys (V2 — m?)IL,.,(A;z,y) = 0 and
VAL, (Asz,y) = 0 (for © # y) with m3 = A(A —d) — 1. The existence of the identity
(4.19) follows from the fact that the left hand side is a rank (1,1) bitensor. The general
such bitensor can be written as a sum of scalar functions multiplying each of the two
independent bitensors. The spin-1 propagator and the differentiated spin-0 propagator give
us two linear combinations of these bitensors, and the spectrum of conformal dimensions is
then chosen to match the expansion of the left hand side. In (4.19) we are anticipating that
the coefficients multiplying the spin-1 propagators will turn out to be the s = 1 coefficients
defined in (1.23).

We will review spinning propagators in section 5, and here just note the following
salient facts about the spin-1 propagator. We can write

0%u ou Ou
., (A, y) = — Asu) 4+ 2L (A 4.20
1 ( x y) awuayygo( U) + Ot 6yl,g1( U) ( )
As in (3.13) u is related to the geodesic distance as u(z,y) = —1 + cosho(z,y). The

coeflicient functions take the form
go(A;u) = Ga(u) — ha(Asu) , g1 = hi(Au), (4.21)

where Ga(u) is the usual scalar propagator, and hy(A;u) is a function built out of Ga (u),

(d—1)Ga(u) + (1+ u) Gy (u)
(A—1)(d—A—1)

hl(A; u) = — (422)
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Going back to (4.19) and equating coefficients of the two tensor structures gives the pair
of equations

(WG, () =) " alVh (AL + Mg +2n+ L) + > BIGR LA, yon (1)

n=0 n=0
0=-> all (GA1+A2+2n+1(u) —hi(Ar + Ay +2n + 1; U)) + ) WG, ayyon (1)
n=0 n=0
(4.23)
Differentiating the second equation and subtracting it from the first gives
/Al (u) /Ag (U’) = Z a’S’Ll)G/Al+A2+2’I’L+1(u) Y (4'24)

n=0
which is indeed the s = 1 identity (1.21) with coefficients defined in (1.23). We then solve
the first equation in (4.23) to determine the b as,

1 A(A; —d) — Ax(Asy — d) 2
0 — = |1 _ 1121 2 0) 4.2
o 8[ <(A1+A2+2n)(A1+A2+2n—d) n (4.25)

Having determined all the coefficients we return to (4.13) and write the result in the
form (2.11),

InZ = an‘A:O — 21: i ((2A —d) /ddﬂx\/gTr[HA,JD‘ y(n,J) + ...

J—0n—=0 A:A1+A2+2H+J

(4.26)
This is straightforward, and we read off the following anomalous dimensions:
(1)
an
1) = A
1) = R A+ a1k (027)
O _ (A1 + Ay +2n)(Ag + Ay +2n — d)b '
'7(”70)2671 (A1 + Ay +2n) (A1 + As + 2n d)bn)\.

A1+A2+2n—h

To obtain this we used
/ A2 /gg" 'V IVPGA (2, 25) = —A(A — d) / A e\ /GG A (z,z5) (4.28)

obtained by using integration by parts and the field equation.

5. Spinning propagators

As illustrated in our simple examples, our approach is based on taking a product of
differentiated scalar propagators and expanding it in terms of spinning propagators and
their derivatives. For interaction vertices involving scalar fields, the relevant spinning
propagators involve symmetric traceless tensors. In this section we review these spinning

propagators following [26]. For earlier work see [32][33][34].
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5.1. Embedding space

It will be useful to work in embedding space, taking AdS;41 to be the hyperboloid

X X = nunXMXYN = —1 embedded in R with line element ds? = ny ydaz™ da™
where
d
mun XMXN = (X2 4 (XU - (X2 (5.1)
a=1

The geodesic distance (on the hyperboloid) between two points is
cosho(z,y)=—-X Y . (5.2)
The u variable is then
u(z,y) = —1+cosho(z,y) =—-1-X-Y . (5.3)

Global coordinates are defined by

X% = tan pz®
inh¢
yd+1 _ Sin
cos p (5.4)
xd+2 _ cosht
~ cosp

with Zgzl(ia)Q = 1. The corresponding metric is

ds® =

dp? 4 dt* + sin® pdQ?_ ) . 5.5
C052 p ( 1Y P d—l) ( )

We will be interested in symmetric traceless tensors. We start from a symmetric
traceless embedding space tensor Ty, ...a,, that has vanishing contraction with the normal
vector to the hyperboloid, X Mt Thr,,...m, = 0. We then pull it back to the hyperboloid to
obtain the AdS tensor,

OX M OXMn g x M

Tﬂl-nﬂn = Ot Oxhn Ot My,...My - (56)

Rather than display the indices, it is convenient to work with polynomials of polarization
vectors Wj,. For traceless tensors we can use lightlike polarizaton vectors W - W = 0. We
can also impose W - X = 0, since we are assuming our tensors have no components normal
to the hyperboloid. Given the polynomial corresponding to WMy WM T, ..M, We can
extract a unique symmetric traceless tensor; see [26] for details.
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5.2. Spinning propagators

In AdS,4; tensor language, the propagator for a symmetric traceless tensor field obeys
(V2 — mI)Iy’ vy (,y) =0

K1 HgiV1..

VeI (@ y) =0 (5.7)

gL, () =0
where m?% = A(A —d) — J, and (5.7) holds up to delta function terms on the right hand
side for z = y. Passing to embedding space, associated to the two points X and Y are two

polarization vectors, obeying
Wx Wx =Wy Wy =Wx - X=Wy -Y=0. (5.8)

The general form of the propagator is governed by the fact that it is a rank (J, J) bitensor.
The spin-J propagator can be written in terms of J 4 1 scalar functions as

J
IIa,7(X,Y) :Z(WXY)J F(Wx - VxWy - VY) > () (5.9)
k=0
Here
M a

A key fact is that the k = 0 function is the scalar propagator,
S (w) = Ga(u) . (5.11)
The ka /(u) for k > 0 are determined iteratively in terms of foA 7 (), in order to satisfy

(5.7). Defining

B () = (9u)" 1 () (5.12)
the relations are
hkA’J:ck<(d—2k+2J—1)((d+J 2)h 1+(1+u)6uh£;{)+<2—k+J)h,§_"£), (5.13)
with

o 1+J -k (5.14)
P Rd 2Tk —2)(A+ T —k-Dd-A+J—k—1)" ‘
Using
S n+k !’ —k k +k
(Wx - VxWy - Vy)" Z (_l) (Wxy)" " (Wx - YWy - X)%(9,)"" f (u)
= (5.15)
we can re-express the propagator in the form
J
T (X,Y) =) (Wxy)! F(Wx - YWy 'X)kaA’J(U) (5.16)
k=0
with
J n+k n!
=3 GO () s (5.17)
n=k
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6. General results
6.1. Interaction vertices

In this section we discuss arbitrary bulk quartic contact interactions built out of a
single scalar field. We can use integration by parts and the free field equation to relate
vertices. The space of such vertices was described in [12] by associating them to flat space S-
matrices built out of Mandelstam invariants. In particular, vertices with 2k derivatives are
associated to monomials s*t*u® with 2k = 4a+2c and where 0 < ¢ < a. For example, there
is a unique 4-derivative vertex, which we can take to be [(V,¢V*®)?, corresponding to the
monomial st. A given vertex gives rise to anomalous dimensions for double trace operators
with J = 0,2,...,2a. So at 2k-derivative order the highest possible spin contribution is
J =k, and we can take the corresponding vertex to be

Sing = )\/dd+1m\/§¢2(vm Vo, 0) . (6.1)
6.2. Decomposition into spinning propagators

Given some particular vertex, at first order in A the contribution to the partition
function is obtained from the various Wick contractions among fields appearing in the
vertex. The resulting object to be integrated over thermal AdS is some index contraction
of an object of type

Vi -V Vo oo Vo, GA@, )V s -V, V. Vo, Ga(z,y) (6.2)

where y denotes a thermal translation of x: y = x3. In the above, we are using the
convention that V, acts on x, and V, acts on y. As was illustrated in our simple examples,
the strategy is to expand (6.2) in terms of spinning propagators and their derivatives; the
coefficients in the expansion essentially yield the anomalous dimensions.

To facilitate this, note that we can always express an AdS tensor in terms of a sum
of symmetric traceless tensors combined with metric tensors. Therefore, without loss of
generality we can assume that (6.2) is symmetric and traceless in the u-type indices, and
in the v-type indices. Note that this implies that we have ¢ = p since we need to eventually
contract each p index with a v index. In the embedding space language of the last section,
the product (6.2) then appears as

(Wx - Vx)"(Wy - Vy)"GA(X,Y)(Wx - Vx)P"™"(Wy - Vy)PT"Ga(X,Y) . (6.3)
The next step is to compute the functions p, appearing in the identity

(WX . Vx)m(Wy . Vy)nGA(X, Y)(WX . Vx)pim(Wy . VY)pinGA(X, Y)

= Z(WXY)P*H(WX VxWy - Vy)"pn(u) . (6.4)

n=0
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To obtain equations that determine p,(u) we use (5.15) to express both sides of (6.4) in
terms of products of Wxy, Wx - Y and Wy - X, and then equate coefficients. Once the
identity (6.4) is established, we use (5.9) to expand in terms of spinning propagators.

p

Z(WXY)p_n(WX VxWy - Vy)"pn(u)

n=0

p
_ 6.5
- Z (CT(LP)H2A+2TL+P7:D +CP AWy - VxWy - Vy)aat2ntp—2,p-2 (6:5)
n=0

+ ...+ C}lo)(WX -VxWy - VY)pH2A+2n,O>

for some constants 07(125). This provides us with the decomposition of (6.2) into spinning
propagators and derivatives thereof. In the interaction vertex the indices are all contrac-
ted, and so all the derivatives either annihilate the propagators using the divergence free
condition in (5.7), or (possibly after integrating by parts) are Laplacians, which can be
replaced by the corresponding m? using (5.7). We are left with an expansion in terms of
integrals of traced propagators, and as in our simple examples, the coefficients yield the
anomalous dimensions.

6.3. Highest spin contribution

To illustrate the general procedure with an important example, in this section we
work out the spin-J anomalous dimensions induced by the vertex (6.1). The two distinct
Wick contractions can be integrated by parts to the same form modulo terms that do not
contribute at spin-J, *

G (x,2)+... (6.6)

InZ=1Inz A=0 4N /dd+1x\/§V£}1) s VELlJ)Gg(x7$)V€L21) - Vé’)

the ... now denoting terms at higher order in A and/or contribute only to spins s < J. We
replace the thermal propagators by a sum over images and keep just the n = +1 terms,
yielding

1nZ:1nz|A:0—16A/dd“x\/gvf}l)...vﬁ)GA(:c,xB)vg)...vg)GA(:c,zﬂ)Jr... (6.7)

Our task now is to expand the bilinear (using our convention that (u, ) indices correspond
to (z,y) respectively)

ViV, Ga(z,y)Vy, ...V, Ga(z,y) (6.8)

7 To get a maximal spin contribution the indices must be sequestered into two halves, with no
index contractions occurring within one set. This follows from the fact that a spin-J two-particle

state is created by a field bilinear with J uncontracted indices acting on the vacuum.
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in terms of spinning propagators and their derivatives. For present purposes we are just
interested in the coefficient of the spin-J propagator. In embedding space language (6.8)
corresponds to

(Wx - Vx)?Gaw)(Wy - Vy) Galu) = Wx - YWy - X) G )G (), (6.9)

where we used that u = —1— X -Y and the notation (1.22). Following our general strategy,
the next step is to write

J
(Wx - YWy - X)?GR()GY () = " (Wxy) " (Wx - Vx Wy - Vy)"pu(u) . (6.10)

n=0

The system of equation determining p, (u) is found by using (5.15) on the right hand side
and equating powers of Wxy. As we will explain momentarily, we only need to work out
po(u), so it is convenient to take a linear combination of equations and their derivatives
that isolates this function. Let E, be the equation corresponding to the (Wxy )79 term.
It is then straightforward to verify that the linear combination 25:0 q'(0u)’7IE, is

JIGD ()G (w) = (8.) po(u) . (6.11)
Using the identity
fo (U)Gg (u) = Z G%S)G§3+A2+2n+s(u) (6.12)
n>0

with () given in (1.23) we have (with Ay = Ay = A)

po(w) = J1> " al)Gontanss(u) . (6.13)

n=0

With this result in hand we consider the expansion of (6.10) in terms of spinning propaga-
tors and their derivatives. From (5.9) it is clear that a term proportional to (Wxy)” can
only come from the spin-J propagator, since lower spin propagators will come with addit-
ional factors of (Wx - VxWy - Vy) attached. Therefore, our result for po(u) immediately
gives us the spin-J contributions,

(WX . Vx)JGA(u)(WY . Vy)JGA(u) = J! Z Q;J)H2A+2n+J,J + ... (6.14)

n=0

Using this result in (6.7) gives

mZ=mz|,_,—16JA> a /dd+1m\/§Tr[H2A+2n+J7J] +.on (6.15)
n=0
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and we then read off the spin-J anomalous dimensions from (4.3),

8Jla% A
") = R T —h
We also note that if we considered replacing the single field ¢ with two distinct fields ¢4
and ¢, then (6.16) holds if we use the general expression (1.23), replace 2A — Ay + Ay,
and divide by a factor of two since there is now a single Wick contraction rather than two.

(6.16)

The result (6.16) was originally obtained in [12] by considering a four-point function
in the Regge limit, which picks out the highest spin contribution. Equation 5.44 of [12]
agrees with (6.16) upon using the free field OPE coefficients found in [35].

6.4. Another example

We now consider the interaction
Sine = A / A\ /gV V(Y - Vo, B) (6.17)

with J even. By working out the corresponding Mandelstam monomial we can see that this
2J + 2 derivative vertex has highest spin contribution given by spin-J. and we now work
out the corresponding anomalous dimensions. When considering the thermal diagram,
with y = zg we will have the contributing structure

(Vud(@)V oV, @) VE(y) VIV b(y)) (6.18)

We further form symmetric traceless combinations of each set of indices (this step does not
affect the leading spin contribution). We think of inserting a complete of states in between
the x and y operators. The claim is that only spins up to J contribute. It might appear
that spin-(J + 1) can contribute, but of course this cannot happen since for a single scalar
there are no odd-spin two particle states. We then open up the indices and try to establish

a relation
(Vud(@)Vyy ..V, 0(x)VEe(y) VI ..V é(y))
>0 (6.19)
— Z anvuvv[HAn,J,J]Ml...MJ;Vl...VJ +...
n=0
where ... denote lower spin contributions, and
Apg=20+2n+J. (6.20)

On the left hand side there are two distinct Wick contractions. In embedding space we
then consider the equation
WX . V)((WY . Vy)JGA(U)(WX . Vx)JWY . VyGA(u)

+ WX . VXWY . VyGA(’U,)(WX . way . Vy)JGA(’U,)
J
= Z(WXY)Jin(WX - VxWy - Vy)" " p, (u) .

n=0

(6.21)
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As in our last example, knowledge of pg(u) will determine the spin—J contribution. If we
use the identity

WX . Vx(Wy . Vy)JGA(U)(WX . VX)JWY . VYGA(U)
+ WX . Vwa . VyGA(u)(WX . Vwa . VY>JGA(U)

J—1
= %WX . VXWY . Vy{ Z (—1)m+n(Wx . Vx)m(Wy . Vy)”GA(u)

m,n=1

(6.22)

X (WX . Vx)Jim(Wy . Vy)JinGA(u)} ,
then the needed relation becomes

; Z_: 1™ (W - Vx)™(Wy - Vy)"Ga(u)(Wx - V)" =" (Wy - Vy) 7" Ga(u)

l\D

Wxy) ""(Wx - VxWy - Vy)"p,(u)

I
3
M-
o

(6.23)
We can isolate po(u) just like we did in the previous example, forming the combination
Z;]:o q!(9.)? ~9E,. In this case we find

ST = 12165 )G () = (D) polw) (6.24)

The solution is then the same as (6.13) up to an overall factor,
1 o
po(u) = 5(J - 120> "l Gangonts(u) . (6.25)
n=0
This determines the coefficients in (6.19) as

1
o = 5 (J - 1)271al) (6.26)

We now insert the identity into the contribution to the partition function from (6.17). We
integrate once by parts, using that the spin—J propagator has vanishing divergence and
obeys V2 HA, ;0 = (AnJ(AnJ —d) — J) A, ;7. This yields (a factor of 4 comes from
the sum over images)

InZ=mnz|,_,—4(J-1) J')\Z (A, —d)—J)al) /dd“ngr[HmHnH,JH...,

(6.27)
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and we then read off the spin-J anomalous dimensions from (4.3),

i

F(n, J) =2(J = 1) JN(Ap s (Ap, g —d) — J) Yy A (6.28)

As a check, this can be compared to the d = 2 result computed in [12] from applying
the bootstrap. Our results yield the ratio between 7(n,J) and the anomalous dimensions

~v(n,J) computed in the last section,

A(n,J) 1 ,
y(n,J) §(J —1)*(An, s (A, s —d)—J)
= %(J—1)2(J(2J+1)+(2A+2n—1)(2A+2n+2.]—1)_(]+1)2> (d=2)

(6.29)
The bottom line was written to facilitate comparison to 4.16 and 4.19 of [12]. The ratio
given by those results in [12] agrees with (6.29) up to overall normalization which is not
fixed in [12], except that the (J + 1)? term in (6.29) is absent. The latter discrepancy is
explained by the fact that in [12] they are discarding contributions that would come from
a (V¢)* vertex, which would contribute an n independent contribution to the ratio (6.29).
The point is that the n dependent terms match as they should.

7. (V,.6V+¢)? interaction

We present one more example in detail. The four-derivative interaction

Sint = A / d e\ /g(V oV Hp)? (7.1)

yields anomalous dimensions for spin-2 and spin-0 double-trace primaries. Since we can
use integration by parts and the lowest order field equations to write (V,¢V#¢)? =
$*(V V., ¢)? plus terms with fewer derivatives, the computation of the spin-2 anomalous
dimensions is a special case of section 6. Extracting the spin-0 anomalous dimensions
requires additional work. For d = 2 these were computed in [12][19]; here we compute
these for arbitrary d and verify agreement with previous results for d = 2.

There are two distinct Wick contractions contributing to the partition function

InZ, = —)\/dd“x\/E(Vf})V“ Gi(m,x)Vf}) ’(Q)Gi(x,:c)

@ (7.2)

+2VIVRGR (,2)VY, Viy GA (. x)) .
Summing over the n = +1 thermal images and using the identities (4.14)-(4.15), we have

InZy = —4\ / dd“x\/gK“l”??”1”2VL11)V(V21)GA(x,xﬁ)VL12)V£22)GA(x,x5) (7.3)

25



where
Kmuz;mwz = Gurr1 Gpave T GuipaGrive + GuivaGuips - (7‘4)

We separate out the traceless part by writing

d+3
Kul,uz;VlVQ = LM1H2;V1V2 + mg,uluzgvlliz (75)
with the symmetric traceless tensor L, ,1,:,1, defined as
2
LM1M2;V1V2 = Guiv1Gpove + GuiveGuipe — mgﬂlﬂ2g7/17/2 . (7'6)
There are two contributions to the partition function,
nZy = Z" +Inz? (7.7)
where
(1) d+3 d+1 (1o (2) -
InZy’ = -4\ | —— d gV, VY GA(x,xg)V(l)V@)GA(x,xg)
d+1 (7.8)
InZ® = —4x / A g gLy DR G (2, 25) VIV G2, 2p) .
In Z/(\l) is easily dealt with using
VIV Gale,y) Vi Vip Gale,y)
1 1 1
~[572- a0 [572 - A4 - 0) Gate)Gaey
1 o 1 o IR (7.9)
= {5% — A(A - d)] {ivy -~ A4 -a) nz_%a; 'Ganvan(,y)
0 12
=3 [2A+n)(A+n = k)~ AA - )] aPCansan(e.y)
n=0 .
yielding
) d+3\ 2 ) [ gae
mzy" = ()2 [2(A+n)(A+n—h)—A(A—d)} a® [ d 2 /GGonson (@, 25) .

n=0

(7.10)

2 . . .
g\ ) we now work out the coefficients in the expansion (recall our con-

Turning to In Z
vention that p/v indices refer to z/y)

V,U/l vl/l GA (:,E, y)vuz vl/g GA (‘/'E? y)
(7.11)

H1p23v1V2

- Z <dan1VH2 vu1 vl/2 G2A+2n(xa y) + ZG;Q)H2A+2n+272(CC7 y)) + traces .

n=0
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We have anticipated the fact, to be verified momentarily, that the spin-2 coefficients are
20,22).
In embedding space we consider

WX . Vwa . VyGA<u)WX . Vwa . VyGA(U)

" (7.12)
= Z( (Wx - VxWy - Vy)?Ganyan + 207 Tan yon o, 2) :

Following our strategy in section 6 we first consider

2
WX'way'VyGA(u)Wx~VXWy~VyGA(u) = Z(ny)2_n(Wx'VXwY'Vy)npn(u) .

n=0
(7.13)
Applying (5.15) the coefficient functions are determined from
// _ QG(Q)G(Q)
p =46Qa? —(@WValy” (7.14)
//// G(2)G(2
From the first equation we deduce
Po =2 Z alP) Gonyanys - (7.15)

n=0

As in our previous examples, knowledge of py fixes the highest spin contribution, here
spin-2, and we confirm the spin-2 coefficients in (7.11).

We now turn to the computation of d,,, for which there are various way to proceed.
One option is take the divergence of (7.11) which projects out the spin-2 terms. We instead
work in the (Wxy, Wx - YWy - X)) basis and use the explicit form of the spin-2 propagator

2
_ k
ap(X,Y) =) (Wxy)* ™ (Wx - YWy - X) g% (u) . (7.16)
k=0
The (Wxy)? term in the equation (7.12) is

G(Al)G(l) _9 Z (d G§2A)+2n (2) 2A—|—2n—|—2 2> . (7.17)

2A+2n+2,2

Using the known expression for g we solve this equation for d,,, obtaining

0 ((Qh — D)nZ + (2h — 1)(2A — R)n + hA(2A — 2h — 1))2 o

2h(2A +2n + 1)(2A + 2n — 1 — 2h) (7.18)

27



So, we have now determined the expansion (7.11).
Returning to (7.8) we can use integration by parts to write (under an integral sign

LFE=m2 N V0, Vi, VV2GA(x’x’B)

= 2(A(A = d) —d— A = ) ) A - DG (s, 25) (7.19)
_ dz_flA(A 1A —d—1)(A — d)Ca(z,a) -

We therefore have

mZ$ =82y (%An(an +1) (A —d = 1)(A, — d)dy, /dd“x\/ﬁGAn (2, 25)
n=0

+ 2(1%2) /dd+1x\/§Tr[HAn+2,2(wa :L‘g)])
(7.20)
where
A, =2A+42n . (7.21)

Putting our results together, we can now read off the anomalous dimensions from (4.3),

(2)
8ay,
) = i o2
L (d+3) 2A+n)@A+n—h) -AA-d]" (7.22)
7("’0)_2(d+1) 9A +2n — h an A
4 J— - J—
d+1 2A+2n—h

Upon setting d = 2, one can verify that this matches A.7 of [19], which in turn matches
D.1 of [12], after taking into account that the latter authors throw away terms that would

come from a no-derivative ¢* interaction.

8. Discussion

The purpose of this work was to develop an efficient approach to computing thermal
AdS partition functions of weakly coupled scalar fields, both for its own sake and for
extracting anomalous dimensions of double trace operators, as is relevant for the AdS/CFT
correspondence. We found that this provides a strikingly simple way of extracting anom-
alous dimensions induced by contact interactions, and in particular we were able to easily
generalize known results to arbitrary spacetime dimension. In our approach, no explicit
AdS integrations need be performed, as these are all absorbed into the definition of the
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characters in terms of which the computation is expressed. This simplification is analogous
to that provided by the use of geodesic Witten diagrams in the computation of boundary
correlation functions [22]. We worked out various illustrative examples in which we could
make contact with previous results, but it should be clear that it is straightforward to
handle any scalar contact interaction, and we outlined the general procedure for doing so.

There are numerous natural directions in which to extend these results. One is to
replace our scalar fields by fields with spin. The same strategy will apply, with the new
ingredient being that one needs to expand the product of two spinning propagators in terms
of other spinning propagators. Other obvious directions to pursue are to include exchange
interactions and higher loop effects. One would again like to organize the computation so
as to avoid having to perform difficult AdS integrals; this will require the use of propagator
identities that go beyond those implemented in this work.
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Appendix A. Scalar partition function with angular potentials

In this appendix we discuss the computation of scalar characters and partition function

functions in the presence of angular potentials.

A.1. CFT character

Given the SO(d,2) symmetry group of CFT4, we can take the Cartan generators to
be the dilatation operator H and the 2r Cartan generators of SO(d), where d = 2r or
d = 2r + 1. We write the latter generators as

Hi = Mgi_l,gi y 1= 1, A (Al)

Given

[Mab; Pc] = i(éacpb - 5bcPa) 5 (AQ)

we have that leL = Py;_1 1P, obey

[H,PF] = P, [H;, Pf] = +6;;P;" . (A.3)

29



The character is
xa,r(B, pi) = Tr [e_BH_ZZj MjHj} : (A.4)

We here restrict attention to scalar primaries, with R being the singlet representation of
SO(d); for general results see [36]. Acting on the primary state with any string of PZ-jE we

compute N
T Gaw)—a/s)) d=2r
xXa,0(8; pi) = ’ A B (A.5)
ol antizayy ¢TI
with
g=e¢ ", y;=et . (A.6)

A.2. Free Partition Function in AdS

The introduction of non-zero angular potentials is easily incorporated into the previous
computation in section 3. We first consider the case of d even and write d = 2r. In

embedding space a thermal translation is now described as
Xl :tX2r+2 N Xl :tX2T+2 — eiﬂ(Xl :|:X2T+2)
AT (A7)
X2 HiX2 o X X = e (X X)), j=1,2,.

It is convenient to use coordinates adapted to these identifications,

X224 xl = \/1+r%+...+r%eit
X2 £ X = rjeiid’j .
The half-chordal distance between a point and its thermal image is
u(z,z5) = —1 + cosh B — 73(cos ju; — cosh B) — ... — r2(cos p1, — cosh j3). (A.9)

T

The AdS integral in (3.17) becomes

/ dd—l—lx\/ge—Qutf

:/dt H/Tidri /dd)ie%t(l—cosh,6’+Tf(cosu1—coshﬂ)+...+ r2(cos g, —cosh B3))
_ B(QW)re2tf(1—coshB) H </OO ridr; eZttr?(cosm—cosh,B)) (AlO)
i=1 ~70

_ ! 1
— B(27)" e2tt(1—cosh B) _
B(2m)"e }:[1 2tt 2(cosh 8 — cos ;)

d -
h 73 Bq (t%)—he—2(cosh,8—1)tt )
Hi:1(1 - qyi)(l - Q/yz‘)

=T
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All the other integrals proceed in exactly the same way as in eq. (3.17)-(3.19), yielding

qA

T2 ((1 = qu) (1 — q/wi))

We wrote Z; since we are only considering the single winding contribution. Similarly, for
d=2r+1, we get

A
4q
In Zl = T <A12)
(1= @) Tz (1 — aqya) (1 = q/v:)
These results are in agreement with (A.5).
Appendix B. Free spin-1 partition function
The free spin-1 propagator was given in (4.20),
0%u ou Ou
Ay (z,y) = —=———g0(A; ——q1(Aju) . B.1
(8 (0.9) = =50 As) + 5 g (M) (B.1)
We compute its trace using the relations
y 0% _
g" —=—(d-1)—(qg+q¢ ) +u
oxHdy
(B.2)
oxH Oy a1

where we are using the fact that the metric is the same at the points x and y since they are
related by a translation in ¢; we are working in global coordinates. The functions gy and
g1 are given in (4.21),(4.22). They are expressed in terms of Ga(u) and first and second
derivatives thereof, with each term given by a degree one polynomial u. Starting from
the representation (3.12) for Ga(u), and noting that each u derivative just brings down a
factor of —2tt, we arrive at the expression (3.23),

1 [ dec O AtdE 0y pmd)2—c —(14TV2 20T _
Tr [IIa (u)] = m/ 2—m.f(0)/0 Wtd/% g2 o= (D=2t p () 47) (B.3)

—100

where Pa (u,tt) is a degree 3 polynomial in u and a degree two polynomial in ¢, whose
explicit form is not particularly illuminating. We now evaluate the partition function from
(3.21),

InZ = 2_:1 /A OodA(QA —d) / d3x\/gTr [Ta (2, 2p)] - (B.4)

The remaining steps are straightforward and not particularly instructive to display in
detail. We first carry out the AdS integrals, followed by the (¢,f) integrals, and finally
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evaluate the c integral by evaluating residues. The last step involves one subtlety, which
is that there are poles in the right half plane at ¢ = A — h and also at ¢ = 1. The former
pole yields the desired partition function, which makes it clear that we should choose
the integration contour to run to the right of the ¢ = 1 pole, a fact which we have not
attempted to justify from first principles. Taking this into account, it is straightforward
to arrive at the expected result

nA

InZ = Z 1—q (B.5)

This same strategy can be applied to higher spins as well, though we expect the details to

be more involved.

Appendix C. Anomalous dimensions from four-point Witten diagrams

Progress in the conformal bootstrap program has led to powerful methods for comp-
uting anomalous dimensions. In this section, we review an efficient bootstrap-based
method that is the natural sibling of the partition function approach taken in this paper.
We decompose the four-point Witten diagram of interest into conformal blocks, and
then extract the anomalous dimensions from the coefficients in this expansion. This
section will discuss this method for derivative contact tree diagrams developed in [26],
[37], and closely follows the review in [38], to which we refer the reader for further
details and subtleties omitted here. We focus on the contact diagram with vertex
AP1(V iy oV, ¢2)p3(VHL L VR @y).

Working in embedding space® (reviewed in Section 5), the (symmetric part of) the
derivative contact diagram we are interested in is

A (z) = AY Ka, (Y, X1)(K - V) Ka, (Y, Xa)

A
(1 (51),)° /Ads (C.1)
KAS (Y7 X3)(K ’ V)JKA4 (Yv X4)a

where KA = Ka o is the spin-0 bulk-to-boundary propagator 9 and we abuse notation to
denote the projector onto AdS by K (see e.g [26], [25] for further details). We will first
use the spinning completeness relation

J
Z / dl/CJ,J_l(V)((Wl . Vl)(WQ . Vg))J_lQ,j’l(Yl, YQ, Wl, WQ) = (5(Y1, YQ)(ng)J, (C?)

8 We denote integrals over AdS as fAdS dY , and over the boundary as fBAdS X .

9 Explicitly, Ka, s (Y, P;W, Z) = Ca,;{=22 v)ow 2 L2W-P)ZYN ith normalization Ca,; =

(—2P-Y)A
(A=14)T(A)
27 d/2(A—1)T(A+1—d/2) "

We will often suppress the last two arguments of Ka_ ; for brevity.
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where the spectral function is [26]

M T =1+ 1) (h+J—1-1/2),

) = NGk 2T — 2= Ouh+ T — L= whh+ T — [+ )

(C.3)

where we refer the reader to [26], [25] for a definition and properties of the harmonic
function 2,; not immediately needed here. Using the completeness relation, the contact
diagram becomes

.A¢4 €T;) = /d JJ[ / dYAdYB
s (%) = (J'dl 22 AdsS

X Kn,(Ya, X1)(Ky - VA)JKAQ(YA,Xz)((W1 -V1)(Wy - VQ))J_I
x Q. 1(Ya,Ye, Wi, Wa)Kn,(Yp, X3)(Kp - V) Ka,(Ys, X4).

(C.4)

The spins of the operators in the block expansion are at this point determined, as we will

see shortly. Now, we use the split representation
v

2
_ dPK Yi,P; Wy, D7) K~ Y5, P Wo, Z
WJ'(h— ) /;Adg AV,J( 1,4, 1, Z) Ay,J( 2,4 2, )
(C.5)

to write the contact diagram as products of AdS three-point functions. We use the sub-

Qa, . (Y1, Yo Wi, Wa) =

script v to indicate dimensions lying on the principal series A, = % + iv with real spectral
parameter v. We denote the dimension of the shadow operator as A = d— A. The diagram
becomes

ot . CJ,J— l V dV/ dP
Ar o) = (J1( d L) 22/ wll(h—1);  Joaas

/ dYAKA1<YA,X1><KA V) Ka, (Y, Xo) (Wi - V1) " K a, 5(Va, P W, D)
AdS

/ Y5 K, (Y, X3)(Kp - V) Ka, (Ve Xa)(Wa - Vo) K5 (Y, P; W, 7).
AdS v
(C.6)

The three-point integrals are known:

1
T/ AY KA, (Y, X1)(Ka - Va) Ka, (Y, X2) (W5 - V3) " Ka, 1 (Y, X5 W3, Z)
TG, Jaas
= b(A1, Az, Az, 1, J)(O01(X1)02(X2)03(X3, Z)),

(C.7)
where b(Ay, Ag, Ag, [, J) was computed in [26]. The spinning three-point structure, defined
as the three-point function without the OPE coefficient, is

((Z - Py)Pa3 — (Z - Py)Py3)’ o
A tA3—AgtJs Aathz—Ai+Js Ai+Az—Asztds * ( '8)
Py ’ Py 2 Py, ’

(O1(P1)02(P)03(Ps, Z)) =
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We then have

J 2

4 _ d ~

AT () = / %Ml,az,m,J,Z)b<A3,A4,A,,,J,Z>
1=0 )

X /a L AP(O1X1)02(X2) O, (P DNO, (P, Z)O5(X3)O4(X4)).

(C.9)

The above integral of two three-point structures defines the conformal partial wave
W 2% (), which is related to the conformal block as'

\111234< z) _ K§3,ZA491AQS4( )+ KAI’AzglAij(xZ)' (ClO)

v

The contact diagram becomes

2d
AY (z;) Z/C“l € Vb(Al,AQ,A,,,J,Z)b(Ag,A4,AV,Jl)\111234( ). (C11)

!

We can close the v contour in the lower half plane for g1A23‘lL(acZ) and the upper half for
g}&234(xi) to obtain the conformal block decomposition, but we leave this step implicit for

now. The poles in the b-factors determine which operators appear.

To proceed further, it is helpful to focus on a simple example, the maximal spin case
l = J. The b-factors are

ba,.a,A,00 =CaA,.0CA,.0CA. g

) /2] (A1+A%—Z+J) [ (ArtAs=Ab) ) (At A-Aubd ) (A& —Bat]y  (C.12)

2177T(A)T (AT (A3 + )

The poles in the integrand that contribute are at double trace locations A, = A; + Ay +
2n 4+ J and As + Ay + 2n + J, and their shadows!!

Anomalous dimensions arise as double-poles in spectral space; that is, when the poles
corresponding to [O10z2],,; and [O304],,; exchange coincide. For simplicity, we will take
Az = Ay and Ay = Ay, As first studied in [12], the term in the block expansion that

(0),.(1) 1234

contains the anomalous dimensions is of the form Ts(zi) ), ; Py Vn.i (30n) 9K (@),

10 The normalization of the conformal block we use is _
N A ONER I (ECSEZSEZV Py (SIS CEES:
KA1,82 (_l)J
A,J 2 P(A—l)r(AJrJ)F(A“*zAl*A?)F(A“Jf?*Al)

I The integrand is shadow symmetric, so we need only analyse the poles in the lower-half v

plane. See [38] for discussion of spurious poles in this context.
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(0)

where Ts(x;) is a purely kinematic prefactor that will not be important here and Py, are

the squared mean field theory coefficients [12][35][39],
Pt} =
(_1)n(A1 —h+ 1)n(A2 —h+ 1)n(A1)l+n(A2)l+n
M+ h)p(Ar+As+n—2h+ 1), (A1 + A0+ 2n+1— 1) (A1 + Ao +n+1—h),

(C.13)
Putting everything together, the anomalous dimensions are therefore!?
4Ny — h)QK?’A“; -
g = - T8 Coeftd DAL, g, Ay, S D)B(AL As, Ay, )]
J!(h—1>Jpn’J ’
(C.14)

where CoefoAV: A, , indicates the coeflicient of the double pole. In this case, for non-

negative integer n,
1

This result matches (1.24) when setting the operators identical, up to a factor independent

Coeﬁizog,z,... [Pz(—n)} = (C.15)

of n, A. For submaximal spins (I < J) we need to include the trace contributions as well,
which can also be computed as we have described using [26].

To summarize, this approach required the completeness relation (C.2), the split repres-
entation (C.5), and three-point integrals (C.12), and did not require the explicit blocks
or solving crossing.'® Once these identities are assembled, the block decomposition foll-
ows automatically, and the anomalous dimensions can be easily read off. Compared to the
partition function approach, this is an indirect method of obtaining anomalous dimensions.
However, much of the necessary computation has already been carried out, and conformal
symmetry can be used to greatly simply the structure.

It would be interesting to derive identities like (1.21), where two propagators can
be expanded in a basis of single propagators, using a similar approach. By embedding
this identity in a four-point Witten diagram, and then equating the double discontinuities
of the resultant bubble and tree diagrams (computed in [38]), one can derive the zero-
derivative coefficients a£?>. We leave a similar investigation of the derivative relations to
future work.'4

12 Note that for the maximal spin case, cjo(v) = 1.

13 At least, for the contact diagram. For the exchange diagram and certain loop diagrams [17],
[38], we will need to expand blocks in the crossed channel, which requires use of the explicit blocks
or the 65 symbol of the Euclidean conformal group.

14 1t would be interesting to take this approach and make contact with the method in [40].
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