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Abstract
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coupled scalar fields in AdS. We consider quartic contact interactions and show how to

evaluate the relevant two-loop vacuum diagrams without performing any explicit AdS

integration, the key step being the use of Källén-Lehmann type identities. This leads

to a simple method for extracting double-trace anomalous dimensions in any spacetime

dimension, recovering known first-order results in a streamlined fashion.
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1. Introduction

It is interesting both for its own sake and in connection to the AdSd+1/CFTd cor-

respondence to ask how the spectrum of a weakly coupled quantum field theory in AdS

behaves as a function of its coupling. On the AdS side, this amounts to computing binding

energies of multi-particle states [1]-[11], while on the CFT side it corresponds to comp-

uting anomalous dimensions of multi-trace operators. Much effort has gone into such

computations in the context of the bootstrap program following [12], in which the anom-

alous dimensions, along with the OPE coefficients, comprise the CFT data. The original

approach to extracting anomalous dimensions is to expand a correlation function in con-

formal blocks. While straightforward in principle, in practice the details can be rather

messy, particularly for odd d, where the conformal blocks do not have closed form express-

ions. Notably though, a major simplification for handling tree level exchange diagrams is

provided by the Lorentzian inversion formula [13], which bypasses the need to compute

the full Witten diagram [13][14][15][16][17][18]. Furthermore, as we discuss in Appendix C,

1



for the type of interactions considered in this paper powerful harmonic analysis techniques

are available that do not require the explicit conformal blocks. Another approach offering

some simplifications is to compute energy shifts using standard quantum mechanical per-

turbation theory [19],[20].

In this paper we develop a different approach: we compute thermal partition functions

and extract anomalous dimensions by expanding bulk vacuum diagrams in characters.1 We

focus on quartic contact diagrams, with various numbers of derivatives. Given that our

method is designed to extract anomalous dimensions but not OPE coefficients, one might

expect that it involves less work than a correlation function based approach, and we indeed

find this to be the case. It is easy to work out results in arbitrary spacetime dimension,

as we illustrate with various worked examples. A key simplification is that the conformal

characters have simple graphical AdS representations, allowing one to expand the partition

function in characters without having to perform any integrals. This simplification is

similar to the one provided by the use of geodesic Witten diagrams [22].

Since the main elements in our approach, and their implementation, are simple to

explain, in the remainder of this section we describe all the steps involved in extracting the

anomalous dimensions for the basic λϕ4 interaction, and also indicate how to incorporate

derivative interactions, with full details provided in the main body of the text.

1.1. General method and summary of results

Thermal AdSd+1 is described by the Euclidean signature line element

ds2 =
1

cos2 ρ

(
dρ2 + dt2 + sin2 ρdΩ2

d−1

)
, (1.1)

with periodic imaginary time,

t ∼= t+ β . (1.2)

Here and elsewhere we are setting the AdS radius to unity. We consider some weakly

interacting quantum field theory with coupling constant λ living on this background ge-

ometry, and seek to compute the thermal partition sum

Z(β) = Tre−βH , (1.3)

where H denotes the Hamiltonian generating translations of t.2 The form of Z(β) is

dictated by the isometry group of AdSd+1. The spectrum can be organized into unitary

1 Constraints on the AdS3/CFT2 spectrum implied by modular invariance of the partition

function form the basis of the modular bootstrap program [21]. Modular invariance (for d = 2)

will play no role for us, since we focus on the low energy spectrum without regard to issues of UV

completion.
2 A more general partition sum Z(β, µa) would include chemical potentials µa conjugate to

the Cartan generators of the SO(d) rotation group, as in Appendix A. We mainly focus on Z(β).
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irreducible representations of the Lorentzian isometry group. Each such representation

is labelled by a scaling dimension3 ∆ and representation R of the SO(d) rotation group

acting on the angular coordinates in (1.1). The lowest energy (primary) states in each

representation obey H|∆;R⟩ = ∆|∆;R⟩, and excited states are obtained by acting with

generators Pa (a = 1, 2, . . . d), each of which raises the eigenvalue of H by one unit.4 The

character of a given representation labelled by (∆, R) is then given by

χ∆,R(β) = Tr∆,Re
−βH =

dRq
∆

(1− q)d
, (1.4)

where dR is the dimension of the SO(d) representation R, and

q = e−β . (1.5)

The general partition sum may be expressed as a sum of characters,

Z(β) = 1 +
∑
∆,R

N∆,Rχ∆,R(β) , (1.6)

where N∆,R denotes the multiplicity.

In the free theory at λ = 0 the Hilbert space is a Fock space of single and multi-

particles states. For example, consider a free scalar field of mass m. As is well known,

the single particle primary is an SO(d) singlet and carries energy ∆ related to m2 by the

equation m2 = ∆(∆−d). Two-particle primaries are described by bound states with radial

quantum number n = 0, 1, 2, . . . and angular momentum quantum number J . J denotes a

symmetric traceless tensor representation of SO(d). Due to Bose symmetry, J takes only

even (non-negative) integer values, J = 0, 2, 4, . . .. The scaling dimensions are 2∆+2n+J .

The partition sum of such a free scalar is therefore

Z(β) = 1 + χ∆,0 +
∑

J=0,2,...

∞∑
n=0

χ2∆+2n+J,J(β) + . . . , (1.7)

where . . . denotes the contribution from states with three or more particles. In the

AdSd+1/CFTd correspondence, the CFT states dual to the one and two particles states in

the bulk are created by “single-trace” and “double-trace” operators, whose representation

labels match the above (∆, R) assignments. Schematically, [OO]n,J ∼ O∂µ1 . . . ∂µJ (∂
2)nO.

We now turn on the coupling constant λ, which we take to vanish in the large-N limit.

This preserves the symmetry group and so the partition function can still be expanded

3 so-called because H can alternatively be realized as the dilatation generator acting on Rd.
4 Certain representations, as arise in the case of gauge fields, have null states and so this

statement requires modification, but this will not be relevant to our considerations.
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in characters as in (1.6). The SO(d) representations cannot change continuously, but the

scaling dimensions ∆ can. What is meaningful is the relation between the energies of the

multi-particle states and the single particle states. We think of keeping the single particle

dimension ∆ fixed as we turn on λ; alternatively, we trade the two parameters (m2, λ) for

(∆1−particle, λ). The partition sum (1.7) is then modified by the replacement

2∆ + 2n+ J → 2∆ + 2n+ J + γ(n, J). (1.8)

The energy shift γ(n, J) is interpreted in the dual CFT as an anomalous dimension acquired

by the double trace operator [OO]n,J . More generally, to first order in λ we can write

Zλ(β) = Z0(β) +
∑
∆,R

N∆,R
∂χ∆,R(β)

∂∆
γ(n, J) . (1.9)

If we can set up the computation of Zλ(β) such that it naturally takes the form (1.9),

then we can easily read off the corresponding anomalous dimensions. We now describe the

strategy for doing so.

We will compute the partition function from the functional integral in thermal AdSd+1.

A simple relation of central importance here is the bulk representation of the character

χ∆,J(β). These characters correspond to diagrams in which a spin-J particle winds once

around the thermal circle, the precise relation being

χ∆J ,J(β) =

∫ ∞

m2
J

dm′2
J

∫
dd+1x

√
gTr

[
Π∆′

J
,J(x, xβ)

]
. (1.10)

Here Π∆J ,J(x, y) (indices suppressed) is the spin-J bulk-bulk propagator;5 xβ = (t +

β, ρ,Ω) denotes the bulk coordinate x displaced by one thermal translation, and the relation

between the mass and scaling dimension is

m2
J = ∆J (∆J − d)− J . (1.11)

The integral in (1.10) is over thermal AdS. We therefore have

∂χ∆J ,J(β)

∂∆J
= −(2∆J − d)

∫
dd+1x

√
gTr [Π∆J ,J(x, xβ)] . (1.12)

To summarize our method: to find anomalous dimensions, we expand bulk diagrams in

the object above and then read off the coefficients. Being the bulk dual of
∂χ∆J ,J (β)

∂∆J
, the

integrated propagator here is analogous to the geodesic Witten diagram in the context of

5 Note that in the spin-0 case we often write Π∆,0(x, y) = G∆(x, y).
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correlation functions [22]. This new way of computing anomalous dimensions therefore has

similar advantages to geodesic Witten diagram methods.

In this work we focus on scalar fields interacting via quartic contact interactions with

any number of derivatives. To explain the basic idea for treating these, we first consider

the simplest case of a single scalar field ϕ with Sint = λ
∫
dd+1x

√
gϕ4. At order λ the

partition function, obtained by Wick contraction, is

lnZλ(β) = lnZ0(β)− 3λ

∫
dd+1x

√
gGβ

∆(x, x)G
β
∆(x, x) . (1.13)

Here Gβ
∆(x, x) is the scalar thermal bulk-bulk propagator, which can be constructed from

the global propagator by summing over thermal images, Gβ
∆(x, x) =

∑∞
n=−∞ G∆(x, xnβ),

with xnβ = (t + nβ, ρ,Ω). We focus on two-particle states, since effects on states with

more than two particles requires going to higher order in λ. Since the nth term in the

sum corresponds to a particle winding n times around the thermal circle, and hence to an

n particle state if viewed at an instant of time, for two-particles states we keep only the

n = ±1 terms from each image sum. Each gives the same contribution, and so we have

lnZλ(β) = lnZ0(β)− 12λ

∫
dd+1x

√
gG∆(x, xβ)G∆(x, xβ) + . . . (1.14)

the . . . now denoting contributions from states of three or more particles.

We now make the link to (1.9) by using the identity

G∆(x, y)G∆(x, y) =
∞∑

n=0

a(0)n G2∆+2n(x, y) , (1.15)

with coefficients a
(0)
n given below in 1.23. The existence of such an identity, which can be

thought of as a version of a Källén-Lehmann representation [23][24][19] (we note that the

latter two references use this identity in a context similar to ours), is readily understood

by comparing terms in a series expansion in the inverse geodesic distance6. Using this

identity, together with (1.12), we have

lnZλ(β) = lnZ0(β) + 6λ
∞∑

n=0

a
(0)
n

2∆ + 2n− d/2

∂χ∆,0(β)

∂∆

∣∣∣
2∆+2n

+ . . . (1.16)

From (1.9) we then read off the anomalous dimensions to first order in λ as

γ(n, 0) =
6a

(0)
n λ

2∆ + 2n− d/2
, (1.17)

6 The existence of this identity can also be understood from properties of harmonic functions,

for which we refer the reader to [25],[26].
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and with γ(n, J) = 0 for J > 0. An especially simple case is AdS3 (d = 2) for which

G∆(x, y) =
1
2π e

−∆σ(x,y)/(1− e−2σ(x,y)), where σ(x, y) is the geodesic distance. It is then

a triviality to see that a
(0)
n = 1

2π satisfies (1.15). This illustrates how relatively little

work is required in this approach. Using 1.23, with s = 0 and ∆1 = ∆2 = ∆, gives

the spin-0 anomalous dimensions for general d, in agreement with the known result [19].

The corresponding result for a pair of scalar fields with interaction λ
∫
(ϕ1ϕ2)

2 follows from

(1.17) once we divide by 3 (due to the single Wick contraction) and replace 2∆ → ∆1+∆2.

For vertices with derivatives we will need a generalized version of the identity (1.15).

We write the scalar propagator as G∆(u), where u = u(x, y) is the (half) chordal-distance,

related to the geodesic distance as

u(x, y) = −1 + coshσ(x, y) . (1.18)

In terms of this variable the scalar propagator is

G∆(u) = C∆

(
2u)−∆F

(
∆,∆− d− 1

2
, 2∆− d+ 1;− 2

u

)
(1.19)

with

C∆ =
Γ(∆)

2πd/2Γ(∆ + 1− d
2 )

(1.20)

and where F denotes the 2F1 hypergeometric function. The general identity we need is

G
(s)
∆1

(u)G
(s)
∆2

(u) =
∞∑

n=0

a(s)n G
(s)
∆1+∆2+2n+s(u) (1.21)

where we are using the notation

G
(s)
∆ (u) =

ds

dus
G∆(u) . (1.22)

Again, the existence of the relation (1.21) follows from comparing the expansions in 1/u,

and the coefficients are found to be

a(s)n =
(−2)s(h+ s)n

2πhn!

(∆1 +∆2 + 2n+ 2s)1−h−s(∆1 +∆2 − 2h+ n+ 1)n
(∆1 + n+ s)1−h−s(∆2 + n+ s)1−h−s(∆1 +∆2 − h+ n+ s)n

,

(1.23)

with h ≡ d/2 and the Pochhammer symbol is (a)n ≡ Γ(a+n)
Γ(a) .

For example, consider the interaction Sint = λ
∫
dd+1x

√
gϕ2(∇µ1 . . .∇µJϕ)

2 with J =

2, 4, 6, . . .. Such a vertex is known to give rise to anomalous dimensions for double-trace

operators of spin s = 0, 2, . . . J . As we’ll see, the highest spin contribution is very easy

to extract using our approach. We need to expand the product of two differentiated
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scalar propagators in terms of spinning propagators and their derivatives. The spinning

propagators can be expressed in terms of the scalar propagator, which will lead us to the

identity (1.21). The result for the spin-J anomalous dimensions is simply

γ(n, J) =
8J !a

(J)
n λ

2∆ + 2n+ J − h
. (1.24)

This result matches that in [12], which was obtained by decomposing a four-point function

in the Regge limit. The anomalous dimension for spins s < J are also straightforward to

extract in principle, although the details require more bookkeeping. We work out the full

details in the case of two and four derivative interactions, the former requiring two distinct

fields in order to be nontrivial (i.e. not reducible to ϕ4 after using integration by parts

and the free field equations). The four derivative example gives results for general d which

reproduce a known expression for d = 2. Another interaction which is easily handled is

Sint = λ
∫
dd+1x

√
g∇µϕ∇µϕ(∇µ1 . . .∇µJ

ϕ)2 with J = 2, 4, 6, . . .. This 2J + 2 derivative

interaction gives rise to anomalous dimensions of operator up to spin-J and, as before,

it is simple to extract the highest spin result. The result for γ(n, J) is given by (1.24)

multiplied by a factor m2
J (∆n,J), where ∆n,J = 2∆ + 2n + J . In summary, compared

to previous approaches, the partition function based approach proves to be efficient and

involves relatively elementary ingredients.

The remainder of this paper is organized as follows. In section 2 we recall some

basic facts about CFT characters and partition functions. In section 3 we show how to

derive free field partition functions in AdS from the path integral. This computation is

not strictly needed for the rest of the paper, but we have included it since it is a basic

result, and one that we have not seen presented in general spacetime dimension. In section

4 we show how to compute anomalous dimensions using our approach applied to several

choices of contact interaction. In section 5 we review needed facts about AdS propagators

for massive symmetric tensor fields. In section 6 we discuss the general procedure for

studying an arbitrary quartic contact interaction, and then apply this to another example

in section 7. Some discussion appears in section 8. In Appendix A we show how to include

angular potentials into our free field partition function computation. Appendix B sketches

the computation of the free partition function of a massive spin-1 field. Appendix C

discusses an alternative approach to extracting anomalous dimensions, based on applying

harmonic analysis techniques to the boundary four-point function.

2. CFT partition functions

We consider CFTd defined on Sd−1 ×R. The basic partition function is

Z(β) = Tre−βH (2.1)
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where H is the Hamiltonian generating time translations. More generally, we can cons-

ider Z(β;µi), where µi are angular chemical potentials conjugate to the Cartan gener-

ators of SO(d). The Hilbert space is described via the state-operator map, and can be

decomposed into irreducible representations of the Lorentzian conformal group SO(d, 2).

Each representation is specified by a primary operator O∆,R, where R denotes a SO(d)

representation, corresponds to a state (or rather an SO(d) multiplet of states) of energy ∆,

H|∆;R⟩ = ∆|∆;R⟩. The characters were written down in (1.4), and the partition function

is given as a sum of characters as in (1.6).

In a large N CFT, dual to a weakly coupled theory in AdS, the spectrum of primary

operators can be organized into single trace primaries and their multi-trace products. This

corresponds in the bulk to a description of the Hilbert space in terms of single-particle and

multi-particle states. Consider a spinless single trace primary operator O∆. In the large

N limit there exist double trace primary operators of schematic form [OO]2∆+2n+J,J ∼
O∂µ1 . . . ∂µJ

(∂2)nO. These operators transform in the rank-J symmetric, traceless tensor

representation of SO(d), and Bose symmetry requires J to be an even integer. There

similarly exist triple trace, quadruple trace, . . ., primary operators. The contribution to

the partition function from such operators is most easily written down by thinking (simply

as a mnemonic) in terms of the dual bulk description. Quantizing a free scalar field in the

bulk yields single particle states with quantum numbers in correspondence with those of

the primary operator O∆ and its conformal descendants, (P1)
m1 . . . (Pd)

md ·O∆. Focusing

on a mode with specified {ma} the contribution to the partition function corresponds to

summing over the occupation number k,

Z{ma} =
∞∑
k=0

q(∆+
∑

a
ma)k =

1

1− q∆+
∑

a
ma

. (2.2)

The total contribution to the partition from the scalar field is then obtained by taking the

product over all modes,

Z =
∏
{ma}

Z{ma} =
∏
{ma}

1

1− q∆+
∑

a
ma

. (2.3)

We rewrite this as

lnZ = −
∑
{ma}

ln
(
1− q∆+

∑
a
ma

)

=
∑
{ma}

∞∑
k=1

1

k
q(∆+

∑
a
ma)k

=

∞∑
k=1

1

k

qk∆

(1− qk)d
.

(2.4)
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The contribution to Z from n particle states is identified by an overall factor of qn∆.

For example, the contribution to the partition functions from states of fewer than three

particles is

Z = 1 +
q∆

(1− q)d
+

1

2

(
1

(1− q2)d
+

1

(1− q)2d

)
q2∆ + . . . (2.5)

We can read off the spectrum of double trace operators by writing the q2∆ term as

1

2

(
1

(1− q2)d
+

1

(1− q)2d

)
q2∆ =

∑
J=0,2,4,...

∞∑
n=0

χ2∆+2n+J,J(q) (2.6)

where

χ2∆+2n+J,J(q) = dJχ2∆+2n+J,0(q) = dJ
q2∆+2n+J

(1− q)d
, (2.7)

is a spin-J character written in terms of the spin-0 character and

dJ =
Γ(d+ J)

Γ(d)Γ(J + 1)
− Γ(d+ J − 2)

Γ(d)Γ(J − 1)
(2.8)

is the dimension of the rank-J symmetric traceless tensor representation of SO(d). The

right hand side of (2.6) is thus identified with the expected sum over primary operators, one

for each even J , with the factor 1/(1− q)d in (2.7) coming from the sum over descendants.

Now we go to the next order in the 1/N expansion. This corresponds to introducing

an interaction term in the bulk with some coupling constant λ and working to first order

in λ. By convention, we continue to write the dimension of the single trace operator as ∆,

absorbing any λ dependence into the definition of ∆. The multi-trace operators pick up

anomalous dimensions. We write the dimension of the double trace operators as

2∆ + 2n+ J + γ(n, J) (2.9)

with γ(n, J) = O(λ). We can therefore write the partition function to first order in λ as

lnZ = lnZ
∣∣
λ=0

+
∑

J=0,2,4,...

∞∑
n=0

∂χ∆,J(q)

∂∆

∣∣∣
∆=2∆+2n+J

γ(n, J) + . . . , (2.10)

where again we are only including single and double trace operators. This is the expression

we will use to read off anomalous dimensions. We will compute lnZ to first order in λ and

write the result in the form (2.10), and thereby read off γ(n, J).

Alternatively, we can consider a pair of scalar primary operators, O1 and O2. We form

double trace operators as before, [O1O2]∆1+∆2+2n+J,J ∼ O1∂µ1 . . . ∂µJ
(∂2)nO2 except that
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now J runs over all non-negative integers, since there is no Bose symmetry. The anomalous

dimensions are read off from the expression

lnZ = lnZ
∣∣
λ=0

+
∑

J=0,1,2,...

∞∑
n=0

∂χ∆,J(q)

∂∆

∣∣∣
∆=∆1+∆2+2n+J

γ(n, J) + . . . (2.11)

3. Computation of free field partition functions in AdSd+1

For completeness, in this section we discuss the path integral computation of free

field partition functions in thermal AdS. These computations will in fact not be needed

for the main goal of this work, which is the extraction of anomalous dimensions from the

interacting theory. The reason is that the contribution from the interaction vertex will

automatically take the form (2.10)-(2.11). Nevertheless, it is a useful exercise to see how

the free scalar field partition function arises from the path integral, which as far as we

know this has not been done in general dimension d. See [27][28][29][30] for some previous

computations of various free field partition functions in related contexts.

As usual, we consider thermal AdSd+1

ds2 =
1

cos2 ρ

(
dρ2 + dt2 + sin2 ρdΩ2

d−1

)
(3.1)

with t ∼= t+ β, and a free scalar field,

S =
1

2

∫
dd+1√gϕ(−∇2 +m2)ϕ . (3.2)

The mass is related to the scaling dimension as

m2 = ∆(∆− d) . (3.3)

The partition function is

lnZ = −1

2
Tr ln(−∇2 +m2). (3.4)

Noting that
d

dm2
lnZ = −1

2
Tr

1

−∇2 +m2
(3.5)

we can write

lnZ =
1

2

∫ ∞

m2

dm2

∫
d3x

√
gGβ

∆(x, x) (3.6)

where the propagator is

Gβ
∆(x, y) = ⟨x| 1

−∇2 +m2
|y⟩ . (3.7)
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The integration in (3.6) is over thermal AdS. The propagator must respect the thermal

periodicity, which can be implemented by a sum over images. If G∆(x, x
′) is the global

AdS propagator then we can write

Gβ
∆(x, y) =

∞∑
n=−∞

G∆(x, ynβ) . (3.8)

Here ynβ denotes the bulk point related to y = (t, ρ,Ωa) by n thermal translations, ynβ =

(t + nβ, ρ,Ωa). Plugging this into (3.8), the divergent n = 0 term can be cancelled by a

cosmological constant counterterm, leaving

lnZ =

∞∑
n=1

∫ ∞

m2

dm2

∫
dd+1x

√
gG∆(x, xnβ) , (3.9)

where we used the symmetry under n → −n. To proceed, we need a convenient form for

the propagator that will allow us to carry out the integration over AdS. The standard form

of the propagator is

G∆(x, y) = C∆e
−∆σF

(
∆,

d

2
,∆+ 1− d

2
; e−2σ

)
, (3.10)

with

C∆ =
Γ(∆)

2πd/2Γ(∆ + 1− d
2 )

. (3.11)

F denotes the 2F1 hypergeometric function and σ = σ(x, y) is the geodesic distance bet-

ween x and y. For d = 2 the hypergeometric function greatly simplifies and it is straight-

forward to carry out the AdS integration. This can in principle be extended to all even d

where it is possible to write the hypergeometric function in terms of elementary functions.

However, for odd d this is not possible, and the required integrals are very challenging.

Another option is to use a heat kernel representation as in [30]; however, this is again

efficient only for d even, since in odd d the heat kernel only has an integral representation;

e.g. [31].

Instead, we will use a “spectral” representation of the propagator [25]. This arises

from decomposing the propagator into harmonic functions, writing the harmonic functions

in the split representation as an integral over the AdS boundary, and then doing the

boundary integrals. This yields

G∆(u) = π−h

∫ i∞

−i∞

dc

2πi

1

Γ(c)Γ(−c)

1

(∆− h)2 − c2

∫ ∞

0

dtdt

tt
th+ct

h−c
e−(t+t)2−2utt . (3.12)

The variable u is related to the geodesic distance as

u(x, y) = −1 + coshσ(x, y) . (3.13)
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The parameter h is related to the AdSd+1 dimension as h = d/2. The advantage of this

expression is that the dependence on AdS coordinates is simple, allowing the AdS bulk

integral to be performed easily. The equivalence of (3.10) and (3.12) can be established

using the Mellin-Barnes representation of the hypergeometric function; see [25].

We focus on a single term in the sum of (3.9) with fixed n. The geodesic distance

between the points x and xnβ is

coshσ(x, xnβ) =
cosh(nβ)

cos2 ρ
− tan2 ρ . (3.14)

It will be convenient to change variables from ρ to the coordinate w defined as

w ≡ coshσ(x, xnβ)− cosh(nβ)

=
cosh(nβ)

cos2 ρ
− tan2 ρ− cosh(nβ) .

(3.15)

The AdS integration now takes the form∫
dd+1x

√
g(. . .) =

qnh

(1− qn)d

∫ β

0

dt

∫
dΩd−1

∫ ∞

0

dw(2w)
d−2
2 (. . .) , (3.16)

where q = e−β as usual. This gives∫
dd+1x

√
ge−2ttu(x,xnβ) = πh βqnd

(1− qn)d
(tt)−he−2

(
cosh(nβ)−1

)
tt , (3.17)

where we have used
∫
dΩd−1 = 2πh

Γ(d/2) . The dtdt integration can be done using the formula

∫ ∞

0

dtdt

tt
tct

−c
e−t2−t

2−2 cosh(nβ)tt = Γ(c)Γ(−c) cosh(nβc) , (3.18)

which can be derived by Taylor expanding e−2 cosh(nβ)tt, doing the integrals term by term,

and resumming. Using these results we have

lnZ = 2

∞∑
n=1

βqnd

(1− qn)d

∫ ∞

∆

d∆(∆− h)

∫ i∞

−i∞

dc

2πi

cosh(nβc)

(∆− h)2 − c2
. (3.19)

The remaining integrals are elementary, and we find

lnZ =
∞∑

n=1

1

n

qn∆

(1− qn)d
, (3.20)

in agreement with (2.4).
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3.1. Higher spin fields

We now comment on the generalization to symmetric, traceless, tensor fields. The

expression (3.9) is replaced by

lnZ =
∞∑

n=1

∫ ∞

m2
J

dm2
J

∫
dd+1x

√
gTr [Π∆,J(x, xnβ)] , (3.21)

where the trace refers to contraction of pairs of indices associated to the two distinct pos-

itions appearing in the spin-J propagator Π∆,J . For a rank-J tensor the scaling dimension

∆ is related to the mass parameter appearing in the action as m2
J = ∆(∆ − d) − J . The

expected result is proportional to the scalar result, with the proportionality factor given

by the number of spin states (2.8),

lnZ = dJ

∞∑
n=1

1

n

qn∆

(1− qn)d
, (3.22)

To proceed we can again use the spectral representation. The generalization of (3.12)

is

Tr [Π∆,J(u)] =
1

πd/2

∫ i∞

−i∞

dc

2πi
f(c)

∫ ∞

0

dtdt

tt
td/2+ct

d/2−c
e−(t+t)2−2ttuP∆,J(u, tt) (3.23)

where we are writing

f(c) =
1

Γ(c)Γ(−c)[(∆− h)2 − c2]
. (3.24)

and P∆,J(u, tt) is a polynomial in u and tt. In appendix B we use this to evaluate the

J = 1 partition, obtaining (3.10) with d1 = d.

Note that if we consider the n = 1 term in (3.10) we get the character,

χ∆,J =

∫ ∞

m2
J

dm2
J

∫
dd+1x

√
gTr [Π∆,J(x, xβ)] , (3.25)

a result which will be used in the following.

4. Quartic contact interactions: simple examples

In this section we discuss some simple examples of anomalous dimensions coming from

bulk contact interactions. We will consider a pair of scalar fields (ϕ1, ϕ2) with quartic

contact interactions involving some number of derivatives. At zero bulk coupling this
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theory has spin-J double trace operators of dimension ∆1 +∆2 + 2n + J . The idea is to

write the partition function, computed to first order in the interaction, in the form

lnZ = lnZ
∣∣
λ=0

+
∞∑

J=0

∞∑
n=0

∂χ∆,J

∂∆

∣∣∣
∆=∆1+∆2+2n+J

γ(n, J) + . . . (4.1)

This identifies the coefficients γ(n, J) as the double-trace anomalous dimensions. To write

the bulk result in this form we will use (3.25). Using m2
J = ∆(∆− d)− J we have

∂χ∆,J

∂∆
= −(2∆− d)

∫
dd+1x

√
gTr

[
Π∆,J

]
, (4.2)

so that the anomalous dimensions may be identified according to

lnZ = lnZ
∣∣
λ=0

−
∞∑

J=0

∞∑
n=0

(
(2∆− d)

∫
dd+1x

√
gTr

[
Π∆,J

])∣∣∣
∆=∆1+∆2+2n+J

γ(n, J) + . . .

(4.3)

This is quite useful, since it will be easy to massage the partition function into this form.

4.1. Non-derivative interaction

We consider the action

S =

∫
dd+1x

√
g

(
1

2
ϕ1(−∇2 +m2

1)ϕ1 +
1

2
ϕ2(−∇2 +m2

1)ϕ2 + λ(ϕ1ϕ2)
2

)
. (4.4)

To first order in λ the thermal partition function is

lnZ = lnZ
∣∣
λ=0

− λ

∫
dd+1x

√
gGβ

∆1
(x, x)Gβ

∆2
(x, x) +O(λ2) . (4.5)

The thermal propagators are given as a sum over images, as in (3.8). We focus here on

anomalous dimensions for double trace operators, which are obtained from the n = ±1

terms in the image sum. Using the symmetry under n → −n, we retain just the n = 1

terms and multiply the result by 4 to get

lnZ = lnZ
∣∣
λ=0

− 4λ

∫
dd+1x

√
gG∆1(x, xβ)G∆2(x, xβ) + . . . . (4.6)

where the . . . now include both terms with n ≥ 1 and higher order in λ.

To proceed we note the following form of the scalar propagator

G∆(x, y) = C∆

(
2u)−∆F

(
∆,∆− d− 1

2
, 2∆− d+ 1;− 2

u

)
(4.7)
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related to (3.10) by a standard hypergeometric identity, and u = −1 + coshσ(x, y) as

before. Writing

G∆1(x, y)G∆2(x, y) = ⟨0|ϕ1(x)ϕ2(x)ϕ1(y)ϕ2(y)|0⟩ (4.8)

and inserting a complete set of two-particle states built on primaries of dimension ∆1 +

∆2 + 2n it is clear that there exists an identity of the form

G∆1(x, y)G∆2(x, y) =
∞∑

n=0

a(0)n G∆1+∆2+2n(x, y) . (4.9)

The coefficients are readily determined by comparing terms in the 1/u expansion, and are

given by (1.23) with s = 0. Using this result in (4.6) gives

lnZ = lnZ
∣∣
λ=0

− 4λ
∞∑

n=0

a(0)n

∫
dd+1x

√
gG∆1+∆2+2n(x, xβ) + . . . . (4.10)

Comparing to (4.3), we identify the double-trace anomalous dimensions as

γ(n, 0) =
2a

(0)
n λ

∆1 +∆2 + 2n− h
. (4.11)

4.2. Two-derivative interaction

Using integration by parts and the equations of motion we can take the two-derivative

interaction to be

Sint = λ

∫
dd+1√gϕ1∇µϕ1ϕ2∇µϕ2 (4.12)

The contribution to the partition function at first order in λ is

lnZ = lnZ
∣∣
λ=0

− λ

∫
dd+1x

√
ggµν∇(1)

µ Gβ
∆1

(x, x)∇(1)
ν Gβ

∆2
(x, x) + . . . (4.13)

where ∇(1)
µ denotes differentiation with respect to the first argument of the propagator.

As in the last subsection, the thermal propagator is given by a sum over images, and we

retain only the n = ±1 terms corresponding to double trace operators. Using the identities

G∆(x, y) = G∆(y, x) , G∆(x, x−β) = G∆(xβ , x) (4.14)

we have

∇(1)
µ G∆(x, x−β) = ∇(2)

µ G∆(x, xβ) ≡ ∇(2)
µ G∆(x, y)

∣∣∣
y=xβ

. (4.15)

Using this we obtain

lnZ = lnZ
∣∣
λ=0

− 2λ

∫
dd+1x

√
ggµν∇(1)

µ G∆1(x, xβ)∇(1)
ν G∆2(x, xβ)

− 2λ

∫
dd+1x

√
ggµν∇(1)

µ G∆1(x, xβ)∇(2)
ν G∆2(x, xβ) + . . .

(4.16)
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We tackle the two terms in succession.

For the first term, if we apply (∇(1))2 to the identity (4.9), and use (∇(1))2G∆(x, y) =

∆(∆− d)G∆(x, y) we have

gµν∇(1)
µ G∆1(x, xβ)∇(1)

ν G∆2(x, xβ) =
∞∑

n=0

c(0)n G∆1+∆2+2n(x, xβ) (4.17)

where we defined

c(0)n =
1

2

[
(∆1 +∆2 + 2n)(∆1 +∆2 + 2n− d)−∆1(∆1 − d)−∆2(∆2 − d)

]
a(0)n . (4.18)

Turning to the second term, we seek an identity of the form

∇(1)
µ G∆1(x, y)∇(2)

ν G∆2(x, y)

=
∞∑

n=0

a(1)n Πµ;ν(∆1 +∆2 + 2n+ 1;x, y) +
∞∑

n=0

b(0)n ∇(1)
µ ∇(2)

ν G∆1+∆2+2n(x, y) .
(4.19)

Here Πµ;ν(∆;x, y) is the spin-1 propagator. It obeys (∇2 − m2
1)Πµ;ν(∆;x, y) = 0 and

∇µΠµ;ν(∆;x, y) = 0 (for x ̸= y) with m2
1 = ∆(∆ − d) − 1. The existence of the identity

(4.19) follows from the fact that the left hand side is a rank (1, 1) bitensor. The general

such bitensor can be written as a sum of scalar functions multiplying each of the two

independent bitensors. The spin-1 propagator and the differentiated spin-0 propagator give

us two linear combinations of these bitensors, and the spectrum of conformal dimensions is

then chosen to match the expansion of the left hand side. In (4.19) we are anticipating that

the coefficients multiplying the spin-1 propagators will turn out to be the s = 1 coefficients

defined in (1.23).

We will review spinning propagators in section 5, and here just note the following

salient facts about the spin-1 propagator. We can write

Πµ;ν(∆;x, y) = − ∂2u

∂xµ∂yν
g0(∆;u) +

∂u

∂xµ

∂u

∂yν
g1(∆;u) . (4.20)

As in (3.13) u is related to the geodesic distance as u(x, y) = −1 + coshσ(x, y). The

coefficient functions take the form

g0(∆;u) = G∆(u)− h1(∆;u) , g1 = h′
1(∆;u) , (4.21)

where G∆(u) is the usual scalar propagator, and h1(∆;u) is a function built out of G∆(u),

h1(∆;u) = − (d− 1)G∆(u) + (1 + u)G′
∆(u)

(∆− 1)(d−∆− 1)
. (4.22)
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Going back to (4.19) and equating coefficients of the two tensor structures gives the pair

of equations

G′
∆1

(u)G′
∆2

(u) =

∞∑
n=0

a(1)n h′
1(∆1 +∆2 + 2n+ 1;u) +

∞∑
n=0

b(0)n G′′
∆1+∆2+2n(u)

0 = −
∞∑

n=0

a(1)n

(
G∆1+∆2+2n+1(u)− h1(∆1 +∆2 + 2n+ 1;u)

)
+

∞∑
n=0

b(0)n G′
∆1+∆2+2n(u)

(4.23)

Differentiating the second equation and subtracting it from the first gives

G′
∆1

(u)G′
∆2

(u) =
∞∑

n=0

a(1)n G′
∆1+∆2+2n+1(u) , (4.24)

which is indeed the s = 1 identity (1.21) with coefficients defined in (1.23). We then solve

the first equation in (4.23) to determine the b
(0)
n as,

b(0)n =
1

8

[
1−

(
∆1(∆1 − d)−∆2(∆2 − d)

(∆1 +∆2 + 2n)(∆1 +∆2 + 2n− d)

)2
]
a(0)n . (4.25)

Having determined all the coefficients we return to (4.13) and write the result in the

form (2.11),

lnZ = lnZ
∣∣
λ=0

−
1∑

J=0

∞∑
n=0

(
(2∆− d)

∫
dd+1x

√
gTr

[
Π∆,J

])∣∣∣
∆=∆1+∆2+2n+J

γ(n, J) + . . .

(4.26)

This is straightforward, and we read off the following anomalous dimensions:

γ(n, 1) =
a
(1)
n

∆1 +∆2 + 2n+ 1− h
λ

γ(n, 0) =
c
(0)
n − (∆1 +∆2 + 2n)(∆1 +∆2 + 2n− d)b

(0)
n

∆1 +∆2 + 2n− h
λ .

(4.27)

To obtain this we used∫
dd+1x

√
ggµν∇(1)

µ ∇(2)
ν G∆(x, xβ) = −∆(∆− d)

∫
dd+1x

√
gG∆(x, xβ) , (4.28)

obtained by using integration by parts and the field equation.

5. Spinning propagators

As illustrated in our simple examples, our approach is based on taking a product of

differentiated scalar propagators and expanding it in terms of spinning propagators and

their derivatives. For interaction vertices involving scalar fields, the relevant spinning

propagators involve symmetric traceless tensors. In this section we review these spinning

propagators following [26]. For earlier work see [32][33][34].
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5.1. Embedding space

It will be useful to work in embedding space, taking AdSd+1 to be the hyperboloid

X · X = ηMNXMXN = −1 embedded in Rd+1,1 with line element ds2 = ηMNdxMdxN

where

ηMNXMXN =

d∑
a=1

(Xa)2 + (Xd+1)2 − (Xd+2)2 . (5.1)

The geodesic distance (on the hyperboloid) between two points is

coshσ(x, y) = −X · Y . (5.2)

The u variable is then

u(x, y) = −1 + coshσ(x, y) = −1−X · Y . (5.3)

Global coordinates are defined by

Xa = tan ρx̂a

Xd+1 =
sinh t

cos ρ

Xd+2 =
cosh t

cos ρ

(5.4)

with
∑d

a=1(x̂
a)2 = 1. The corresponding metric is

ds2 =
1

cos2 ρ

(
dρ2 + dt2 + sin2 ρdΩ2

d−1

)
. (5.5)

We will be interested in symmetric traceless tensors. We start from a symmetric

traceless embedding space tensor TM1,...Mn that has vanishing contraction with the normal

vector to the hyperboloid, XM1TM1,...Mn = 0. We then pull it back to the hyperboloid to

obtain the AdS tensor,

Tµ1...µn =
∂XM1

∂xµ1
. . .

∂XMn

∂xµn

∂XM1

∂xµ1
TM1,...Mn . (5.6)

Rather than display the indices, it is convenient to work with polynomials of polarization

vectors WM . For traceless tensors we can use lightlike polarizaton vectors W ·W = 0. We

can also impose W ·X = 0, since we are assuming our tensors have no components normal

to the hyperboloid. Given the polynomial corresponding to WM1 . . .WMnTM1,...Mn we can

extract a unique symmetric traceless tensor; see [26] for details.
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5.2. Spinning propagators

In AdSd+1 tensor language, the propagator for a symmetric traceless tensor field obeys

(∇2 −m2
J)Π

∆,J
µ1...µJ ;ν1...νJ

(x, y) = 0

∇µ1Π∆,J
µ1...µJ ;ν1...νJ

(x, y) = 0

gµ1µ2Π∆,J
µ1...µJ ;ν1...νJ

(x, y) = 0 ,

(5.7)

where m2
J = ∆(∆− d) − J , and (5.7) holds up to delta function terms on the right hand

side for x = y. Passing to embedding space, associated to the two points X and Y are two

polarization vectors, obeying

WX ·WX = WY ·WY = WX ·X = WY · Y = 0 . (5.8)

The general form of the propagator is governed by the fact that it is a rank (J, J) bitensor.

The spin-J propagator can be written in terms of J + 1 scalar functions as

Π∆,J(X,Y ) =
J∑

k=0

(WXY )
J−k

(
WX · ∇XWY · ∇Y

)k
f∆,J
k (u) . (5.9)

Here

WX · ∇X = (WX)M
∂

∂XM
, WXY = WX ·WY . (5.10)

A key fact is that the k = 0 function is the scalar propagator,

f∆,J
0 (u) = G∆(u) . (5.11)

The f∆,J
k (u) for k > 0 are determined iteratively in terms of f∆,J

0 (u), in order to satisfy

(5.7). Defining

h∆,J
k (u) = (∂u)

kf∆,J
k (u) , (5.12)

the relations are

h∆,J
k = ck

(
(d−2k+2J−1)

(
(d+J−2)h∆,J

k−1+(1+u)∂uh
∆,J
k−1

)
+(2−k+J)h∆,J

k−2

)
, (5.13)

with

ck = − 1 + J − k

k(d+ 2J − k − 2)(∆ + J − k − 1)(d−∆+ J − k − 1)
. (5.14)

Using

(WX · ∇XWY · ∇Y )
nf(u) =

n∑
k=0

(−1)n+k

(n− k)!

(
n!

k!

)2

(WXY )
n−k(WX · YWY ·X)k(∂u)

n+kf(u)

(5.15)

we can re-express the propagator in the form

Π∆,J(X,Y ) =

J∑
k=0

(WXY )
J−k

(
WX · YWY ·X

)k
g∆,J
k (u) (5.16)

with

g∆,J
k (u) =

J∑
n=k

(−1)n+k

(n− k)!

(
n!

k!

)2

(∂u)
n+kf∆,J

n (u) . (5.17)
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6. General results

6.1. Interaction vertices

In this section we discuss arbitrary bulk quartic contact interactions built out of a

single scalar field. We can use integration by parts and the free field equation to relate

vertices. The space of such vertices was described in [12] by associating them to flat space S-

matrices built out of Mandelstam invariants. In particular, vertices with 2k derivatives are

associated to monomials satauc with 2k = 4a+2c and where 0 ≤ c ≤ a. For example, there

is a unique 4-derivative vertex, which we can take to be
∫
(∇µϕ∇µϕ)2, corresponding to the

monomial st. A given vertex gives rise to anomalous dimensions for double trace operators

with J = 0, 2, . . . , 2a. So at 2k-derivative order the highest possible spin contribution is

J = k, and we can take the corresponding vertex to be

Sint = λ

∫
dd+1x

√
gϕ2(∇µ1 . . .∇µJϕ)

2 . (6.1)

6.2. Decomposition into spinning propagators

Given some particular vertex, at first order in λ the contribution to the partition

function is obtained from the various Wick contractions among fields appearing in the

vertex. The resulting object to be integrated over thermal AdS is some index contraction

of an object of type

∇µ1 . . .∇µm∇ν1 . . .∇νnG∆(x, y)∇µm+1 . . .∇µp∇νn+1 . . .∇νqG∆(x, y) , (6.2)

where y denotes a thermal translation of x: y = xβ . In the above, we are using the

convention that ∇µ acts on x, and ∇ν acts on y. As was illustrated in our simple examples,

the strategy is to expand (6.2) in terms of spinning propagators and their derivatives; the

coefficients in the expansion essentially yield the anomalous dimensions.

To facilitate this, note that we can always express an AdS tensor in terms of a sum

of symmetric traceless tensors combined with metric tensors. Therefore, without loss of

generality we can assume that (6.2) is symmetric and traceless in the µ-type indices, and

in the ν-type indices. Note that this implies that we have q = p since we need to eventually

contract each µ index with a ν index. In the embedding space language of the last section,

the product (6.2) then appears as

(WX · ∇X)m(WY · ∇Y )
nG∆(X,Y )(WX · ∇X)p−m(WY · ∇Y )

p−nG∆(X,Y ) . (6.3)

The next step is to compute the functions pn appearing in the identity

(WX · ∇X)m(WY · ∇Y )
nG∆(X,Y )(WX · ∇X)p−m(WY · ∇Y )

p−nG∆(X,Y )

=

p∑
n=0

(WXY )
p−n(WX · ∇XWY · ∇Y )

npn(u) .
(6.4)
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To obtain equations that determine pn(u) we use (5.15) to express both sides of (6.4) in

terms of products of WXY , WX · Y and WY · X, and then equate coefficients. Once the

identity (6.4) is established, we use (5.9) to expand in terms of spinning propagators.

p∑
n=0

(WXY )
p−n(WX · ∇XWY · ∇Y )

npn(u)

=

p∑
n=0

(
C(p)

n Π2∆+2n+p,p + C(p−2)
n (WX · ∇XWY · ∇Y )Π2∆+2n+p−2,p−2

+ . . .+ C(0)
n (WX · ∇XWY · ∇Y )

pΠ2∆+2n,0

)
(6.5)

for some constants C
(2s)
n . This provides us with the decomposition of (6.2) into spinning

propagators and derivatives thereof. In the interaction vertex the indices are all contrac-

ted, and so all the derivatives either annihilate the propagators using the divergence free

condition in (5.7), or (possibly after integrating by parts) are Laplacians, which can be

replaced by the corresponding m2 using (5.7). We are left with an expansion in terms of

integrals of traced propagators, and as in our simple examples, the coefficients yield the

anomalous dimensions.

6.3. Highest spin contribution

To illustrate the general procedure with an important example, in this section we

work out the spin-J anomalous dimensions induced by the vertex (6.1). The two distinct

Wick contractions can be integrated by parts to the same form modulo terms that do not

contribute at spin-J , 7

lnZ = lnZ
∣∣
λ=0

− 4λ

∫
dd+1x

√
g∇(1)

µ1
. . .∇(1)

µJ
Gβ

∆(x, x)∇
µ1

(2) . . .∇
µJ

(2)G
β
∆(x, x) + . . . (6.6)

the . . . now denoting terms at higher order in λ and/or contribute only to spins s < J . We

replace the thermal propagators by a sum over images and keep just the n = ±1 terms,

yielding

lnZ = lnZ
∣∣
λ=0

−16λ

∫
dd+1x

√
g∇(1)

µ1
. . .∇(1)

µJ
G∆(x, xβ)∇µ1

(2) . . .∇
µJ

(2)G∆(x, xβ)+ . . . (6.7)

Our task now is to expand the bilinear (using our convention that (µ, ν) indices correspond

to (x, y) respectively)

∇µ1 . . .∇µJ
G∆(x, y)∇ν1 . . .∇νJ

G∆(x, y) (6.8)

7 To get a maximal spin contribution the indices must be sequestered into two halves, with no

index contractions occurring within one set. This follows from the fact that a spin-J two-particle

state is created by a field bilinear with J uncontracted indices acting on the vacuum.
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in terms of spinning propagators and their derivatives. For present purposes we are just

interested in the coefficient of the spin-J propagator. In embedding space language (6.8)

corresponds to

(WX · ∇X)JG∆(u)(WY · ∇Y )
JG∆(u) = (WX · YWY ·X)JG

(J)
∆ (u)G

(J)
∆ (u) , (6.9)

where we used that u = −1−X ·Y and the notation (1.22). Following our general strategy,

the next step is to write

(WX · YWY ·X)JG
(J)
∆ (u)G

(J)
∆ (u) =

J∑
n=0

(WXY )
J−n(WX · ∇XWY · ∇Y )

npn(u) . (6.10)

The system of equation determining pn(u) is found by using (5.15) on the right hand side

and equating powers of WXY . As we will explain momentarily, we only need to work out

p0(u), so it is convenient to take a linear combination of equations and their derivatives

that isolates this function. Let Eq be the equation corresponding to the (WXY )
J−q term.

It is then straightforward to verify that the linear combination
∑J

q=0 q!(∂u)
J−qEq is

J !G
(J)
∆ (u)G

(J)
∆ (u) = (∂u)

Jp0(u) . (6.11)

Using the identity

G
(s)
∆1

(u)G
(s)
∆2

(u) =
∑
n≥0

a(s)n G
(s)
∆1+∆2+2n+s(u) (6.12)

with a
(s)
n given in (1.23) we have (with ∆1 = ∆2 = ∆)

p0(u) = J !
∞∑

n=0

a(J)n G2∆+2n+J (u) . (6.13)

With this result in hand we consider the expansion of (6.10) in terms of spinning propaga-

tors and their derivatives. From (5.9) it is clear that a term proportional to (WXY )
J can

only come from the spin-J propagator, since lower spin propagators will come with addit-

ional factors of (WX · ∇XWY · ∇Y ) attached. Therefore, our result for p0(u) immediately

gives us the spin-J contributions,

(WX · ∇X)JG∆(u)(WY · ∇Y )
JG∆(u) = J !

∞∑
n=0

a(J)n Π2∆+2n+J,J + . . . . (6.14)

Using this result in (6.7) gives

lnZ = lnZ
∣∣
λ=0

− 16J !λ
∞∑

n=0

a(J)n

∫
dd+1x

√
gTr[Π2∆+2n+J,J ] + . . . , (6.15)
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and we then read off the spin-J anomalous dimensions from (4.3),

γ(n, J) =
8J !a

(J)
n λ

2∆ + 2n+ J − h
. (6.16)

We also note that if we considered replacing the single field ϕ with two distinct fields ϕ1

and ϕ2, then (6.16) holds if we use the general expression (1.23), replace 2∆ → ∆1 +∆2,

and divide by a factor of two since there is now a single Wick contraction rather than two.

The result (6.16) was originally obtained in [12] by considering a four-point function

in the Regge limit, which picks out the highest spin contribution. Equation 5.44 of [12]

agrees with (6.16) upon using the free field OPE coefficients found in [35].

6.4. Another example

We now consider the interaction

Sint = λ

∫
dd+1x

√
g∇µϕ∇µϕ(∇µ1 . . .∇µJϕ)

2 . (6.17)

with J even. By working out the corresponding Mandelstam monomial we can see that this

2J + 2 derivative vertex has highest spin contribution given by spin-J . and we now work

out the corresponding anomalous dimensions. When considering the thermal diagram,

with y = xβ we will have the contributing structure

⟨∇µϕ(x)∇µ1
. . .∇µJ

ϕ(x)∇µϕ(y)∇µ1 . . .∇µJϕ(y)⟩ . (6.18)

We further form symmetric traceless combinations of each set of indices (this step does not

affect the leading spin contribution). We think of inserting a complete of states in between

the x and y operators. The claim is that only spins up to J contribute. It might appear

that spin-(J +1) can contribute, but of course this cannot happen since for a single scalar

there are no odd-spin two particle states. We then open up the indices and try to establish

a relation
⟨∇µϕ(x)∇µ1 . . .∇µJ

ϕ(x)∇µϕ(y)∇µ1 . . .∇µJϕ(y)⟩

=
∞∑

n=0

αn∇µ∇ν [Π∆n,J ,J ]µ1...µJ ;ν1...νJ
+ . . .

(6.19)

where . . . denote lower spin contributions, and

∆n,J ≡ 2∆ + 2n+ J . (6.20)

On the left hand side there are two distinct Wick contractions. In embedding space we

then consider the equation

WX · ∇X(WY · ∇Y )
JG∆(u)(WX · ∇X)JWY · ∇Y G∆(u)

+WX · ∇XWY · ∇Y G∆(u)(WX · ∇XWY · ∇Y )
JG∆(u)

=
J∑

n=0

(WXY )
J−n(WX · ∇XWY · ∇Y )

n+1pn(u) .

(6.21)
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As in our last example, knowledge of p0(u) will determine the spin−J contribution. If we

use the identity

WX · ∇X(WY · ∇Y )
JG∆(u)(WX · ∇X)JWY · ∇Y G∆(u)

+WX · ∇XWY · ∇Y G∆(u)(WX · ∇XWY · ∇Y )
JG∆(u)

=
1

2
WX · ∇XWY · ∇Y

{ J−1∑
m,n=1

(−1)m+n(WX · ∇X)m(WY · ∇Y )
nG∆(u)

× (WX · ∇X)J−m(WY · ∇Y )
J−nG∆(u)

}
,

(6.22)

then the needed relation becomes

1

2

J−1∑
m,n=1

(−1)m+n(WX · ∇X)m(WY · ∇Y )
nG∆(u)(WX · ∇X)J−m(WY · ∇Y )

J−nG∆(u)

=
J∑

n=0

(WXY )
J−n(WX · ∇XWY · ∇Y )

npn(u)

(6.23)

We can isolate p0(u) just like we did in the previous example, forming the combination∑J
q=0 q!(∂u)

J−qEq. In this case we find

1

2
(J − 1)2J !G

(J)
∆ (u)G

(J)
∆ (u) = (∂u)

Jp0(u) . (6.24)

The solution is then the same as (6.13) up to an overall factor,

p0(u) =
1

2
(J − 1)2J !

∞∑
n=0

a(J)n G2∆+2n+J(u) . (6.25)

This determines the coefficients in (6.19) as

αn =
1

2
(J − 1)2J !a(J)n . (6.26)

We now insert the identity into the contribution to the partition function from (6.17). We

integrate once by parts, using that the spin−J propagator has vanishing divergence and

obeys ∇2Π∆n,J ,J =
(
∆n,J(∆n,J − d) − J

)
Π∆n,J ,J . This yields (a factor of 4 comes from

the sum over images)

lnZ = lnZ
∣∣
λ=0

−4(J−1)2J !λ
∞∑

n=0

(
∆n,J(∆n,J−d)−J

)
a(J)n

∫
dd+1x

√
gTr[Π2∆+2n+J,J ]+. . . ,

(6.27)
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and we then read off the spin-J anomalous dimensions from (4.3),

γ̃(n, J) = 2(J − 1)2J !
(
∆n,J(∆n,J − d)− J

) a
(J)
n

2∆ + 2n+ J − h
λ . (6.28)

As a check, this can be compared to the d = 2 result computed in [12] from applying

the bootstrap. Our results yield the ratio between γ̃(n, J) and the anomalous dimensions

γ(n, J) computed in the last section,

γ̃(n, J)

γ(n, J)
=

1

2
(J − 1)2

(
∆n,J(∆n,J − d)− J

)
=

1

2
(J − 1)2

(
J(2J + 1) + (2∆ + 2n− 1)(2∆ + 2n+ 2J − 1)− (J + 1)2

)
(d = 2)

(6.29)

The bottom line was written to facilitate comparison to 4.16 and 4.19 of [12]. The ratio

given by those results in [12] agrees with (6.29) up to overall normalization which is not

fixed in [12], except that the (J + 1)2 term in (6.29) is absent. The latter discrepancy is

explained by the fact that in [12] they are discarding contributions that would come from

a (∇ϕ)4 vertex, which would contribute an n independent contribution to the ratio (6.29).

The point is that the n dependent terms match as they should.

7. (∇µϕ∇µϕ)2 interaction

We present one more example in detail. The four-derivative interaction

Sint = λ

∫
dd+1x

√
g(∇µϕ∇µϕ)2 (7.1)

yields anomalous dimensions for spin-2 and spin-0 double-trace primaries. Since we can

use integration by parts and the lowest order field equations to write (∇µϕ∇µϕ)2 =

ϕ2(∇µ∇νϕ)
2 plus terms with fewer derivatives, the computation of the spin-2 anomalous

dimensions is a special case of section 6. Extracting the spin-0 anomalous dimensions

requires additional work. For d = 2 these were computed in [12][19]; here we compute

these for arbitrary d and verify agreement with previous results for d = 2.

There are two distinct Wick contractions contributing to the partition function

lnZλ = −λ

∫
dd+1x

√
g
(
∇(1)

µ ∇µ
(2)G

β
∆(x, x)∇

(1)
ν ∇ν

(2)G
β
∆(x, x)

+ 2∇(1)
µ ∇(2)

ν Gβ
∆(x, x)∇

µ
(1)∇

ν
(2)G

β
∆(x, x)

)
.

(7.2)

Summing over the n = ±1 thermal images and using the identities (4.14)-(4.15), we have

lnZλ = −4λ

∫
dd+1x

√
gKµ1µ2;ν1ν2∇(1)

µ1
∇(2)

ν1
G∆(x, xβ)∇(1)

µ2
∇(2)

ν2
G∆(x, xβ) (7.3)
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where

Kµ1µ2;ν1ν2 = gµ1ν1gµ2ν2 + gµ1µ2gν1ν2 + gµ1ν2gν1µ2 . (7.4)

We separate out the traceless part by writing

Kµ1µ2;ν1ν2 = Lµ1µ2;ν1ν2 +
d+ 3

d+ 1
gµ1µ2gν1ν2 (7.5)

with the symmetric traceless tensor Lµ1µ2;ν1ν2 defined as

Lµ1µ2;ν1ν2 = gµ1ν1gµ2ν2 + gµ1ν2gν1µ2 −
2

d+ 1
gµ1µ2gν1ν2 . (7.6)

There are two contributions to the partition function,

lnZλ = lnZ
(1)
λ + lnZ

(2)
λ (7.7)

where

lnZ
(1)
λ = −4λ

(
d+ 3

d+ 1

)∫
dd+1x

√
g∇(1)

µ ∇(2)
ν G∆(x, xβ)∇µ

(1)∇
ν
(2)G∆(x, xβ)

lnZ
(2)
λ = −4λ

∫
dd+1x

√
gLµ1µ2;ν1ν2∇(1)

µ1
∇(2)

ν1
G∆(x, xβ)∇(1)

µ2
∇(2)

ν2
G∆(x, xβ) .

(7.8)

lnZ
(1)
λ is easily dealt with using

∇(1)
µ ∇(2)

ν G∆(x, y)∇µ
(1)∇

ν
(2)G∆(x, y)

=

[
1

2
∇2

x −∆(∆− d)

] [
1

2
∇2

y −∆(∆− d)

]
G∆(x, y)G∆(x, y)

=

[
1

2
∇2

x −∆(∆− d)

] [
1

2
∇2

y −∆(∆− d)

] ∞∑
n=0

a(0)n G2∆+2n(x, y)

=
∞∑

n=0

[
2(∆ + n)(∆ + n− h)−∆(∆− d)

]2
a(0)n G2∆+2n(x, y) ,

(7.9)

yielding

lnZ
(1)
λ = −4λ

(
d+ 3

d+ 1

) ∞∑
n=0

[
2(∆+n)(∆+n−h)−∆(∆−d)

]2
a(0)n

∫
dd+1x

√
gG2∆+2n(x, xβ) .

(7.10)

Turning to lnZ
(2)
λ we now work out the coefficients in the expansion (recall our con-

vention that µ/ν indices refer to x/y)

∇µ1∇ν1G∆(x, y)∇µ2∇ν2G∆(x, y)

=
∞∑

n=0

(
dn∇µ1∇µ2∇ν1∇ν2G2∆+2n(x, y) + 2a(2)n Π2∆+2n+2,2

µ1µ2;ν1ν2
(x, y)

)
+ traces .

(7.11)
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We have anticipated the fact, to be verified momentarily, that the spin-2 coefficients are

2a
(2)
n .

In embedding space we consider

WX · ∇XWY · ∇Y G∆(u)WX · ∇XWY · ∇Y G∆(u)

=
∞∑

n=0

(
dn(WX · ∇XWY · ∇Y )

2G2∆+2n + 2a(2)n Π2∆+2n+2,2

)
.

(7.12)

Following our strategy in section 6 we first consider

WX ·∇XWY ·∇Y G∆(u)WX ·∇XWY ·∇Y G∆(u) =

2∑
n=0

(WXY )
2−n(WX ·∇XWY ·∇Y )

npn(u) .

(7.13)

Applying (5.15) the coefficient functions are determined from

p′′0 = 2G
(2)
∆ G

(2)
∆

p′′′1 = 4G
(2)
∆ G

(2)
∆ − (G

(1)
∆ G

(1)
∆ )′′

p′′′′2 = G
(2)
∆ G

(2)
∆ .

(7.14)

From the first equation we deduce

p0 = 2
∞∑

n=0

a(2)n G2∆+2n+2 . (7.15)

As in our previous examples, knowledge of p0 fixes the highest spin contribution, here

spin-2, and we confirm the spin-2 coefficients in (7.11).

We now turn to the computation of dn, for which there are various way to proceed.

One option is take the divergence of (7.11) which projects out the spin-2 terms. We instead

work in the (WXY ,WX ·YWY ·X) basis and use the explicit form of the spin-2 propagator

Π∆,2(X,Y ) =
2∑

k=0

(WXY )
2−k

(
WX · YWY ·X

)k
g∆,2
k (u) . (7.16)

The (WXY )
2 term in the equation (7.12) is

G
(1)
∆ G

(1)
∆ = 2

∞∑
n=0

(
dnG

(2)
2∆+2n + a(2)n g2∆+2n+2,2

0

)
. (7.17)

Using the known expression for g2∆+2n+2,2
0 we solve this equation for dn, obtaining

dn =

(
(2h− 1)n2 + (2h− 1)(2∆− h)n+ h∆(2∆− 2h− 1)

2h(2∆ + 2n+ 1)(2∆ + 2n− 1− 2h)

)2

a(0)n . (7.18)

27



So, we have now determined the expansion (7.11).

Returning to (7.8) we can use integration by parts to write (under an integral sign

Lµ1µ2;ν1ν2∇µ1∇µ2∇ν1∇ν2G∆(x, xβ)

= 2
(
∆(∆− d)− d− 1

d+ 1
∆(∆− d)

)
∆(∆− d)G∆(x, xβ)

=
2d

d+ 1
∆(∆ + 1)(∆− d− 1)(∆− d)G∆(x, xβ) .

(7.19)

We therefore have

lnZ
(2)
λ = −8λ

∞∑
n=0

( d

d+ 1
∆n(∆n + 1)(∆n − d− 1)(∆n − d)dn

∫
dd+1x

√
gG∆n(x, xβ)

+ 2a(2)n

∫
dd+1x

√
gTr[Π∆n+2,2(x, xβ)]

)
(7.20)

where

∆n = 2∆+ 2n . (7.21)

Putting our results together, we can now read off the anomalous dimensions from (4.3),

γ(n, 2) =
8a

(2)
n

2∆ + 2n+ 2− h
λ

γ(n, 0) = 2

(
d+ 3

d+ 1

) [
2(∆ + n)(∆ + n− h)−∆(∆− d)

]2
2∆ + 2n− h

a(0)n λ

+
4d

d+ 1

∆n(∆n + 1)(∆n − d− 1)(∆n − d)

2∆ + 2n− h
dnλ

(7.22)

Upon setting d = 2, one can verify that this matches A.7 of [19], which in turn matches

D.1 of [12], after taking into account that the latter authors throw away terms that would

come from a no-derivative ϕ4 interaction.

8. Discussion

The purpose of this work was to develop an efficient approach to computing thermal

AdS partition functions of weakly coupled scalar fields, both for its own sake and for

extracting anomalous dimensions of double trace operators, as is relevant for the AdS/CFT

correspondence. We found that this provides a strikingly simple way of extracting anom-

alous dimensions induced by contact interactions, and in particular we were able to easily

generalize known results to arbitrary spacetime dimension. In our approach, no explicit

AdS integrations need be performed, as these are all absorbed into the definition of the
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characters in terms of which the computation is expressed. This simplification is analogous

to that provided by the use of geodesic Witten diagrams in the computation of boundary

correlation functions [22]. We worked out various illustrative examples in which we could

make contact with previous results, but it should be clear that it is straightforward to

handle any scalar contact interaction, and we outlined the general procedure for doing so.

There are numerous natural directions in which to extend these results. One is to

replace our scalar fields by fields with spin. The same strategy will apply, with the new

ingredient being that one needs to expand the product of two spinning propagators in terms

of other spinning propagators. Other obvious directions to pursue are to include exchange

interactions and higher loop effects. One would again like to organize the computation so

as to avoid having to perform difficult AdS integrals; this will require the use of propagator

identities that go beyond those implemented in this work.
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Appendix A. Scalar partition function with angular potentials

In this appendix we discuss the computation of scalar characters and partition function

functions in the presence of angular potentials.

A.1. CFT character

Given the SO(d,2) symmetry group of CFTd, we can take the Cartan generators to

be the dilatation operator H and the 2r Cartan generators of SO(d), where d = 2r or

d = 2r + 1. We write the latter generators as

Hi = M2i−1,2i , i = 1, ...r . (A.1)

Given

[Mab, Pc] = i(δacPb − δbcPa) , (A.2)

we have that P±
j = P2j−1 ± iP2j obey

[H,P±
j ] = P±

j , [Hi, P
±
j ] = ±δijP

±
j . (A.3)
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The character is

χ∆,R(β, µi) = Tr

[
e
−βH−i

∑
j
µjHj

]
. (A.4)

We here restrict attention to scalar primaries, with R being the singlet representation of

SO(d); for general results see [36]. Acting on the primary state with any string of P±
i we

compute

χ∆,0(β, µi) =


q∆∏r

j=1
(1−qyj)(1−q/yj)

d = 2r

q∆

(1−q)
∏r

j=1
(1−qyj)(1−q/yj)

d = 2r + 1
(A.5)

with

q = e−β , yj = eiµj . (A.6)

A.2. Free Partition Function in AdS

The introduction of non-zero angular potentials is easily incorporated into the previous

computation in section 3. We first consider the case of d even and write d = 2r. In

embedding space a thermal translation is now described as

X1 ±X2r+2 → X1
β ±X2r+2

β = e±β
(
X1 ±X2r+2

)
X2j ± iX2j+1 → X2j

β ± iX2j+1
β = e±iµj

(
X2j

β ± iX2j+1
β

)
, j = 1, 2, . . . r .

(A.7)

It is convenient to use coordinates adapted to these identifications,

X2r+2 ±X1 =
√
1 + r21 + . . .+ r2re

±t

X2j ± iX2j+1 = rje
±iϕj .

(A.8)

The half-chordal distance between a point and its thermal image is

u(x, xβ) = −1 + coshβ − r21(cosµ1 − coshβ)− ...− r2r(cosµr − coshβ). (A.9)

The AdS integral in (3.17) becomes∫
dd+1x

√
ge−2utt̄

=

∫
dt

r∏
i

∫
ridri

∫
dϕie

2tt̄(1−cosh β+r21(cosµ1−cosh β)+...+ r2r(cosµr−cosh β))

= β(2π)re2tt̄(1−cosh β)
r∏

i=1

(∫ ∞

0

ridri e
2tt̄ r2i (cosµi−cosh β)

)

= β(2π)re2tt̄(1−cosh β)
r∏

i=1

(
1

2tt̄ 2(coshβ − cosµi)

)
= πh βqd∏d/2

i=1(1− qyi)(1− q/yi)
(tt)−he−2(cosh β−1)tt .

(A.10)
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All the other integrals proceed in exactly the same way as in eq. (3.17)-(3.19), yielding

lnZ1 =
q∆∏d/2

i=1((1− qyi)(1− q/yi))
. (A.11)

We wrote Z1 since we are only considering the single winding contribution. Similarly, for

d = 2r + 1, we get

lnZ1 =
q∆

(1− q)
∏r

i=1(1− qyi)(1− q/yi)
(A.12)

These results are in agreement with (A.5).

Appendix B. Free spin-1 partition function

The free spin-1 propagator was given in (4.20),

(Π∆)µ;ν(x, y) = − ∂2u

∂xµ∂yν
g0(∆;u) +

∂u

∂xµ

∂u

∂yν
g1(∆;u) . (B.1)

We compute its trace using the relations

gµν
∂2u

∂xµ∂yν
= −(d− 1)− (q + q−1) + u

gµν
∂u

∂xµ

∂u

∂yν
= (u− q − q−1)u

(B.2)

where we are using the fact that the metric is the same at the points x and y since they are

related by a translation in t; we are working in global coordinates. The functions g0 and

g1 are given in (4.21),(4.22). They are expressed in terms of G∆(u) and first and second

derivatives thereof, with each term given by a degree one polynomial u. Starting from

the representation (3.12) for G∆(u), and noting that each u derivative just brings down a

factor of −2tt, we arrive at the expression (3.23),

Tr [Π∆(u)] =
1

πd/2

∫ i∞

−i∞

dc

2πi
f(c)

∫ ∞

0

dtdt

tt
td/2+ct

d/2−c
e−(t+t)2−2ttuP∆(u, tt) (B.3)

where P∆(u, tt) is a degree 3 polynomial in u and a degree two polynomial in tt, whose

explicit form is not particularly illuminating. We now evaluate the partition function from

(3.21),

lnZ =

∞∑
n=1

∫ ∞

∆

d∆(2∆− d)

∫
d3x

√
gTr [Π∆(x, xnβ)] . (B.4)

The remaining steps are straightforward and not particularly instructive to display in

detail. We first carry out the AdS integrals, followed by the (t, t) integrals, and finally
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evaluate the c integral by evaluating residues. The last step involves one subtlety, which

is that there are poles in the right half plane at c = ∆− h and also at c = 1. The former

pole yields the desired partition function, which makes it clear that we should choose

the integration contour to run to the right of the c = 1 pole, a fact which we have not

attempted to justify from first principles. Taking this into account, it is straightforward

to arrive at the expected result

lnZ =
∞∑

n=1

1

n

dqn∆

(1− qn)d
. (B.5)

This same strategy can be applied to higher spins as well, though we expect the details to

be more involved.

Appendix C. Anomalous dimensions from four-point Witten diagrams

Progress in the conformal bootstrap program has led to powerful methods for comp-

uting anomalous dimensions. In this section, we review an efficient bootstrap-based

method that is the natural sibling of the partition function approach taken in this paper.

We decompose the four-point Witten diagram of interest into conformal blocks, and

then extract the anomalous dimensions from the coefficients in this expansion. This

section will discuss this method for derivative contact tree diagrams developed in [26],

[37], and closely follows the review in [38], to which we refer the reader for further

details and subtleties omitted here. We focus on the contact diagram with vertex

λϕ1(∇µ1 . . .∇µJ
ϕ2)ϕ3(∇µ1 . . .∇µJϕ4).

Working in embedding space8 (reviewed in Section 5), the (symmetric part of) the

derivative contact diagram we are interested in is

Aϕ4

J (xi) =
λ(

J !
(
d−1
2

)
J

)2 ∫
AdS

dY K∆1
(Y,X1)(K · ∇)JK∆2

(Y,X2)

K∆3(Y,X3)(K · ∇)JK∆4(Y,X4),

(C.1)

where K∆ ≡ K∆,0 is the spin-0 bulk-to-boundary propagator 9, and we abuse notation to

denote the projector onto AdS by K (see e.g [26], [25] for further details). We will first

use the spinning completeness relation

J∑
l=0

∫
dνcJ,J−l(ν)((W1 · ∇1)(W2 · ∇2))

J−lΩν,l(Y1, Y2,W1,W2) = δ(Y1, Y2)(W12)
J , (C.2)

8 We denote integrals over AdS as
∫
AdS

dY , and over the boundary as
∫
∂AdS

dX .
9 Explicitly, K∆,J(Y, P ;W,Z) = C∆,J

((−2P ·Y )(W ·Z)+2(W ·P )(Z·Y )))J

(−2P ·Y )∆+J , with normalization C∆,J =
(∆−1+J)Γ(∆)

2πd/2(∆−1)Γ(∆+1−d/2)
. We will often suppress the last two arguments of K∆,J for brevity.

32



where the spectral function is [26]

cJ,l(ν) =
2l(J − l + 1)l(h+ J − l − 1/2)l

l!(2h+ 2J − 2l − 1)l(h+ J − l − iν)l(h+ J − l + iν)l
, (C.3)

where we refer the reader to [26], [25] for a definition and properties of the harmonic

function Ων,l not immediately needed here. Using the completeness relation, the contact

diagram becomes

Aϕ4

J (xi) =
λ(

J !
(
d−1
2

)
J

)2 J∑
l=0

∫
dνcJ,J−l(ν)

∫
AdS

dYAdYB

×K∆1(YA, X1)(KA · ∇A)
JK∆2(YA, X2)((W1 · ∇1)(W2 · ∇2))

J−l

× Ων,l(YA, YB ,W1,W2)K∆3(YB , X3)(KB · ∇B)
JK∆4(YB, X4).

(C.4)

The spins of the operators in the block expansion are at this point determined, as we will

see shortly. Now, we use the split representation

Ω∆ν ,J(Y1, Y2;W1,W2) =
ν2

πJ !(h− 1)J

∫
∂AdS

dPK∆ν ,J(Y1, P ;W1, DZ)K∆̃ν ,J
(Y2, P ;W2, Z)

(C.5)

to write the contact diagram as products of AdS three-point functions. We use the sub-

script ν to indicate dimensions lying on the principal series ∆ν = d
2 + iν with real spectral

parameter ν. We denote the dimension of the shadow operator as ∆̃ = d−∆. The diagram

becomes

Aϕ4

J (xi) =
λ(

J !
(
d−1
2

)
J

)2 J∑
l=0

∫
cJ,J−l(ν)ν

2dν

πl!(h− 1)l

∫
∂AdS

dP∫
AdS

dYAK∆1(YA, X1)(KA · ∇A)
JK∆2(YA, X2)(W1 · ∇1)

J−lK∆ν ,J(YA, P ;W1, DZ)∫
AdS

dYBK∆3(YB , X3)(KB · ∇B)
JK∆4(YB , X4)(W2 · ∇2)

J−lK
∆̃ν ,J

(YB , P ;W2, Z).

(C.6)

The three-point integrals are known:

1

J !
(
d−1
2

)
J

∫
AdS

dY K∆1(Y,X1)(KA · ∇A)
JK∆2(Y,X2)(W3 · ∇3)

J−lK∆3,l(Y,X3;W3, Z)

= b(∆1,∆2,∆3, l, J)⟨O1(X1)O2(X2)O3(X3, Z)⟩,
(C.7)

where b(∆1,∆2,∆3, l, J) was computed in [26]. The spinning three-point structure, defined

as the three-point function without the OPE coefficient, is

⟨O1(P1)O2(P2)O3(P3, Z)⟩ = ((Z · P1)P23 − (Z · P2)P13)
J

P
∆1+∆3−∆2+J3

2
13 P

∆2+∆3−∆1+J3
2

23 P
∆1+∆2−∆3+J3

2
12

. (C.8)
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We then have

Aϕ4

J (xi) =

J∑
l=0

∫
cJ,J−l(ν)ν

2dν

πl!(h− 1)l
b(∆1,∆2,∆ν , J, l)b(∆3,∆4, ∆̃ν , J, l)

×
∫
∂AdS

dP ⟨O1(X1)O2(X2)Oν(P,DZ)⟩⟨Õν(P,Z)O3(X3)O4(X4)⟩.

(C.9)

The above integral of two three-point structures defines the conformal partial wave

Ψ1234
∆,J (xi), which is related to the conformal block as10

Ψ1234
∆ν ,l(xi) = K∆3,∆4

∆̃ν ,l
g1234∆ν ,l(xi) +K∆1,∆2

∆ν ,l
g1234
∆̃ν ,l

(xi). (C.10)

The contact diagram becomes

Aϕ4

J (xi) =
J∑

l=0

∫
cJ,J−l(ν)ν

2dν

πl!(h− 1)l
b(∆1,∆2,∆ν , J, l)b(∆3,∆4, ∆̃ν , J, l)Ψ

1234
∆ν ,l(xi). (C.11)

We can close the ν contour in the lower half plane for g1234∆ν ,l
(xi) and the upper half for

g1234
∆̃ν ,l

(xi) to obtain the conformal block decomposition, but we leave this step implicit for

now. The poles in the b-factors determine which operators appear.

To proceed further, it is helpful to focus on a simple example, the maximal spin case

l = J . The b-factors are

b∆1,∆2,∆,J,J = C∆1,0C∆2,0C∆,J

×
πd/2Γ

(
∆1+∆2−∆̃+J

2

)
Γ
(
∆1+∆2−∆+J

2

)
Γ
(
∆2+∆−∆1+J

2

)
Γ
(
∆+∆1−∆2+J

2

)
21−JΓ(∆1)Γ(∆2)Γ(∆3 + J)

.

(C.12)

The poles in the integrand that contribute are at double trace locations ∆ν = ∆1 +∆2 +

2n+ J and ∆3 +∆4 + 2n+ J , and their shadows11.

Anomalous dimensions arise as double-poles in spectral space; that is, when the poles

corresponding to [O1O2]n,J and [O3O4]n,J exchange coincide. For simplicity, we will take

∆3 = ∆1 and ∆4 = ∆2. As first studied in [12], the term in the block expansion that

contains the anomalous dimensions is of the form Ts(xi)
∑

n,l p
(0)
n,lγ

(1)
n,l

(
1
2∂n

)
g1234∆n,l,l

(xi),

10 The normalization of the conformal block we use is

K∆1,∆2
∆,J =

(
− 1

2

)J πd/2Γ(∆− d
2 )Γ(∆+J−1)Γ

(
∆̃+J+∆1−∆2

2

)
Γ

(
∆̃+J+∆2−∆1

2

)
Γ(∆−1)Γ

(
∆̃+J

)
Γ
(

∆+J+∆1−∆2
2

)
Γ
(

∆+J+∆2−∆1
2

) .

11 The integrand is shadow symmetric, so we need only analyse the poles in the lower-half ν

plane. See [38] for discussion of spurious poles in this context.
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where Ts(xi) is a purely kinematic prefactor that will not be important here and p
(0)
n,l are

the squared mean field theory coefficients [12][35][39],

p
(0)
n,l =

(−1)n(∆1 − h+ 1)n(∆2 − h+ 1)n(∆1)l+n(∆2)l+n

l!n!(l + h)n(∆1 +∆2 + n− 2h+ 1)n(∆1 +∆2 + 2n+ l − 1)l(∆1 +∆2 + n+ l − h)n
.

(C.13)

Putting everything together, the anomalous dimensions are therefore12

γn,J = −
4(∆n,J − h)2K∆1,∆2

∆̃n,J ,J

J !(h− 1)Jp
(0)
n,J

Coeff2
∆ν=∆n,l

[
b(∆1,∆2,∆ν , J, J)b(∆1,∆2, ∆̃ν , J, J)

]
,

(C.14)

where Coeff2
∆ν=∆n,l

indicates the coefficient of the double pole. In this case, for non-

negative integer n,

Coeff2
n=0,1,2,...

[
Γ2(−n)

]
=

1

(n!)2
. (C.15)

This result matches (1.24) when setting the operators identical, up to a factor independent

of n,∆. For submaximal spins (l ≤ J) we need to include the trace contributions as well,

which can also be computed as we have described using [26].

To summarize, this approach required the completeness relation (C.2), the split repres-

entation (C.5), and three-point integrals (C.12), and did not require the explicit blocks

or solving crossing.13 Once these identities are assembled, the block decomposition foll-

ows automatically, and the anomalous dimensions can be easily read off. Compared to the

partition function approach, this is an indirect method of obtaining anomalous dimensions.

However, much of the necessary computation has already been carried out, and conformal

symmetry can be used to greatly simply the structure.

It would be interesting to derive identities like (1.21), where two propagators can

be expanded in a basis of single propagators, using a similar approach. By embedding

this identity in a four-point Witten diagram, and then equating the double discontinuities

of the resultant bubble and tree diagrams (computed in [38]), one can derive the zero-

derivative coefficients a
(0)
n . We leave a similar investigation of the derivative relations to

future work.14

12 Note that for the maximal spin case, cJ,0(ν) = 1.
13 At least, for the contact diagram. For the exchange diagram and certain loop diagrams [17],

[38], we will need to expand blocks in the crossed channel, which requires use of the explicit blocks

or the 6j symbol of the Euclidean conformal group.
14 It would be interesting to take this approach and make contact with the method in [40].
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