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Abstract. To this day, the maximum clique problem remains a computationally chal-
lenging problem. Indeed, despite researchers’ best efforts, there exist unsolved benchmark
instances with 1,000 vertices. However, relatively simple algorithms solve real-life in-
stances with millions of vertices in a few seconds. Why is this the case?Why is the problem
apparently so easy in many naturally occurring networks? In this paper, we provide an
explanation. First, we observe that the graph’s clique number ω is very near to the graph’s
degeneracy d in most real-life instances. This observation motivates a main contribution of
this paper, which is an algorithm for the maximum clique problem that runs in time
polynomial in the size of the graph, but exponential in the gap g ≔ (d + 1) − ω between the
clique number ω and its degeneracy-based upper bound d+1. When this gap g can be
treated as a constant, as is often the case for real-life graphs, the proposed algorithm runs in
time O(dm) � O(m1.5). This provides a rigorous explanation for the apparent easiness of
these instances despite the intractability of the problem in the worst case. Further, our
implementation of the proposed algorithm is actually practical—competitive with the best
approaches from the literature.
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1. Introduction
To this day, the maximum clique problem remains a
computationally challenging problem. Indeed, de-
spite researchers’ best efforts, there exist unsolved
benchmark instances with n � 1, 000 vertices. Exam-
ples from the 2nd DIMACS Implementation Chal-
lenge (DIMACS_2) are given in Table 1, none ofwhich
were solved in a four-hour time limit in the exposi-
tory paper of Prosser (2012). Another set of notori-
ously hard instances arise from error-correcting codes
(Sloane 2017). For example, the instance 2dc.2048
took 300 CPU days (in 2015) to solve with a branch-
and-bound algorithm, and the instance 1dc.1024 took
200 CPU days (in 2005) to solve using Lovász theta
semidefinite program (SDP) bounds.

In contrast, relatively simple algorithms, which do
not rely on sophisticated SDP bounds or supercom-
puters, often solve real-life instances with millions of
vertices in seconds. Examples from the DIMACS 10
and the Stanford Large Network Dataset Collection
(SNAP) are given in Table 2. Here, we report the time
(in seconds) to solve them using the single-threaded
version of our implementation. As we will see, these

times are competitive with recent exact approaches,
such as Buchanan et al. (2014), Rossi et al. (2015), and
Verma et al. (2015).
Why? Why is it that such small instances, like the

700-vertex graph p_hat700-3 and the 1,024-vertex
graph 1dc.2014, are left unsolved even after hours of
computation, using carefully designed exact algo-
rithms that exploit decades of theory? At the same
time, why are we able to solve very large real-life
graphs, like the 18,520,486-vertex graph uk-2002, in a
matter of seconds?
To answer these questions, consider the instances

in Table 2. Empirically, these large, real-life instances
have a small clique-core gap, which we define as
g :� (d + 1) − ω. (Here,ω is the graph’s clique number,
and d is the graph’s degeneracy, also known as the
k-core number.) Indeed, the clique-core gap is at most
two on all but one of these easy instances. Similarly,
Rossi et al. (2015) plot the ratio ω/(d + 1) for many
real-life graphs and note that it is often close to 1,
particularly for collaboration and web graphs. In
contrast, the challenging instances given in Table 1
have large clique-core gaps—never less than 365.

1866

http://pubsonline.informs.org/journal/opre
mailto:josewalt@buffalo.edu
https://orcid.org/0000-0002-8258-7532
https://orcid.org/0000-0002-8258-7532
mailto:buchanan@okstate.edu
https://orcid.org/0000-0003-2999-9666
https://orcid.org/0000-0003-2999-9666
https://doi.org/10.1287/opre.2019.1970


Is this pattern more than just a coincidence? Must
hard instances have a large clique-core gap? Put
differently, are instances with small clique-core gap
always easy to solve? In this paper, we answer these
questions in the affirmative.

To prove this, we provide an algorithm for the
maximum clique problem whose running time is
bounded by 1.28gnO(1), where the polynomial function
of the number n of vertices does not depend on the
clique-core gap g. When the clique-core gap can be
treated as a constant, as is often the case for real-life
graphs, the proposed algorithm runs in time O(dm) �
O(m1.5), where m refers to the number of edges.
Furthermore, the largest instance in Table 2, called
uk-2002, falls into a class of instances that are solved
by our algorithm in linear time. This provides a rig-
orous explanation for the apparent easiness of these
instances despite the intractability of the maximum
clique problem in the worst case. As a bonus, our
implementation is actually practical and competi-
tive with state-of-the-art approaches for large, real-
life graphs, like those of Verma et al. (2015) and Rossi
et al. (2015), which run quickly in practice but lack
worst-case time bounds. Our implementation is publicly
available at https://github.com/jwalteros/dOmega.

1.1. Our Contributions
In Section 2, we review previous work on the maxi-
mum clique problem and discuss concepts thatwill be
employed in our approach, such as graph degeneracy,
minimum degree orderings, and the parameterized
complexity of the minimum vertex cover problem. In
Section 3, we provide an algorithm that, when given a
graph G and a nonnegative integer p, answers the
question: “Does G have a clique of size d + 1 − p?”We
analyze its running timewhen applied to this decision
problem and also when used as a subroutine for
solving the maximum clique problem. In Section 4,
we present computational results over 60 instances

arising from different real-world applications that are
often used to test graph algorithms. Fifty of these 60
instances were also considered by Verma et al. (2015)
to test their own approach for maximum clique. We
show that 14 of these instances can be solved by our
approach in linear time, allowing us to exclude them
in further tests. We also compare our running times
with those of Verma et al. (2015), Rossi et al. (2015),
and Buchanan et al. (2014) and demonstrate that our
approach is practical and competitive. In Section 5,
we provide further insights into why our approach
can run relatively quickly even when g is moderately
large. In Section 6, we conclude and offer insights and
roadblocks for other possible parameterizations for
the maximum clique problem and for the minimum
vertex coloring problem.

2. Background
In this section, we set the stage by reviewing concepts
like graph degeneracy and k-cores. We discuss how
they have been used to solve the maximum clique
problem, particularlywhen the input is a large, sparse
graph. Then, we review topics from parameterized
complexity used in our approach, including kerneliza-
tion and fixed-parameter tractable (fpt) algorithms for
vertex cover.
We consider a simple graph G � (V,E) with vertex

set V and edge set E ⊆ (V2). The number of vertices and
edges of G are denoted by n :� |V| and m :� |E|, re-
spectively. The subgraph of G induced by the ver-
tex subset S ⊆ V is denoted by G[S] :� (S, (S2) ∩ E).
The complement of G is denoted G � (V,E), where
E � (V2) \ E. The neighborhood of a vertex v ∈ V in G is
denoted NG(v) :� {w ∈ V | {v,w} ∈ E}, and the degree
of v is degG(v) :� |NG(v)|. The minimum and maxi-
mum degrees of G are denoted by δ(G) and Δ(G),
respectively. A graph G is r-regular if r � δ(G) � Δ(G).
A clique C ⊆ V is a subset of pairwise adjacent ver-
tices, that is, every {i, j} ∈ (C2) belongs to E. The size
of a largest clique in G is denoted ω(G). A clique of

Table 1. Instances from DIMACS_2 that Are Not Solved in
a Four Hour Time Limit, by the Algorithms MCQ1, MCSa1,
and MCSb1, per Prosser (2012)

Graph n m ω d + 1 g Time

brock800_1 800 207,505 23 488 465 >14,400
brock800_2 800 208,166 24 487 463 >14,400
brock800_3 800 207,333 25 484 459 >14,400
hamming10-4 1,024 434,176 40 849 809 >14,400
johnson32-2-4 496 107,880 16 436 420 >14,400
keller5 776 225,990 27 561 534 >14,400
keller6 3,361 4,619,898 ≥59 2,691 ≤2,632 >14,400
MANN_a81 3,321 5,506,380 ≥1,100 3,281 ≤2,181 >14,400
p_hat700-3 700 183,010 ≥62 427 ≤365 >14,400
p_hat1000-3 1,000 371,746 ≥68 610 ≤542 >14,400
p_hat1500-2 1,500 568,960 ≥65 505 ≤440 >14,400
p_hat1500-3 1,500 847,244 ≥94 930 ≤836 >14,400

Table 2. Some Real-Life Graphs from DIMACS_10
and SNAP

Graph n m ω d + 1 g Time

coAuthorsDBLP 299,067 977,676 115 115 0 0.04
web-NotreDame 325,729 1,090,108 155 156 1 0.07
coPapersCiteseer 434,102 16,036,720 845 845 0 0.17
coPapersDBLP 540,486 15,245,729 337 337 0 0.20
web-BerkStan 685,230 6,649,470 201 202 1 0.25
eu-2005 862,664 16,138,468 387 389 2 0.50
in-2004 1,382,908 13,591,473 489 489 0 0.47
wiki-Talk 2,394,385 4,659,565 26 132 106 36.92
uk-2002 18,520,486 261,787,258 944 944 0 15.72

Note. Solve times are reported for our implementation using one
thread.
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largest possible size is called a maximum clique.
When the graphG in question is clear, the subscript or
argument G is often dropped from the aforemen-
tioned notations. When k is a positive integer, we let
[k] :� {1, 2, . . . , k}.

2.1. Caveman Graphs
Figure 1 provides a connected caveman graph, which
will be used for illustrative purposes throughout this
paper. The class of connected caveman graphs was
introduced by Watts (1999) in the context of social
network analysis. They are generated by taking a
disjoint collection of cliques (“caves”) and rewiring
one edge within each clique to a nearby clique (e.g.,
replacing {6, 7} by {6, 1}), creating a cycle. There are
10 maximum cliques in this graph, including the
set {2, 3, 4, 5}.

2.2. Degeneracy, k-Cores, and MD Orderings
A common preprocessing procedure for the maxi-
mum clique problem is based on k-cores (see the
peeling procedure of Abello et al. (1999)). The idea is
as follows. Suppose there is a known lower bound L
on the clique number. Then, a vertex in a maximum
clique will neighbor (at least) L − 1 vertices in said
clique, and so its degree in the original graph will also
be at least L − 1. Importantly, a vertexwith degree less
than L − 1 cannot belong to amaximum clique and can
be safely deleted from the instance. This deletion
lowers the degrees of its neighbors, making them
candidates for deletion, and so this degree check can

be performed iteratively. At the end, what remains is
the k-core of the graph, where k � L − 1. The name
k-core comes from Seidman (1983). For many real-life
graphs, this preprocessing is especially helpful given
the large numbers of low-degree vertices and the fact
that it can be implemented to run in linear time
(Matula and Beck 1983).

Definition 1 (k-Core). For an integer k, the k-core of a
graph G is the maximum subgraph G′ of G satisfying
δ(G′) ≥ k (if one exists).

As anexample, the connected cavemangraphdepicted
in Figure 1 is itself the graph’s 3-core, since every
vertex has degree at least three. The graph itself is also
the 1-core and the 2-core.
Similar ideas can also be used to find an upper bound

on the clique number. Specifically, suppose that the
graph has no k-core, then there can be no clique of k + 1
vertices. For example, it can be observed that our
caveman graph has no 4-core, and so it has no clique
of five vertices; thus, ω ≤ 4.
The largest integer k forwhich there exists a k-core is

sometimes called the (highest) k-core number of the
graph (Bader and Hogue 2003), which we will denote
by d. The reason for using the notation d is that the
k-core number is equivalent to the graph invariant
called degeneracy, as defined by Lick and White
(1970).1

Definition 2 (Degeneracy). A graph is said to be d-
degenerate if every subgraph (with at least one vertex)
has a vertex of degree at most d. The degeneracy of a
graph is the smallest value of d such that it is
d-degenerate.

As we have just argued, a degeneracy-based upper
bound on the clique number is ω ≤ d + 1, and Table 2
given in the introduction illustrates that this bound is
often very strong on real-life graphs. Fortunately,
computing this bound is an easy task. Indeed, an
algorithm of Matula and Beck (1983) finds it in lin-
ear time by computing a vertex ordering satisfying
Lemma 1.

Lemma 1 (Lick andWhite 1970). A graph is d-degenerate if
and only if it admits a vertex ordering (v1, v2, . . . , vn) in
which each vertex vi has at most d neighbors after it in the
ordering, that is, |N(vi) ∩ {vi, vi+1, . . . , vn}| ≤ d, for every
i ∈ [n].
The algorithm by Matula and Beck (1983) works by

iteratively removing a vertex of minimum degree (in
the remaining graph) and appending it to the or-
dering. The ordering that results is not only a de-
generacy ordering, but also aminimumdegree ordering,
which is the name given by Nagamochi (2010). In our
proposed algorithm, we employ a minimum degree
ordering.2

Figure 1. (Color online) An Example of a Connected
Caveman Graph
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Definition 3 (MD Ordering). A minimum degree (MD)
ordering of a graph G � (V,E) is a vertex ordering
(v1, v2, . . . , vn) such that

degG Si[ ] vi( ) � δ G Si[ ]( ),
for every i ∈ [n], where Si :� {vi, vi+1, . . . , vn}.

As an example, Figure 2 gives an MD ordering of
the connected caveman graph from Figure 1. Here,
each vertex has at most three neighbors after it in
the ordering, and so the graph is 3-degenerate (and
4-degenerate and 5-degenerate and so on), and the
graph’s degeneracy is d � 3. So, by our upper bound
ω ≤ d + 1 we can argue that the clique number of
our connected caveman graph is at most four. Since
the clique number is indeed four, the clique-core gap
g :� (d + 1) − ω here is zero. It can be observed that all
caveman graphs constructed by the procedure of
Watts (1999) have g � 0.

The idea behind k-core preprocessing for the max-
imum clique problem is to remove low-degree vertices
that cannot be part of an optimal solution. A similar
procedure can be used to remove “low-degree” edges.
Namely, when given a lower bound L on the clique
number, one can safely and iteratively remove edges
{i, j}whose endpoints have fewer than L − 2 common
neighbors. This leads to the essentially equivalent no-
tions of k-truss (Cohen 2008), k-community (Verma
et al. 2015), and triangle-core (Rossi 2014).3 By iter-
atively removing an edge {i, j}whose endpoints have
a minimum number |N(i) ∩N( j)| of common neigh-
bors, one can compute the k-truss of a graph, for any k,
in timeO(m1.5), as first described byWang and Cheng
(2012). This gives rise to the notion of community
degeneracy c, which is the largest value c for which
there exists a subgraph in which the endpoints of
each edge have at least c neighbors in common. The
associated upper bound on the maximum clique
number is ω ≤ c + 2. Conceivably, one could extend
the approach that we propose in this paper to develop
an algorithm whose running time is polynomial in
the size of the graph, but exponential in the gap

betweenω and c + 2. However, the polynomial part of
its running time, O(m2), would become too much of a
hindrance when attempting to solve very large in-
stances (with hundreds of millions of edges), so we
will not take that route in this paper.
Asafinal remark, the k-core and k-trusspreprocessing

procedures for solving the maximum clique problem
can be thought of as quick and specialized variants of
probing (Savelsbergh 1994).

2.3. Maximum Clique in Graphs with Millions
of Vertices

In this section, we review previous approaches for
solving themaximum clique problem, particularly for
sparse graphswithmillions of vertices. The interested
reader is directed to the survey of Bomze et al. (1999)
for more information about the maximum clique
problem more generally and to the expository com-
puter implementation paper of Prosser (2012).
Abello et al. (1999) were perhaps the first to try to

solve the maximum clique problem in a graph with
millions of vertices. They considered a multigraph
(allowing parallel edges) with > 53 million vertices
and > 170 million edges obtained from AT&T call
data. In its largest (connected) component of 45
million vertices, they found a clique of size 30 using
the Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic, but were unable to prove its
optimality. A key step in their approach is the k-core
procedure, which they called “peeling.” No running
times were given, and the AT&T call data multigraph
was never made publicly available.
Years later, Verma et al. (2015) and Rossi et al.

(2015) independently worked on this problem and
gave detailed computational experiments for publicly
available instances.4 Like Abello et al. (1999), both
Verma et al. (2015) and Rossi et al. (2015) first use a
heuristic to find an initial lower bound and then apply
the k-core peeling procedure. At this point, Verma
et al. (2015) may apply k-community peeling as well
and, if necessary, send the remaining (small) graph
to the maximum clique solver of Östergård (2002).

Figure 2. (Color online) An MD Ordering of the Connected Caveman Graph from Figure 1, Which Is Obtained by Iteratively
Removing a Vertex of Minimum Degree and Appending It to the Ordering

Note. Here, d � 3 and so ω ≤ 4.
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In contrast, Rossi et al. (2015) implement their own
branch-and-bound algorithm which, among other
things, prunes the search tree based on colorings.

The approaches of Verma et al. (2015) and Rossi
et al. (2015) work rather well given the sizes of the
graphs. Indeed, the largest instance considered by
Verma et al. (2015) has 18.5 million vertices and was
solved in 2.5minutes. Rossi et al. (2015) report solving
an instance having 66 million vertices in 20 minutes.
Despite their success for solving large instances, these
two approaches lack nontrivial worst-case running
times, but the easiness of their instances can be par-
tially attributed to their sparsity. Indeed, Eppstein
et al. (2013) show that all maximal cliques can be
enumerated in time O(d(n − d)3d/3), implying that a
maximum clique can be found in the same time. Later,
Buchanan et al. (2014) exploit the same idea to solve
the maximum clique problem in time O(nm + n2d/4)
relying on a subroutine of Robson (2001).5 With slight
modifications, Manoussakis (2014) improves the time
bound to O((n − d)2d/4).

Most previous algorithms from the maximum cli-
que literature are designed to solve small benchmark
instances, like those from DIMACS_2. Since these
graphs tend to be small and dense, most approaches
use an adjacency matrix to store the graph and
thus require Ω(n2) space. Indeed, this is true for
challenge solvers like Cliquer (Östergård 2002), MCR
(Tomita and Kameda 2007), MCS (Tomita et al. 2010),
MAXCLQ (Li and Quan 2010), and BBMCX (San
Segundo et al. 2015). Thus, they would quickly ex-
ceed available memory when applied to the large,
real-life graphs coming from DIMACS_10 or the
SNAP database.Moreover, these challenge solvers do
not bother to reduce the size of the instance through
peeling, because peeling is ineffective on DIMACS_2
instances. Another important difference is that challenge
solvers tend to use sophisticated pruning strategies
that can be quite time consuming, especially when ap-
plied to large, real-life graphs. For these reasons, chal-
lenge solvers are ill-suited for the real-life instances that
we consider (Verma et al. 2015).

Another notable class of approaches is based on
variants of the Lovász theta bound (Lovász 1979,
Knuth 1994). The conventional approach for com-
puting this bound is to solve a SDP with an n × n
matrix variable X, as well as constraints X(i, j) � 0 for
edges {i, j} ∈ E and another constraint trace(X) � 1.
Solving this SDP would require Ω(n2 +m2) space
using a solver like CSDP (Borchers 1999, 2017). More
recent developments, like those of Lieder et al. (2015),
would still require Ω(n2) space to store the dual var-
iable. For these reasons, SDP-based bounding mech-
anisms have been limited to instances with a few
thousand vertices (Wilson 2009, Lieder et al. 2015,

Sloane 2017) and are ill-suited for the instances that
we consider.

2.4. The Connection to Vertex Cover
The approach that we propose in this paper takes
advantage of the well-known relationship between
the maximum clique problem and the minimum
vertex cover problem:

ω G( ) � α(G) � n − τ(G), (1)
where α and τ denote the independence and vertex
cover numbers, respectively. That is, to compute
ω(G), one can simply subtract τ(G) from n.
However, it is not computationally viable to use

this relationship directly. First, most very large, real-
life graphs are incredibly sparse, meaning that G
would be too large to store in computer memory. For
example, the complement of the graph wiki-Talk has
nearly three trillion edges. Second, even if one could
construct and store G, there is no reason to think that
solving for τ(G)would be any easier than computing
ω(G) directly.
Instead, we will: (1) solve a (parameterized) vertex

cover problem, not on G directly, but on specially
constructed small graphs G[S]; and (2) exploit the fact
that the vertex cover problem is fpt with respect to
solution size. Below,we review existing kernelization
and fpt algorithms that will be used as subroutines in
our approach.

2.4.1. Kernelization Algorithms for Vertex Cover.
Kernelization is a key tool in our approach. In the
context of parameterized complexity, kernelization
refers to a certain type of preprocessing. When given
an input (G, k) to a parameterized decision problem
(with parameter k), it runs in polynomial time and
returns another instance (G′, k′) such that
• (G, k) is a “yes” instance if and only if (G′, k′) is a

“yes” instance;
• the size of the instance (G′, k′) is bounded by

some computable function of k.
Note that the second condition ensures that the

instance’s size is bounded as a function of the pa-
rameter k only; it does not depend on the size of G.
Below, we discuss two popular kernels for ver-

tex cover. For more on kernelization, we refer the
reader to textbooks by Cygan et al. (2015) and
Downey and Fellows (1999) and to the computa-
tional experiments—specifically for vertex cover—by
Abu-Khzam et al. (2004).

Buss Kernel. The kernelization given by Sam Buss
(Buss and Goldsmith 1993) relies on the observation
that vertices of sufficiently high degree must belong
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to every k-vertex cover. Namely, if a vertex v ∈ V has
degree greater than k, then v belongs to every k-vertex
cover. (Otherwise, all of its > k neighbors must be
chosen to cover the edges incident to v.) This leads
to the Buss kernel (following the presentation of
Balasubramanian et al. (1998)):

1. let S :� {v ∈ V(G) | degG(v) > k};
2. if |S| > k, return “no”; otherwise let k′ :� k − |S|;
3. G′ ← G − S ∪ I, where I is the set of isolated

vertices in G − S;
4. if |E(G′)| > kk′, return “no”;
5. else return the kernel (G′, k′).
The graph G′ from the kernel has at most 2kk′

vertices, sinceG′ has at most kk′ edges and no isolated
vertices. The rule used in step 4 is safe, as follows. We
are interested in k′-vertex covers of G′, and each
vertex of G′ has degree at most k. Hence, these k′
vertices can cover at most kk′ edges. This entire ker-
nelization can be implemented to run in time O(kn)
when G is represented via adjacency lists (Buss and
Goldsmith 1993, Chen et al. 2001), making it very
useful in practice (Akiba and Iwata 2016).

Nemhauser-Trotter Kernel. Another notable kernel
for vertex cover that we will use follows by results of
Nemhauser and Trotter (1975). As they observed, the
natural linear programming (LP) relaxation for vertex
cover gives half-integral (basic) solutions:

min
∑
v∈V

xv (2)
xi + xj ≥ 1, i, j

{ } ∈ E, (3)
0 ≤ xv ≤ 1, v ∈ V. (4)

That is, there always exists an optimal solution x∗ ∈
Rn to this LP such that x∗ ∈ {0, 12 , 1}n. Moreover, there
is a minimum vertex cover S of G such that

V1 ⊆ S ⊆ V1 ∪ V1
2
,

where Vi � {v ∈ V | x∗v � i} for i ∈ {0, 12 , 1}.
Chen et al. (2001) observed that this leads to the

following kernelization procedure. If the optimal ob-
jective of the LP is greater than k, then obviously (G, k) is
a “no” instance. Otherwise, the Nemhauser-Trotter
kernel (G′, k′) has G′ � G − V0 − V1 and k′ � k − |V1|. It
can be seen that G′ has at most 2k vertices, beating the
2k2 bound given by the Buss kernel.6 We note that the
Nemhauser-Trotter kernel need not use LP algorithms.
Indeed, such an x∗ can be found in time O(m ̅̅

n
√ ) using

the Hopcroft-Karp algorithm (after a suitable trans-
formation to an instance of bipartite matching (Bar-
Yehuda and Even 1985)). By applying the Buss kernel
before finding x∗, we get a runtime ofO(kn + k3), as was
observed by Chen et al. (2001). Further, Iwata et al.
(2014) give a linear-time postprocessing procedure

that, when applied after the Hopcroft-Karp algo-
rithm, finds an optimal LP solution x∗ that maximizes
the number of coordinates x∗i that are integral. In our
implementation, we will employ all of these kerne-
lization techniques.
Pulleyblank (1979) gives characterizations of those

graphs for which the all-half vector is the unique
optimal LP solution, as well as a proof that this occurs
for “almost all graphs.” Indeed, more than 93% of
graphs on 50 vertices admit the all-half vector as the
unique optimal LP solution. For graphs on 100 ver-
tices, it is more than 99.9999986%, meaning that the
postprocessing procedure described by Iwata et al.
(2014) can be helpful only for relatively small graphs.
Nevertheless, due to its low overhead and the frequent
occurrence of small graphs in the subproblems of our
approach, our implementation includes this procedure.

Other Preprocessing Rules. There are a number of
other reduction rules for vertex cover (Chen et al.
2001, Downey and Fellows 2012, Cygan et al. 2015).
For example, crown reduction gives a kernel of at
most 3k vertices (cf. the recent development of Li and
Zhu (2018) ensuring a 2k kernel based on crown de-
composition). Some other reduction rules have no
worst-case guarantees but can be helpful. For ex-
ample, one can safely select the neighbor of a leaf
vertex to be part of a minimum vertex cover. Or,
consider a degree-two vertex v with neighbors u
and w. If u neighbors w, one can safely select u and w
but not v. If u does not neighbor w, the vertex fold-
ing operation can be applied to reduce the parameter k
by one without branching (Chen et al. 2001), which
is also employed in our implementation.

2.4.2. FPT Algorithms for Vertex Cover. An algorithm
is said to be fpt if its runtime is bounded by f (k)nO(1),
where n is the input size, k is the parameter of choice,
and f is a function that depends only on k (Downey
and Fellows 2012). A parameterized problem is fpt if it
admits an fpt algorithm. The k-vertex cover problem
is the classical fpt problem. For example, a simple
bounded search tree algorithm solves k-vertex cover
in time 2knO(1) (Cygan et al. 2015). Simple arguments
reduce the exponential term to 1.4656k. We describe
both of these approaches here. There is also a more
complex approach due to Chen et al. (2010) that re-
duces the runtime to O(1.2738k + kn), but we do not
describe it in detail here.

Bounded Search Tree. A simple fpt Algorithm vc1 for
k-vertex cover is as follows, where the input is a graph
G and an integer k. It operates on the fact that, in
any vertex cover, a vertex v—or all of its neighbors
N(v)—must belong to it.
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Algorithm vc1(G,k)
1. if k < 0, return “no”;
2. if |E(G)| � 0, return “yes”;
3. pick a vertex v ∈ V(G) with |NG(v)| ≥ 1;
4. return vc1(G−v,k−1) ∨vc1(G−N[v],k− |NG(v)|).
Notice that in the last step, the parameter in the

recursive calls has decreased by at least one. Thus, the
depth of the recursion is (at most) k + 1. Since there are
two recursive calls, the number of vertices in the search
tree is fewer than2k+2. The time spent in steps 1, 2, and 3
isO(n). The subproblems in step4 canbecreated in linear
time. This gives a total runtime ofO(2k(n +m)). This can
be reduced to O(kn + 2kk2) by applying the Buss kernel
beforehand (Balasubramanian et al. 1998). Another
improvement can be gained by interleaving kerneliza-
tion within the search tree. For example, if we added
the step “if |E(G)| > ck2, then replace (G, k) by its Buss
kernel” just prior to step 3, thiswould reduce the time to
O(kn + 2k), where c ≥ 1 is a user-specified constant
(Niedermeier and Rossmanith 2000).

Branching on Vertices of Degree � 3. To improve the
runtime even further, we must tackle the base of
the exponential term, which can be done through
the following insight. If a graph G has maximum de-
gree Δ(G) at most two, then it is the disjoint union of
cycle and path graphs. In this case, we can compute a
minimum vertex cover in time O(n) and return the
appropriate yes/no response. Otherwise, we can branch
on a vertex of degree at least three. This drastically
reduces the search space.

Algorithm vc2(G,k)
1. if k < 0, return “no”;
2. if |E(G)| > ck2, replace (G, k) by its Buss kernel

(possibly returning “no”);
3. if Δ(G) ≤ 2, run the polynomial-time algorithm

for vertex cover, and return appropriate yes/no;
4. pick a vertex v ∈ V(G) with |NG(v)| ≥ 3;
5. return vc2(G−v,k−1) ∨vc2(G−N[v],k− |NG(v)|).
This improves the running time to O(kn + 1.4656k).

The term 1.4656 comes from solving the recurrence
T(k) � T(k − 1) + T(k − 3). In practice, it is natural to
branch on vertices of degree larger than three (say, on
a vertex of maximum degree), since this reduces the
parameter more quickly. Indeed, this has performed
well in experiments (Akiba and Iwata 2016), so we
will do this as well.

2.4.3. Limitations of FPT. While these fpt algorithms
for vertex cover are important subroutines in our
approach,we emphasize that it is not computationally
viable to apply them to G directly. For example,
consider the graph wiki-Talk, which has degeneracy
d � 131. Suppose that we wanted to test whether this
2, 394, 385-vertex graph has a clique of size d + 1 � 132.

By using the relationship τ(G) � n − ω(G), this would
be equivalent to testing whether the complement of
wiki-Talk (which has nearly 3 trillion edges) has a vertex
cover of size k � n − 132 � 2, 394, 253. The kerneliza-
tion and fpt algorithms that we just reviewed would
be no match for this instance.

3. A New Algorithm for Maximum Clique
In this section, we provide an Algorithm main that,
when given a graph G and a nonnegative integer p,
determines whether G has a clique of size d + 1 − p. In
other words, it determines whether the clique-core
gap is at most p. In the pseudocode,we use the concepts
of right-neighborhood and right-degree, which are de-
fined below.

Definition 4 (Right-Degree, Right-Neighborhood). If the
vertices of a graphG � (V,E) are ordered (v1, v2, . . . , vn),
then the right-neighborhood of a vertex vi is defined as
the setN(vi) ∩ {vi, vi+1, . . . , vn} and the right-degree of vi,
denoted rdeg(vi), is the size of its right-neighborhood.

To illustrate these definitions, consider Figure 2 in
which the first vertex in the ordering is v1 � 2, its right-
degree is rdeg(2) � 3, and its right-neighborhood is
{3, 4, 5}.
The pseudocode for our proposed algorithm is as

follows.

Algorithm main(G,p)
1. compute an MD ordering (v1, v2, . . . , vn) and de-

generacy d of G;
2. let D � {vi ∈ V | i ≤ n − d, rdeg(vi) ≥ d − p};
3. for vi ∈ D do

a. construct G[Vi], where Vi is the right-
neighborhood of vi;
b. if G[Vi] has a vertex cover of size qi :� |Vi|+
p − d, return “yes”;

4. construct G[Vf ], where Vf � {vf , . . . , vn} and f :�
n − d + 1;

5. if G[Vf ] has a vertex cover of size qf :� p − 1,
return “yes”;

6. return “no.”

3.1. Illustration of the Algorithm
To illustrate the algorithm, let G be the connected
caveman graph given in Figure 1, and suppose that
the task is to determine whether it has a clique of
size d + 1 − p, where p � 0. The MD ordering to be
computed in step 1 is not unique, but suppose that the
one depicted in Figure 2 is identified. The set D de-
fined in step 2 will be given by all vertices vi whose
right-degree is at least d − p � 3 − 0 � 3, which is
the set

D � v1, v2, v3, v4, v5, v6, v10, v14, v18, v22{ }
� 2, 7, 12, 17, 22, 3, 8, 13, 18, 23{ }.
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Then the for-loop in step 3 is reached and entered
with, say, vi � v1 � 2. In this case,Vi � {3, 4, 5} and the
graph G[Vi] is constructed. This graph is the edgeless
graph on three vertices, and so it does have a vertex
cover of size qi � |Vi| + p − d � 3 + 0 − 3 � 0 (i.e., the
empty set), and so the algorithm returns “yes.” And,
indeed the vertex cover ∅ of G[Vi] corresponds to the
independent set {3, 4, 5} of G[Vi], which corresponds
to the clique {3, 4, 5}ofG[Vi], which corresponds to the
four-vertex clique {2, 3, 4, 5} of G. It can be observed
that the algorithm runs in linear time for this graph.
The same can be said for all caveman graphs con-
structed as per Watts (1999).

3.2. Analysis of the Algorithm
To analyze the algorithm’s running time,wewill use the
following lemma,which is essentiallydue toManoussakis
(2016), although he considers the graphsG[Vi] instead
of their complements G[Vi].
Lemma 2 (Manoussakis 2016). The graphs G[V1],
G[V2], . . ., G[Vf ] can be constructed in time and space
O((n − d + 1)d2) using an adjacency list representation of G.

Though not explicitly mentioned by Manoussakis
(2016), his procedure can generate each graph G[Vi]
on the fly in time O(d2), and the additional space
requirement for our purposes is O(d2). Note that d2 �
O(m) since 2m ≥ d(d + 1).
Theorem1. TheAlgorithmmain correctly determineswhether
a graphGwith degeneracy d has a clique of size d + 1 − p in time
O((n − d)(1.28p + d2)) and space O(m + poly(d)).
Proof. First we analyze the running time and space.
Steps 1 and 2 take O(m + n) time and space by the MD
ordering algorithm of Matula and Beck (1983), and each
graphG[Vi] can be constructed in timeO(d2), essentially
byManoussakis (2016). Finally, the remaining nontrivial
steps are 3(b) and 5 in which we ask ifG[Vi] has a vertex
cover of size qi. Denote by T(n, k) the time to check
whether an n-vertex graph has a vertex cover of size k.
Then the total time is

O m + n( ) + |D| + 1
( )

d2 + ∑
vi∈D

T |Vi|, qi( )( )
. (5)

Chen et al. (2010) show that T(n, k) � O(1.2738k + kn)
using space polynomial in n. Since theMD ordering is
also a degeneracy ordering, we have |Vi| ≤ d. Then,
since qi :� |Vi| + p − d ≤ p, we have

T |Vi|, qi( ) � O 1.2738qi + qi|Vi|( ) � O 1.2738p + pd
( )

,

using space polynomial in d. Thus, since |D| ≤ n − d
and 1 ≤ n − d and

m � ∑n−d
i�1

|Vi| +
⃒⃒
E Gf
( )⃒⃒ ≤ (n − d)d + d

2

( )
≤ (n − d + 1)d2,

the running time (5) is bounded by

O n − d + 1( )d2 + n − d + 1( ) 1.2738p + pd
( )( )

� O n − d( ) d2 + 1.2738p
( )( )

.

Finally, we prove correctness. Suppose G has a clique
C ⊆ V of size d + 1 − p, and let vi be its earliest vertex
in the MD ordering. If i ≤ n − d, then the graph G[Vi]
has a clique C \ {vi} of size d − p, implying G[Vi] has
an independent set of size d − p, meaning G[Vi]
has a vertex cover of size |Vi| + p − d � qi. Thus, the
algorithm will return “yes.” And, if i > n − d, then
the graph G[Vf ] has a clique of size d + 1 − p imply-
ing G[Vf ] has an independent set of size d + 1 − p,
meaning that G[Vf ] has a vertex cover of size |Vf | −
(d + 1 − p) � p − 1 � qf , in which case the algorithmwill
return “yes.”

Now, if the algorithm returns “yes,” then it en-
countered a graphG[Vj∗ ]with a vertex cover C∗ of size
qj∗ . If j ≤ n − d, then {vj} ∪ Vj \ C∗ is a clique inG of size

1 + |Vj| − |C∗| � 1 + qj + d − p
( ) − qj � d + 1 − p.

And, if j > n − d, then Vf \ C∗ is a clique in G of size
|Vf | − |C∗| � d − qf � d + 1 − p. □

Theorem 2. When p is a constant, Algorithmmain runs in
time O(dm) � O(m1.5).
Proof. Let G′ � (V′,E′) be the (d − p)-core of G. Denote
by n′ � |V′| and m′ � |E′| the number of vertices and
edges of G′, respectively. By the sum of vertex degrees
in G′, we have 2m′ ≥ (d − p)n′, so dn′ ≤ 2m′ + pn′. Note
that |D| ≤ n′, so |D| ≤ (2m′ + pn′)/d. Thus, when p is a
constant, the running time (5) of Algorithm main is
bounded by

O m + n( ) + |D| + 1( )d2 + ∑
vi∈D

T
(|Vi|, qi)

( )

� O m + n( ) + 2m′ + pn′ + d
d

( )
d2

(

+ |D| 1.2738p + pd
( ))

� O m + n( ) + 2m′ + pn′ + d
( )

d + n′ d( )( )
� O m +m′d + n′d( ) � O dm( ) � O m1.5( )

. □

Remark 1 (The Running Time Analysis Is Tight). There
exists an infinite class of graphs for which Algorithm
main runs in time Ω(m1.5), even when p � 0.

The remark holds by the complete bipartite graphs
Kd,2d which have n � 3d vertices, m � 2d2 edges, and
degeneracy d. In an MD ordering, at least d vertices
from the larger partition will appear first, and each will
have right-degree d. This implies that the setDwill have
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at least d vertices. And, each of these first d sub-
problems’s graphs G[V1], . . ., G[Vd] are complete, re-
quiring the algorithm to create d edge sets of size (d2).
This shows a running time of at least |D|(d2) ≥ Ω(d3) �
Ω(m1.5).
Remark 2 (A Linear-Time Special Case). If p � 0 and the
d-core of G is d-regular, then main runs in linear time.7

Proof. Denote byG′ � (V′,E′) the d-core ofGwith n′ :�
|V′| vertices and m′ :� |E′| edges. Let G′

1, . . . ,G
′
k be the

(connected) components of G′. For each component
G′

i let wi ∈ V(G′
i ) be its earliest vertex in the MD or-

dering. Observe that, when wi is removed from the
graph, there will exist a vertex in its component G′

i
having degree less than d until all vertices of G′

i have
beenplaced in theMDordering.As a result,wi is the only
vertex of G′

i that belongs to D. Thus,

D � {wi | i ∈ [k]},
so |D| � k. And, each G′

i has at least d + 1 vertices. So,
n′ � ∑k

i�1 |V(G′
i )| ≥ k(d + 1), implying that |D| < n′/d.

Thus, by time bound (5), the running time in this
situation is

O m + n( ) + |D| + 1( )d2 + ∑
vi∈D

T |Vi|, qi( )( )

� O m + n( ) + n′ + d
d

( )
d2 + |D| 1.2738p + pd

( )( )
� O m + n( ) + n′ + d

( )
d + n′ d( )( )

� O m + n′d
( ) � O m( ).

Here, the last equation follows by n′d � 2m′ ≤ 2m,
which holds by the d-regularity of G′. □

We can solve the maximum clique problem in time
O(dm) � O(m1.5) when (d + 1) − ω is a constant us-
ing the following approach. Start with p � 0. Apply
the Algorithm main from above. If it returns “yes,”
then return ω � d + 1 − p. Else, increase p by 1 and
repeat until getting a “yes.” This proves the follow-
ing corollary.

Corollary 1. Let g :� (d + 1) − ω be the clique-core gap,
that is, the difference between the clique number ω and its
degeneracy-based upper bound d + 1. We can compute ω

1. in time 1.28gpoly(n);
2. in time O(dm) � O(m1.5) when g is a constant; and
3. in polynomial time when g � O(log n).
As we have seen, many real-life graphs have small

clique-core gaps, making Corollary 1 practically rele-
vant. Is there a reasonable explanation for why these
graphs have small g? To help answer this question, we
can turn to generative graph models, such as those
proposed by Barabási and Albert (1999) and Bonato
et al. (2009). As noted by Eppstein et al. (2013), graphs
produced under the preferential attachment model of

Barabási and Albert (1999) have bounded degeneracy.
Thus, these graphs also have bounded clique-core gap,
and so Corollary 1 applies. In another example, con-
sider the iterated local transitivity (ITL) model of
Bonato et al. (2009), which is motivated by properties
of online social networks, specifically the idea that if
{u, v} are friends and {v,w} are friends, then {u,w} are
friends. The ITLmodel begins with an arbitrary initial
graph G0 and constructs a sequence of graphs (Gt :
t ≥ 0) by “cloning” vertices. That is, Gt+1 is con-
structed from Gt as follows. For every vertex v in Gt, a
clone v′ is added and connected to every vertex from
NGt(v) ∪ {v}. (Note that each iteration’s clones form an
independent set.) It can be observed that the clique
number and degeneracy increase by one in each it-
eration, ω(Gt+1) � ω(Gt) + 1 and d(Gt+1) � d(Gt) + 1, so
the clique-core gap does not change, g(Gt) � g(G0) for
all t ≥ 1. Thus, graphs constructed under the ILT
model have increasing degeneracy but constant clique-
core gap.

3.3. Algorithm Implementation
The interested reader can refer to Appendix A for
more details about our implementation. This dis-
cussion covers the generation of the MD ordering,
the construction of the subgraphs G[Vi], and the use
of parallelization. Although these implementation
choices do not improve the worst-case bounds given
in Section 3.2, they can have a discernible effect on the
algorithm’s practical performance.

4. Computational Experiments
The computational experiments reported in this section
were conducted on a computing cluster running Linux
x86_64, CentOS 7.2. Each node in the cluster was
equippedwith a 12-core Intel Xeon®E5-2620 v3 2.4GHz
processor and 128 GB of RAM. Our algorithm was
implemented in C++ and compiled with GCC 6.3.0.
Each instance was solved by a single node of the
cluster under a time limit of one hour.
We compare the results of our implementations

with those obtained using the algorithms proposed
by Buchanan et al. (2014), Rossi et al. (2015), and
Verma et al. (2015), which we refer to as BWBP, RGG,
and VBB, respectively.8 These three algorithms were
also coded in C++ and were compiled with GCC
6.3.0 according to the specifications provided by
the authors. We note that the implementation of
Rossi et al. (2015) was shown to dominate those of
Csardi et al. (2006), Konc and Janežič (2007), and
Pattabiraman et al. (2013), so we exclude them from
our experiments.
In addition to the aforementioned algorithms,

there is also a recent series of papers (San Segundo
et al. 2016, 2017a,b) that report algorithms with
fast computational times over some of the instances
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considered in this paper. In essence, these three pa-
pers describe minor variations of a “peeling” algo-
rithm implemented in a bit-string encoding that, like
in Rossi et al. (2015), combines an upper bound from
vertex coloring with a branch-and-bound type of
search. The computational experiments presented in
these papers report solution times that are often
significantly faster that those obtained with RGG and
VBB. Our initial intention was to include their algo-
rithms in our computational experiments as well.
However, thewebsite provided by the authors, which
reportedly hosted their code,was down at the time this
research was conducted.9 We contacted the corre-
sponding author who confirmed at the time of our
inquiry that the code was indeed not available to
share and provided instead the computer logs of their
computational experiments. An examination of these
logs reveals that the times reported in these papers do
not account for the full execution of the algorithms.
Instead, they only reflected the search time for a
maximum clique over the subgraphs that resulted
from the peeling process, omitting the time it takes to
produce the k-core. Surprisingly, the times they report
for the approach by Rossi et al. (2015)—the algorithm
they compare their results against—include the pre-
processing times.10 It should be noted that the time
to generate the k-core often represents a large por-
tion of the overall running time for these algorithms
and as such should not be ignored. For this reason
all other approaches include these preprocessing
times in their reports. Given the absence of an
implementation to provide a fair comparison, we
omit the algorithms from these papers from our
computational experiments.

For the computational experiments, we use the
50 instances considered by Verma et al. (2015) and
10 additional large instances. They were added to
complement the test bed with extra instances from
different domainswith clique-core gaps ranging from
small to large to better analyze the performance of our
approach. All graphs were obtained from SNAP and
DIMACS_10. These databases have a collection of
large networks of sizes ranging from thousands to
millions of vertices. They include social networks,web
graphs, road networks, Internet networks, citation
networks, collaboration networks, randomly generated
graphs, and communication networks. Themultitude
of domains from which these networks originate,
the very large sizes of them, and the fact that most
real-life solvers commonly use them in their experi-
ments make them suitable candidates for our com-
putational experiments.

Different versions of graphs we used for the com-
putational experiments are also available in other
databases such as the Network Repository (Rossi and
Ahmed 2015). We notice, however, that the sizes of

some of these graphs vary slightly from source to
source. Therefore, some degeneracy values and max-
imum clique sizes reported in this paper may differ
from those reported by Rossi et al. (2015), for they
gathered the instances from the latter database. An
example of these differences is the instance wiki-
Talk, which is reported in this paper to have 2,394,385
vertices and 4,659,565 edges, whereas in Rossi et al.
(2015) the graph is reported to have 92,117 vertices
and 360,767 edges. Similar differences occur for the
instances com-Orkut, soc-LiveJournal1, soc-Epinions,
and others.
For consistency, our experiments use the instances

collected directly from both the SNAP andDIMACS_10
websites. Therefore, all algorithms were executed
over the same computer architecture and with the
same data sets as input. All directed graphs were
converted to undirected graphs by replacing each
directed edge with an undirected edge. Parallel edges
and loops were removed.
Table 3 describes the graphs from the two datasets

that were used for this study. The graphs were
classified into nine categories based on their specific
domain: (1) graphs from citation networks, (2) syn-
thetic graphs created by different graph genera-
tors, (3) graphs derived from peer-to-peer Inter-
net networks and graphs generated by crawling IP
addresses, (4) portions of online social networks,
(5) graphs generated by crawling websites, (6) graphs
generated from sparse matrices collected from dif-
ferent domains, (7) road networks, (8) communica-
tion networks, and (9) graphs that associate products
from the website of the e-commerce company Ama-
zon based on the likelihood of being purchased in
the same order. Table 3 also reports, for each graph,
the number of vertices n, the number of edges m, the
largest degree Δ, the degeneracy d, the size of a max-
imum clique ω, and the clique-core gap g.
The large graphs considered for the computational

experiments typically consumed several gigabytes of
hard drive space as text files. Since input/output
operations with current hard drive technology are
several orders of magnitude slower than most oper-
ations performed in RAM, reading the input files of real-
life instances often takes much longer than solving for a
maximum clique. For this reason, we do not report the
reading timesandstart the clockafter thealgorithmloads
the input graph intomemory. This is a common practice
(Verma et al. 2015, Rossi et al. 2015).
To reduce the variability of the running times

caused by the hardware, we solve all instances five
times and report the average. The variability between
runs is generally small and has no significant impact
on the overall running times. On average, it repre-
sents less than 3% of the total running time for all
the runs and less than 1% for the instances whose
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Table 3. Description of the Graphs Used in the Computational Experiments

Type Source Name n m Δ d ω g

SNAP Cit-HepTh 27,770 352,285 2,468 37 23 15
SNAP Cit-HepPh 34,546 420,877 846 30 19 12
DIMACS_10 coAuthorsCiteseer 227,320 814,134 1,372 86 87 0
DIMACS_10 citationCiteseer 268,495 1,156,647 1,318 15 13 3

Citation DIMACS_10 coAuthorsDBLP 299,067 977,676 336 114 115 0
DIMACS_10 coPapersCiteseer 434,102 16,036,720 1,188 844 845 0
DIMACS_10 coPapersDBLP 540,486 15,245,729 3,299 336 337 0
DIMACS_10 er-fact1.5-scale20 1,048,576 10,904,496 45 14 3 12
SNAP cit-Patents 3,774,768 16,518,947 793 64 11 54

DIMACS_10 delaunay n16 65,536 196,575 17 4 4 1
DIMACS_10 kron g500-simple-logn16 65,536 2,456,071 17,997 432 136 297
DIMACS_10 preferentialAttachment 100,000 499,985 983 5 6 0
DIMACS_10 G n pin pout 100,000 501,198 25 7 4 4

Synthetic DIMACS_10 smallworld 100,000 499,998 17 7 6 2
DIMACS_10 delaunay n17 131,072 393,176 17 4 4 1
DIMACS_10 delaunay n18 262,144 786,396 21 4 4 1
DIMACS_10 rgg n 2 21 s0 2,097,152 14,487,995 37 18 19 0
DIMACS_10 rgg n 2 22 s0 4,194,304 30,359,198 36 19 20 0
DIMACS_10 rgg n 2 23 s0 8,388,608 63,501,393 40 20 21 0
DIMACS_10 rgg n 2 24 s0 16,777,216 89,345,197 40 20 21 0

SNAP p2p-Gnutella04 10,876 39,994 103 7 4 4
SNAP p2p-Gnutella25 22,687 54,705 66 5 4 2
DIMACS_10 as-22july06 22,963 48,436 2,390 25 17 9

Internet topology and peer-to-peer SNAP p2p-Gnutella24 26,518 65,369 355 5 4 2
SNAP p2p-Gnutella30 36,682 88,328 55 7 4 4
SNAP p2p-Gnutella31 62,586 147,892 95 6 4 3
DIMACS_10 caidaRouterLevel 192,244 609,066 1,071 32 17 16
SNAP as-skitter 1,696,415 11,095,298 35,455 111 67 45

SNAP wiki-Vote 7,115 100,762 1,065 53 17 37
SNAP soc-Epinions1 75,879 405,740 3,044 67 23 45

Social SNAP soc-Slashdot0811 77,360 469,180 2,539 54 26 29
SNAP soc-Slashdot0922 82,168 504,230 2,552 55 27 29
SNAP soc-pokec 1,632,803 22,301,964 14,854 47 29 19
SNAP soc-LiveJournal1 4,847,571 42,851,237 20,333 372 321 52

SNAP web-Stanford 281,903 1,992,636 38,625 71 61 11
DIMACS_10 cnr-2000 325,557 2,738,969 18,236 83 84 0
SNAP web-NotreDame 325,729 1,090,108 10,721 155 155 1
SNAP web-BerkStan 685,230 6,649,470 84,230 201 201 1

Web DIMACS_10 eu-2005 862,664 16,138,468 68,963 388 387 2
SNAP web-Google 875,713 4,322,051 6,332 44 44 1
DIMACS_10 in-2004 1,382,908 13,591,473 21,869 488 489 0
SNAP wiki-topcats 1,791,489 25,444,207 238,342 99 39 61
DIMACS_10 uk-2002 18,520,486 261,787,258 194,955 943 944 0

DIMACS_10 wave 156,317 1,059,331 44 8 6 3
DIMACS_10 audikw1 943,695 38,354,076 344 47 36 12

Sparse matrices DIMACS_10 ldoor 952,203 22,785,136 76 34 21 14
DIMACS_10 ecology1 1,000,000 1,998,000 4 2 2 1
DIMACS_10 333SP 3,712,815 11,108,633 28 4 4 1
DIMACS_10 cage15 5,154,859 47,022,346 46 25 6 20

Road DIMACS_10 luxembourg.osm 114,599 119,666 6 2 3 0
DIMACS_10 belgium.osm 1,441,295 1,549,970 10 3 3 1

SNAP email-Enron 36,692 183,831 1,383 43 20 24
DIMACS_10 cond-mat-2005 40,421 175,691 278 29 30 0

Communication SNAP email-EuAll 265,214 364,481 7,636 37 16 22
SNAP wiki-Talk 2,394,385 4,659,565 100,029 131 26 106
SNAP com-Orkut 3,072,441 117,185,083 33,313 253 51 203
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overall execution lasts more than one second. However,
using the average times provides for a better comparison
between algorithms, particularly for instances that are
solved rather quickly andwhen the running times of the
algorithms differ only so slightly.

4.1. Instances Solved in Linear Time
We observe that 14 of the 60 instances in our testbed
are solved in linear time. We report the times in
seconds to solve these instances in Table 4. We con-
sider these 14 instances to be too easy and exclude
them in subsequent experiments as they would yield
little insight.

Eight of these instances have d-regular d-cores and
satisfy the property d + 1 � ω. Thus, they are solved in
linear time bymain (see Remark 2). Interestingly, uk-
2002, which is the largest graph in our testbed with
more than 18million vertices and 260million edges, is
one of them. Four of the nine citation networks share
this property too.

Six other instances are solved “for free” by the MD
ordering, because it provides matching lower and
upper bounds on ω. We have already seen the upper
bound ω ≤ d + 1. Meanwhile, for the lower bound L,
observe that if the right-degree of a vertex vi is equal to
the number of vertices to its right in the ordering
(v1, v2, . . . , vn), that is, if rdeg(vi) � |{vi+1, . . . , vn}|, then
{vi, . . . , vn} is a clique of size n − i + 1, as vi has the
smallest degree in subgraph G[{vi, . . . , vn}]. The largest
clique found using this idea comes by picking the
smallest i satisfying this property. If this yields a

clique of size d + 1, thenω � d + 1 andmain can halt as
soon as the MD ordering algorithm finishes.

4.2. Results for the New Algorithm
In this section, we discuss the performance of our
approach on the remaining 46 instances. We begin by
presenting the results of our algorithmwhen executed
over a single thread. Table 5 presents the maximum
clique sizeω, the clique-core gap g, the lower bound L
produced by the MD ordering, and the time in sec-
onds taken by our algorithm. We also report the time
spent computing the MD ordering (step 1 in main),
generating the subgraphs G[vi] (steps 3(a) and 4 in
main), and solving the corresponding vertex cover
subproblems (steps 3(b) and 5 in main).
A glance at Table 5 shows that our approach is able

to solve most instances quite rapidly, with 33 out of
the 46 instances solved in less than one second and
five of the remaining 13 instances taking between 1
and 10 seconds. All but two graphs are solved in less
than 40 seconds. The nine instances for which our
approach tookmore than five seconds are highlighted
in bold, as we will focus our discussion on them.
There are several observations that can be drawn from

these results. First, as one might expect, the size of the
instance is an important factor to considerwhen it comes
to the difficulty of finding maximum cliques. With two
notable exceptions (kron_g500-simple-logn16 andWiki-
Talk), graphs having fewer than 10 million edges are
solved by our approach in less than one second,whereas
larger instances naturally take longer.

Table 4. Instances Solved in Linear Time by the Proposed Algorithm

Property Name n m d ω g Time

cond-mat-2005 40,421 175,691 29 30 0 0.00
coAuthorsCiteseer 227,320 814,134 86 87 0 0.03
coAuthorsDBLP 299,067 977,676 114 115 0 0.04

d-regular d-core coPapersCiteseer 434,102 16,036,720 844 845 0 0.17
coPapersDBLP 540,486 15,245,729 336 337 0 0.20
rgg_n_2_21_s0 2,097,152 14,487,995 18 19 0 0.55
rgg_n_2_22_s0 4,194,304 30,359,198 19 20 0 1.33
uk-2002 18,520,486 261,787,258 943 944 0 15.72

preferentialAttachment 100,000 499,985 5 6 0 0.03
cnr-2000 325,557 2,738,969 488 489 0 0.08
Amazon0312 400,727 2,349,869 10 11 0 0.17

L � d + 1 in-2004 1,382,908 13,591,473 5 6 0 0.47
rgg_n_2_23_s0 8,388,608 63,501,393 20 21 0 6.13
rgg_n_2_24_s0 16,777,216 89,345,197 20 21 0 9.30

Table 3. (Continued)

Type Source Name n m Δ d ω g

SNAP Amazon0302 262,111 899,792 420 6 7 0
Product copurchasing SNAP Amazon0312 400,727 2,349,869 2,747 10 11 0

SNAP Amazon0601 403,394 2,443,408 2,752 10 11 0
SNAP Amazon0505 410,236 2,439,437 2,760 10 11 0
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Second, as discussed in previous sections, it is clear
that the clique-core gap plays a significant role in
the efficacy of our algorithm. As evidenced by the

times presented in Table 5, all instances but one
that have a clique-core gap less than 10 are solved
within one second. Moreover, the synthetic instance

Table 5. Computational Results for the Remaining 46 Instances

Time

Instance n m L d ω g
MD

ordering
Subgraph
generation V.C. Total

Cit-HepPh 34,546 420,877 18 30 19 12 0.01 0.15 0.01 0.18
Cit-HepTh 27,770 352,285 20 37 23 15 0.01 0.17 0.01 0.20
citationCiteseer 268,495 1,156,647 10 15 13 3 0.09 0.02 0.00 0.11
er-fact1.5-scale20 1,048,576 10,904,496 2 14 3 12 1.64 5.90 1.26 9.12
cit-Patents 3,774,768 16,518,947 10 64 11 54 2.25 0.86 1.32 4.52

delaunay_n16 65,536 196,575 3 4 4 1 0.01 0.01 0.02 0.05
kron_g500-simple-logn16 65,536 2,456,071 135 432 136 297 0.04 7.17 2,651.29 2,663.15
G_n_pin_pout 100,000 501,198 3 7 4 4 0.03 0.18 0.04 0.27
smallworld 100,000 499,998 5 7 6 2 0.03 0.06 0.00 0.10
delaunay_n17 131,072 393,176 3 4 4 1 0.02 0.02 0.04 0.11
delaunay_n18 262,144 786,396 3 4 4 1 0.05 0.04 0.09 0.23

p2p-Gnutella04 10,876 39,994 2 7 4 4 0.00 0.01 0.00 0.01
p2p-Gnutella25 22,687 54,705 2 5 4 2 0.00 0.01 0.00 0.01
as-22july06 22,963 48,436 14 25 17 9 0.00 0.00 0.00 0.01
p2p-Gnutella24 26,518 65,369 2 5 4 2 0.00 0.01 0.00 0.01
p2p-Gnutella30 36,682 88,328 2 7 4 4 0.00 0.01 0.00 0.02
p2p-Gnutella31 62,586 147,892 2 6 4 3 0.01 0.02 0.00 0.04
caidaRouterLevel 192,244 609,066 6 32 17 16 0.04 0.04 0.00 0.09
as-skitter 1,696,415 11,095,298 57 111 67 45 0.94 0.61 0.10 1.68

Wiki-Vote 7,115 100,762 16 53 17 37 0.00 0.10 0.15 0.27
soc-Epinions1 75,879 405,740 21 67 23 45 0.01 0.29 0.26 0.60
soc-Slashdot0811 77,360 469,180 25 54 26 29 0.02 0.21 0.05 0.29
soc-Slashdot0922 82,168 504,230 26 55 27 29 0.02 0.21 0.05 0.30
soc-pokec 1,632,803 22,301,964 15 47 29 19 2.52 10.04 0.22 12.93
soc-LiveJournal1 4,847,571 42,851,237 320 372 321 52 4.39 0.25 0.23 4.95

web-Stanford 281,903 1,992,636 13 71 61 11 0.08 0.07 0.00 0.15
web-NotreDame 325,729 1,090,108 154 155 155 1 0.07 0.00 0.00 0.07
web-BerkStan 685,230 6,649,470 201 201 201 1 0.25 0.00 0.00 0.25
eu-2005 862,664 16,138,468 387 388 387 2 0.47 0.03 0.00 0.50
web-Google 875,713 4,322,051 44 44 44 1 0.33 0.00 0.00 0.33
wiki-topcats 1,791,489 25,444,207 5 99 39 61 2.54 9.58 0.28 12.58

wave 156,317 1,059,331 5 8 6 3 0.04 0.23 0.04 0.33
audikw1 943,695 38,354,076 30 47 36 12 0.72 31.84 1.14 34.30
ldoor 952,203 22,785,136 21 34 21 14 0.42 8.94 7.19 19.04
ecology1 1,000,000 1,998,000 2 2 2 1 0.15 0.23 0.09 0.55
333SP 3,712,815 11,108,633 3 4 4 1 1.10 0.14 0.15 1.49
cage15 5,154,859 47,022,346 5 25 6 20 2.58 24.34 3.71 32.77

luxembourg.osm 114,599 119,666 2 2 3 0 0.02 0.00 0.00 0.02
belgium.osm 1,441,295 1,549,970 3 3 3 1 0.28 0.00 0.00 0.29

Email-Enron 36,692 183,831 17 43 20 24 0.01 0.07 0.03 0.12
Email-EuAll 265,214 364,481 14 37 16 22 0.02 0.04 0.02 0.09
Wiki-Talk 2,394,385 4,659,565 25 131 26 106 0.29 1.34 34.82 36.92
com-Orkut 3,072,441 117,185,083 14 253 51 203 13.10 150.95 132.91 302.99

Amazon0302 262,111 899,792 5 6 7 0 0.09 0.00 0.00 0.09
Amazon0505 410,236 2,439,437 6 10 11 0 0.19 0.00 0.00 0.19
Amazon0601 403,394 2,443,408 8 10 11 0 0.19 0.00 0.00 0.19

Notes. We highlight in bold the instances for which the proposed approach takes more than five seconds to solve. V.C. refers to the time needed
to solve vertex cover subproblems.
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kron_g500-simple-logn16, which has the largest
clique-core gap g � 297 is by far the instance that takes
the longest to solve despite having significantly fewer
vertices than other instances. Also, the instances that
take the second and third most time to solve are
communication networks com-Orkut and Wiki-Talk,
which have the second and third largest clique-core gaps
of 203 and 106, respectively. Interestingly, as will be
shown inSection 4.3, the instances forwhich the clique-
core gap exceeds 200 (kron_g500-simple-logn16 and
com-Orkut) are challenging, not only for our algo-
rithm, but also for other approaches with which
we compare. Another observation is that it is quite
common for the graphs to have a small clique-core
gaps compared with their degeneracy d. On average,
this difference is roughly 26, which is about 39% the
value of d. These averages fall to 19 and 30% if all 60
instances are considered.

Third, the results in Table 5 also highlight the fact
that the worst-case analysis of our algorithm can be
pessimistic in the sense that instances with moderate
clique-core gaps are sometimes easy to solve. Indeed,
there are several cases, including citation network cit-
Patents, peer-to-peer network as-skitter, and social
networks soc-Epinions1 and soc-LiveJournal1, that
have moderate clique-core gaps (at least 45), but our
algorithm is able to solve themquite rapidly (less than
five seconds). In contrast, other instances with sig-
nificantly smaller clique-core gaps (20 or less), like
social network soc-pokec and graphs from sparse
matrices audikw, ldoor, and cage15, take significantly
longer to be solved. We provide explanations for this
behavior in Section 5. In particular, we will see that
the times are also highly correlated with the number
of subgraphs that main must process, as well as the
difficulty of the resulting vertex cover subproblems.

Fourth, the times presented in Table 5 show that, for
themajority of instances, the algorithm’s bottleneck is
generating the subgraphs. Indeed, for the instances
which Algorithmmain takes more than one second to
solve, generating the subgraphs takes on average 43%
of the total time, whereas solving the resulting vertex
cover subproblems takes on average only 27%. Four
notable examples are the instances soc-pokec, wiki-
topcats, audikw1, and cage15, forwhich the subgraph
generation takes more than 74% of the total time. As
one may expect, the results also show that for the
three instances with a clique-core gap greater than
100, the algorithm spends a considerable amount of
time solving the vertex cover subproblems. The two
most extreme cases are kron_g500-simple-logn16 and
wiki-Talk in which main spends more than 94% of
its time in the vertex cover subroutine. The case of
graph com-Orkut is also noteworthy as main spends
similar amounts of time generating the subgraphs
and solving vertex cover subproblems. Additionally,

among the 46 instances, com-Orkut is also the one for
which generating the MD ordering takes the longest,
which makes sense given that it is one of the largest
graphs in our test bed, havingmore than threemillion
vertices and 100 million edges.

4.3. Performance Comparison with
Other Approaches

In this section, we compare our running times with
those of BWBP, VBB, and RGG. Table 6 presents the
times in seconds of the four approaches. We highlight
in bold the fastest times to solve each instance and
mark with an asterisk (*) the cases where an algo-
rithm fails to identify ω within the time limit. This
only occurs a few times for algorithms BWBP and
VBB when solving three of the largest instances in
our test bed. We observed that the exact solver by
Östergård (2002), which is used by both BWBP and
VBB as a subroutine, appears to have difficulties
solving maximum clique in some of the subgraphs
produced by these two algorithms.
The results suggest that all four algorithms are

fairly competitive across all instances. Our approach
seems to outperform the others when the clique-core
gap is relatively small, but tends to take longer for
instances with large clique-core gaps, as one might
expect. Interestingly, with the exception of commu-
nications network wiki-Talk (which is solved by
BWBP, VBB, and RGG rather quickly), each instance
for which our algorithm takes more than five seconds
to solve is also challenging for the other algorithms.
For these nine instances, the two algorithms that use a
peeling procedure as the key component (VBB and
RGG) seem to perform slightly better than the other
two. Furthermore, for the two instances that have
clique-core gaps exceeding 200, that is, kron_g500-
simple-logn16 and com-Orkut—which we recall are
the graphs our algorithm takes the longest to solve—
RGG is clearly the fastest of the four algorithms.
The case of the synthetic graph kron_g500-simple-

logn16 is worth highlighting, as it is an instance
where all algorithms (except for RGG) struggle. Given
that BWBP and main can take time exponential in d
and g, respectively, and because this instance has both
a large degeneracy and a large clique-core gap, it
is understandable why they struggle here. The strong
performance exhibited by RGG for this instance ap-
pears to be a result of its aggressive pruning strategies.
To summarize the performance of the algorithms,

we report the shifted geometric mean (SGM), both
for the test set as a whole (all 60 instances), and also
for insightful subgroups (e.g., real-life graphs). The
use of the SGM to compare algorithms originates
with Achterberg (2007) and has since been adopted
by many others, for example, Mittelmann (2018).
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Given solution times t1, t2, . . ., tk of a given algorithm
and a time shift s > 0, the SGM is defined as

γs t1, . . . , tk( ) � ∏k
i�1

max ti + s, 1{ }
( )1

k

−s.

Since most instances are solved by all algorithms in
less than one second, we set the time shift s as one
second. The times taken by BWBP, VBB, and RGG on
the linear-time solvable instances were not reported in
our previous tables, but they are needed for our SGM

Table 6. Comparison of Algorithms main, BWBP, VBB, and RGG

Time

Instance n m d ω g main BWBP VBB RGG

Cit-HepTh 34,546 420,877 30 19 12 0.18 0.34 0.12 0.19
Cit-HepPh 27,770 352,285 37 23 15 0.20 0.37 0.12 0.20
citationCiteseer 268,495 1,156,647 15 13 3 0.11 0.14 0.53 0.26
er-fact1.5-scale20 1,048,576 10,904,496 14 3 12 9.12 13.64 17.15 6.87
cit-Patents 3,774,768 16,518,947 64 11 54 4.52 5.29 12.79 5.89

delaunay_n16 65,536 196,575 4 4 1 0.05 0.08 0.22 0.09
kron_g500-simple-logn16 65,536 2,456,071 432 136 297 2,663.15 815.16 335.94 13.31
G_n_pin_pout 100,000 501,198 7 4 4 0.27 0.50 0.42 0.23
smallworld 100,000 499,998 7 6 2 0.10 0.27 0.41 0.22
delaunay_n17 131,072 393,176 4 4 1 0.11 0.16 0.22 0.18
delaunay_n18 262,144 786,396 4 4 1 0.23 0.33 0.45 0.36

p2p-Gnutella04 10,876 39,994 7 4 4 0.01 0.03 0.01 0.02
p2p-Gnutella25 22,687 54,705 5 4 2 0.01 0.03 0.44 0.02
as-22july06 22,963 48,436 25 17 9 0.01 0.01 0.01 0.01
p2p-Gnutella24 26,518 65,369 5 4 2 0.01 0.04 0.69 0.02
p2p-Gnutella30 36,682 88,328 7 4 4 0.02 0.06 0.12 0.03
p2p-Gnutella31 62,586 147,892 6 4 3 0.04 0.10 0.07 0.05
caidaRouterLevel 192,244 609,066 32 17 16 0.09 0.12 0.23 0.15
as-skitter 1,696,415 11,095,298 111 67 45 1.68 2.57 6.21 2.74

wiki-Vote 7,115 100,762 53 17 37 0.27 0.21 0.10 0.09
soc-Epinions1 75,879 405,740 67 23 45 0.60 0.56 0.26 0.31
soc-Slashdot0811 77,360 469,180 54 26 29 0.29 0.33 0.15 0.20
soc-Slashdot0922 82,168 504,230 55 27 29 0.30 0.34 0.16 0.22
soc-pokec 1,632,803 22,301,964 47 29 19 13.50 12.93 19.45 11.20
soc-LiveJournal1 4,847,571 42,851,237 372 321 52 4.95 * * 9.07

web-Stanford 281,903 1,992,636 71 61 11 0.15 0.25 2.96 0.53
web-NotreDame 325,729 1,090,108 155 155 1 0.07 0.09 0.12 0.23
web-BerkStan 685,230 6,649,470 201 201 1 0.25 0.29 6.96 1.33
eu-2005 862,664 16,138,468 388 387 2 0.50 0.72 26.29 3.06
web-Google 875,713 4,322,051 44 44 1 0.33 0.35 1.15 0.82
wiki-topcats 1,791,489 25,444,207 99 39 61 12.58 14.94 * 20.04

wave 156,317 1,059,331 8 6 3 0.33 1.39 0.63 0.49
audikw1 943,695 38,354,076 47 36 12 34.30 92.87 14.10 32.12
ldoor 952,203 22,785,136 34 21 14 19.04 36.58 10.79 14.36
ecology1 1,000,000 1,998,000 2 2 1 0.55 2.76 1.05 1.04
333SP 3,712,815 11,108,633 4 4 1 1.49 1.86 50.24 5.79
cage15 5,154,859 47,022,346 25 6 20 32.77 56.83 23.38 27.49

luxembourg.osm 114,599 119,666 2 3 0 0.02 0.02 0.18 0.01
belgium.osm 1,441,295 1,549,970 3 3 1 0.29 0.29 0.89 0.28

email-Enron 36,692 183,831 43 20 24 0.12 0.16 0.12 0.09
email-EuAll 265,214 364,481 37 16 22 0.09 0.11 0.12 0.12
wiki-Talk 2,394,385 4,659,565 131 26 106 36.92 3.89 5.82 5.25
com-Orkut 3,072,441 117,185,083 253 51 203 302.99 275.67 * 241.00

Amazon0302 262,111 899,792 6 7 0 0.09 0.09 0.32 0.17
Amazon0601 410,236 2,439,437 10 11 0 0.18 0.19 1.95 0.13
Amazon0505 403,394 2,443,408 10 11 0 0.18 0.19 2.19 0.13

Notes. For each instance, the best times are highlighted in bold. The asterisk (*) indicates an inability to find ωwithin the time limit of one hour.
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calculations, so we provide them in Appendix B. On
some instances, algorithms BWBP and VBB are un-
able to finish in a time limit of one hour, in which case
3,600 seconds is used in the SGM calculations.

We further classify the 60 graphs into four different
groups based on their clique-core gap and calculate
the SGM for each algorithm on each of these groups.
We also compare the solution times for the 49 instances
that arise from real-life applications (i.e., excluding
the 11 synthetic graphs). Table 7 presents both the
unscaled and scaled SGMs of the solution times. The
scaled values are calculated with respect to the best per-
formance in each group, so that 1.00 indicates the fastest
approach and larger values indicate slower performance.

The results from Table 7 indicate that Algorithms
main and RGG are undoubtedly the top performers
on this test bed, obtaining similar average times on all
the 60 instances and improving upon the averages of
BWBP and VBB by about 50% and 250%, respectively.
Algorithm VBB seems to be the one with the worst
average; however, the large difference in perfor-
mance can be partially explained by the fact that VBB
failed to solve two instances that the top performers
solve rather quickly.

The SGMs also corroborate the intuition that our
approach should be fastest when the clique-core gap
is small ( g < 10). Interestingly, Algorithm main also
seems to fare quite well on instances with moderate
clique-core gaps (i.e., within the [10, 100) interval),
performing slightly better than RGG and better than
BWBP and VBB. In contrast, on the instances with
large clique-core gaps ( g > 100),main is significantly
slower than the other three algorithms, especially
RGG. This notable performance gap can be directly
attributed to the large amount of time it takesmain to
solve the synthetic instance kron_g500-simple-log16.

Another observation is that main performs better
than the other algorithms on graphs arising from real-
life applications. This supports the idea that our
approach, which was developed and analyzed using
worst-case analysis, is actually competitive with the
best approaches from the literature on real-life graphs.

5. Further Observations
As observed in Section 4.2, our approach performs
relatively well even in several cases where the clique-
core gap g is somewhat large. For example, graphs cit-
Patents, as-skitter, soc-Epinions1, and soc-LiveJournal1
are solved in less than five seconds despite having
moderate clique-core gaps (not less than 45).Why is this
the case? Where in the worst-case runtime analysis of
Algorithm main are we being overly pessimistic?
We make two observations that help to explain this

phenomenon. For some instances G,
1. very fewof the graphsG[Vi] need to be generated;
2. very few branches are generated.
In caseswhere thefirst observation applies, the time

to generate the subgraphs O(|D|d2) may be signifi-
cantly less than theworst-case boundO((n − d)d2) that
appears in Theorem 1. For example, consider the
graphs soc-LiveJournal1 and cage15 in Table 8. They
are similarly sized, each having roughly five mil-
lion vertices and 45 million edges. Perhaps surpris-
ingly, soc-LiveJournal1 is solved more quickly than is
cage15 (5 seconds vs. 33 seconds), despite having a
clique-core gap that is larger by 32. Our best expla-
nation for this phenomenon is the number of sub-
graphs G[Vi] that have to be generated by main. For
soc-LiveJournal1 this number is only 152, which is a
tiny fraction of the n − d + 1 � 4, 847, 200 subgraphs
possible. In contrast, for the graph cage15, roughly
90% of the more than 5 million subgraphs G[Vi] are
generated by our approach. As can be seen in Table 8, it
is common for main to generate only a small fraction
of the possible subgraphs; in 31 out of the 60 instances,
fewer than 2% of the subgraphs have to be generated.
In cases where the second observation applies, the

time to explore the search trees is considerably less
than the exponential term from Corollary 1 would
suggest. A first explanation for the small number of
branches is that the preprocessing provided by the
Buss kernel, Nemhauser-Trotter kernel, and degree-
two reduction rules is very powerful, often solving
the k-vertex cover problems at the root node of the
search tree. For example, consider the graphs er-fact1.

Table 7. Comparison of the Shifted Geometric Means (Unscaled and Scaled) of the Times
for Algorithms main, BWBP, VBB, and RGG for Runs Executed on a Single Thread

main BWBP VBB RGG

Instance group Graphs Unscaled Scaled Unscaled Scaled Unscaled Scaled Unscaled Scaled

g ∈ [0, 1) 18 0.73 1.00 1.55 2.11 3.06 4.17 0.96 1.31
g ∈ [1, 10) 20 0.21 1.00 0.36 1.75 1.12 5.37 0.47 2.25
g ∈ [10, 100) 19 2.55 1.00 5.09 1.99 3.36 2.49 2.65 1.04
g ∈ [100, 1000) 3 312.15 11.62 102.36 3.81 201.30 7.49 26.87 1.00
Real-life 49 1.30 1.00 2.06 1.58 4.29 3.30 1.43 1.10
All 60 1.50 1.02 2.28 1.55 3.80 2.58 1.48 1.00

Note. The time shift s was set to one second.
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5-scale20, soc-pokec, audikw1, and ldoor. Even though
main solves over a million k-vertex cover subprob-
lems for each of these graphs, it does not branch
once. This explains why the 1.2 million k-vertex cover

subproblems for soc-pokec are solved in just 0.22
seconds (see Table 5). The ability to entirely avoid
branching is quite common, occurring on 33 of the
46 instances, including all graphs that have clique-core

Table 8. More Details from the Experiments

Instance n d ω g Time Subgraphs generated % out of n − d + 1 Avg. |Vi | Calls to V.C. Avg. qi #B

Cit-HepPh 34,546 30 19 12 0.18 7,618 22 23 42,887 3 0
Cit-HepTh 27,770 37 23 15 0.20 6,043 22 29 41,336 4 0
citationCiteseer 268,495 15 13 3 0.11 2,435 1 13 3,767 0 0
er-fact1.5-scale20 1,048,576 14 3 12 9.12 1,034,648 99 11 8,810,258 4 0
cit-Patents 3,774,768 64 11 54 4.52 117,982 3 13 505,845 4 290,504

delaunay_n16 65,536 4 4 1 0.05 13,347 20 4 26,693 0 0
kron_g500 65,536 432 136 297 2,663.15 6,747 10 220 575,752 75 46,650,543
G_n_pin_pout 100,000 7 4 4 0.27 86,671 87 5 288,314 1 0
smallworld 100,000 7 6 2 0.10 30,896 31 6 36,668 0 0
delaunay_n17 131,072 4 4 1 0.11 26,831 20 4 53,656 0 0
delaunay_n18 262,144 4 4 1 0.23 53,648 20 4 107,163 0 0

p2p-Gnutella04 10,876 7 4 4 0.01 6,048 56 5 14,957 1 0
p2p-Gnutella25 22,687 5 4 2 0.01 6,927 31 4 10,079 0 0
as-22july06 22,963 25 17 9 0.01 110 0 21 600 3 0
p2p-Gnutella24 26,518 5 4 2 0.01 8,420 32 4 13,190 0 0
p2p-Gnutella30 36,682 7 4 4 0.02 11,668 32 4 18,418 0 0
p2p-Gnutella31 62,586 6 4 3 0.04 19,087 30 4 29,922 0 0
caidaRouterLevel 192,244 32 17 16 0.09 2,491 1 21 11,751 4 0
as-skitter 1,696,415 111 67 45 1.68 3,490 0 77 38,333 10 8

Wiki-Vote 7,115 53 17 37 0.27 2,243 32 37 47,869 13 9,035
soc-Epinions1 75,879 67 23 45 0.60 4,736 6 43 101,433 15 13,206
soc-Slashdot0811 77,360 54 26 29 0.29 4,706 6 35 45,319 6 1,093
soc-Slashdot0922 82,168 55 27 29 0.30 4,677 6 36 44,989 6 1,046
soc-pokec 1,632,803 47 29 19 12.93 244,868 15 32 1,218,334 3 0
soc-LiveJournal1 4,847,571 372 321 52 4.95 152 0 355 5,338 20 0

web-Stanford 281,903 71 61 11 0.15 918 0 64 4,359 4 0
web-NotreDame 325,729 155 155 1 0.07 8 0 154 11 0 0
web-BerkStan 685,230 201 201 1 0.25 1 0 201 1 0 0
eu-2005 862,664 388 387 2 0.50 15 0 388 28 0 0
web-Google 875,713 44 44 1 0.33 3 0 44 3 0 0
wiki-topcats 1,791,489 99 39 61 12.58 98,095 5 50 1,248,588 9 304

wave 156,317 8 6 3 0.33 152,919 98 7 280,717 1 0
audikw1 943,695 47 36 12 34.30 906,531 96 41 5,413,233 3 0
ldoor 952,203 34 21 14 19.04 728,774 77 26 4,431,069 4 0
ecology1 1,000,000 2 2 1 0.55 998,001 100 2 998,001 0 0
333SP 3,712,815 4 4 1 1.49 137,606 4 4 274,283 0 0
cage15 5,154,859 25 6 20 32.77 4,625,580 90 10 21,574,632 3 39

luxembourg.osm 114,599 2 3 0 0.02 248 0 2 248 0 0
belgium.osm 1,441,295 3 3 1 0.29 1 0 3 1 0 0

Email-Enron 36,692 43 20 24 0.12 2,238 6 30 25,803 7 110
Email-EuAll 265,214 37 16 22 0.09 1,534 1 26 17,006 7 94
Wiki-Talk 2,394,385 131 26 106 36.92 14,787 1 52 401,229 29 2,142,798
com-Orkut 3,072,441 253 51 203 302.99 704,585 23 79 20,635,158 44 925,580

Amazon0302 262,111 6 7 0 0.09 1 0 6 1 0 0
Amazon0505 410,236 10 11 0 0.19 148 0 10 148 0 0
Amazon0601 403,394 10 11 0 0.19 6 0 10 6 0 0

Notes. We report the number of subgraphs G[Vi] generated, the percentage of subgraphs generated out of n − d + 1, the average number of
vertices |Vi| in these subgraphs, the number of times the vertex cover subroutine is called, the average value of qi of the qi-vertex cover
subproblems that are solved, and the total number of branches (#B) generated by search trees of all the qi-vertex cover subproblems. Averages are
rounded to integers. The name of the instance kron_g500-simple-logn16 was shortened to reduce the width of the table. V.C., vertex cover.
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gaps less than 20 (see Table 8). A second explana-
tion for the small number of branches relates to the
values of k in the k-vertex cover subproblems.
Although main’s running time is expressed with
respect to the worst case where k � g, most of the
subproblems are solved for smaller values of k. These
small-k subproblems are easier in worst-case terms
and may also be more amenable to preprocessing
(recalling that all instances with g < 20 were solved
without branching).

For further analysis, we introduce the right-
degree distribution.

Definition 5 (Right-Degree Distribution). Given a graph
G � (V,E) and a vertex ordering σ � (v1, v2, . . . , vn), we

define the right-degree distribution of pair (G, σ) to be a
function that indicates the fraction of vertices with
right-degree equal to k, for each k ≥ 0.

Figure 3 presents the right-degree distributions for
12 graphs from our test bed and for four others from
DIMACS_2. In each case, we use our MD ordering
as the vertex ordering σ. Here, the horizontal axis
represents the right-degree, and the vertical axis
represents the percentage of vertices having such
a right-degree. The right-degree distributions for
all 60 graphs from our test bed can be found in
Figure B.1 of Appendix B.
In these distributions, the position ofω (indicatedby

the dashed line) is important for the following reason.

Figure 3. (Color online) Right-Degree Distribution of a Selection of Instances

Notes. The horizontal axis represents the right-degree, and the vertical axis represents the percentage of vertices having such a right-degree. The
dashed line marks ω. The dashed line for p_hat1500-2 marks the best known solution.
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The mass of the distribution’s tail to the right of this
dashed line (essentially) indicates the fraction of the
possible subgraphs G[Vi] that will be generated by
main. For most of the real-life graphs, we see some-
thing like as-skitter orweb-Stanford,where this right-
tail has small mass, meaning that very few subgraphs
will be generated. This happens quite often on the real-
life graphs, which can be observed by looking in Fig-
ure B.1 of Appendix B. In contrast, for the graphs er-
fact1.5-scale20, cage15, and the four DIMACS_2 graphs,
the right-tail is nearly the entire mass, meaning that a
large fraction of the subgraphs will be generated.

The width of the right-tail also has a meaningful in-
terpretation. It is (essentially) equivalent to the clique-
core gap g, which is important given the (possibly)
exponential dependence of main on g. However, not
all width-g right-tails are created equal.

The shape of the right-tail also influences the per-
formance of Algorithmmain. A good example of this
is cit-Patents. This graph has a moderate clique-core
gap of g � 54, as can been observed by the moderate
width of the right-tail. However, this tail is usually
very thin, especially at its rightmost end, meaning
that only for very few subgraphsG[Vi]willmain need
to solve for a k-vertex cover with k being moderately
large. Indeed, so many of them will be solved for tiny
values of k that the average value of k is only four (see
Table 8). Similarly, cage15 has a clique-core gap of 20,
and our approach solves more than 21 million in-
stances of the k-vertex cover problem (!); however, so
much of the right-tail is concentrated near to ω that
the average value of k is only three, andmain is able to
finish in only 33 seconds.

In a quite different example, consider the DIMACS_2
graph named p_hat1500-2. This instance is known to be
challenging, and to our knowledge, its clique number is
still unknown. (So, the dashed line marks the best
existing lower bound.) Given this difficulty, it makes
sense that it has an awful right-degree distribution. Its
right-tail contains nearly all of the mass, meaning that
main would generate nearly all of the subgraphs. Its
right-tail is quite long, meaning that main would
need to solve the k-vertex cover for a large value of k
(perhaps k ≈ 440). Finally, the shape of the right-tail is
no good either, being concentrated to its rightmost
end, meaning that main would need to solve many
k-vertex cover instances with k being large. These
three properties make p_hat1500-2 quite unlike the
real-life instances from the DIMACS_10 and SNAP
testbeds and quite a challenge for Algorithm main.

6. Conclusion
In this paper, we aim to answer the questions: Why is
the maximum clique problem often easy in practice?
Is there a rigorous, worst-case explanation for this
phenomenon? In this pursuit, we first observe that

real-life instances often have a small clique-core gap
g :� (d + 1) − ω, which we define to be the difference
between the clique number ω and its degeneracy-
based upper bound d + 1. Indeed, more than half of
the large, real-life instances considered in this paper
have clique-core gaps of 0, 1, or 2, and these instances
are solved in mere seconds by the approaches of
Verma et al. (2015) and Rossi et al. (2015). In contrast,
synthetic benchmark instances often have clique-core
gaps of 365 or more and remain unsolved after hours
of computation (Prosser 2012).
We show that these observations are not just a co-

incidence. Hard instances must have large clique-core
gaps, and instances with small clique-core gaps are
easy. This is shown via an algorithm for the maxi-
mum clique problem that is fixed-parameter tractable
with respect to g. In the particular case that g is a
constant, our approach runs in time O(dm) � O(m1.5).
This provides the first rigorous, worst-case expla-
nation for why instances like uk-2002 are easy to solve
despite having more than 260 million edges and a
degeneracy of nearly 1,000. Detailed computational
experiments show that our algorithm is competitive
with the best approaches from the literature, partic-
ularly on real-life graphs and other graphs that have
clique-core gaps less than 100. Even when g is 100 or
more, our approach can still be practical, which we
explain by the shape of the right-degree distribution
and the clique number’s position in it. Our imple-
mentation is publicly available for others to improve
upon, extend, or compare with it.

6.1. Open Problems and
Alternative Parameterizations

One might wonder if there are better parameterizations
for themaximum clique problem. For example, if given a
k-coloring of the graph, is it fpt with respect to the
parameter p to check whether ω ≥ k − p? If so, this
would generalize our approach, since one can find a col-
oring with k � d + 1 colors in linear time (Matula and
Beck 1983). This turns out to be a bad parameterization
with respect to p, since the case p � 0 is NP hard, say, by
the usual reduction from 3-SAT toCLIQUE. Essentially the
same result was stated by Akiba and Iwata (2016) in
the context of parameterizations above the clique cover
number for the minimum vertex cover problem.
In a related question, onemight ask if themaximum

clique problem is fpt with respect to the parameter k
when given a k-coloring. If so, this would generalize
the approaches of Eppstein et al. (2013), Buchanan
et al. (2014), andManoussakis (2014). But, this is another
bad parameterization, as this amounts to the multicol-
ored clique problem, which is widely believed not to be
fpt (see theorem 13.7 of Cygan et al. 2015).
We leavewith a few open problems. OurAlgorithm

main checks if ω � d + 1 in linear time provided that
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the d-core of the graph is d-regular. However, it can
take time Ω(m1.5) when d-regularity is not assumed.
This motivates our first open question.

Open Problem 1. Is there a linear-time algorithm to test
if ω � d + 1?

If this first question is answered in the affirmative a
natural next question is as follows. Recall that our ap-
proach runs in timeO(dm) � O(m1.5)when p is a constant.

Open Problem 2. Is there an algorithm that, for any
constant p, tests if ω ≥ d + 1 − p in linear time?

Finally, we discuss possible parameterizations for
the minimum vertex coloring problem. It is natural to
parameterize below degeneracy, that is, to see if the
chromatic number χ satisfies χ ≤ d + 1 − p. However,
this is a bad parameterization as coloring is NP hard on
four-regular planar graphs (Garey et al. 1976, Dailey
1980). Namely, the case d � 4 and p � 2 is NP hard. For
the same reason, parameterizing above the clique
number ω is fruitless.

Open Problem 3. Are there good parameterizations for
coloring real-life graphs?

A possibly exploitable fact is that checking whether
an n-vertex graph has χ ≤ n − k is fpt with respect to k.
Indeed, the running time is bounded by O∗(8k) by the
size 3k − 3 kernel of Chor et al. (2004) and the O∗(2n)
algorithm for coloring due to Björklund et al. (2009).
However, χ is typically orders of magnitude smaller

than n on real-life graphs, meaning that k would end up
being rather large and an alternative parameterization is
needed. Verma et al. (2015) found coloring to be more
difficult than maximum clique in practice, so finding a
good parameterization for vertex coloring is perhaps a
more onerous task than ours.
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Appendix A. Algorithm Implementation
In this appendix, we discuss the implementation of several key
components of Algorithm main. We also present further
enhancements that can be incorporated to speed up its
performance in practice and analyze the results obtained by
our algorithm when equipped with these enhancements.

A.1. Computing MD Orderings
To compute anMDordering in linear time, the algorithmby
Matula and Beck (1983) stores the vertices in a bucket-sort
type structure using Δ + 1 buckets labeled from 0 to Δ. The
algorithm initializes each bucket i so that it contains the
vertices whose degree is equal to i. At each iteration, to
identify the vertex that will be appended to the ordering
(i.e., the one with the smallest degree), the algorithm selects
a vertex from the first nonempty bucket. Then, since re-
moving such a vertex reduces the degree of its neighbors

Figure A.1. The Benefits of Parallelization for the Nine Instances that Took main More than Five Seconds to Solve on a
Single Thread.

Notes. The total times are reported above the bars. The names er-fact1.5-scale20 and kron_g500-simple-logn16 were shortened to reduce the
width of the chart.
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exactly by one, the algorithm proceeds to relocate them into
their corresponding new buckets based on their updated
degree, that is, decreases their bucket by one.

In their original paper, Matula and Beck (1983) pro-
posed an implementation that utilizes doubly-linked lists to
represent the degree buckets. Since both the insertion and
removal operations take constant time on doubly linked
lists, relocating the vertices between buckets to maintain
the sorted structure is done quite efficiently. This type of
implementation was also adopted by Eppstein et al. (2013)
and Verma et al. (2015) in their respective codes.

A related linear-time algorithm was later given by
Batagelj and Zaversnik (2003). This algorithm does not
produce an MD ordering, but does solve a similar problem
of generating k-cores. We employ one of its key ideas. It
encodes the bucket structure using arrays instead of doubly
linked lists. For practical reasons, arrays tend to outperform
doubly linked lists mainly because most modern pro-
gramming languages store arrays contiguously in memory
unlike doubly linked lists which, given their pointer-based
nature, are generally stored scattered across memory. Ar-
rays tend to reduce the number of cache misses during the
execution of the algorithm, resulting in an overall better
performance despite the array and doubly linked list imple-
mentations having the same worst-case complexity.

Here, we provide a minor modification of the algorithm pro-
posed by Batagelj and Zaversnik (2003), which we adapt to
computeMDorderings. AlgorithmA.1 preserves the linear-
time complexity of the one by Matula and Beck (1983), but
encodes the bucket structure using the following arrays:

• buckets: An array of size n that stores theΔ + 1 buckets
in consecutive order starting from 0 and ending in Δ. Each
bucket i is represented by a subarray that contains the
vertices with degree i. The number of contiguous positions
allocated to each bucket in this array changes as the algo-
rithm progresses given that the vertices get swapped from
bucket to bucket when their degree decreases. Therefore, the
algorithm requires us to keep track of the position of the first
element of each bucket in this array. These positions are
maintained in the following array:

• ind: An array of size Δ + 1 that contains the position
where each bucket begins in the buckets array. During exe-
cution it is possible for a bucket to become empty. In this case,
the position stored by array ind for that bucket will be equal
to the value for the subsequent bucket.

• ord: An array of size n containing the MD ordering.
• rdeg: An array of size n containing the right-degree of

each vertex.
• pos: An array of size n indicating the position of

each vertex in the buckets array. Upon termination, this array
yields the position of each vertex in the MD ordering.

The main difference with the original version proposed
by Batagelj and Zaversnik (2003) resides in the way in
which the algorithmupdates the buckets of the neighbors of
a vertex v that is being appended to the MD ordering
(i.e., steps 26–31). To compute an MD ordering, it is re-
quired to consider the specific case in which both v and at
least one of its neighbors u are in the same bucket. This extra
step can be omittedwhen generating k-cores. AlgorithmA.1
also uses steps 16–18 to identify a lower bound L on ω,
which is explained in Section 4.1.

A.2. Generating and Processing the Subgraphs
We now discuss the procedure for constructing the sub-
graphs G[Vi] in main, that is, steps 3(a) and 5. First, since it
is reasonable to expect larger graphs to contain larger cli-
ques, we do not construct and process the subgraphs fol-
lowing the sequence given by the MD ordering. Instead,
we begin by sorting the first n − dvertices of theMDordering
in decreasing orderwith respect to their right-degree and then
proceed to run the fpt vertex cover algorithms starting with
subgraph G[Vf ], followed by the subgraphs given by this
new ordered sequence (i.e., step 3(b) in main). Since the
rdeg(i) ≤ d for all i ∈ V, sorting the vertices can be done in
time O(n) via bucket sort, which preserves the worst case
complexity of the algorithm as stated in Theorem 1.

Sorting the vertices by their right-degree has a crucial
effect on the running time of the algorithm in practice,
because it directly yields set D of step 2 in main for any value
of p (i.e., the algorithm halts returning “no” as soon as the
first vertex with right-degree less than d − p appears in the
sequence). Furthermore, in most of the instances we tested
(see Section 5), maximum cliques are often found in the
largest subgraphs, and given that a large proportion of the
subgraphs tend to be quite small (often much smaller than
ω), several subgraphs do not even need to be generated in
main. In fact, among the instances we tested, on average
only 23% of the subgraphs need to be generated in our
implementation (see Table 8).

To construct a graph G[Vi] in time O(d2) (i.e., step 3(a) in
main), we first generate the right-neighborhoods of the first
n − d vertices (i.e., V1, V2, . . ., Vn−d). Manoussakis (2016)
provides an O(m) time algorithm to construct these vertex
subsets using as input the MD ordering. We notice, how-
ever, that these sets can be immediately generated while
computing the MD ordering as follows. Whenever a vertex
v is appended to the MD ordering, the algorithm proceeds
to decrease the degree of the neighbors of v that have not yet
been added to the MD ordering. These neighbors are in fact
the members of right-neighborhood Vi and as such can be
stored directly. Once the MD ordering is computed and
all sets V1,V2, . . . ,Vf are generated, the algorithm proceeds
to construct each G[Vi] on the fly, following the subsequent
steps of the algorithm by Manoussakis (2016).

Furthermore, given that Algorithm main is executed iter-
atively for several values of p starting from p � 0 until p �
d + 1 − ω is reached, during each call of main the algorithm is
only required to process the subgraphs G[Vi] for which |Vi| ≥
d − p. Once graphG[Vi] is generatedduring some call ofmain,
we keep it in memory and reuse it for subsequent values of p.

Generating the vertex setsV1,V2, . . .,Vf while computing
the MD ordering avoids traversing the adjacency lists an
extra time, thus reducing the running time of the algorithm
in practice. However, we notice that this minor variation does
not improve upon the worst-case time complexity given by
Manoussakis (2016), because the largest contributor to the
complexity of constructing the graphs G[Vi] is the time
spent generating the edge sets and not the vertex sets.

A.3. Algorithm Parallelization
The proposed algorithm can directly benefit from a paral-
lelized implementation over multiple threads without re-
quiringmajormodifications to its design. The key observation
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for the parallelized version of main comes from the fact
that the fpt procedure for vertex cover that is executed over
each of the generated subgraphs (steps 3(b) and 5) can be
run independently in parallel by different threads without
the need to exchange large amounts of information be-
tween such processes. The task of generating subgraphs
G[Vi] and running the vertex cover algorithm on them can
then be evenly distributed among independent threads,
while maintaining a global atomic flag that stops the exe-
cution of all the threads in the event that any of those
threads finds a vertex cover of the desired size.

We now proceed to discuss the results of the parallelized
version of our algorithm using two, four, and eight threads

and analyze the performance improvements obtained. We
compare the multithreaded implementation with RGG
exclusively, as the other algorithms were not coded to run
in parallel. Table A.1 presents the times in seconds of
both approaches. We left the times obtained with a single
processor to allow for a full comparison and highlight in
bold the fastest times to solve each instance. As with pre-
vious tables, mark with an asterisk (*) the cases where an
algorithm fails to identify ω within the time limit. Unsur-
prisingly, parallelization results in notable speedups on
instances for which the clique-core gap is large. We notice
however that for some easy instances with small clique-
core gaps, the overhead of creating and managing the

Algorithm A.1 (Algorithm for Computing an MD Ordering of a Graph)
Input: A graph G � (V,E)
Output: The degeneracy d of G, a lower bound L on ω, an MD ordering (v1, . . . , vn) of G, and the right-degree of the

vertices in V.
1: procedure MDORDERING(G)
2: Initialize the buckets and ind arrays according to the degree of the vertices. Ties are broken

lexicographically.
3: Initialize the pos array based on the position of the vertices in the buckets array.
4: d ← 0
5: L ← 0

6: for all i ∈ V do
7: rdeg[i] ← |N(i)|
8: end for
9: for all i � 1, . . . ,n do

10: v ← buckets[i]
11: ord[i] ← v 8 v becomes part of the MD ordering
12: ind[rdeg[v]] ← ind[rdeg[v]] + 1 8 the index for the bucket where vwas is updated to the position

right after v
13: if d < rdeg[v] then
14: d ← rdeg[v] 8 the degeneracy is updated
15: end if
16: if L � 0 and rdeg[v] � n − i then  8 a lower bound is found
17: L ← n − i + 1
18: end if
19: for all u ∈ N(v) do 8 This loop updates buckets of the neighbors of v
20: if pos[u] > pos[v] then
21: let w be the first vertex in u’s current bucket
22: if u �� w then
23: Swap u and w in the buckets array and update pos accordingly
24: end if
25: rdeg[u] ← rdeg[u] − 1
26: if rdeg[u] � rdeg[v] then 8 u and v are in the same bucket
27: ind[rdeg[u]] ← pos[v] + 1 8 the indexof thenewbucket ofu is set to begin right after pos[v]
28: ind[rdeg[u]] ← ind[rdeg[v]] + 1 8 the index of the bucket that contained v is set to begin

right after pos[u]
29: else
30: ind[rdeg[u]] ← pos[u] + 1 8 the index of the newbucket of u is set to begin right after pos[u]
31: end if
32: end if
33: end for
34: end for
35: return d, L, ord, and rdeg
36: end procedure
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additional threads may undermine the benefit of the
parallelization, producing no substantial improvements.
Additionally, the algorithm for computing an MD order-
ing is sequential, and so parallelization is not particularly

helpfulwhen the instance is solved soonafter theMDordering
is found.

Results indicate Algorithm main solves nearly all in-
stances more quickly than does RGG. It seems that main is

Table A.1. Comparison of Algorithms main, BWBP, VBB, and RGG

Time

1 thread 2 threads 4 threads 8 threads

Instance d ω g main BWBP VBB RGG main RGG main RGG main RGG

Cit-HepTh 30 19 12 0.18 0.34 0.12 0.19 0.11 0.21 0.07 0.19 0.06 0.24
Cit-HepPh 37 23 15 0.20 0.37 0.12 0.20 0.11 0.21 0.07 0.19 0.07 0.24
citationCiteseer 15 13 3 0.11 0.14 0.53 0.26 0.11 0.37 0.12 0.38 0.10 0.42
er-fact1.5-scale20 14 3 12 9.12 13.64 17.15 6.87 6.80 6.30 4.40 5.34 3.70 5.69
cit-Patents 64 11 54 4.52 5.29 12.79 5.89 4.29 7.12 4.09 6.96 3.80 7.11

delaunay_n16 4 4 1 0.05 0.08 0.22 0.09 0.04 0.10 0.03 0.09 0.03 0.11
kron_g500 432 136 297 2,663.15 815.16 335.94 13.31 1,431.80 7.85 1,151.30 6.08 959.51 4.42
G_n_pin_pout 7 4 4 0.27 0.50 0.42 0.23 0.16 0.26 0.11 0.24 0.09 0.27
smallworld 7 6 2 0.10 0.27 0.41 0.22 0.07 0.25 0.05 0.22 0.05 0.25
delaunay_n17 4 4 1 0.11 0.16 0.22 0.18 0.08 0.21 0.06 0.19 0.06 0.21
delaunay_n18 4 4 1 0.23 0.33 0.45 0.36 0.16 0.41 0.11 0.37 0.11 0.42

p2p-Gnutella04 7 4 4 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.04
p2p-Gnutella25 5 4 2 0.01 0.03 0.44 0.02 0.01 0.03 0.01 0.02 0.01 0.06
as-22july06 25 17 9 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.03
p2p-Gnutella24 5 4 2 0.01 0.04 0.69 0.02 0.01 0.04 0.01 0.03 0.01 0.06
p2p-Gnutella30 7 4 4 0.02 0.06 0.12 0.03 0.02 0.04 0.01 0.04 0.01 0.06
p2p-Gnutella31 6 4 3 0.04 0.10 0.07 0.05 0.03 0.07 0.02 0.06 0.02 0.08
caidaRouterLevel 32 17 16 0.09 0.12 0.23 0.15 0.07 0.21 0.07 0.21 0.07 0.29
as-skitter 111 67 45 1.68 2.57 6.21 2.74 1.36 3.71 1.31 3.72 1.15 4.64

wiki-Vote 53 17 37 0.27 0.21 0.10 0.09 0.15 0.08 0.09 0.07 0.07 0.11
soc-Epinions1 67 23 45 0.60 0.56 0.26 0.31 0.35 0.28 0.22 0.23 0.18 0.25
soc-Slashdot0811 54 26 29 0.29 0.33 0.15 0.20 0.17 0.22 0.10 0.20 0.10 0.24
soc-Slashdot0922 55 27 29 0.30 0.34 0.16 0.22 0.19 0.24 0.11 0.21 0.12 0.24
soc-pokec 47 29 19 13.50 12.93 19.45 11.20 9.02 10.31 6.13 8.98 5.31 10.22
soc-LiveJournal1 372 321 52 4.95 * * 9.07 4.73 13.24 4.46 13.16 4.15 13.84

web-Stanford 71 61 11 0.15 0.25 2.96 0.53 0.12 0.71 0.12 0.71 0.10 0.74
web-NotreDame 155 155 1 0.07 0.09 0.12 0.23 0.07 0.37 0.07 0.36 0.07 0.49
web-BerkStan 201 201 1 0.25 0.29 6.96 1.33 0.26 2.01 0.27 2.04 0.26 2.17
eu-2005 388 387 2 0.50 0.72 26.29 3.06 0.48 4.69 0.51 4.69 0.50 6.25
web-Google 44 44 1 0.33 0.35 1.15 0.82 0.34 1.29 0.35 1.31 0.34 1.44
wiki-topcats 99 39 61 12.58 14.94 * 20.04 7.66 11.41 5.36 8.44 4.58 6.70

wave 8 6 3 0.33 1.39 0.63 0.49 0.20 0.53 0.13 0.48 0.12 0.55
audikw1 47 36 12 34.30 92.87 14.10 32.12 18.49 24.28 11.05 19.97 8.73 19.58
ldoor 34 21 14 19.04 36.58 10.79 14.36 10.37 12.29 5.85 9.90 5.40 10.91
ecology1 2 2 1 0.55 2.76 1.05 1.04 0.41 1.16 0.33 1.01 0.31 1.05
333SP 4 4 1 1.49 1.86 50.24 5.79 1.25 5.94 1.31 5.02 1.43 5.06
cage15 25 6 20 32.77 56.83 23.38 27.49 18.18 24.56 11.96 20.00 9.74 18.44

luxembourg.osm 2 3 0 0.02 0.02 0.18 0.01 0.02 0.01 0.02 0.01 0.02 0.03
belgium.osm 3 3 1 0.29 0.29 0.89 0.28 0.29 0.45 0.33 0.45 0.29 0.50

email-Enron 43 20 24 0.12 0.16 0.12 0.09 0.07 0.10 0.04 0.09 0.04 0.12
email-EuAll 37 16 22 0.09 0.11 0.12 0.12 0.07 0.15 0.06 0.16 0.05 0.22
wiki-Talk 131 26 106 36.92 3.89 5.82 5.25 20.47 3.76 13.55 2.97 12.48 2.78
com-Orkut 253 51 203 302.99 275.67 * 241.00 166.96 146.02 146.13 105.30 112.08 78.54

Amazon0302 6 7 0 0.09 0.09 0.32 0.17 0.09 0.27 0.10 0.28 0.09 0.38
Amazon0601 10 11 0 0.18 0.19 1.95 0.13 0.18 0.22 0.21 0.22 0.18 0.29
Amazon0505 10 11 0 0.18 0.19 2.19 0.13 0.18 0.22 0.20 0.22 0.18 0.29

Notes. For each instance, the best times are highlighted in bold. The asterisk (*) indicates an inability to find ωwithin the time limit of one hour.
The name kron_g500-simple-logn16 was shortened to reduce the width of the table.
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able to exploit the parallelized execution, reducing the
solution times inmost cases, whereas RGG is only able to do
so for the largest instances. In fact, the running times of
RGG sometimes slightly deteriorate on some small in-
stances when using multiple threads. A possible explana-
tion of this slight deterioration is that, for instances that are
solved rather fast, RGG spends most of the execution in
parts of the algorithms that are not parallelized, like gen-
erating the k-cores, and so the overhead paid for paralle-
lization is not worth it.

To further understand the benefits of parallelization, we
visualize in Figure A.1 the times for the nine most challenging
instances for main, that is, those instances taking longer
than five seconds with the single-thread implementation.
The bars are scaled by the single-thread time (1x), and a
lower value indicates a performance improvement. As can
be observed, when ran on two, four, and eight threads,
mainfinishes on average 43%, 61% and, 67% faster than on a
single thread, respectively. Since Algorithm main spends
most of its time generating subgraphs and solving vertex
cover subproblems (see Table 8), which are straightforward
tasks to parallelize, the multithreaded implementation
results in noticeable improvements. For comparison pur-
poses, we also report the average performance on the other
37 instances. As might be expected, the benefits of paral-
lelization are less pronounced on them.

A.4. Further Implementation Enhancements
There are several enhancements that can be easily incor-
porated into our approach to potentially reduce its running
time. We briefly discuss a few of them in this section and
provide details of their performance.

First, as described in Section 3, Algorithm main is exe-
cuted sequentially for several values of p starting from p � 0
until p � d + 1 − ω is reached. This linear-search type of ex-
ecution may become expensive whenever the clique-core gap
is expected to be large. In that case, the proposed algorithm
may benefit from a different type of search to reduce the
number of times main is called. In the presence of a good
lower bound L, the algorithm could run in a binary search
fashion instead of the linear search. The algorithm can use
as the initial L the lower bound produced by the MD

ordering procedure described in Section 4.1 or the result of
any other heuristic.

A drawback of this variation is that it depends heavily on
the quality of the lower bound L, and since clique is hard
to approximate (Håstad 1999, Zuckerman 2006), d + 1 − L
can be as bad as Ω(d). Thus, the worst-case bound of
1.28gpoly(n) given in Corollary 1 cannot be maintained and
is drastically affected, becoming 1.28dpoly(n). We have
observed in practice that the binary search variation often
reduces the computational times to solve some of the in-
stances we consider in our experiments. However, given its
negative effect on the worst-case complexity of our ap-
proach,we do not expand on this variation other than a brief
discussion about some computational experiments.

A second possible enhancement takes advantage of the
way in which our approach divides the search across many
smaller subgraphs. This allows for one to execute several
heuristics and other algorithms over each of these sub-
graphs to identify upper and lower bounds on the maxi-
mum cliques of subgraphs G[V1], G[V2], . . . , G[Vf ], thus
potentially refining the bounds on ω. This could also be
used to identify subgraphs that are not worth exploring
(i.e., subgraphs whose clique upper bound is smaller than
the best lower bound of G). However, in an effort to stay
true to the proposed algorithm, we do not employ these
ideas in our implementation.

We focus our attention on the variation that runsmain in
a binary search fashion for values of p within interval
[0, d + 1 − L), until p � d + 1 − ω is reached. Here, we use as L
the lower bound produced by the MD ordering. We com-
pare the performance of this variant with the linear search
version described in Section 3. Table A.2 presents the times
obtained by both variants on the nine instances for which
the linear search takes more than five seconds to solve
(see Section 4).

It can be observed that binary search outperforms linear
search for all instances but one (soc-pokec). The results also
suggest that the speedups obtained by the binary search
depend significantly on the clique-core gaps. As one might
expect, for instances with clique-core gap less than 100,
the times of both variants are quite similar with the bi-
nary search only achieving speedups of a few seconds.

Table A.2. Comparison of the Times for Algorithm main Using Linear Search (LS) and
Binary Search (BS)

Time

1 thread 2 threads 4 threads 8 threads

Instance L d ω g LS BS LS BS LS BS LS BS

er-fact1.5 2 14 3 12 9.12 8.01 6.80 5.98 4.40 3.89 3.70 3.52
audikw1 30 47 36 12 34.30 32.63 18.49 17.37 11.05 10.06 8.73 8.55
ldoor 21 34 21 14 19.04 13.44 10.37 7.27 5.85 4.05 5.40 3.85
soc-pokec 15 47 29 19 12.93 13.37 9.02 9.24 6.13 7.10 5.31 6.63
cage15 5 25 6 20 32.77 29.00 18.18 16.59 11.96 10.07 9.74 9.22
wiki-topcats 5 99 39 61 12.58 12.46 7.66 7.59 5.36 5.32 4.58 4.57
wiki-Talk 25 131 26 106 36.92 16.42 20.47 9.01 13.55 5.47 12.48 5.49
com-Orkut 14 253 51 203 302.99 256.53 166.96 146.26 146.13 105.53 112.08 90.78
kron-g500 135 432 136 297 2,663.15 469.01 1,431.80 247.60 1,151.30 157.85 959.51 163.46

Notes. For each instance, the best times are highlighted in bold. The name of the instance er-fact1.5scale20
and kron_g500-simple-logn16 were shortened to reduce the width of the table.
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In contrast, in the cases in which the clique-core gaps exceed
100 (wiki-Talk, com-Orkut, and kron_g500-simple-logn16),
the binary search is able to find ω significantly faster than

the linear search. Themost notable example is the case of kron_
g500-simple-logn16 for which the single-thread binary search
implementation finds ω more than 2,000 seconds faster.

Appendix B. Additional Tables and Figures

Figure B.1. (Color online) Right-Degree Distribution of the Different Instances
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Figure B.1. (Continued)
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Figure B.1. (Continued)

Notes. The horizontal axis represents the right-degree, and the vertical axis represents the percentage of vertices having such a right-degree. The
dashed line marks ω.
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Endnotes
1Also see the equivalent or nearly equivalent notions of color-
ing number (Erdös and Hajnal 1966) (not to be confused with
chromatic number), the Szekeres-Wilf number (Szekeres and
Wilf 1968), width (Freuder 1982), and linkage (Kirousis and
Thilikos 1996).
2MD orderings are closely related to degeneracy orderings, width
orderings (Freuder 1982), and smallest-last orderings (Matula and
Beck 1983), and they have been used in many clique algorithms, with
explicit worst-case guarantees on their running time (Eppstein et al.
2013, Buchanan et al. 2014, Manoussakis 2014) and without guar-
antees (Carraghan and Pardalos 1990, Prosser 2012).
3A subgraphG′ ofG is called a k-community if the endpoints of every
edge e ∈ E(G′) have at least k common neighbors in G′.
4Anurag Verma presented preliminary results as early as the
INFORMS Annual Meeting in Charlotte, NC in November 2011. The
resulting paperwas submitted to a journal in July 2012, but was never
posted to a preprint website. Ryan Rossi posted his group’s preprint
to arXiv in October 2012.
5Buchanan et al. (2014) also give an algorithm whose running time is
polynomial in the number of vertices, but exponential in the “k-truss
number” or “community degeneracy.”
6 In some sense, both kernels are “optimal” in that there is no
(polytime) kernel for vertex cover with O(k2−ε) edges, unless
coNP⊆NP/poly (Dell and Van Melkebeek 2014). However, the
Nemhauser-Trotter kernel is also believed to be optimal with re-
spect to the number of vertices. Namely, corollary 3.13 of Chen et al.
(2007) states that if there exists a polytime algorithm for con-
structing a kernel that is a subgraph of the original graph with (2 − ε)k
vertices, then P�NP.
7 In an alternative linear-time approach, first compute the d-core G′ of
G via Matula and Beck (1983) and suppose G′ is d-regular. Then, ω �
d + 1 if and only if some connected component of G′ contains exactly
d + 1 vertices.
8The algorithm in Buchanan et al. (2014) was implemented for this
comparison using the clique solver by Östergård (2002) as a sub-
routine; the implementation of Rossi et al. (2015) was made available
by the authors at http://ryanrossi.com/pmc/ (accessed January 2020);
and the implementation of Verma et al. (2015) was kindly provided by
the authors.

9The website https://www.biicode.com/pablodev/copt that accord-
ing to San Segundo et al. (2016) hosted the code was not available
during the period from March 2017 to January 2020.
10For instance, the computational log provided by the authors for
solving the instance soc-pokec with two processors using the par-
allelized algorithm described in San Segundo et al. (2017b) reports a
reading time of 10.68 seconds, a so-called setup time of 13.24 seconds
that includes the calculation of the graph’s k-core and the peeling
process, and the search time over the reduced subgraph of 5.83
seconds. The authors report as the execution time the 5.83 seconds
exclusively. This type of inconsistency was observed for all the in-
stances they solved.
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Östergård PRJ (2002) A fast algorithm for the maximum clique
problem. Discrete Appl. Math. 120(1):197–207.

Pattabiraman B, Patwary MMA, Gebremedhin AH, Liao WK,
Choudhary A (2013) Fast algorithms for the maximum clique
problem on massive sparse graphs. Bonato A, Mitzenmacher M,
Prałat P, eds. International Workshop on Algorithms and Models for
the Web-Graph (Springer, Heidelberg), 156–169.

Prosser P (2012) Exact algorithms for maximum clique: A compu-
tational study. Algorithms (Basel) 5(4):545–587.

PulleyblankWR (1979)Minimumnode covers and 2-bicritical graphs.
Math. Programming 17(1):91–103.

Robson JM (2001) Finding a maximum independent set in time
O(2n/4). Technical report, LaBRI, Université de Bordeaux I.

Rossi RA (2014) Fast triangle core decomposition for mining large
graphs. Tseng VS, Ho TB, Zhou Z-H, Chen ALP, Kao H-Y, eds.
Pacific-Asia Conf. Knowledge Discovery Data Mining (Springer,
Heidelberg), 310–322.

Rossi RA, Ahmed NK (2015) The network data repository with in-
teractive graph analytics and visualization. Proc. 29th AAAI Conf.
Artificial Intelligence (AAAI Press, Palo Alto, CA), 4292–4293.

Rossi RA, Gleich DF, Gebremedhin AH (2015) Parallel maximum
clique algorithms with applications to network analysis. SIAM
J. Sci. Comput. 37(5):C589–C616.

San Segundo P, Lopez A, Pardalos PM (2016) A new exact maximum
clique algorithm for large and massive sparse graphs. Comput.
Oper. Res. 66:81–94.

San Segundo P, Nikolaev A, BatsynM (2015) Infra-chromatic bound
for exact maximum clique search. Comput. Oper. Res. 64:
293–303.

San Segundo P, Artieda J, Batsyn M, Pardalos PM (2017a) An en-
hanced bitstring encoding for exact maximum clique search in
sparse graphs. Optim. Methods Software 32(2):312–335.

San Segundo P, Lopez A, Artieda J, Pardalos PM (2017b) A parallel
maximum clique algorithm for large and massive sparse graphs.
Optim. Lett. 11(2):343–358.

SavelsberghMWP (1994) Preprocessing and probing techniques formixed
integer programming problems. ORSA J. Comput. 6(4):445–454.

Walteros and Buchanan: Why Is Maximum Clique Often Easy in Practice?
1894 Operations Research, 2020, vol. 68, no. 6, pp. 1866–1895, © 2020 INFORMS

https://arxiv.org/abs/cs/0310049
https://github.com/coin-or/Csdp/blob/master/doc/csdpuser.pdf
https://arxiv.org/abs/1410.3302
https://arxiv.org/abs/1410.3302
https://arxiv.org/abs/1501.01819v4
http://plato.asu.edu/bench.html


Seidman SB (1983) Network structure and minimum degree. Soc.
Networks 5(3):269–287.

Sloane NJA (2017) Challenge problems: Independent sets in graphs.
Accessed Janary 20, 2020, https://oeis.org/A265032/a265032
.html.

Szekeres G,Wilf HS (1968) An inequality for the chromatic number of
a graph. J. Combin. Theory 4(1):1–3.

Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm
for finding a maximum clique with computational experiments.
J. Global Optim. 37(1):95–111.

Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010) A
simple and faster branch-and-bound algorithm for finding a
maximum clique. Rahman MS, Fujita S, eds. WALCOM: Algo-
rithms and Computation (Springer, Berlin), 191–203.

VermaA, BuchananA, Butenko S (2015) Solving themaximum clique
and vertex coloring problems on very large sparse networks.
INFORMS J. Comput. 27(1):164–177.

Wang J, Cheng J (2012) Truss decomposition in massive networks.
Proc. VLDB Endowment 5(9):812–823.

Watts DJ (1999) Networks, dynamics, and the small-world phe-
nomenon. Amer. J. Sociol. 105(2):493–527.

Wilson AT (2009) Applying the boundary point method to an SDP
relaxation of the maximum independent set problem for a

branch and bound algorithm. Master’s thesis, New Mexico In-
stitute of Mining and Technology, Socorro, NM.

Zuckerman D (2006) Linear degree extractors and the inapproxim-
ability of max clique and chromatic number. Proc. 38th Annual
ACM Sympos. Theory Comput. (ACM, New York), 681–690.

Jose L. Walteros is an assistant professor of industrial and
systems engineering at the University at Buffalo. His research
interests primarily focus on solving problems in the areas
of combinatorial optimization, network interdiction, graph
theory, logistics, and network flows. He currently serves
as Vice Chair for Network Optimization in the INFORMS
Optimization Society. Previously, he served as president of
the INFORMS Junior Faculty Interest Group.

Austin Buchanan is an assistant professor of industrial
engineering and management at Oklahoma State University.
His research focuses on solving combinatorial optimization
problems in networks, particularly those having connectivity or
distance constraints. He currently serves as an associate editor
for the journal Networks and has served in various leadership
roles in the INFORMS Optimization Society and the INFORMS
Section on Telecommunications and Network Analytics.

Walteros and Buchanan: Why Is Maximum Clique Often Easy in Practice?
Operations Research, 2020, vol. 68, no. 6, pp. 1866–1895, © 2020 INFORMS 1895

https://oeis.org/A265032/a265032.html
https://oeis.org/A265032/a265032.html

	Why Is Maximum Clique Often Easy in Practice?
	Introduction
	Background
	A New Algorithm for Maximum Clique
	Computational Experiments
	Further Observations
	Conclusion




