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ABSTRACT
We study statistical calibration, i.e., adjusting features of a computational model that are not
observable or controllable in its associated physical system. We focus on functional calibration,
which arises in many manufacturing processes where the unobservable features, called calibration
variables, are a function of the input variables. A major challenge in many applications is that
computational models are expensive and can only be evaluated a limited number of times.
Furthermore, without making strong assumptions, the calibration variables are not identifiable. We
propose Bayesian Non-isometric Matching Calibration (BNMC) that allows calibration of expensive
computational models with only a limited number of samples taken from a computational model
and its associated physical system. BNMC replaces the computational model with a dynamic
Gaussian process whose parameters are trained in the calibration procedure. To resolve the identi-
fiability issue, we present the calibration problem from a geometric perspective of non-isometric
curve to surface matching, which enables us to take advantage of combinatorial optimization
techniques to extract necessary information for constructing prior distributions. Our numerical
experiments demonstrate that in terms of prediction accuracy BNMC outperforms, or is compar-
able to, other existing calibration frameworks.
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1. Introduction

Experimenting on computational models to understand
physical systems has been a popular practice ever since com-
puters became advanced enough to handle complex math-
ematical models and intense computational procedures
(Fang et al., 2005; Santner et al., 2013). This popularity is
mainly due to a computational model being able to obtain
outputs of an experiment in a relatively more cost-effective
and timely manner compared with conducting actual experi-
ments in a laboratory. However, one challenge in utilizing
computational models is their “adjustment.” In fact, compu-
tational models usually incorporate features that cannot be
observed or measured in physical systems, but must be cor-
rectly specified so that the computational model can accur-
ately represent the physical system (Kennedy and O’Hagan,
2001). We refer to these unobservable/unmeasurable features
as calibration variables, and to the adjustment of their values
as the calibration procedure. We call input features that are
common between the computational models and the phys-
ical systems as control variables.

For example, in the fabrication of Poly-Vinyl Alcohol
(PVA)-treated buckypaper, we are interested in understand-
ing the relationship between the response value, which is the
tensile strength, and the control variable, which is the
amount of PVA (Pourhabib et al., 2015). Here, the calibra-
tion variable is the percentage of PVA absorbed, which

cannot be measured in the physical system, but is required
in the computational model.

Past studies on the calibration problem generally assumed
unique values for calibration variables, an approach referred
to as global calibration, and used different statistical
approaches to estimate these values. For instance, Craig
et al. (2001), Kennedy and O’Hagan (2001); Higdon et al.
(2004) Reese et al. (2004), Han et al. (2009) and Williams
et al. (2006); Bayarri et al. (2007), Higdon et al. (2008), and
Goldstein and Rougier (2009) devised various Bayesian
models, whereas Loeppky et al. (2006) and Pratola et al.
(2013) used maximum likelihood estimation, and Han et al.
(2009) and Joseph and Melkote (2009) developed mixed
models by combining frequentist and Bayesian methodolo-
gies. More recently Tuo and Wu (2015, 2016) developed
models based on L2 distance projection to estimate the true
values of the global calibration variables.

Currently, few studies employ functional calibration by
assuming that the values of the calibration variables depend
on the control variables. Pourhabib et al. (2015) showed that,
for the buckypaper fabrication problem, an approach that
considers a parametric functional relationship between the
amount of PVA and the percentage absorbed can outper-
form the global calibration approach of Kennedy and
O’Hagan (2001). Similarly, Xiong et al. (2009) used a simple
linear relationship to improve the calibration accuracy in a
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benchmark thermal challenge problem. Furthermore, non-
parametric methods can also be utilized to model functional
relationships between the calibration variables and the con-
trol variables. Such non-parametric functional relationships
have been constructed using Reproducing Kernel Hilbert
Spaces (Sch€olkopf et al., 2001) and Gaussian processes
(Rasmussen, 2004) by various authors Plumlee et al., 2016;
Brown and Atamturktur, 2018; Pourhabib et al., 2018).

All the aforementioned studies in functional calibration
and most studies in global calibration require computational
models that are “cheaply executable.” This assumption is
required since computational models need to be evaluated
thousands of times, either to draw samples from a posterior
distribution in Bayesian approaches, or to numerically min-
imize a loss function in other approaches. If the computa-
tional model is “expensive,” one can obtain a small number
of observations from the computational model, then fit a
surrogate function based on these random samples, and in
the final step, replace the computational model in the cali-
bration procedure with this new surrogate model. However,
as discussed in Section 6, this poses a challenge, as “static”
replacement may result in poor retrieval of the calibra-
tion variables.

Another challenge is the identifiability issue: it is difficult
to solve the calibration problem in higher-dimensional
spaces without making additional assumptions about the
solution space (Pourhabib et al., 2018). Furthermore, a good
prediction performance for the response values does not
necessarily imply that a method has accurately captured the
functional relationship between the calibration and control
variables (Tuo and Wu, 2015; Ezzat et al., 2018; Plumlee
and Joseph, 2018). This is a significant drawback since, in
many applications, understanding the functional relationship
between the calibration and control variables is as important
as predicting the response values of the system under study.

In this article, we develop a new framework for the func-
tional calibration of expensive computational models. Unlike
conventional surrogate modeling, which replaces the compu-
tational model with a static, approximated surface, we

employ a “dynamic” Gaussian Process (GP) over the compu-
tational model. Our GP is dynamic in the sense that the
hyper-parameters of the GP’s covariance function are
trained during the calibration procedure. We simultaneously
construct posterior distributions for the hyper-parameters of
the GP’s covariance function and the calibration variables
associated with each of the physical control vectors. In other
words, we allow the GP to tune its hyper-parameters in add-
ition to the calibration variables such that the computational
model responses become as close as possible to the phys-
ical responses.

To tackle the unidentifiability issue in higher-dimensional
spaces, we use informative prior distributions. We take
advantage of an alternative geometric interpretation of cali-
bration, namely the non-isometric matching of a curve to a
surface. We explain this in the case of a single control vari-
able and a single calibration variable. From a geometric per-
spective, all possible values for the control variable and
the physical response constitute a plane curve in the con-
trol–response space (see Figure 1(a)). By contrast, in the
computational model, we can specify the values of both the
control and the calibration variables. Consequently, all pos-
sible values of the control and calibration variables, and the
responses of the computational model together form a surface.
The plane physical curve we observe in the control–response
space is a projection of a space curve in the three-dimensional
control–calibration–response space. Due to the nature of pro-
jection into a lower–dimensional space, the length of the pro-
jected curve is not necessarily the same as the original curve
in the three-dimensional space. The projection is therefore
non-isometric (Bronstein et al., 2003, 2005).

The geometric interpretation is due to the nature of the
calibration variable in a physical process: For each value of
the control variable there exists a (possibly unknown) value
for the calibration variable, and these two features determine
a single response. Since we do not observe the actual value
of the calibration variable in the physical process, we only
see a projected curve in the control–response space. Hence,
calibration aims to recover the true physical curve, or in

Figure 1. A non-isometric curve to surface matching perspective of functional calibration: The left plot shows the complete surface and curve. In practice, we
observe a scatter of data points sampled from the complete curve and surface, which is depicted in the right plot.

IISE TRANSACTIONS 353



other words, determine a non-isometric match of a curve to
a surface.

The remainder of this article is organized as follows. We
explain our Bayesian model for handling expensive compu-
tational models in Section 2. Section 3 contains a formal
description of the calibration problem and its interpretation
as a non-isometric curve to surface matching problem. Our
graph-theoretic approach to utilizing this geometric perspec-
tive to construct informative prior distributions for our
Bayesian model is also presented in Section 3. In Section 4,
we generalize the idea of a non-isometric curve to surface
matching to higher dimensions and introduce integer pro-
gramming techniques to tackle the problem. The approach
presented in Sections 3 and 4 to construct informative prior
distributions for our Bayesian model is used to calculate
posterior distributions in Section 5. Our experimental results
are reported in Section 6, comparing them with previous
approaches. Section 7 concludes the article and presents
paths for future research.

2. General setting: A Bayesian model for calibration

Consider a physical system that operates according to a set
of (possibly unknown) physical laws. In this system, there is
a functional relationship between a group of features and
the response (output). We call those features of the system
that can be measured and specified as inputs of the physical
system as control variables, and denote the vector of these
variables by x 2 R

dx : We assume that we obtain data for the
physical system by conducting physical experiments: once
the control variables are set (either observed or specified) in
the physical system, the physical process F p generates a
real-valued response yp, that is yp ¼ F pðxÞ:

Although the response is a function of all features of the
physical system, we write yp explicitly as a function of x as
the rest of the features are hard to measure or control, and
hence we have no control over them in the physical system.
We call such features calibration variables and categorize
them into the following two groups: (i) global calibration
variables, which have unique values regardless of the values
of the control variables, and (ii) functional calibration varia-
bles, which are functions of control variables.

We denote the vector of global calibration variables by
w 2 R

dw and the vector of functional calibration variables by
h 2 R

dh : We also denote the function that maps x to the kth
element of h, i.e., hk, by F h

k and the vector of all these func-
tions by F h ¼ ½F h

1, :::,F h
dh �>: With a slight abuse of nota-

tion, we denote the vector map from x to h using the vector
of functions F h as h ¼ F hðxÞ:

Suppose we have a computational model constructed
according to the laws governing the physical system. Similar
to the physical system, the response of our computational
model is determined by the interactions between the control
and the calibration variables. However, in a computational
model we can set the values of all x, h, and w arbitrarily
within their respective domains. That is because, unlike
physical experiments, there are no constraints on measuring
or specifying control or calibration variables in a

computational model. If we denote the computational pro-
cess as F s, then the response of the computational model
can be written as

ys ¼ F sðx,w, hÞ: (1)

We refer to obtaining a value for ys, given a combination of
x, w, and h in the computational model, as a com-
puter experiment.

The goal of calibration is to adjust the variables w and h

such that the computational model represents the physical
system in the sense that the computational model can pre-
dict the physical response at any input location x�:

Mathematically, calibration can be viewed as the estima-
tion of vectors F h and w such that, for any given x�, the
function F s : Rdx � R

dw � R
dh ! R generates a response

close to yp
�
up to an error ��, i.e.,

yp
� ¼ F sðx�,w,F hðx�ÞÞ þ ��, (2)

where the error �� captures the measurement error and the
discrepancy between the physical and computation model.

To estimate w and F h in (2) we initially obtain m
responses from F p at a set of physical system inputs
fxp1, :::, xpmg to create a dataset P corresponding to that phys-
ical system:

P :¼ pi ¼ xpi , y
p
i

� �
jxpi 2 R

dx , ypi 2 R, i 2 f1, 2, :::,mg
n o

:

We also create the counterpart of P in the computational
model, i.e., the computational dataset as

S :¼ sj ¼ xsj ,w
s
j , h

s
j , y

s
j

� �
jxsj 2 R

dx , ws
j 2 R

dw , hsj 2 R
dh , j 2 f1, 2, :::, ng

n o
,

based on a set of computational model inputs
fðxs1,ws

1, h
s
1Þ, :::, ðxsn,ws

n, h
s
nÞg: We assume the sets of physical

system inputs and the computational model inputs are
given. For a discussion of how to select the inputs we refer
the reader to the paper by Ezzat et al. (2018).

Let h
p
i ¼ F hðxpi Þ and wp denote the true values of the

calibration variables and assume that the errors are inde-
pendent and have identical normal distribution with zero
mean and constant variance. Therefore, we obtain the cali-
bration model as

ypi ¼ F sðxpi ,wp, hpi Þ þ �
p
i , where �

p
i � Nð0, r2Þ,

8i 2 f1, 2, :::,mg:
(3)

Remark 1. If we remove the functional calibration variable
h
p
i from Equation (3), we get a simplified version of the glo-
bal calibration model proposed in Kennedy and O’Hagan
(2001). In fact, Kennedy and O’Hagan (2001) assume ypi ¼
F sðxpi ,wpÞ þ dðxpi Þ þ �

p
i , where dð�Þ is a GP independent

from F s, which characterizes all the discrepancy between
the computational model and the physical system due to
assumptions made in building the computational model.
However, as in this study we focus on computational models
with a limited number of data points, we do not include a
separate discrepancy term dð�Þ, which entails introducing a
set of additional parameters and would make the estimation
procedure unstable. Therefore, as we utilize a dynamic GP
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to minimize the overall discrepancy, we choose to use �
p
i to

represent not only the measurement error in the physical
system but also the discrepancy between the computational
model and the physical system. As such, our assumptions
are similar to those made by Brown and Atamturktur
(2018). In Appendix E in the supplementary material we
validate these assumptions on the datasets used in this
study. The reader can refer to the discussion by Tuo and
Wu (2016) for a frequentist interpretation of the model pro-
posed by Kennedy and O’Hagan (2001).

Note that applying Bayesian statistics to construct poster-
ior distributions for parameters of model (3), i.e., wp, r2 and
h
p
i , requires a large number of evaluations of F s, which is
not practical for expensive computational models. Therefore,
we assume F s is a GP with a constant mean (Rasmussen,
2004), i.e., F s � GPð0,Kð�, �ÞÞ, where Kð�, �Þ is a covariance
function. We further assume that the overall average of the
responses from the computational model has been sub-
tracted from each output, and as such we use a GP with
mean zero. Here we use the squared exponential kernel
function as the choice of the covariance function:

Kðz, z0Þ ¼ c exp ð�ðz� z0Þ>Lðz� z0ÞÞ, (4)

where c is the magnitude parameter and L is a diagonal
matrix of the length-scale parameters. We denote the vector
of the diagonal elements of L by ‘:

Subsequently, we can obtain the likelihood of model (3)
by the GP distribution defined on F s as a multivariate nor-
mal distribution:

ypjXp,Hp,wp, ‘, c,r2 � Nð0,Rþ r2ImÞ, (5)

where yp ¼ ½yp1, :::, ypm�> is the vector of physical responses,
Xp ¼ ½xp1, :::, xpm�> and Hp ¼ ½hp1, :::, hpm�> are matrices of size
m� dx and m� dh respectively, and R is the m � m covari-
ance matrix whose elements are calculated by covariance
function (4) with ½xp>i , h

p>
i ,wp> �> as input vectors with

length ðdx þ dh þ dwÞ:
Remark 2. Although in the process of deriving likelihood
(5), we consider wp and the columns of Hp as the input var-
iables of model (3), we do not know the values of these
input variables, and we intend to estimate them. Therefore,
in order to distinguish the calibration variables w and h, in
(1) from the parameters in model (3), we refer to Hp and
wp as calibration parameters.

We can estimate the calibration parameters of model (3),
the parameters of covariance function (4), and the variance of
error, using Bayesian statistics with the posterior distribution:

pðHp,wp, ‘, c,r2jyp,XpÞ / pðypjXp,Hp,wp, ‘, c, r2Þ
� pðHpÞpðwpÞpð‘ÞpðcÞpðr2Þ: (6)

The Bayesian model (6) would be completed by specify-
ing prior distributions for the parameters
pðHpÞ,pðwpÞ, pð‘Þ, pðcÞ, and pðr2Þ: However, our model
suffers from unidentifiablity in the absence of informative
priors, due to the high-dimensionality of the parameter
space. Therefore, in Section 5 we present graph-theoretic

approaches that help construct informative priors for the
calibration parameters Hp and wp:

Note that the replacement of F s by GPð0,Kð�, �ÞÞ does
not constitute a surrogate modeling approach, wherein the
computational model is replaced by a fixed surrogate sur-
face, which is in turn trained based on a set of limited sam-
ples drawn from the computational model prior to any
calibration procedure. Our approach is fundamentally differ-
ent from surrogate modeling, since building and training the
GP is a part of the calibration process.

3. Calibration as non-isometric matching:
A special case

We explain in this section how the calibration problem can
be viewed as a non-isometric curve to surface matching
problem for the special case where x 2 R, h 2 R, and w 2
;, which means both control and calibration variables are
one-dimensional and no global calibration variable exists.
From a geometric perspective, all the possible values for x
and F pðxÞ constitute the curve ðx,F pðxÞÞ in a two-dimen-
sional space. In the computational model, however, we can
specify the values of both x and h: Consequently, all the
possible values of x, h, and F sðx, hÞ together form a surface
ðx, h,F sðx, hÞÞ in a three-dimensional space. As we noted in
Section 1, the true physical curve lies on the three-dimen-
sional computational model surface, i.e., ðx,F hðxÞ,F pðxÞÞ:
However, since we do not observe the actual values of the
calibration variables in the physical process, we only see a
projected curve in x � y space (see Figure 1(a)). Hence, the
calibration problem is to recover the true physical curve, or,
in other words, determine a non-isometric match of a curve
to a surface.

As mentioned earlier, the non-isometry is due to the fact
that the curve ðx,F hðxÞ,F pðxÞÞ on the three-dimensional
x � h� y space has a different length than the projected
curve ðx, 0,F pðxÞÞ on a two-dimensional x � y space.
Therefore, this is, in principle, different from isometric
matching problems (Bronstein et al., 2005; Gruen and Aken,
2005; Baltsavias et al., 2008).

In practice we only have the finite physical system dataset
P along with a finite computational model dataset S, as we
do not observe a complete curve or surface. Ideally, the
points in P lie on the projected curve that we observe, and
the points in S lie on the computational model surface (see
Figure 1(b)). Hence, what we observe is incomplete data,
and we aim to match non-isometrically an incomplete curve
to an incomplete surface, which is equivalent to solving the
calibration problem.

This geometric perspective motivates us to view the prob-
lem through a combinatorial lens and model the problem
using graph-theoretic approaches. Our graph-based solution
to the non-isometric curve to surface matching problem
provides us with a set of computational model data points,
which carry information about the calibration parameters.
We call this set of computational data points anchor points.
These anchor points will then be used in Section 5 to con-
struct prior distributions for our Bayesian model.
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We seek to identify a set of anchor points among the
computational data points that are “close” to the points on
the true physical curve. In other words, the anchor points
are positioned such that the true physical curve passes
through the neighborhoods of those points. We want the
anchor points to satisfy two desirable properties: (i) the
computational model response should be close to the phys-
ical response for a given input x; and (ii) the calibration
parameter values for two consecutive anchor points should
be close to each other. The former drives our method to
identify the anchor points that have similar responses to
that of the physical system, and the latter aims to encourage
the smoothness of the physical curve.

Note that we are only interested in identifying these
“optimal” anchor points that provide us with information
about the true physical curve to be used in our prior distri-
butions, and not the true physical curve itself. However, one
could also directly use the selected anchor points to approxi-
mate the true physical curve via interpolation. Given our
focus on expensive computational models wherein the num-
ber of computational model data points is limited, such an
approximation of the true physical curve may not be accur-
ate. In the next section, we formally define and address the
problem of finding anchor points with the desired properties
using a graph-theoretic approach for the special case when
x 2 R, h 2 R, and w 2 ;:

3.1. A graph-theoretic approach for finding
anchor points

Without loss of generality, we assume that all the data
points in the physical system and the computational model
datasets are strictly ordered such that xpi < xpiþ1, for all i 2
f1, 2, :::,m� 1g, and xsj < xsjþ1, for all j 2 f1, 2, :::, n� 1g:
We construct an edge-weighted directed graph G ¼ ðV ,EÞ
with vertex set V :¼ f0, 1, 2, :::, nþ 1g, and the edge set E
described in Equation (8) below. The vertices in V0 :¼
f1, 2, :::, ng correspond to the computational model data
points in S. We refer to G as the calibration digraph.

Recall that, intuitively, the objective of calibration is to
minimize the difference between the outputs of the physical
system and the corresponding computational model. As
such, the first step is to find control variables that are simi-
lar in both settings, the physical experiments and the com-
puter experiments. Therefore, we first group the control
variables in the computational model based on their distance
to the control variables in the physical experiments. We

partition V0 into m clusters C1, :::,Cm as follows: any vertex
j 2 V0 corresponding to data point sj 2 S is assigned to a
unique cluster Ci by the following formula:

j 2 Ci () i ¼ min arg min
‘2f1, 2, :::,mg

fjjxp‘ � xsj jj2g
� �

: (7)

If the inner minimum in (7) is not unique, then the outer
minimum is used to break the tie by choosing the smallest
index. As a consequence, each cluster Ci is in one-to-one
correspondence with the ith physical data point. This choice
of tie-breaker is easy to implement and establishes a mech-
anism for consistent assignment of points to a cluster. We
can now describe the set of directed edges E as

E :¼ [m�1

i¼1
fðu, vÞju 2 Ci, v 2 Ciþ1g [ fð0, uÞju 2 C1g

� [fðu, nþ 1Þju 2 Cmg:
(8)

This construction is illustrated in Figure 2.
The final critical step is to assign a weight wuv to each

edge ðu, vÞ 2 E: Consider two consecutive clusters Ci and
Ciþ1 and vertices u 2 Ci and v 2 Ciþ1: Define wuv as

wuv :¼ jysu � ypuj þ kjjhsu � hsvjj2, (9)

where k > 0 is a scaling parameter. The weights of edges
that leave vertex 0 or enter vertex nþ 1 are identically zero.
The edge-weight for any edge between two consecutive clus-
ters i and iþ 1 consists of two parts: the first part jysu � ypuj
represents the difference between the model response and
physical response; the second part jjhsu � hsvjj2 represents the
difference between the calibration parameters of i and iþ 1.
On this digraph G with the given edge-weights, we intend to
solve the shortest path problem from origin vertex 0 to des-
tination vertex nþ 1. Every path from vertex 0 to vertex
nþ 1 in G has exactly mþ 1 edges by construction. Suppose
0-v1-v2-� � �-vm-ðnþ 1Þ is the shortest path identified. Then,
those points in S corresponding to fv1, :::, vmg serve as the
anchor points. The edge-weights quantify the proximity of
the physical and computer experiment outputs and differ-
ence between the calibration parameters to minimize
erratic changes.

Lemma 1. Calibration digraph G ¼ ðV ,EÞ is acyclic with a
topological ordering h0, 1, :::, n, nþ 1i:
Proof. See Appendix B for proofs. w

Since G is a directed acyclic graph, or DAG for short, we
can solve the shortest path problem using an OðjEjÞ algo-
rithm that scans outgoing edges from each vertex in the

Figure 2. Illustration of the calibration digraph for the case where m¼ 4 and n¼ 10. The vertices represent data points from the computational model and the
clusters C1 through Cm correspond to physical system data points. Vertices denoted by dark circles with a white border represent the anchor points, and the solid
arrows identify the edges in the shortest path found.
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topological order and updates distance-labels as needed
(Bellman, 1958; Lawler, 1976).

4. Generalization of non-isometric matching to
higher dimensions

Section 3 introduced the curve to surface matching inter-
pretation of calibration with x 2 R and h 2 R: This special
case allowed us to develop a graph-theoretic approach for
anchor point selection that admitted a fast OðjEjÞ algorithm.
The geometric perspective can be generalized to arbitrary
dimensions as a hyper-curve to hyper-surface matching
problem. However, in the general setting, there is no
straightforward extension of the DAG model. Recall that the
model hinges on the natural ordering of the computational
and the physical data points on the real line, which does not
exist in higher dimensions. Thus, in this section we intro-
duce a different calibration graph model and an associated
combinatorial optimization problem to find the anchor
points in an arbitrary dimension. As with the special case,
the anchor points will subsequently be used in Section 5 to
construct prior distributions for our Bayesian model.

For the general case, we construct a calibration graph
G ¼ ðV ,EÞ that is undirected and edge-weighted, where
V ¼ f1, 2, :::, ng corresponds to the n computational data
points. We partition V into m clusters, C1, :::,Cm, in corres-
pondence with the m physical data points and assign vertex
j to a cluster Ci by the same rule in Equation (7). The graph
G is a complete m-partite graph with partitions C1, :::,Cm,
i.e., distinct vertices are adjacent if and only if they belong
to different partitions. The edge set can be described for-
mally as

E :¼ [m�1

i¼1
[m

‘¼iþ1
fu, vgju 2 Ci, v 2 C‘f g:

Figure 3(a) illustrates this construction.
Finally, before defining the edge weights, we introduce

two required concepts. The calibration vector of data point sj
is given by ½hs>j ,ws>

j �>: We assign the weight we to the edge
e ¼ fu, vg 2 E, where u 2 Ci and v 2 C‘, by

we :¼ jysu � ypi j þ jysv � yp‘j þ kjj hs>u ,ws>
u

h i>
� hs

>
v ,ws>

v

h i>
jj2 if jjxsu � xsvjj2 � r

jysu � ypi j þ jysv � yp‘j þMjjxsu � xsvjj2 if jjxsu � xsvjj2 > r,

8<
:

(10)

where k is a scaling parameter and M is a sufficiently large
number used to penalize the computational data points that
are far from each other. Note that the weights assigned in
(10) extend the idea behind Equation (9). Here, the edge
weight between vertices u 2 Ci and v 2 C‘, where su and sv
are neighbors (that is, the Euclidean distance between their
control vectors is smaller than a predefined radius r), con-
sists of two parts, similar to (9): the first part measures the
distance between each vertex’s response and the physical
system response associated with the cluster to which it
belongs, i.e., jysu � ypi j and jysv � yp‘j; the second part meas-
ures the distance between the corresponding calibration vec-
tors, i.e., jj½hs>u ,ws>

u �> � ½hs>v ,ws>
v �>jj2: Let E1 denote the set of

all edges that join vertex pairs corresponding to control vec-
tors that are at most Euclidean distance r apart. The remain-
der of the edges, E2 ¼ E n E1, correspond to edges between
computational data points that are not close enough, and we
assign relatively large weights to these edges by setting M to
a large value. Furthermore, the weight on such edges
increases as the distance between the control vectors of the
end points increases.

To identify the “optimal” anchor vertices from this cali-
bration graph, we find a minimum weight tree that contains
exactly one vertex from each cluster. In the optimization lit-
erature, this problem is known as the Generalized Minimum
Spanning Tree (GMST) problem (Myung et al., 1995) see
Figure 3(b). By our construction of the edge weights, a
GMST will tend to include edges in E1 as they are lighter.
However, if no GMST exists that only uses edges in E1, it
will be forced to include edges in E2.

4.1. Integer programming approaches to the
GMST problem

The GMST problem was introduced by Myung et al. (1995),
who showed that it is NP-hard and does not admit a poly-
nomial-time constant-factor approximation algorithm unless
P ¼ NP: Various authors have developed and analyzed
Integer Programming (IP) formulations for this problem
and the strength of the associated Linear Programming (LP)
relaxations (Myung et al., 1995; Feremans et al., 2002; Pop,
2004; Pop et al., 2006). Strong formulations, which corres-
pond to tight LP relaxations, are desirable in a branch-and-
bound algorithm, as they produce tighter bounds that can

Figure 3. (a) A calibration graph where each black circle represents a vertex and each two parallel lines represent edges between vertices of two clusters, and (b) a
generalized spanning tree in the calibration graph.

IISE TRANSACTIONS 357



be helpful in pruning the search tree. We employ two such
strong formulations with tight LP relaxations for solving the
anchor point selection problem in arbitrary dimension.

The class of formulations that were first introduced by
Myung et al. (1995) employs exponentially many constraints
and are analogous to the cutset and subtour elimination for-
mulations of the traveling salesman problem and the min-
imum spanning tree problem (Bertsimas and Weismantel,
2005). Feremans et al. (2002) showed that strengthening a
subtour elimination formulation of a more general variant
of the GMST problem is among the strongest in terms of
the tightness of the LP relaxation. We use this formulation,
which Feremans et al. (2002) call the Directed Cluster
Subpacking (DCSUB) formulation, in our computational
experiments. This formulation and additional explanation
are provided in Appendix C.

Due to the presence of exponentially many constraints, a
direct implementation of the entire DCSUB formulation is
impractical, even for small scale problems. Nonetheless, a
delayed constraint generation approach could be effective in
practice (Buchanan et al., 2015; Lu et al., 2018; Moradi and
Balasundaram, 2018). This approach starts by relaxing the
formulation by omitting a subset of the constraints (typically
those that are exponentially many in number). During the
normal progress of an LP relaxation-based branch-and-
bound algorithm to solve the relaxed IP, whenever an inte-
gral solution is detected at some node of the search tree, it
is necessary to verify if a constraint that violates this solu-
tion exists among those constraints that were excluded. If
so, we solve the model at that node again after adding the
violated constraints back; otherwise, we continue to branch
as usual, thus ensuring the overall correctness of the algo-
rithm. An effective implementation of such an algorithm is
possible using the “lazy cut” feature available in most state-
of-the-art IP solvers, as long as the identification of the vio-
lated constraints can be accomplished quickly.

The second type of formulation we use in our computa-
tional experiments is based on the classic Multi-Commodity
network Flow (MCF) formulation (Myung et al., 1995;
Feremans et al., 2002; Pop, 2004; Pop et al., 2006). The
underlying idea of this formulation is to use the flow of a
(dummy) “commodity” in the network to trace a path
between two vertices by designating one vertex with unit
supply for that commodity and the other with unit demand.
As the MCF formulation uses only polynomially many con-
straints and variables, it can be directly implemented and
solved using most IP solvers for moderately sized instances.
The MCF formulation, which also has a strong LP relax-
ation, is presented and discussed in greater detail in
Appendix C.

Before proceeding to the next section, we point out that
although GMST can be applied to any dataset (one- or multi-
dimensional), the shortest path model is preferable for one-
dimensional problems for the following reasons. First, the
shortest path model does not require specifying parameters r
and M, and second, it is solvable in time OðjVj þ jEjÞ:
By contrast, GMST requires choosing parameters r
and M, and it is NP-hard in general. For large scale

one-dimensional problems, solving the GMST model may
require a sophisticated IP approach and may require substan-
tially more computational effort when compared with the
shortest path alternative.

5. Prior and posterior distributions

This section describes how the information about the true
physical curve carried by the anchor points, found by
approaches discussed in Sections 3 and 4, can be used to
construct our prior distributions for the calibration parame-
ters. We also expand posterior distribution (6) using the pri-
ors specified in this section, and show how we can make
predictions at a new control vector x�:

Suppose hai and wa
i are, respectively, the functional and

the global calibration vectors of the anchor point associated
with the ith physical data point, i.e., the anchor vertex
selected from the ith cluster. Recall that the anchor points
are selected by minimizing a weighted combination of two
measures: (i) the difference between the model responses
and physical responses, and (ii) the distance between the
corresponding calibration vectors. As such we can utilize
those anchor points to build priors for the calibration
parameters in a Bayesian model. To account for the uncer-
tainty associated with the selection of the anchor points, we
use variance hyper-parameters as explained next. Define the
matrix Ha :¼ ½ha1, :::, ham�> of size m� dh and the mean vec-
tor wa :¼ 1

m

Pm
i¼1 w

a
i of length dw: Note that for the latter we

take the average of the global calibration vectors of the
anchor points, as we assume that the global calibration
parameters are constant regardless of the values of the con-
trol vectors.

For each component of wp, the global calibration param-
eters, we consider a univariate normal distribution centered
at the corresponding element in wa with an unknown vari-
ance as the choice of the prior distribution. Therefore, we
construct the prior distribution for wp as

wpjwa, s2 � Nðwa, diagðs2ÞÞ, (11)

where s2 ¼ ½s21, :::, s2dw �> is the vector of variances of the nor-
mal distribution.

Applying the same procedure for constructing prior dis-
tributions for the functional calibration parameters increases
the dimension of the parameter space, since we need to
define mdh variance parameters, which are nuisance parame-
ters and not of interest to our model. Therefore, in order to
shrink the parameter space, we use the fact that the kth col-
umn of the functional calibration parameters Hp, i.e. Hp

k, is
actually a realization of the functional relationship F h

k:

Therefore, the kth column of Ha, i.e., Ha
k, is a rough esti-

mator of this realization. On this basis, we use a single vari-
ance parameter for all the elements in Hp

k, and construct
the prior distribution for Hp

k as

Hp
kjHa

k, �
2
k � NðHa

k, �
2
kImÞ, (12)

where �2k is the kth element of the vector of variances m2

with length dh:
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The correctness of the normality assumptions in (11) and
(12) is a legitimate concern, as there is no guarantee that the
anchor points embrace the true physical curve, due to the lim-
ited number of observations. However, we only make the nor-
mality assumptions in (11) and (12) for constructing the prior
distributions, and the Bayesian model will adjust these priors
by likelihood (5).

To specify the posterior distribution, we define proper prior
distributions for the rest of the parameters. As such, we get:

pðHp,wp, m2, s2, ‘, c, r2jyp,Xp,Ha,waÞ /
pðypjXp,Hp,wp, ‘, c, r2ÞpðHpjHa, m2Þ
pðwpjwa, s2Þpðm2Þpðs2Þpð‘ÞpðcÞpðr2Þ,

(13)

where,

ypjXp,Hp,wp, ‘, c,r2 � Nð0,Rþ r2ImÞ:
We refer the reader to Appendix A for the exact prior distri-
butions of parameters in (13), and a discussion of how to
sample from the posterior distribution.

In order to make predictions at a new control vector x�,
we introduce variables wpðtÞ, ‘ðtÞ, cðtÞ,r2ðtÞ, and HpðtÞ as
tth draws from the posterior distribution (13) after some
burn-in period, where t 2 f1, :::,Tg: The first step in the
prediction of response y� is to estimate the associated func-
tional calibration vector of x�, i.e., h� ¼ F hðx�Þ: We can
estimate h� based on each HpðtÞ, where we denote the tth
estimation of h� based on HpðtÞ as h�ðtÞ: To this end we
note that as Hp

kðtÞ is a vector of estimates of F h
k at the

design locations fxp1, :::, xpmg, we can write Hp
kðtÞ ¼

½F h
kðxp1Þ, :::,F h

kðxpmÞ�> þ ½�h1, :::, �hm�>, where ½�h1, :::, �hm� is a
vector of the corresponding error terms. The error term
appears because Hp

kðtÞ does not contain exact evaluations of
the function F h

k but only estimations. The following propos-
ition obtains the mean prediction of h�kðtÞ, i.e., the tth esti-
mation of kth element of h� based on Hp

kðtÞ:
Proposition 1. Assume ½�h1, :::, �hm�> � N ð0,rhkImÞ and F h

k is
a GP with mean zero and covariance function K, i.e.,
F h

k � GPð0,Kð�, �ÞÞ, then

h�kðtÞ ¼ Rx�XpðRXpXp þ rhkImÞ�1Hp
kðtÞ: (14)

To find point and interval predictions for the new response
y�, we make T predictions based on the T samples we drew
from the posterior (13) and the T predictions we made for
the vector h� using (14). Recall from Section 2 that F s �
GPð0,Kð�, �ÞÞ; therefore, we can use the GP predictive distri-
bution to derive the tth prediction as

F sðx�, h�ðtÞ,wpðtÞÞ � N
�
Rv�ðtÞVðtÞðRVðtÞVðtÞ þ r2ðtÞImÞ�1yp,

Rv�ðtÞv�ðtÞ � Rv�ðtÞVðtÞðRVðtÞVðtÞ þ r2ðtÞImÞ�1RVðtÞv�ðtÞ
�
,

(15)

where v�ðtÞ ¼ ½x�> , h�>ðtÞ,wp>ðtÞ�>,VðtÞ ¼ ½XP ,HPðtÞ,1m�dw

diagðwpðtÞÞ�>, and the covariance matrices are calculated
using the tth sample of the covariance parameters, namely
‘ðtÞ and cðtÞ:

Finally, we derive our prediction using distribution (15) as

l̂� ¼ 1
T

XT
t¼1

Rv�ðtÞVðtÞ RVðtÞVðtÞ þ r2ðtÞIm
� ��1

yp
� 	

,

r̂�2 ¼ 1
T2

XT
t¼1

Rv�ðtÞv�ðtÞ � Rv�ðtÞVðtÞ RVðtÞVðtÞ þ r2ðtÞIm
� ��1

RVðtÞv�ðtÞ

� 	
:

6. Experimental results

In this section, we evaluate the performance of our method-
ology by testing it on three synthetic problems and two real
problems. We use the Root Mean Squared Error (RMSE) as
the measure of accuracy in prediction of responses and cali-
bration vectors to compare the performance of the compet-
ing methodologies:

RMSEy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n�

Xn�
q¼1

ðŷ�q � y�qÞ2
vuut and RMSEh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n�

Xn�
q¼1

ĥ
�>
q , ŵ

�>
q

h i>
� �h

�>
q , �w

�>
q

h i>����
����

����
����2
2

vuut ,

where byq�, ĥ�q, and ŵ
�
q are the predicted response and cali-

bration parameter values for the qth test control variable.
Both the MCF and DCSUB formulations find anchor

points for each dataset in less than 2minutes on all the
instances in our testbed, which shows that both formulations
are fast in terms of computation time. To choose proper val-
ues of k, r, and M for the GMST model, we use the follow-
ing empirical approach. First, in order to have the same
scale for the inputs and outputs in S and P, before con-
structing the calibration graph we standardize (divide by the
range of each element) the control set fxpi , xsj ji 2
f1, 2, :::,mg, j 2 f1, 2, :::, ngg, the calibration set fhsj ,ws

j jj 2
f1, 2, :::, ngg, and the response set fysj , ypi ji 2 f1, 2, :::,mg, j 2
f1, 2, :::, ngg: We denote the standardized versions of
xpi , x

s
j , h

s
j ,w

s
j , y

s
j , and ypi by �xpi , �x

s
j , �h

s
j , �w

s
j ,�y

s
j , and �ypi : Note that

this standardization is only for finding the anchor points,
and once the anchor points are chosen, we transform the
data back to their original scales for Bayesian inference.
After standardization, k has to be less than two, otherwise
the closeness of the calibration vectors is weighted as more
important than closeness of the responses. We choose k
from f0:1, 0:5, 1, 1:5g in our experiments. Moreover, for M
to be a sufficiently large number, it should be larger than
the sum of all the weights on the arcs that can be potentially
in E1, that is:

M 	
X

j2f1, 2, :::, ng

X
k2f1, 2, :::, ng

X
i2f1, 2, :::,mg

X
‘2f1, 2, :::,mg

j�ysj � �ypi j

þ j�ysk � �yp‘j þ k �h
s>

j , �w
s>

j

h i>
� �h

s>

k , �w
s>

k

h i>����
����

����
����
2

:

Finally, to choose a proper value for r, we plot the pairwise
Euclidean distances between all �xp vectors. Then, we use the
fact that each point on this plot represents an existing dis-
tance between the centers of two clusters in the calibration
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graph. Therefore, an upper bound on a group of smallest
distances, which are close together and disjoint from other
groups of distances, can be used as a proper value for r.

6.1. Description of the calibration problems

Table 1 describes synthetic problems used in this study to
test the performance of our model on different settings of
the calibration problem. The first synthetic problem has one
functional calibration variable and one control variable. The
second problem has an additional control variable, and the
third problem has an additional global calibration variable.
We also evaluate the performance of our model on a
high-dimensional synthetic problem (that is when dx, the
dimension of the domain of the calibration variables, is
large), the results of which are presented in Appendix D.
We note that since in practical settings physical observations
are noise contaminated, we add a noise drawn from
Nð0, 0:05Þ to each generated yp.

For the first synthetic problem, we locate m¼ 6 control
vectors, xp, at locations f0:5, 1:5, 2:5, 3:5, 4:5, 5:5g: Then for
each xp, we randomly sample five functional calibration vec-
tors from the interval ½0, 2�; therefore, we have a total of
n¼ 30 computational data points. Finally, we sample 12 ran-
dom test control vectors, x�, from the line segment ½0, 6� to
form a test dataset.

For the second synthetic problem, we locate m¼ 16 con-
trol vectors, xp, uniformly on the square ½0, 3:5� � ½0, 3:5�:
Then for each xp, we sample 10 functional calibration vec-
tors randomly from the interval ½0, 5�; therefore, we have a
total of n¼ 160 computational data points. Finally, we sam-
ple 10 random test control vectors, x�, from the same
square ½0, 3:5� � ½0, 3:5� to form a test dataset.

For the third synthetic problem, we follow the setting used by
Brown and Atamturktur (2018), where we choose m¼ 15 con-
trol vectors for training at locations f0, 0:05, 0:10, 0:15, 0:20,
0:25, 0:30, 0:35, 0:40, 0:70, 0:75, 0:80, 0:85, 0:90, 0:95g, and use
five physical control vectors for testing at locations
f0:45, 0:50, 0:55, 0:60, 0:65g: We sample 10 functional calibra-
tion vectors for each xp from the square ½0, 5� � ½0, 5�; therefore,
we have a total of n¼ 150 computational data points.

The first real problem from a spot welding application
was originally introduced by Bayarri et al. (2007). This prob-
lem has three control variables and one calibration variable.
The dataset associated with spot welding contains 12 and 35
data points sampled from the physical experiments and the
computation model, respectively. The second real problem
studied by Pourhabib et al. (2015) has one control variable
and one calibration variable, and the associated dataset con-
tains 11 and 150 data points sampled from the physical
experiments and the computation model, respectively. This

instance arises from a PVA-treated buckypaper fabrica-
tion process.

For the real problems, we partition the sets of physical
data points using four-fold cross validation to form training
and test datasets. Therefore, for each iteration of cross valid-
ation for the spot welding dataset, we have eight physical
data points in the training set and four physical data points
in the test set. Similarly, for the PVA dataset we have eight
to nine physical data points in the training set, and two to
three data points in the test set in each iteration of cross
validation. We note that the cross validation does not affect
the size of the computational datasets, i.e., n¼ 35 for spot
welding and n¼ 150 for the PVA dataset.

6.2. Results

We compare the results of our proposed methods with compet-
ing functional calibration methodologies. These include Non-
Parametric Functional Calibration (NFC) (Pourhabib et al.,
2018), Parametric Functional Calibration (PFC) (Pourhabib
et al., 2015), and Non-Parametric Bayesian Calibration (NBC)
(Brown and Atamturktur, 2018), which all require surrogate
modeling for handling expensive computational models. When
we use the generalized minimum spanning tree model on a cali-
bration digraph to find a set of anchor points, we refer to our
approach as BMNC. If we use the shortest path model on a cali-
bration digraph, we call the approach BMNC-DAG.

For each of the aforementioned problems, we choose the
values of k, r, and M following the empirical approach
explained in Section 6 (see Table 2). Tables 3 and 4 compare
the performance of BNMC and BNMC-DAG in terms of
RMSEh, RMSEy, and computation time with the other com-
peting methodologies.

For the first synthetic problem, the second and third col-
umns of Table 3 show that BNMC and BNMC-DAG both
perform more accurately than the other methodologies in
terms of RMSEy, and they have the same order of accuracy
in terms of RMSEh: Moreover, Table 4 shows that BNMC-
DAG performs slightly faster than BNMC. However, because
we only have n¼ 30 computational and m¼ 6 physical data
points, this difference is not very large. To better compare
the computational costs of the approach using the shortest
path and the GMST models, we choose values of ns from
the set f100, 200, 300, 400, 500g and run both BNMC and
BNMC-DAG. As expected, the shortest path model in
BNMC-DAG finds the anchor points for all the values of n
in less than a second, whereas GMST requires
3:6, 21:2, 65:3, 144:7, and 323:5 seconds for n 2 f100,
200, 300, 400, 500g, respectively.

For the second synthetic problem, because the dimension
of xp is greater than one, we cannot apply BNMC-DAG.

Table 1. Calibration functions defined for the three synthetic problems.

Problem F sðx, h,wÞ F pðxÞ F hðxÞ w

1 h exp ð�0:05x2Þð sin ðxÞ2 þ 1Þ exp ð�0:05x2 � 0:05xÞ � ð sin ðxÞ2 þ 1Þ exp ð�0:05xÞ –
2 0:4ðx21 þ x22Þ sin 2ð0:7x2Þ x1þx2

h2þ1
0:4ðx21 þ x22Þ sin 2ð0:7x2Þ ðx1 þ x2 � 1Þ0:5 –

3 hþ wx2 2
ffiffiffi
x

p þ 2:5x2 2
ffiffiffi
x

p
2.5
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However, the fourth and fifth columns of Table 3 show that
BNMC outperforms the other methodologies in terms of
RMSEy and has the second best accuracy in terms
of RMSEh:

For the third synthetic problem, we only compare the
results of NBC and BNMC, since the codes for NFC and
PFC are written only for univariate calibration problems.
The sixth and the seventh columns of Table 3 show that
BNMC outperforms NBC both in terms of RMSEy and
RMSEh: We note that the reported RMSEy for NBC in
Brown and Atamturktur (2018) under the cheap computa-
tional code assumption is 0.0538, which is a better accuracy
compared with that of BNMC; however, here BNMC is
superior when NBC uses surrogate modeling.

Since the true values of the calibration parameters are
unknown for the real problems, we compare the results only
in terms of RMSEy: The eighth column (PVA) of Table 3
shows that BNMC, BNMC-DAG, and NBC have the same
order of accuracy and perform better than NFC and PFC.
Finally, we observe in the last column of Table 3 that for
the Spot Welding problem BNMC outperforms the other
competing methodologies by a large margin. We attribute
this performance to the capability of BNMC in handling
expensive computational models with a small number of
computational data points.

Figure 4 shows the 95% confidence interval predictions
for the responses and the functional calibration parameter
for the test datasets of the synthetic problems. Note that
since xp 2 R

2 for the second synthetic problem, we plot the
predicted values against their indices in Figures 4(c) and
4(d), and connect the data points to each other for better
visualization. Moreover, although we added white noise to
response variables to mimic real-world processes, we show
the denoised responses for clearer illustration.

As noted in Section 2, due to the limited number of sam-
ples we collect from the computational model, we cannot

accurately recover F h, but the way we train the hyper-
parameters of the GP aims to compensate for this limitation.
We can observe this in Figure 4, where the predictions of
the response values have better accuracy and tighter confi-
dence intervals compared to those of functional calibration
parameter values.

For illustration, Figure 5 shows the 95% confidence inter-
val predictions for one of the test datasets created in the
cross validation process for each of the spot welding and the
PVA problems. Since we do not know the true functional
calibration parameter values, we cannot provide a similar
plot for the calibration predictions. Similar to Figures 4(c)
and 4(d), we plot the predicted values against their indices
in Figure 5(a) for better visualization.

We refer the reader to Appendix E for an analysis of the
residuals to validate the assumptions made in our proposed
approach, especially those made in Equations (2) and (3).

7. Concluding remarks

We proposed a Bayesian non-isometric matching calibration
model for expensive computational models. A limited
budget to evaluate computational models led to the use of a
GP, which was trained during the calibration procedure. We
used Bayesian statistics to simultaneously train the hyper-
parameters of the GP’s covariance function and make infer-
ences on the calibration parameters associated with the
physical data points. To construct informative prior distribu-
tions for our new approach, we used a geometric interpret-
ation of calibration based on non-isometric curve to surface
matching. This point of view enabled us to develop graph-
theoretic approaches to address the problem of finding a set
of anchor points used in constructing informative prior dis-
tributions. For the special case of a single control and cali-
bration variable, we introduced a shortest path model on a
directed acyclic calibration graph to tackle the problem of

Table 2. The calibration graph parameters for the five calibration problems.

Parameter First synthetic problem Second synthetic problem Third synthetic problem PVA Spot Welding

k 0.5 0.5 0.5 0.5 0.5
r 1.5 0.9 0.16 0.5 4
M 105 105 105 105 105

Table 3. RMSEh and RMSEy of different methodologies for the five calibration problems.

First synthetic problem Second synthetic problem Third synthetic problem PVA Spot Welding
Methodology RMSEy RMSEh RMSEy RMSEh RMSEy RMSEh RMSEy RMSEy
NFC 0.184 0.254 0.143 0.202 – – 0.379 0.683
PFC 0.226 0.244 0.296 0.390 – – 0.450 1.115
NBC 0.162 0.356 0.132 0.627 0.172 0.426 0.281 0.516
BNMC 0.098 0.271 0.076 0.356 0.063 0.354 0.296 0.409
BNMC-DAG 0.098 0.265 – – – – 0.288 –

Table 4. The computation times (in seconds) for the five calibration problems.

Methodology First synthetic problem Second synthetic problem Third synthetic problem PVA Spot Welding

NFC 2.88 8.02 – 3.29 0.77
PFC 18.04 253.08 – 176.95 19.06
NBC 45.26 307.31 230.19 180.92 68.04
BNMC 125.15 169.23 147.01 159.84 117.53
BNMC-DAG 123.91 – – 144.54 –
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finding anchor points, while for the general case, we intro-
duced the generalized minimum spanning tree model. Our
numerical experiments conducted on four benchmark cali-
bration problems showed that our approach outperformed
the existing calibration models under the assumption of
expensive computational models.

The framework developed in this article could be
extended in several ways. We only considered a single com-
putational data point to construct a prior distribution for
each calibration parameter; however, information on

multiple computational data points could be taken into
account. An implementation of this idea, of course, requires
developing new combinatorial optimization techniques cap-
able of choosing an appropriate number of computational
data points. Another interesting research path would be to
consider data uncertainty formally in the calibration graph
model instead of using a deterministic calibration graph
model, and then using Bayesian inference to deal with the
uncertainty in the data. Moreover, one may consider includ-
ing an independent discrepancy function in Equation (3), as

Figure 4. The 95% confidence interval predictions for functional calibration parameter values and responses for the test datasets of the synthetic problems.
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noted in Section 2. Finally, the proposed approach would
potentially benefit from using cross validation for the selec-
tion of the tuning parameters such as k, r, and M.
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