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Abstract. Two nodes of a wireless network may not be able to communicate with each
other directly, perhaps because of obstacles or insufficient signal strength. This necessitates
the use of intermediate nodes to relay information. Often, one designates a (preferably
small) subset of them to relay these messages (i.e., to serve as a virtual backbone for the
wireless network), which can be seen as a connected dominating set (CDS) of the associated
graph. Ideally, these communication paths should be short, leading to the notion of a
latency-constrained CDS. In this paper, we point out several shortcomings of a previously
studied formalization of a latency-constrained CDS and propose an alternative one. We
introduce an integer programming formulation for the problem that has a variable for each
node and imposes the latency constraints via an exponential number of cut-like in-
equalities. Two nice properties of this formulation are that (1) it applies when distances are
hop-based and when they are weighted and (2) it easily generalizes to ensure fault tol-
erance. We provide a branch-and-cut implementation of this formulation and compare it
with a new polynomial-size formulation. Computational experiments demonstrate the
superiority of the cut-like formulation. We also study related questions from computa-
tional complexity, such as approximation hardness, and answer an open problem re-
garding the fault diameter of graphs.
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1. Introduction

A CDS ensures that the nodes of the network can
communicate with each other. It provides little guar-

Two nodes of a wireless network may not be able to
communicate with each other directly perhaps be-
cause of obstacles or insufficient signal strength. This
necessitates the use of intermediate nodes to relay
information. Often, one designates a small subset of
them to relay messages (i.e., to serve as a virtual
backbone for the wireless network), which amounts
toaconnected dominating set of the associated graph,
defined below.

Definition 1 (CDS). A subset D C V of vertices is a con-
nected dominating set (CDS) for an undirected graph
G=(V,E)if

1. D is dominating, that is, every vertex from V \ D
neighbors a vertex of D; and

2. Disconnected, thatis, the subgraph G[D] induced
by D is connected.

If the graph G is not complete,' a CDS can be equiv-
alently defined as a subset D C V of vertices such that,
for every vertex pair {a,b} € (}), there exists a path
connecting a and b whose interior vertices belong to D.
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antee on how long it will take for a message to be re-
ceived once it has been sent. This has led some re-
searchers to impose additional constraints on the
CDS D C€ V, namely, that the subgraph induced by the
dominating set D has a diameter of at most s; that is, it
is a dominating s-club (Li et al. 2008, Zhang et al. 2008,
Buchanan et al. 2014). This ensures that messages will
be received in s + 2 hops: one hop to reach the CDS, at
most s hops within the CDS, and one hop to reach the
destination.

Definition 2 (Dominating s-Club). A subset D C V of ver-
tices is a dominating s-club for an undirected graph
G=(V,E)if

1. D is dominating; and

2. Disans-club; that is, the subgraph G[D] induced
by D has a diameter of at most s.

We argue that this formalization of the problem is
less than ideal. First, and most importantly, a dominat-
ing s-club does not quite capture the intent of the hop
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constraints, as we will illustrate. Suppose that we
want a CDS that facilitates 4-hop communication in
the graph in Figure 1. This can be ensured by the dom-
inating 2-club given in Figure 1(a). Indeed, a message
sent from node 5 to node 8 through this virtual
backbone must follow the path 5-4-3-6-8, which takes
four hops.

If 3-hop communication were required, one might
search for a dominating 1-club, but none exist in this
graph. This may lead us to believe that a CDS that
facilitates 3-hop communication does not exist, but
this belief would be false. Indeed, in Figure 1(b) we
provide a CDS which needs at most two hops to trans-
mit information, so we could call it a latency-2 CDS.
Further, Figure 1(c) gives a latency-3 CDS, which is
also a minimum CDS! Note that a message can be
directly passed from node 8 to node 9 in the wireless
network because they are adjacent; it does not have to
be relayed through the CDS nodes.

Another limitation of previous works is that they
make the simplifying assumption that distances are
measured by the number of hops (see Li et al. 2008;
Zhang et al. 2008; Du and Wan 2013, chapter 7; and
Buchanan et al. 2014). However, this may ultimately
provide a poor approximation to the actual end-to-
end delay when the delays at the nodes differ. For
example, a particular node may play a central role in
the CDS, needing to relay a large number of messages.
This may cause messages to have to wait to be trans-
mitted, and these queueing delays may be more real-
istically captured for our purposes via node-weighted
delays as opposed to hop-based delays. For more in-
formation about this and other delays in wireless
networks, consult Xie and Haenggi (2009) and Zhong
et al. (2017).

With these shortcomings in mind, we propose a
new formalization of a low-latency virtual backbone,
which we call a latency-s CDS. For purposes of gen-
erality, it is defined in terms of a directed and—without
loss of generality—edge-weighted graph. By allowing
for directed edges, we can model nonuniform trans-
mission ranges. For example, consider the case in which
a node i has a large transmission range and is far away

Figure 1. Example Low-Latency Virtual Backbones

(a)

Notes. (a) Dominating 2-club. (b) Latency-2 CDS. (c) Latency-3 CDS.

from a node j that has a small transmission range. In
this scenario, the edge (7,/) should exist, but not the
edge (j,i). Note that, as we make the transition to
directed graphs, we areno longer referring toa “CDS”
in the sense of Definition 1, but rather in terms of a
strongly connected dominating set in the sense of Li et al.
(2009). This is defined as a subset D of vertices such
that (a) D induces a strongly connected subgraph and
(b) every vertex from V' \ D has both an in-neighbor
and an out-neighbor in D.

Definition 3 (Latency-s CDS). A vertex subsetD C Visa
latency-s CDS for a directed graph G = (V,E) under
edge weightsw : E — R, if, for every vertex pair (a,b) €
V XV, there is a path from a to b of length at most s
whose interior vertices belong to D.

Observe that the graph G in Definition 3 is edge
weighted, but not vertex weighted. This is without
loss of generality, as the following will illustrate.
Consider the 3-vertex, undirected path graph 1-2-3
representing a wireless network. Sending a message
from node 1 to node 3 would incur delays at nodes 1
and 2 (because the delay is based on the transmitting
node), as well as delays on edges {1,2} and {2, 3}, for
an end-to-end delay that might be denoted d; +d; +
dg12y +dp3). Instead, we can replace each undirected
edge {i,j} by its directed counterparts (i, j) and (j, 7) and
let the delay of each directed edge d ;) be the delay of
its undirected counterpartdy; ; plus the delay of its tail
node d;. In this way, it is sufficient to consider a di-
rected graph with only edge weights.

Definition 3 overcomes the aforementioned issues
with the previous formalization based on dominating
s-clubs. As an added bonus, it has superior computa-
tional properties. Indeed, checking whether a graph
admits a latency-s CDS is as simple as checking whether
the graph’s diameter is at most s. In contrast, the problem
of checking whether there exists any dominating s-club
is NP-complete; specifically, this is true under hop-based
distances for the two most restrictive (but nontriv-
ial) cases in which s = diam(G) — 2 (Schaudt2013) and
s = diam(G) — 1 (Buchanan et al. 2014), where diam de-
notes the graph’s diameter.
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The associated optimization problem is as follows.

Problem: The minimum latency-s CDS problem.

Input: A directed graph G = (V, E), a weight w, > 0
for each edge e € E, and a number s.

Output: (if any exist) A smallest subset D C V of
vertices that is a latency-s CDS.

In this paper, we propose an integer programming
(IP) formulation for this problem that uses an expo-
nential number of cut-like inequalities. As we will see,
a relatively simple implementation of it significantly
outperforms a polynomial-size formulation that we
introduce. This second formulation has O(sn?) vari-
ables and O(snm) constraints and applies when the
distances are hop-based, where n and m denote the
number of vertices and edges, respectively. In con-
trast, the cut-like formulation applies when there are
weighted delays.

1.1. Previous Work

The minimum CDS problem is a well-studied NP-
hard problem (Garey and Johnson 1979) in which the
task is to find a CDS of minimum cardinality. For
example, Figure 2(a) provides a CDS and Figure 2(b)
provides a minimum CDS. The reader is encouraged to
consult the book by Duand Wan (2013) for motivating
applications, approximation algorithms, and hard-
ness results. There are a number of IP formulations
and implementations for the minimum CDS problem
and for the equivalent maximum-leaf spanning tree
problem (Fujie 2004, Morgan and Grout 2008, Lucena
etal. 2010, Simonettietal. 2011, Fan and Watson 2012,
Gendron etal. 2014, Buchanan et al. 2015). See also the
literature on the regenerator location problem (Chen
etal.2010,2015; Liand Aneja 2017). To our knowledge,
the state-of-the-art” TP formulation and implementa-
tion are due to Fujie (2004) and Buchanan et al. (2015),
respectively, although several of the previously men-
tioned approaches work well. As far as we know, the
only previous work to propose an IP formulation for a
latency-constrained variant of the CDS problem is by
Buchanan et al. (2014); however, it is for dominating
s-clubs.

Figure 2. Example Virtual Backbones
(@)

Notes. (a) CDS. (b) Minimum CDS. (c) 2-connected 2-dominating set.

(b)

Assuming the input graph is not complete, the
minimum CDS problem can be formulated as an IP as
follows, where x; is a binary variable representing the
decision to include vertex i in the CDS. A vertex cut is
a subset C C V of vertices such that G- C:=G[V \ C]
is disconnected and nontrivial (i.e., has at least two

nodes).
min Z X; (1)
i€V
Zx,- >1, VvertexcutCcV )
ieC
x; €{0,1}, Vie V. 3)

This particularly elegant formulation is essentially
due to Fujie (2004), and its linear programming re-
laxation can be solved in polynomial time despite
having exponentially many constraints, as the sepa-
ration problem for the vertex cut constraints (2) can
be solved in polynomial time. An implementation of
this formulation by Buchanan et al. (2015) solved 42
of 47 standard test instances, each in under 10 seconds
(and never taking longer than 500 seconds), whereas
no earlier approach solved 42 instances each in a 1-
hour time limit. In their implementation, Buchanan
et al. (2015) add violated vertex cut inequalities on-the-
fly, cutting off infeasible integer points. Our proposed
formulation in this paper, which generalizes Fujie’s
formulation, is implemented in the same manner.

One drawback of a CDS is that it can be vulnerable
to node or arc failures. For example, consider the
minimum CDS from Figure 2(b). If node 3 fails, this
renders the virtual backbone inoperative as it no
longer can relay information (say, from node 5 to
node 8).

This motivates the notion of a fault-tolerant CDS—
one that remains a CDS when fewer than k nodes fail.
This has been called a k-connected k-dominating set
(k-k-CDS) as it can equivalently be defined as a subset
S C V of vertices such that G[S] is k-vertex-connected
and every vertex of V' \ S has k neighborsin S. Figure 2(c)
gives a 2-2-CDS, which remains a CDS if one vertex
fails. The associated optimization problem, the minimum
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k-k-CDS problem, admits the following formulation
(Ahn and Park 2015, Buchanan et al. 2015).

min Z X (4)
i€V

> xi2k, V vertexcut CCV (5)

ieC

x;€{0,1}, VieV. 6)

The formulations that we propose in this paper gen-
eralize this k-k-CDS formulation and Fujie’s CDS
formulation.

1.2. Notation and Terminology

From now on, unless stated otherwise, G = (V, E) will
be a directed graph, with vertex set V and edge set
E c VxV, that hasno loops and no parallel edges. By
“no parallel edges,” we mean that there is at most one
directed edge from a vertex i to a vertex j, and so we
can refer to it by the notation (i, j). Here, i is called the
tail and j is the head. Frequently, we bidirect an un-
directed edge, which we define to be the operation in
which an undirected edge {i,j} is replaced by its di-
rected counterparts (i, j) and (j, /). When the edges of G
are reciprocated, that is, if (i,j) € E implies (j,i) € E,
then we say that G is bidirected—not to be confused
with the bidirected graphs of Edmonds and Johnson
(1970); see also Schrijver (2003).

For each edge e € E of G, there is an associated
nonnegative weight w, representing the delay. In the
hop-based case, each weight is one. The distance from
vertex a to vertex b in graph G, denoted dists(a, b), is
the length of a shortest path from a to b in G, edge-
weighted by w. Convention states that if there is no
path from a to b in G, then distg(a, b) = co. The diam-
eter of G, denoted diam(G), is the maximum of these
pairwise distances, that is, diam(G) := max{dists(a, b) |
a,beV}.

The out-neighborhood and in-neighborhood of a ver-
tex v€ V in G are denoted N{(v) :={weV|(v,w)€E}
and N7 (v):={ueV|(u,v)€E}, respectively. For a
vertex subset S, 05(S) denotes the subset of edges whose
tail belongs to S and whose head does not. Similarly,
0¢(S) denotes the subset of edges whose head belongs
to Sbut whose tail does not. For a singleton S = {v}, let
05 (v) := 05 ({v}) and 6(v) := 6;({v}). When the graph G
in question is clear, the subscripts G in N&(-), Ng(+),
0&(+), and 05 (+) are omitted. The subset of edges hav-
ing both endpoints in SCV is denoted E(S):={(i,j) €
E|i,jeS}.

1.3. Our Contributions

In Section 2, we examine the complexity of latency-s
CDS'’s. Specifically, we answer questions like: How
quickly can one verify that a given subset of vertices is
a latency-s CDS? And, how hard is the minimum
latency-s CDS problem?

In Section 3, we propose IP formulations for the
minimum latency-s CDS problem. The first formula-
tion, which we call CUT, has n binary variables and an
exponential number of cut-like constraints. We then
generalize this formulation so that it models the fault-
tolerant variant in which one seeks a latency-s CDS that
maintains feasibility after a small number of vertex
failures. Then we give a second IP formulation, which
we call POLY, that has O(sn?) variables and O(snm)
constraints. It serves as a baseline for computational
comparisons.

In Section 4, we examine the complexity of the sepa-
ration problem associated with formulation CUT.
Specifically, we show that, under hop-based dis-
tances, it is polynomial-time solvable for s € {2, 3,4}
and NP-hard when s > 5. En route to proving this, we
answer an open question of Xu et al. (2005), by showing
that it is indeed NP-hard to compute a graph’s fault
diameter.

In Section 5, we perform computational experi-
ments. Our results demonstrate that a branch-and-
cut implementation of formulation CUT significantly
outperforms the polynomial-size formulation POLY.
Notably, CUT makes easy work of a real-life instance
with 300 nodes, whereas formulation POLY struggles
to solve instances with 50 nodes in an hour.

In Section 6, we conclude and discuss directions for
future research.

2. The Complexity of Latency-s CDS

In this section, we examine the complexity of latency-s
CDS'’s. First, we pinpoint the complexity of verifying
feasible solutions, showing essentially that a quadratic
running time is unavoidable under a plausible com-
plexity assumption. Then we establish the inapprox-
imability of the minimum latency-s CDS problem.

2.1. The Complexity of Verifying Feasible Solutions
To verify that a given subset D C V of vertices is a
latency-s CDS, we can compute, for each vertexv € V,
the shortest paths from v to all other nodes t € V' \ {v}
and check that these paths are short enough. How-
ever, we are not interested in justany paths fromvtot;
these paths must not cross vertices from V' \ D. In our
proposed approach, we solve an instance of the single
source shortest path problem (SSSP) in the subgraph

65 =(V, f)z?), which has edge set
EP=ED)Us* D) U (@) N6~ (D). ()

Here, we preserve the edges E(D) that have both
endpoints in D, those edges 6*(D) that point out of D,
and those edges 6*(v) N 67 (D) whose tail is v and

whosehead isin D. This set f)f includes all edges that
might be used in a suitable path from v to another

e d
node. Of course, we need not create the graph GE in
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the implementation, as nearly any shortest path al-

gorithm can be reconfigured to work implicitly on E)DD
when given G, D, and v.
IsLatencyConstrainedCDS(G, D, s):
1. for eachv e V do -
(a) compute shortest paths from v in GE;
o (b) if dist?? (v,t) > s for some t € V '\ {v}, then return
no”; ’
2. return “yes.”

Proposition 1. The algorithm IsLaTENCYCONSTRAINEDCDS
correctly determines whether a given subset D C 'V of ver-
tices is a latency-s CDS for a directed graph G = (V,E):
e in O(mn + n?loglogn) time and linear space under
nonnegative edge weights;
o in O(mn) time and linear space in the hop-based case.

Here, we are using the algorithm of Thorup (2004) to
compute SSSP in time O(m + nloglogn) in the non-
negative weights case, and BFS to solve SSSP in the
hop-based case.

Given that this or some other verification procedure
will be called repeatedly in our implementation, it is
important that it runs as quickly as possible. For example,
we would like to know: is there a different verification
procedure that, say, runs in linear time O(m + n)? Un-
fortunately, under a complexity assumption called
the strong exponential time hypothesis (SETH) of
Impagliazzo et al. (2001) and Impagliazzo and Paturi
(2001), this is not possible.

Proposition 2. If SETH holds, then for every € > 0 there
exists no algorithm for verifying that a subset D of vertices is
a latency-s CDS that runs in time O(m>=¢), even in the
simplest nontrivial case of hop-based distances and s = 2.

The proof and discussions regarding the limitations
of local search are provided in Section 1 of the online
supplement.

2.2. The Inapproximability of the Minimum
Latency-s CDS Problem

We provide a hardness result for approximating the
size of a minimum latency-s CDS. It is based on the
hardness result of Dinur and Steurer (2014) that states
that approximating the minimum hitting set problem
to within a factor of (1 — ¢)Inh is NP-hard for every
¢ > 0, where hrefers to the number of subsets to hit (cf.
Raz and Safra 1997, Alon et al. 2006, Moshkovitz
2015). Also, see similar hardness results based on
the stronger assumption that NP does not have quasi-
polynomial-time algorithms (Lund and Yannakakis
1994, Feige 1998). Note that |U| = O(h°) for some
constant ¢ in Dinur and Steurer’s result.

Problem: The minimum hitting set problem.

Input: a family Fy,...,F;, € U of subsets of U.

Output: A minimum cardinality subset D € U such
that [ DNF| >1foreveryi=1,...,h

Theorem 1. There exists a polynomial-time algorithm that,
when given an instance ((Fy,...,Fy), U) of the minimum
hitting set problem, creates an instance (G = (V,E), w, s) of
the minimum latency-s CDS problem that satisfies:

o|V|=4+h+|Uland s =2 = diam(G) and w, = 1 for
each e € E;

o there exists a k-hitting set if and only if there exists a
(k + 2)-vertex latency-s CDS.

Proof. LetV = {r,a,b,c;UTU U, whereT = {t,..., 1}
Thus, |V| =4+ h + |U|. Construct E by bidirecting the
following edges. Connect r to every vertex of U U {a}.
Connect a to every vertex of U. Connect b to every
vertex of T U U. Make {a,b,c} a triangle. Finally, for
each F; in the hitting set instance, connect ¢; to every
vertex v € F; C U.

(=) Suppose that D C U is a hitting set of size k. It
can be verified that D U {a, b} is a latency-2 CDS for G,
that is, that for every ordered pair of nodes (i, j) with
i#jand (i,j) ¢ E, there is a node v € D U {a,b} such
that (i,v) and (v, /) are edges in E.

(&) Now, suppose that D C Vis alatency-2 CDS of
sizek + 2. Weargue that D N Uis a hitting set of size at
most k. Observe that there is no edge (c,7) and so to
ensure 2-hop communication from c to , D must contain
a vertex from N*(c) N N~(r), and N*(¢c) "N~ (r) = {a}
so a € D. Similarly, (¢, t) is not an edge and N*(c) N
N~(t;) = {b} so b € D. This shows that |D N U| < |D| -
2 = k. Now we show that D N U is a hitting set. Recall
that, foreachi=1,...,h, the edge (r, t;) does not exist.
So, because D is a latency-2 CDS, at least one vertex
from N*(r) N N~ (t;) = F; € U must belong to D. Thus,
D N U is a hitting set of size at most k. O

Corollary 1 (Inapproximability). There is a constant « > 0
such that it is NP-hard to approximate the minimum
latency-2 CDS problem to within a factor of o Inn, where n
refers to the number of vertices, even under bidirected edges
and hop-based distances.

Proof. This follows by Theorem 1 and the inapprox-
imability of hitting set (Raz and Safra 1997, Alon et al.
2006, Dinur and Steurer 2014, Moshkovitz 2015). O

3. Integer Programming Formulations
In what follows, we propose two IP formulations for
the minimum latency-s CDS problem: CUT and POLY.

3.1. Formulation CUT

Here, we propose the formulation called CUT. It
has n binary variables and an exponential number of
constraints—one for each (minimal) length-s vertex
cut.
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Definition 4 (Length-s Vertex Cut). A subset C C V of
vertices is a length-s vertex cut of a directed, edge-
weighted graph G = (V, E) if diam(G - C) > s.

The correctness of formulation CUT is a conse-
quence of the following characterization.

Proposition 3 (Characterization of Latency-s CDS). A sub-
set D C V of vertices is a latency-s CDS for G if and only if
IDNC| =1 for every length-s vertex cut CC V.

Proof. (=) Assume that D C V is a latency-s CDS and
suppose, for sake of contradiction, that C C V is alength-
s vertex cut with |[D N C| = 0. By definition of length-s
vertex cut, diam(G — C) > s, that is, there exist vertices
a,b € V\ C such that distg_c(a,b) > s. By assumption
that D is a latency-s CDS, there is an a-b path of length
at most s whose interior vertices belong solely to D, that
is, distgpu(apy)(a,b) < s. Because D U {a,b} C V' \ C, we
have distgy\cj(a, b) < distgpu(apy) (@, b) which results in
the following contradiction:

s < dist(a,b) = dist (a,b) < dist (a,b)<s.
G-C GIV\C] GIDU{a,b}]

(&) By the contrapositive. Suppose that D C V is not a
latency-s CDS, that is, there exist verticesa, b € V such
that there is no a-b path of length at most s whose inte-
rior vertices belong to D, that is, distgipuapy) (@, b) > s.
This implies that diam(G[D U {a,b}]) >s, and so
C:=V\ (DU {a,b})is alength-s vertex cut. Moreover,
IDNC| =0, as desired. O

Proposition 3 immediately implies the correctness
of the formulation CUT:

min > x; ®)
ieV

Z x;>1, Vlength-s vertexcutCcV  (9)

ieC

x;€{0,1}, VieV. (10)

In general, there can be exponentially many of the
constraints (9), even if we restrict ourselves to in-
clusion-minimal length-s vertex cuts. This formulation
generalizes the CDS formulation based on vertex
cuts that is essentially due to Fujie (2004). We ad-
dress the separation complexity for constraints (9) in
Section 4.

Notevery valid inequality of the form Y;cc x; > 1isa
length-s vertex cut inequality. For example, e\ (v} Xi >
1is valid when G = (V, E) is the bidirected 4-cycle, but
V \{v} is not a length-s vertex cut. However, the fol-
lowing shows that the length-s vertex cut inequalities
are the only meaningful valid inequalities of this type.

Lemma 1. Let C C V. The inequality |S N C| > 1 holds for
every latency-s CDS S C V if and only if C is a superset of
some length-s vertex cut C’.

Proof. The ‘if’ direction follows easily by Proposition 3,
so suppose that|S N C| > 1 holds for every latency-s CDS
SCcV.LetD =V \ C. By our assumption, D cannot be a
latency-s CDS, that is, there exist vertices a,b € V such
that distgipu,n(@, b) > s. So, s < diam(G[D U {a, b}]) =
diam(G — C’), where C' = V' \ (D U {g,b}). Thus, C’ is a
length-s vertex cut for G, and C 2 C’, as desired. O

Given that the minimum latency-s CDS problem admits
the formulation CUT (and by Lemma 1), there are
immediate polyhedral consequences (cf. Sassano 1989), so
we provide the following proposition without proof.

Proposition 4 (Basic Polyhedral Analysis). The convex
hull of (characteristic vectors of) latency-s CDS is full di-
mensional if and only if every length-s vertex cut has size at
least two. Further, if it is full dimensional, then
1. foreachv eV,
(@) x, < 1 induces a facet, and
(b) x, > 0 induces a facet if and only if v does not belong
to a length-s vertex cut of size two;
2. for C C V, theinequality Ycc x; > 1induces a facet if
and only if
(a) C is a minimal length-s vertex cut, and
(b) for each v € V' \ C there exists c € C such that (V' \
C)U{c}) \ {v} is a latency-s CDS.

3.2. Generalizing the Formulation CUT for
Fault-Tolerance

Here, we consider the robust or fault-tolerant variant of

alatency-s CDS. That is, we are interested in a vertex sub-

set that remains a latency-s CDS when few vertices fail.

Definition 5 (r-Robust Latency-s CDS). A subset D C V
of vertices is an r-robust latency-s CDS for graph G if,
for every F C D with [F| < 7, the vertex subset D \ Fis a
latency-s CDS for G.

A consequence of Proposition 3 is the following
characterization.

Corollary 2 (Characterization of r-Robust Latency-s CDS).
A subset D C'V of vertices is an r-robust latency-s CDS if
and only if |D N C| > r for every length-s vertex cut C C V.

Corollary 2 immediately implies the correctness of
the following formulation for the minimum r-robust
latency-s CDS problem:

min Z Xi (11)
iev

Dlxi=r, Vlength-s vertexcut CcV  (12)

ieC

x; €{0,1}, VieV. (13)

This formulation generalizes previously existing
formulations for the minimum k-k-CDS problem (Ahn
and Park 2015, Buchanan et al. 2015).

Figure 1(b) gives a feasible solution to this prob-
lem when (s,7) = (3,2) (using hop-based distances
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and treating the undirected edges as bidirected
edges). That is, the gray vertices remain a latency-3
CDS when one of them fails. This is also an optimal
solution for (s,7) = (2,1). However, there is no solu-
tion for (s,7) =(2,2), as evidenced by the length-2
vertex cut C = {5}. Indeed, this implies that the in-
equality x5 > 2 is valid, but of course no binary vector
x can satisfy this constraint.

Weremark that our formalization of a fault-tolerant
low-latency virtual backbone might not provide
for r vertex-disjoint paths of length at most s (of CDS
vertices) between every pair of vertices. An example
is given in Figure 3, treating the undirected edges as
bidirected edges. This should not be surprising given
that there is, in general, no “Menger’s theorem” for
length-bounded paths (cf. Lovasz et al. 1978).

3.3. Formulation POLY
Here, we propose the formulation called POLY. It is
introduced primarily for comparison purposes and is
inspired by a formulation for s-clubs given by Veremyev
and Boginski (2012). It applies to the hop-based case.
As before, the binary variable x; represents the
decision to include vertex i in the latency-s CDS. The
binary variable yj; equals one if and only if there ex-
ists a directed path in G from i to j of length exactly ¢
whose interior vertices belong to the chosen CDS.
This variable is only defined when t > 2 and should
not be confused with y;; raised to the tth power. To
formulate our problem, we should write constraints
that impose the following condition:

v =1 & (there exists j € N™(k) such that

y;'=1and x; = 1).

Inwords, there is a path (across CDSnodes) fromito k
of length tif and only if (a) there is a path (across CDS

Figure 3. Lack of Menger’s Property

TN/
.VA %v

Notes. Observe that this is a unit disk graph. A CDS that maintains
5-hop communication paths when any one vertex fails but that does
not have a pair of vertex-disjoint length-5 a-b paths.

nodes) of length t — 1 from i to some in-neighbor j of
node k and (b) node j belongs to the CDS. When t > 3,
this equivalence can be formulated as follows.

() v+ <+l VjeN ()

= < > yilx
( ) Yik jEN_(k)yl/ ]

The second implication is enforced via a constraint
that has products of binary variables. For linearization
purposes, introduce (binary) variables zf/’ ! toreplace the

=1 _

terms y/'x;. To impose that zj " = y'x;, use the usual

linear constraints:

|

Zij =Yy
-1

Zjj <X

vty <zt + 1

These ideas lead to the following formulation, where
the special case t = 2 is handled via constraints (15)
and (16). Let Tx3:=1{3,...,s} and N7[j]:=N"(j) U {j}.

min > x; (14)
iev
X < Vi JENT())NN~(k), ie V\{k}, keV

(15)
i< > x ieV\{k}, keV
jeN* (NN~ (k)

(16)
yi +x<yp+1 i€ V\{jk}, (k) €E teTs

(17)
v < >z ieV\{k}, keV, teTs

jeN~ (k)

(18)
zlt.]._lgylt.]._l ieV\{j},jeV, teTs

(19)
z7' < x; ieV\{j}, jeV, teTs

(20)
yi <zt 41 ieV\{j}, jeV, teTs

(21)

PR ieV\N[jl, jeV
t=2

(22)

ieV
(23)

ieV\{j, jeV, te{2,...,s}
(24)

ieV\{j}, jeV, te{2,...,s-1}
(25)

X € {0/1}
]/f]' € {0/ 1}

z; €{0,1}
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The constraints (22) ensure that there is a path of
length at most s (across CDS vertices) from i to j when
(i,7) ¢ E. So, by the ideas presented above, it is straight-
forward to prove the following.

Theorem 2. Under hop-based distances, the above is a correct
formulation for the minimum latency-s CDS problem and has
O(sn?) wariables, ®(snm) constraints, and ©(snm) nonzeros.

Because modern MIP solvers use sparse matrix
representation, this formulation’s size in computer
memory can be approximated by the number ©O(snm)
of nonzeros. This is much less than the quantity ob-
tained by multiplying the number of variables by the
number of constraints.

Not all of these variables and constraints may be nec-
essary For example, if G is bidirected, we can assume
that yl] yﬂ If desired, the user can impose these
constraints %] yﬂ when implementing the formula-

tion, and the MIP solver will perform the appropriate
substitutions in its presolve phase.

Based on our computational experiments, it is
possible that formulation POLY is weaker than CUT,
although we could not find a proof. In Section 2 of the
online supplement, we provide a fractional point
(x*,y*,z*) that belongs to POLY’s LP relaxation, but its
x* does not belong to CUT’s LP relaxation.

4. The Complexity of the Formulations

In this section, we determine the separation com-
plexity for the constraints defining formulation CUT
and its fault-tolerant generalization. On the way, we
answer an open question of Xu et al. (2005) regarding
the complexity of computing a graph’s fault diameter.

4.1. Computing the Fault Diameter of Graphs
As a helpful first step to determining the separation
complexity, we show that a related problem, which
we call DiaMETER INTERDICTION BY NODE DELETION, is NP-
complete.
Problem: DiamETER INTERDICTION BY NODE DELETION.
Input: asimple graph G = (V, E) and integers g and L.
Question: Is there a subset C C V of g vertices such
that diam(G - C) > L?
This problem is defined for an undirected and
unweighted graph G, and the diameter that is referred
to is hop-based.

Theorem 3. For each L > 5, DIAMETER INTERDICTION BY
Nobk DeLetioN is NP-complete.

To prove this theorem, we craft reductions from
Lencta-Bounpep a-b Nope Cut, which is known to be
NP-complete and hard to approximate (Baier et al.
2010). Notice that this problem has specified end
nodes a and b, while Diamerer INTERDICTION BY NODE
DeLeTioN does not. We provide two reductions, given in
Lemmata 2 and 3, which, together, prove Theorem 3.

Problem: LenctH-Bounpep a-b Nope Cur.

Input: A simple graph G’ = (V’,E’), nonadjacent
a,beV’, and integers ¢’ and L'.

Question: Is there a subset C' C V' \ {4,b} of ¢’
vertices such that distg—c/(a,b) > L'?

Lemma 2. For each odd L > 5, DIAMETER INTERDICTION BY
Nobe DEeLETION is NP-complete.

Proof. Membership in NP is obvious. For the reduc-
tion, consider an instance of LEnGTH-BoUNDED a-b NODE
Cur defined by graph G’ = (V’,E’), vertices a,b e V’,
and integers ¢ and odd L’ > 5. Let g=q" and L = L’".
Now we construct G = (V, E). The idea is to connect
every pair of vertices from G’ (besides a and b) by
carefully adding many short paths so that the only
possible way to cheaply disrupt the diameter of G
is to cut all short paths from a to b. Construct V as
follows.

V'—V’UTUAUBUW
{tijl1<i<q+1}

N

{ 1<i<q+1, 1<]<£}

w={ | <i<g 1,1sisL_3,veV’\{a,b}}-

Notice that [V| = O(qL|V’|)and g < |[V’|and L < |V’|, so
the reduction will be polynomial.

Construct the edge set E of G as follows. First,
connect the vertices of V’ so that G[V’] = G’. Then
make T a clique in G. Similarly, make each A’ := {d} | 1 <
i < g+ 1} a clique. Do the same for each B/:= {0/ | 1 <
i <g+1} and for each W/(v):={v]|1<i<g+1}. Con-
nect a to every vertex of A!; and every vertex of A! to
every vertex of A% and so on. Connect b to every
vertex of B!; and every vertex of B! to every vertex of
B?; and so on. Then for every v € V’ \ {a,b}, connect v to
every vertex of W!(v); and every vertex of W!(v)
to every vertex of W?(v); and so on. Finally, letting p =
%, connect every vertex of T to every vertex of APU
B U (Upevn a0y WP (v)). Creating E obviously can
be done in polynomial time. See Figure 4 for an
illustration.

Observe that there exist at least g+ 1 (internally)
node-disjoint paths of length at most L between every
pair of vertices of G (the interior vertices of which
belong to V' \ V), except possibly for the pair {a,b}.
Moreover, (simple) a-b paths of length at most L in G
can only cross vertices of V’. Thus, it can be argued
that the instance (G’,a,b,q’,L’) of LENGTH-BOUNDED 4-b
Nope Cutis a “yes” if and only if the instance (G, g, L) of
DiameTeR INTERDICTION BY NODE DELETION is a “yes.” O
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Figure 4. Tllustration of the Reduction for Odd L > 5

Note. Here, K, is a complete graph on #n nodes.

Lemma 3. For each even L > 5, DIAMETER INTERDICTION BY
Nobk DeLetioN is NP-complete.

Proof. Membership in NP is obvious. For the reduction,
consider an instance of LENGTH-BounDeD a-b Nope Cut
defined by graph G’ = (V’,E’), vertices a,b € V’, and
integers 4" and even L’ > 5. Let g = 4" and L = L’. Now
we construct G = (V, E). The main idea behind the re-
duction is the same as before, but the construction is
slightly different. Construct V' as follows.

V=V UTUT UW
T::{ti‘lsi§q+l}

T = {t:

1$i$q+1}

w::{z/lﬁ|1gigq+1, 13;’3%—1, veV’}.

Notice that [V| = O(gL|V’|)and g < |[V’|and L < |V’|, so
the reduction will be polynomial.

Construct the edge set E of G as follows. First,
connect the vertices of V'’ so that G[V’] = G’. Then
make TUT’ a clique in G. Similarly, make each
Wi(v):={v] |1 <i<q+1} a clique. For every ve V’,
connect v to every vertex of Wl(v); and every vertex
of Wl(v) to every vertex of W?(v); and so on. Let

p =L —1. Connect every vertex of T to every vertex of
Upevn\ (py WP (v). Similarly, connect every vertex of T to
every vertex of Uy (,yWP(v). Creating E obviously
can be done in polynomial time. See Figure 5 for an
illustration.

Observe that there exist at least g+ 1 (internally)
node-disjoint paths of length at most L between every
pair of vertices of G (the interior vertices of which
belong to V' \ V), except possibly for the pair {a,b}.
Moreover, (simple) a-b paths of length at most L in G
can only cross vertices of V’. Thus, one can argue that
the instance (G’,a,b,4’, L") of LEncTH-BouNDED a-b NobDE
Cur is a “yes” if and only if the instance (G, gq,L) of
DiamEeTER INTERDICTION BY NODE DELETION is a “yes.” O

Researchers have studied related notions of the
fault diameter of a graph (Krishnamoorthy and Krishna-
murthy 1987, Xu 2001). For example, Xu (2001) defines
the f-fault diameter of graph G = (V,E) to be

Df(G):= max{diam(G - F) | FC V, |F| <f},

and states that computing this value “is a quite dif-
ficult problem,” but no justification is given.’ Later,
Xu et al. (2005) listed its NP-hardness as an open
problem. Theorem 3 implies that computing D¢(G) is
indeed NP-hard when f is part of the input, say, by
letting f = g + 1 and returning “yes” if Df(G) > L.



Validi and Buchanan: Optimal Design of Low-Latency Virtual Backbones
INFORMS Journal on Computing, 2020, vol. 32, no. 4, pp. 952-967, © 2020 INFORMS

961

Figure 5. Tllustration of the Reduction for Even L > 5

L

2

Corollary 3. Computing the f-fault diameter is NP-hard
when f is part of the input.

4.2. The Separation Problem for CUT

Formulation CUT has an exponential number of
constraints (9), as does its fault-tolerant generaliza-
tion (12), making it a nontrivial question as to how
they should be used. A helpful observation, however,
is that by the polynomial equivalence of optimization
and separation (Grotschel et al. 1993), their LP re-
laxations can be solved in polynomial time if and only
if their separation problems (defined below) can be
solved in polynomial time.

Problem: Separation Problem for Formulation CUT.

Input: a directed and edge-weighted graph G = (V, E),
a weight x}, € [0,1] for each v e V, an integer r > 1, a
number s.

Output: (if any exist) a length-s vertex cut CC V
with Yiecx} <.

For purposes of generality, we define this separa-
tion problem for the fault-tolerant generalization,
which has right-hand-side r. We provide both posi-
tive and negative results.

Theorem 4. Under hop-based distances, the separation
problem is:

1. polynomial-time solvable for s € {2,3,4}, for every
rz=1;

2. (in its decision version) NP-complete for every s > 5,
even when r = 1.

Proof. First, we prove that item 2 holds. Membership
in NP is clear, so we only show hardness. The reduction
is from an instance of DiaMETER INTERDICTION BY NODE

DeLetion given by (G, g, L), which is NP-complete for
each L > 5 by Theorem 3. Bidirect G = (V, E) yielding
directed graph G = (V,E).Letr=1,s =L, and x| = q%
for every i € V. We argue that (G,q,L) is a “yes” in-
stance of DiamMETER INTERDICTION BY NODE DELETION if and
only if (G, x",r,s) admits a violated length-s vertex cut
inequality (12). Suppose there is a violated length-s
vertex cut inequality (12) for some C C V. Then

ql% = Yiecx; <1, that is, |C| < g, and the instance of

Diameter INTERDICTION BY NoODE DELETION is a “yes.”
Now, if there is a length-s vertex cut C’ C V with |C"| <
q for G, then Y X} = % < q% <1 and so x* violates
the length-s vertex cut inequality Yo x; > 1.

Now, we discuss why item 1 holds. In the cases s €
{2,3,4}, we can find a most-violated length-s vertex cut
inequality (12) by computing, for each (a,b) € (V x V) \E,
a minimum-weight length-s a,b-vertex cut and com-
paring its weight to r. The cases s€{2,3} are fairly
straightforward; for example, for s =2 the solution is
N*(a)NN~(b). The case s=4 was (essentially) shown
by Lovész et al. (1978) to be polynomial-time solvable
by reducing it to a particular instance of the min-cut
problem (cf. theorem 4.3.1 of Xu (2001)). Because this
min-cut instance can be constructed in linear time
(and it is actually a subgraph of the input graph), this
minimum-weight length-s 2, b-vertex cut subproblem
can be solved in time O(mn) by Orlin (2013). Solving
these subproblems for every missing edge (a,b) gives a
total time of O(mn®), which is polynomial. o

By standard arguments, the flow-based separation
routines referenced in the proof of Theorem 4 imply
polynomial-size extended formulations for the LP
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relaxation of CUT when s € {3,4} (see Martin 1991).
However, these formulations would have roughly
mn? variables, making them too large to be practical.
Hence, we do not discuss them further.

4.3. Verification and Integer Separation for the
Fault-Tolerant Variant

The problem of verifying whether a given subset D C

V of vertices is an r-robust latency-s CDS is nontrivial.

In a brute force approach, enumerate all subsets F C D

of r—1 vertices and verify that D\ F is indeed a

latency-s CDS. By algorithm IsLatencYConsTRAINEDCDS,

this takes time (/°)O(n%) = O(1"+2), which is polynomial
for any constant r. A natural question is whether this
test can be performed in polynomial time when r is part
of the problem input. Unfortunately, the likely an-
swer is “no,” as this is coNP-complete.

Corollary 4. When r is part of the input, the problem of
verifying whether D C 'V is an r-robust latency-s CDS is
coNP-complete for each fixed s > 5. This holds even for
bidirected edges and hop-based distances.

Proof. Membership in coNP follows because a length-s
vertex cut C C V with |C| < r is a suitable witness when
it is a “no” instance. For the reduction, consider an
instance of DiaMeTER INTERDICTION BY NODE DELETION
defined by a simple graph G = (V, E) and integers g and
L. Bidirect its edgesand lets =L, r=g+1,and D = V.
It can be observed that the instance of DiamETER IN-
TERDICTION BY NODE DELETION is a “yes” instance if and
only if D is not an r-robust latency-s CDS of this
bidirected graph. O

Remark 1. As a consequence of Corollary 4, the sep-
aration problem for the constraints (12), with r being
part of the input, is hard even when x* is integer.

5. Computational Experiments

In this section, we provide results from our compu-
tational experiments. First, we demonstrate the impor-
tance of (quickly) strengthening the length-s vertex cut
inequalities. Second, we provide computational re-
sults demonstrating the importance of providing an
initial heuristic solution to the MIP solver. Third, we
compare our full implementation of CUT with the
polynomial-size formulation POLY. Our tests dem-
onstrate the superiority of CUT over POLY. Finally,
we experiment with formulation CUT for:

1. s € {diam(G), diam(G) + 1, diam(G) + 2,n — 1};

2. the fault-tolerant case with r = 2;

3. aclass of instances representing node-weighted,
transmitter-based delays.

All of our experiments are conducted on a Dell
Precision Tower 7000 Series (7810) machine running
Windows 10 enterprise, x64, with Intel® Xeon® Proces-
sor E52630 (v.4) (10 cores, 2.2GHz, 3.1GHz Turbo,

2133MHz, 25MB, 85W)—that s, 20 logical processors—
and 32 GB memory. The IP formulations were imple-
mented in Microsoft Visual Studio 2015 in C++ for
Gurobi (v.7.0.2). We use default settings with the ex-
ception that we force Gurobi to use the concurrent
method (which uses primal simplex, dual simplex,
and barrier on different threads) for solving the root
LP relaxation for POLY, as this formulation is highly
degenerate and typically barrier is fastest. We impose
a time limit of 3600 seconds on each instance and use
the same test instances that have been used in the
previous literature on the minimum CDS problem by
Lucena et al. (2010), Simonetti et al. (2011), Fan and
Watson (2012), Gendron et al. (2014), Buchanan et al.
(2015), and Li and Aneja (2017). This testbed includes
both real-life and synthetically generated instances, all
of which are undirected. In our experiments, we bidirect
their edges. The test instances and code are available at
https: // github.com /hamidrezavalidi/LCDS.

5.1. Importance of Strengthening the Inequalities
Because formulation CUT can have exponentially
many constraints when s > 3, we initialize it with only
some of the constraints. Others are added as needed
via Gurobi’s lazy constraint callback features. Spe-
cifically, we start with the vertex cuts given by N (i),
i € V (or inclusion-minimal subsets thereof that are
also length-s vertex cuts). Then, within the branch-
and-bound tree, violated length-s vertex cut inequal-
ities are added on-the-fly.

Because the separation problem for the length-s
vertex cut inequalities is NP-hard, we only separate
integer points that the solver encounters. Each of these
possible solutions D € V' will satisfy the initial con-
straints given to the solver, but D may not actually be
feasible for the latency-s CDS problem. In this case,
C:=V\ Disalength-svertex cut for the graph, and the
inequality Xec x; > 1 would be valid for our problem
and would cut off the binary point representing D.
However, this inequality is likely very weak, so we
strengthen the inequality, that is, find a minimal
subset of C that is also a length-s vertex cut. This is
done when initializing the formulation with the
vertex cuts N* (i), i € V and also when adding inequal-
ities on-the-fly. The details are given in Section 3 of the
online supplement. Theorem 2 of the online sup-
plement shows that one can find a violated minimal
length-s vertex cut inequality in time O(1®).

We also experimented with separating fractional
points, particularly when s =3 as this case of the
separation problem is polynomial-time solvable. How-
ever, the fastest separation procedure that we are aware
of takes time O(mn®) and was ultimately unhelpful—
in all nine of the different implementations that we
tried. See Section 4 of the online supplement for more
details.
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5.2. The Importance of Providing a Heuristic
Solution to the Solver
See Section 5 of the online supplement.

5.3. Comparison with Formulation POLY

In Table 1, we compare the performance of CUT with
that of POLY. In these tests, we set s = diam(G),
provide an MIP start using BestINHEurisTic, and ex-
clude instances with s = 2. The reason for excluding
the s =2 comparisons is that CUT and POLY are
equally strong when s = 2, and so CUT will obviously
perform better due to its smaller size. Because our
instances are bidirected, we fix yf.]- = y]t-i as discussed in
Section 3.3.

The results demonstrate the superiority of CUT. It
solves the 11 instances solved by POLY and 9 others.
Ten instances are left unsolved by both approaches;
CUT provides better bounds on all of them. The
formulation CUT also quickly solves some instances

Table 1. A Comparison of the Performance of Formulation
CUT with That of POLY

POLY CuUT

Graph s H Obj Obj Total Obj Total
v30_d10 8 15 15 2.71 15 0.02
v30_d20 5 8 8 111.14 8 0.03
v30_d30 3 8 8 12.59 8 0.10
v50_d5 14 32 [31,32] — 32 0.07
v50_d10 5 20 18 2,711.41 18 0.18
v50_d20 3 14 14 6.31 14 0.11
v50_d30 3 8 8 398.41 8 1.12
v70_d5 8 36 [26,36] — 32 0.53
v70_d10 4 31 [28,29] — 29 2.98
v70_d20 3 18 [11,18] — 17 305.96
v70_d30 3 8 [6,7] — 7 3.33
v100_d5 5 57 [42,57] — 56 17.91
v100_d10 4 31 [13,31] — [22,26] —
v100_d20 3 20 [9,20] — [14,20] —
v120_d5 6 40 [16,40] — 31 1,087.17
v120_d10 3 68 63  1,522.53 63 10.31
v120_d20 3 21 [7,21] — [10,21] —
v120_d30 3 12 [4,12] — [7,12] —
v150_d5 5 54 [19,54] — [30,54] —
v150_d10 3 65 [35,65] — [43,61] —
v150_d20 3 22 [6,22] — [9,22] —
v200_d5 4 92 [43,92] — [49,92] —
v200_d10 3 64 [24,64] — [26,64] —
v200_d20 3 22 [6,22] — [8,22] —
IEEE-14 5 5 5 0.08 5 0.01
IEEE-30 6 14 14 0.29 14 0.01
IEEE-57 12 35 35 57.65 35 0.04
RTS-96 13 40 [35,39] — 37 0.14
IEEE-118 14 48 48 130.70 48 0.15
IEEE-300 24 139 [6,139] — 135 11.98

Notes. For all graphs G, we set s = diam(G) and exclude instances in
which s = 2. We report the heuristic objective value under the column
labeled “H Obj.” We report the optimal objective (or the best lower/
upper bounds [L, U] after 1 hour) under the columns labeled “Obj.”
We also give the total solve time (Total), where a dash indicates
> 3,600 seconds.

that POLY left unsolved after an hour. For example,
CUT solved v50_d5, v70_d5, v70_d10, and v70_d30
each in under 5 seconds, whereas POLY solved none
of them in the time limit.

5.4. The Cost of Low Latency

Imposing that a dominating set be connected is not too
costly. Indeed, the domination number y(G) and the
connected domination number y.(G) are a constant
factor apart. Specifically, they satisfy y(G) < y.(G) <
3y(G) — 2 (see Haynes et al. 1998). In contrast, we show
that the cost of low latency can be very large—even when
decreasing the latency parameter s by one. We denote
by 7"(G) the size of a minimum latency-s CDS in G.

Proposition 5. (Potentially large cost of low latency).
For every latency parameter s > 2, there is an infinite class of
graphs G for which v, (G) <'s, but y"(G) > Q(n). This
holds even when edges are bidirected and distances are hop-

based.

Proof. One such class of graphs are obtained by taking
the Cartesian products K,;[1P; of a complete graph K,
and a path graph P and then bidirecting the edges.
These graphs have sg vertices and diameter s when
g > 2. These graphs K,[1P; can be defined as having
vertex set VI U---U V®, where each Vi = {vﬁ,...,vfi}.
For the edges, let each V' be a clique, and connect each
vertex v} to its counterpart v/*! from the next V'*'.
Bidirect all edges.

See that yl‘” (K,OP;) <'s, because the s vertices vﬁ

s+1
form a feasible solution. Now we show that (K, OP;) >

S

Q(n) in two cases. When s = 2, the g vertex subsets
{0}, v} fori=1,...,q—1and {v;, v} form length-2
cuts and are disjoint. Thus, Y% (K,00P,) > ¢ = n/2.
Whens > 3, eachvertexvi with2 < i < s — lisalength-s
vertex cut on its own (by the resultant distance
b%’ween nodes v} and ), so yIH(K,OPs) > (s — 2)q >
n/3. O

We observe the cost of low latency “in practice”
through the computational results given in Table 2.
We report the solution sizes and runtimes for different
values of the latency parameter s € {diam, diam + 1,
diam + 2,7 — 1} under hop-based distances. Thus, we
have the strictest case of s = diam and the most re-
laxed value of s =n -1, which corresponds to the
minimum CDS problem when edges are bidirected.
The solve times tend to improve as s increases, and we
are able to solve all instances when s =n — 1. How-
ever, this is not universally the case, for example, for
graph v100_d5. Some of the lower bounds can be
immediately improved based on the table. For ex-
ample, we can claim a lower bound of 10 for the in-
stance v150_d20 whens = diam, because 10 is optimal
for the less-restrictive case s = diam + 1.

The runtimes for the case s = n — 1 closely resemble
those given by Buchanan et al. (2015) for the minimum
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Table 2. Results for Different Values of the Latency Parameter s

s = diam s = diam +1 s = diam +2 s=n-1
Graph diam Club Obj Total Club Obj Total Club Obj Total Obj Total
v30_d10 8 o0 15 0.02 15 15 0.02 15 15 0.02 15 0.04
v30_d20 5 8 8 0.03 7 7 0.01 7 7 0.02 7 0.01
v30_d30 3 0o 8 0.10 5 5 0.05 4 4 0.01 4 0.01
v30_d50 2 7 0.01 3 3 0.01 3 3 0.01 3 0.01
v30_d70 2 3 0.04 2 2 0.01 2 2 0.01 2 0.01
v50_d5 14 32 32 0.07 32 32 0.13 31 31 0.19 31 0.36
v50_d10 5 19 18 0.18 14 14 0.18 13 13 0.11 12 0.23
v50_d20 3 o0 14 0.11 7 7 0.27 7 7 0.17 7 0.17
v50_d30 3 00 8 1.12 5 5 0.10 5 5 0.12 5 0.12
v50_d50 2 9 0.17 3 3 0.10 3 3 0.02 3 0.02
v50_d70 2 4 0.79 2 2 0.03 2 2 0.02 2 0.02
v70_d5 8 32 32 0.53 29 29 0.74 28 28 1.38 27 0.76
v70_d10 4 00 29 2.98 17 16 8.87 13 13 0.47 13 0.10
v70_d20 3 o 17 305.96 8 8 0.21 7 7 0.19 7 0.14
v70_d30 3 0o 7 3.33 5 5 0.17 5 5 0.16 5 0.16
v70_d50 2 10 0.56 3 3 0.05 3 3 0.05 3 0.05
v70_d70 2 5 1.57 2 2 0.10 2 2 0.06 2 0.06
v100_d5 5 o 56 17.91 40 [34,36] — 29 29 2,018.43 24 0.56
v100_d10 4 00 [22,26] — 15 15 424 14 14 0.41 13 0.25
v100_d20 3 o [14,20] — 9 9 2.35 8 8 0.53 8 0.51
v100_d30 2 39 5.00 o0 [7,12] — 6 6 0.94 6 0.98
v100_d50 2 12 61.27 4 4 0.87 4 4 0.89 4 0.93
v100_d70 2 5 8.17 3 3 1.20 3 3 1.18 3 1.20
v120_d5 6 31 31 1,087.17 28 28 97.26 26 26 4.36 25 0.62
v120_d10 3 ) 63 10.31 0 [17,31] — 15 15 202.51 13 0.69
v120_d20 3 o [10,21] — 9 9 5.67 8 8 3.46 8 1.54
v120_d30 3 0o [7,12] — 6 6 1.10 6 6 1.20 6 1.10
v120_d50 2 [11,12] — 4 4 478 4 4 3.71 4 3.63
v120_d70 2 5 29.67 3 3 2.06 3 3 2.16 3 2.08
v150_d5 5 0 [30,54] — [28,33]  [26,40] — 26281  [26,33] — 26 2.10
v150_d10 3 o0 [43,61] — ) [14,28] — 16 [15,18] — 14 4.94
v150_d20 3 o [9,22] — 10 10 379.34 9 9 7.13 9 6.88
v150_d30 2 [35,41] — 0o [6,11] — 6 6 7.65 6 3.96
v150_d50 2 [9,13] — 4 4 2.38 4 4 2.49 4 2.77
v150_d70 2 6 569.09 3 3 3.29 3 3 3.35 3 3.41
v200_d5 4 ) [49,92] — [31,52] [26,50] — [25,46] [26,35] — 27 10.00
v200_d10 3 co [26,64] — ) [14,29] — [14,19] [14,21] — 16 301.83
v200_d20 3 o [8,22] — 10 [9,11] — 9 9 183.40 9 184.27
v200_d30 2 [27,44] - o [6,12] — 7 7 223.04 7 20541
v200_d50 2 [8,15] — 4 4 145.90 4 4 7.44 4 7.84
v200_d70 2 [4,7] — 3 3 6.43 3 3 6.29 3 6.59
IEEE-14 5 5 5 0.01 5 5 0.01 5 5 0.01 5 0.01
IEEE-30 6 00 14 0.01 13 13 0.01 11 11 0.01 11 0.01
IEEE-57 12 35 35 0.04 31 31 0.08 31 31 0.19 31 1.88
RTS-96 13 37 37 0.14 35 35 0.46 34 34 0.38 32 1.90
IEEE-118 14 48 48 0.15 46 46 0.25 45 45 0.25 43 1.18
IEEE-300 24 135 135 11.98 131 131 35.08 130 130 66.30 129 514.34

Notes. The case in which s = n — 1 is identical to the minimum strongly connected dominating set problem. We also report the objective of the
dominating (s — 2)-club problem (Club). Here, co denotes infeasibility, and blank cells indicate that s —2 < 0.

CDS problem. This is unsurprising given that the ap-
proach taken here is very similar. However, the instance
IEEE-300 takes longer here (514.34 vs. 52.88 seconds).
This can be attributed to the 492.86 seconds spent in our
slower callback routines.

In some applications, achieving low latency is de-
sirable but should not be viewed as a “hard” con-
straint. In this case, the trade-off between CDS size
and the latency guarantee should be considered. For

example, the results for graphs v30_d10 and IEEE-14
show that low latency comes for free; there is a
minimum CDS that also satisfies the most restrictive
(but feasible) latency value s = diam. On the other
hand, for the graphs v100_d30 and v150_d30, the
optimal objective triples when tightening the latency
parameter from s = 3 to s = 2and may not be justified.

We also give the optimal objectives for the dominating
(s = 2)-club problem. As observed in the introduction,
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the formalization based on dominating (s — 2)-clubs
does not quite capture the intent of the latency con-
straints, and here we see that it usually gives the
impression that no suitable low-latency CDS exists,
and yet there exists a latency-s CDS. This occurs for 37
of the 47 graphs when s = diam(G). An example is
given in Figure 6(a). Also, Figure 6(b) shows an in-
stance where both problems are feasible but have
different optimal solutions.

5.5. Results for the Fault-Tolerant Variant
See Section 6 of the online supplement.

5.6. Results When Delays Are Node Weighted and
Transmitter Based

In this section, we provide computational results for
instances in which delays are node-weighted and
transmitter-based. The intent is to model wireless sensor
networks in which delays depend on the transmitting
node. In our experiments, we make the simplifying
assumption that the delay at node i is a given constant
w;. This is the time for node i to pass a message to any
neighboring node. Following the transformation given in
the introduction, this means that the edges pointing
away from node 7 should have weight w;. However, if
one were to look at our implementation, they would
see that our weights are stored by node. We prefer this
representation since it is more space efficient.

To ensure that the node-based delays w; used in our
experiments are somewhat reasonable and repro-
ducible, we define them as follows, where dist(i, ) is
hop-based.

.._{1,000(71 - 1)J
" Bjev dist(, )]

The reasoning for defining w; in this way is as follows.
So-called central nodes in the network will be used more
frequently to transmit information, resulting in longer
queueing delays. The quantity (n—1)/Zjey dist(i,j) is
the definition of (normalized) closeness centrality and
the first definition for w; that we tried. However, it is
fractional, and the inexactness of later floating point
calculations caused problems. To avoid exact rational
arithmetic, we wanted to round closeness centrality to
an integer, but this would give either a zero or a one.
Multiplying by a large integer (1,000 in our case)
allowed for more diverse delays.

Table 3 provides our results with these delays, where
s = diam(G) is set to be as restrictive as possible, while
maintaining feasibility. They indicate a strength of
our approach—that using weighted distances has little
impact on the performance.

6. Conclusion

In this paper, we introduce a latency-constrained vari-
ant of the minimum CDS problem motivated by ap-
plications in wireless sensor networks in which one
seeks a virtual backbone that provides for small
end-to-end delays. We propose integer programming
formulations based on length-bounded vertex cuts.
These formulations generalize the best-performing
existing formulations for the minimum CDS prob-
lem and generalize the best-performing formulations
for the fault-tolerant variant—the minimum k-connected
k-dominating set problem. A branch-and-cut imple-
mentation of formulation CUT makes easy work of
synthetic instances having fewer than 100 nodes and
real-life instances with up to 300 nodes, significantly
outperforming formulation POLY.

Figure 6. (Color online) Examples Where the Solutions Differ Depending on Problem Formalization

IEEE-30

v50_d10

Notes. Side (a) shows a minimum latency-6 CDS for IEEE-30; there is no dominating 4-club. Side (b) shows a minimum latency-5 CDS D and a
minimum dominating 3-club D’ for the graph v50_d10. Nodes in D U D" are larger; nodes in D \ D’ are white; nodes in D" \ D are black; and

nodes in D N D’ are gray.
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Table 3. Results for the Weighted-Distance Variant

Graph s BB node H obj Obj Total
v30_d10 2,281 0 21 21 0.02
v30_d20 2,317 31 12 11 0.04
v30_d30 1,751 117 19 18 0.07
v30_d50 1,422 48 10 9 0.06
v30_d70 1,585 0 8 7 0.04
v50_d5 2,549 21 37 37 0.11
v50_d10 1,961 377 29 29 0.29
v50_d20 1,614 158 33 32 0.21
v50_d30 1,743 6,317 25 22 117
v50_d50 1,400 523 14 14 0.27
v50_d70 1,606 285 8 6 0.21
v70_d5 2,055 919 50 48 0.71
v70_d10 1,701 42 52 50 0.51
v70_d20 1,624 10,527 43 40 2.37
v70_d30 1,716 3,556 35 30 147
v70_d50 1,404 5,631 17 15 3.04
v70_d70 1,581 328 8 8 0.47
v100_d5 1,701 10,376 79 76 3.37
v100_d10 1,785 1,820,846 55 [47,51] —
v100_d20 1,678 290,399 34 [21,33] —
v100_d30 1,211 13,773 51 47 6.46
v100_d50 1,378 244,673 19 17 61.96
v100_d70 1,571 1,250 9 8 1.82
v120_d5 1,948 542,530 59 53 774.43
v120_d10 1,471 97,436 76 70 31.07
v120_d20 1,659 2,327,430 47 [37,43] —
v120_d30 1,695 4,844,453 47 40 1,101.31
v120_d50 1,389 6,911,583 18 [14,16] —
v120_d70 1,559 475 10 9 3.21
v150_d5 1,757 4,407,299 89 87  2,378.46
v150_d10 1,469 1,686,790 102 [81,92] —
v150_d20 1,663 337,800 50 [30,47] —
v150_d30 1,209 4,540,949 58 [43,50] —
v150_d50 1,371 4,427,905 24 [18,21] —

v150_d70 1,559 317 12 10 4.38

v200_d5 1,594 374,407 137 [80,135] —
v200_d10 1,503 419,384 122 [83,109] —
v200_d20 1,640 2,184,837 106 [84,96] —
v200_d30 1,201 1,162,600 67 [45,63] e
v200_d50 1,361 4,196,920 26 [20,23] —
v200_d70 1,557 8,868 12 11 46.41
IEEE-14 2,154 0 8 8 0.01
IEEE-30 2,121 0 16 16 0.02
IEEE-57 2,306 0 41 41 0.11
RTS-96 2,241 285 42 41 0.51
IEEE-118 2,556 0 48 48 0.84
IEEE-300 2,646 6,558 141 137 66.90

Note. See Section 5.6 for weighting information.

Our proposed formulations are in the same vein as
the recent “thin” approaches for other optimization
problems (Fischetti et al. 2016, 2017). In ongoing and
future research, we study the potential of using simi-
lar thin formulations based on length-bounded vertex
cuts for other distance-constrained problems in net-
works (e.g., Salemi and Buchanan 2019).

In this paper, we focus on exact approaches. Only
because our MIP solver Gurobi had problems finding
feasible solutions in an hour did we employ a sim-
ple construction heuristic. Room for improvement is

certainly possible, although the negative results
given in Section 1 of the online supplement should
not be ignored.
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Endnotes

'The complete graph is the only exception. In this case, no virtual
backbone is needed, yet Definition 1 would disallow the empty set.
For this reason, the complete graph is treated with generous disre-
gard in the virtual backbone literature.

2 An associate editor referred us to a later paper by Li and Aneja (2017)
that proposes to use the same Fujie-based formulation but with
some additional cuts. Li and Aneja (2017, p. 39) claim that their two
implementations, named B&C1 and B&C2, “significantly outper-
formed the available exact algorithm(s] in the literature,” but neglect to
compare results with Buchanan et al. (2015). This is problematic as Li
and Aneja (2017) fail to solve 2 of these 47 instances within a time limit
of 3,600 seconds. Namely, Li and Aneja (2017) do not solve the instances
v200_d10 and IEEE-300-Bus within the time limit, but Buchanan et al.
(2015) solve these instances in 496.43 and 52.88 seconds, respectively.

3Schoone et al. (1987) show a related result for increasing the di-
ameter by edge deletions, but it is not clear how to modify their result
for our purposes. Their definition of the problem (strangely) only
allows edge deletions that maintain connectivity of the graph. This
allows them to perform a reduction from HamiLtonian Path by seeking
subsets of m — (n — 1) edges whose removal increases the diameter to
n — 1. We feel that this is an unsatisfying hardness reduction, because
a minimum cut likely has fewer edges, and its removal would make
the diameter infinite. In contrast, our diameter parameter can be a
small constant, and we allow for arbitrary vertex deletions.
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