
Information and Inference: A Journal of the IMA (2021) 10, 231–260
doi:10.1093/imaiai/iaaa026
Advance Access publication on 17 October 2020

Fundamental resource trade-offs for encoded distributed optimization

A. Salman Avestimehr∗, Seyed Mohammadreza Mousavi Kalan∗ and
Mahdi Soltanolkotabi∗,†

Department of Electrical Engineering, University of Southern California, Los Angeles,
CA 90089, USA

Emails: avestimehr@ee.usc.edu mmousavi@usc.edu
†Corresponding author. Email: soltanol@usc.edu

[Received on 25 October 2018; revised on 14 July 2020; accepted on 1 September 2020]

Dealing with the shear size and complexity of today’s massive data sets requires computational platforms
that can analyze data in a parallelized and distributed fashion. A major bottleneck that arises in such
modern distributed computing environments is that some of the worker nodes may run slow. These
nodes a.k.a. stragglers can significantly slow down computation as the slowest node may dictate the
overall computational time. A recent computational framework, called encoded optimization, creates
redundancy in the data to mitigate the effect of stragglers. In this paper, we develop novel mathematical
understanding for this framework demonstrating its effectiveness in much broader settings than was
previously understood. We also analyze the convergence behavior of iterative encoded optimization
algorithms, allowing us to characterize fundamental trade-offs between convergence rate, size of data
set, accuracy, computational load (or data redundancy) and straggler toleration in this framework.
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1. Introduction

Modern data sets are massive in size and complexity consisting of tens of billions of examples. These
data sets are also very high-dimensional with numerous detailed information gathered for each example.
Furthermore, due to the proliferation of a variety of personal devices many modern data sets are stored
or collected in a distributed manner. To process such data sets in a timely manner, distributed computing
algorithms/platforms that can analyze data in a parallelized or fully decentralized fashion are crucial.

As we scale out computations across many distributed nodes in modern distributed computing
environments, such as Amazon EC2, a major performance bottleneck is the latency in waiting for
slowest nodes, or ‘stragglers’ to finish their tasks [3]. These stragglers are caused by various forms
of ‘system noise’ (e.g. deallocation of computational resources, bandwidth limitation, node failure, etc.)
and can significantly slow down computation as the slowest node may dictate the overall computational
time. The conventional approaches to mitigate the impact of stragglers involve creation of some form of
‘computational redundancy’. For example, replicating the straggling task on another available node is a
common approach to deal with stragglers (e.g. [23]).

Asynchronous methods like [19] can partially resolve the effect of stragglers but because of system
randomness, they may not be reproducible or consistent. More recent approaches [4,10–13,22] bring to
bear ideas from coding theory to distributed computing in a synchronous setting. These coded computing
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232 A. SALMAN AVESTIMEHR ET AL.

approaches create redundancy in the computation tasks in unorthodox coded forms (as opposed to
conventional replication approaches), thereby alleviating the effect of stragglers more efficiently. In the
literature of distributed coded computing, there are mainly two approaches. The goal is either to exactly
recover the computations done by the workers or just approximate the computations at the master node.
For instance, [6,20] propose a coding scheme to exactly recover the gradient sums in the presence of
stragglers at the master while the goal of [18] is to approximate the sum of gradients. Charles et al. [2]
aims at approximately recovering a sum of functions using sparse random graphs and [21] analyzes the
convergence and delay properties of gradient descent in the setting of approximate recovery.

Coded computing has also been proposed for creating redundancy in distributed optimization prob-
lems [7,8,24,25]. Zhu et al. [25] proposes a sequential framework for solving optimization problems
using a distributed platform that solves a sequence of optimization problems in place of the original
problem. Zhang et al. [24] proposes differential coded compressors used in network distributed opti-
mization that has high convergence speed and also relaxes the assumption of bounded noise power on
compressors. The key idea of [7,8], named encoded optimization, is to linearly encode the data variables
in the optimization. The encoded data is then distributed across the computational nodes and distributed
optimization algorithms are then applied to these encoded data. Due to the redundancy created in the
data, the optimization algorithms can be completed without having to wait for the straggler nodes.

The encoded optimization framework provides an intriguing approach to deal with the effect of
stragglers. However, our mathematical understanding of the effect of this data encoding strategy is
limited. In particular, existing results such as [7,8] mostly focus on understanding the effect of random
encoding strategies on the optimal solution to unconstrained least-squares problems. Furthermore, there
is very limited understanding of how such encoding strategies affect the use of various computational
and data resources. This is particularly important as in many modern applications ranging from imaging
to online advertisement and financial trading we are interested in algorithms that can operate under
multiple constraints (e.g. under a limited time budget). Efficient learning from encoded data under
these constraints poses new challenges: how can we incorporate domain-specific prior knowledge in a
principled manner? What algorithms should we use under a fixed time budget? How much of the data
should we use? Should we use all of the data or just parts of it? How many passes (or iterations) of
the algorithm is required to get to an accurate solution? How much redundancy should we create in our
data? How does the amount of redundancy present in our data encoding strategy affect the convergence
behavior and run-time of our algorithms? How many straggler nodes can a particular form of data
encoding approach tolerate?

At the heart of answering these questions is the ability to predict run-time of encoded optimization
algorithms as a function of the required accuracy, the size of data, the number of straggler nodes, the
amount of prior knowledge, etc. That is, we need to understand precise trade-offs between run time, data
size, accuracy, data redundancy and straggler toleration of iterative encoded optimization algorithms. In
this paper, we wish to precisely characterize such trade-offs, significantly broadening our current under-
standing of the encoded optimization paradigm. Our main contributions in this paper are as follows.

• We study the encoded optimization framework in a much broader setting than previously
understood. In particular, we demonstrate how prior knowledge can be incorporated in this
framework via constraints on the optimization variables. Our guarantees are very general and
can deal with arbitrary and potentially non-convex constraints.

• Our results require a near minimal amount of data redundancy/replication (a.k.a. computational
load). We show that encoded optimization is effective as long as the data redundancy/replication
exceeds (up to constants) the sum of the total number of stragglers and a precise quantity capturing
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FUNDAMENTAL RESOURCE TRADE-OFFS FOR ENCODED DISTRIBUTED OPTIMIZATION 233

the amount of prior knowledge that is enforced in the optimization algorithm. In fact, in certain
cases our framework applies even when the number of encoded data is less than the number of
data points allowing for data compression in lieu of redundancy/replication.

• We also precisely characterize the convergence rate of iterative encoded optimization algorithms
as a function of various parameters including the straggler toleration, computational load, prior
knowledge, as well as the size of the data set. This allows us to precisely characterize the various
trade-offs between these fundamental resources.

2. Problem formulation

In this section, we discuss the encoded distributed optimization framework and formulate the underlying
fundamental resource trade-offs that we study in this paper.

2.1 Setting

In many modern applications in signal processing and machine learning, we aim to infer models that best
explain the training data. Given training data consisting of n pairs of input features xi ∈ R

d and desired
outputs yi ∈ R, we wish to infer a function that best explains the training data.The simplest functions
are linear ones where the outputs are linear functions of the features. Specifically, we are interested in
finding a parameter θ∗ ∈ R

d obeying the following equations:

yi =< xi, θ
∗ > +wi for i = 1, 2, ..., n. (2.1)

Here, wi denotes the noise present in our training examples. A natural approach to finding the best linear
model is to minimize the empirical risk

∑n
k=1 �(〈xk, θ〉, yk) via a quadratic loss �(u, v) = 1

2 (u−v)2. This
leads to the following optimization problem:

θ̂ = arg min
θ

L (θ) := 1

2
‖y − Xθ‖2

�2

subject to R (θ) � R.

(2.2)

Here, y ∈ R
n is the output vector consisting of the outputs y = [y1 y2 ... yn]T , and X ∈ R

n×d is the feature

matrix consisting of the data features X = [
xT

1 xT
2 ... xT

n

]T . Also, R : Rd → R is a regularizer function
that is used to avoid over-fitting and captures some notion of structure/complexity of the unknown
parameter (with R a tuning parameter). We note that while we will focus on linear models and quadratic
losses, many of the algorithms and technical proofs in this paper generalize to other models/losses. We
aim to pursue these extensions in future publications.

To solve optimization problems of the form (2.2) involving massive data sizes, we need to utilize
modern distributed computing platforms. While there are many popular distributed computing schemes
[17], in this paper we focus on a OneToAll scheme that consists of a master node and L workers. We
focus on a distributed implementation of projected gradient descent (PGD) for solving problems of the
form (2.2). To distribute PGD, we assume the master partitions the features matrix and the response
vector y across rows between L worker nodes. Specifically, we partition X/y into L parts across rows

with X = [
XT

1 XT
2 . . . XT

L

]T
, y = [

yT
1 yT

2 . . . yT
L

]T
. Here, X� ∈ R

n�×d and y� ∈ R
n� with

∑
� n� = n.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/231/5926762 by U
niversity of Southern C

alifornia user on 17 June 2021



234 A. SALMAN AVESTIMEHR ET AL.

With this partition, worker � receives data X�/y� and carries out updates/computations on this data.
Starting from some initial solution θ0 ∈ R

d, in each iterations the master sends the current update θ τ to
the workers. Each of the workers then calculates a partial gradient based on the portion of the data it has
access to. Specifically, worker � returns to the master the following partial gradient:

∇L (�)(θτ ) = XT
�

(
X�θ τ − y�

)
.

The master then aggregates all of these partial gradients and performs the following update:

θ τ+1 = P

(
θ τ − μ̃τ

L∑
�=1

∇L (�)(θ τ )

)

= P

(
θ τ − μ̃τ

L∑
�=1

XT
�

(
X�θ τ − y�

))

= P
(
θ τ − μ̃τ XT(Xθ τ − y)

)
. (2.3)

Here, P denotes the Euclidean projection onto the constraint set K = {θ ∈ R
d : R(θ) � R} and μ̃τ is

the learning rate.
As mentioned in Section 1, a major performance bottleneck that arises when implementing such

distributed PGD updates is that some of the worker nodes may run slow (i.e. stragglers). The presence
of such stragglers can significantly slow down the computations as the master has to wait for all the
workers to send their partial gradient calculations, so that the overall run time is limited by the slowest
worker. For instance, in [1] the effect of slow workers under the title of outliers was studied and it was
shown that completion time of jobs can be prolonged by 34% at median. In this paper, we will focus on
the encoded optimization framework, which will be described next, to mitigate the effect of stragglers.

2.2 The encoded optimization framework

To deal with the effect of stragglers in the iterations (2.3), in this paper we utilize a new approach for
straggler mitigation, named encoded distributed optimization [7,8] , which was originally developed for
unconstrained least-squares problems. The main idea behind this approach is to create redundancy in the
data by random embedding/encoding. In this section, we discuss this computational paradigm tailored
to distributed PGD iterates.

To overcome the computational slowdown caused by stragglers, we randomly embed/encode the
data by multiplying the feature matrix and the response vector by an encoding matrix A ∈ R

m×n. We
then partition these embedded data AX/Ay and then distribute them across rows between the L worker

nodes. Specifically, we partition the matrix A into L parts across rows A = [
AT

1 AT
2 . . . AT

L

]T
with

A� ∈ R
n�×n and m = ∑

� n�. Similar to the un-coded case, with this partition worker � receives data
A�X/A�y and carries out updates/computations on this data so that the partial gradient updates are now
calculated based on these randomly encoded data. That is,

∇L (�)(θτ ) = XTAT
� A�

(
Xθ τ − y

)
.
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FUNDAMENTAL RESOURCE TRADE-OFFS FOR ENCODED DISTRIBUTED OPTIMIZATION 235

Due to the effect of stragglers, the master may not receive gradient updates from some workers in a
timely manner so that computations based on some of the m rows maybe missing. Let us denote the
index of the slow workers at iteration τ by Iτ ⊂ {1, 2, . . . , L}. Also let W� ⊂ {1, 2, . . . , m} denote the
index of the rows of A sent to worker �. Now define

Sτ =
⋃

�∈Iτ

W�,

which contains the indices of all the rows of A that is not available at the master due to stragglers. We
will use sτ = ∣∣Sτ

∣∣ to denote the total number of these straggler rows.
Based on the gradient updates available to the master, it proceeds with the following PGD update:

θ τ+1 = P

⎛⎝θ τ − μτ

∑
�∈Ic

τ

∇L (�)(θ τ )

⎞⎠
= P

(
θ τ − μτ XTAT

Sc
τ
ASc

τ
(Xθ τ − y)

)
, (2.4)

where μτ is the learning rate of encoded iterations. Therefore, the master effectively runs the encoded
iterations (2.4) in lieu of the uncoded iterates (2.3).

We would like to note that to compute the coded data A�X/A�y, the distributed nodes do not need
access to the full data. In many applications, it is common for the master to divide the data set between
the worker nodes. Thus, the computation A�X/A�y can be carried out once at the master and then coded
batches are distributed between the worker nodes. Moreover, if the size of data is more than that the
master be capable of computing the coded data they can be computed over a cloud and then distributed
among the workers. We also note that while encoding the data (i.e. AX/Ay) maybe costly this is a
‘one-time cost’. In many cases, this is negligible compared to the computational cost of training various
models which require many iterations. Furthermore, once coded the data can be used to train more than
one model. That said, while our theory currently focuses on Gaussian encoding matrices, we intend to
extend our results to coding matrices that admit fast matrix-vector multiplication such as those involving
randomized Fourier or sparse matrices. In fact, we demonstrate the effectiveness of such matrices in our
numerical experiments.

Note that, apriori it is not clear when/why the encoded iterates serve as a good proxy for the uncoded
ones. Understanding this relationship is the main focus of this paper. In the next section, we discuss the
main problems that we study in this paper by formalizing various fundamental trade-offs that arise in
the distributed encoded optimization framework.

2.3 Fundamental resource trade-offs

In this paper, we wish to understand under what conditions the encoded iterates (2.4) are a good proxy
for the uncoded iterates (2.3). We aim to answer fundamental questions such as: when will both set
of iterates converge to the same fixed point? How does the convergence behavior change due to the
presence of the encoding mapping? What are the various trade-offs involved between various resources.
To discuss these problems more precisely, we start with two simple definitions related to the encoding
matrix A.
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236 A. SALMAN AVESTIMEHR ET AL.

Definition 2.1 (Computational load). We use computational load m to refer to the number of rows
of A.

Definition 2.2 (Straggler toleration). We use s to denote the maximum number of straggler rows in
each iteration (

∣∣Sτ

∣∣ � s). We refer to this quantity as straggler toleration.

With these definitions in place, we now discuss the fundamental trade-offs that we aim to
characterize in this paper.

• Accuracy vs. computational time. In many modern learning applications, we must operate on
a fixed time budget. Therefore, it is crucial to understand how many passes (or iterations) of the
algorithm is required to get to a certain accuracy. We wish to characterize this fundamental trade-
off between computational time and accuracy for the encoded distributed optimization framework.
Stated more formally, we are interested in precisely understanding the distance between the
encoded iterates and the true parameter (‖θ τ − θ∗‖�2

) as a function of the number of iterations
(τ ) and the noise level ‖w‖�2

.

• Convergence rate vs. computational load. We are interested in understanding how the
computational load m affects the convergence behavior of the encoded iterates. Intuitively, as
the computational load increases the encoded iterates provide a better approximation to the un-
coded iterates. Therefore, we expect the coded iterates to converge faster as the computational
load increases. We wish to precisely characterize the convergence rate as a function of the
computational load.

• Convergence rate vs. straggler toleration. In each encoded iteration, there are some stragglers
that are ignored by the master node. We aim to characterize the impact of stragglers on the speed
of convergence. By increasing the number of stragglers (s), the master node ignores more and
more data. Therefore, intuitively we expect that the more stragglers we have, the more iterations
are needed for the encoded iterates to converge to a certain accuracy. We wish to characterize the
convergence rate as a function of the straggler toleration parameter.

• Computational load vs. straggler toleration. Intuitively, as we increase the number of
stragglers, s, we need more redundancy in our encoded framework. Stated differently, we
need to increase the computational load as a function of the number of stragglers. This leads
to a fundamental trade-off between computational load and straggler toleration. We aim to
characterize the minimum required computational load as a function of the straggler toleration
parameter so as to ensure the encoded iterates eventually converge to a good estimate.

In the next section, we state our main result that leads to a precise characterization of the convergence
behavior of the encoded iterates as a function of various parameters, allowing us to precisely characterize
the above trade-offs.

3. Main results

We wish to characterize the convergence behavior of the encoded iterates (2.3) as a function of various
problem parameters for the worse possible choice of s straggler rows. More precisely, we are interested
in characterizing the relationship between

sup
Sτ ⊂{1,2,...,m}, |Sτ |�s

∥∥θ τ − θ∗∥∥
�2

,
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FUNDAMENTAL RESOURCE TRADE-OFFS FOR ENCODED DISTRIBUTED OPTIMIZATION 237

and the error ‖w‖�2
when running the iterations (2.3). To make these connections precise and

quantitative, we need a few definitions.
Naturally, our results depend on how well the regularization function R can capture the properties of

the unknown parameter θ∗. For example, if we know our unknown parameter is approximately sparse,
then using an �1 norm for the regularizer is superior to using an �2 regularizer. To quantify this capability,
we first need a couple of standard definitions which we adapt from [14,15].

Definition 3.1 (Descent set and cone). The set of descent of a function R at a point θ∗ is defined as

DR(θ∗) =
{

h : R (θ∗ + h) � R (θ∗)
}

.

The cone of descent is defined as a closed cone CR(θ∗) that contains the descent set, i.e. DR(θ∗) ⊂
CR(θ∗). The tangent cone is the conic hull of the descent set. That is, the smallest closed cone CR(θ∗)
obeying DR(θ∗) ⊂ CR(θ∗).

We note that the capability of the regularizer R in capturing the properties of the parameter vector
θ∗ depends on the size of the descent cone CR(θ∗). The smaller this cone is the more suited the function
R is at capturing the properties of θ∗. To quantify the size of various cones, we shall use the notion of
mean width.

Definition 3.2 (Gaussian width). The Gaussian width of a set C ∈ R
n is defined as ω(C ) :=

Eg[supz∈C〈g, z〉], where the expectation is taken over g ∼ N (0, In).

We now have all the definitions in place to quantify the capability of the function R in capturing the
properties of the unknown parameter θ∗ when using an encoding matrix A. This naturally leads us to
the definition of the minimum required computational load.

Definition 3.3 (Minimal computational load). Let CR(θ∗) be a cone of descent of R at θ∗. We define
the minimal computational load function as

M(R, X, θ∗, η) =
(
ω
(

XCR(θ∗) ∩ S
n−1

)
+ η

)2
,

where θ∗ ∈ R
d, X ∈ R

n×d and the variable η ∈ R. We shall often use the short hand m0 =
M(R, X, θ∗, η) with the dependence on R, X, θ∗, η implied.

The definition above characterizes the minimum computational load required for the encoded
iterations to converge to the true parameter in the absence of noise or stragglers.

The convergence rate of the encoded iterates also naturally depends on various characteristics of the
feature matrix X. We quantify a few of these characteristics below.

Definition 3.4 (Cone-restricted spectral norm). Let CR(θ∗) be the cone of descent of the regularization
function R at a point θ∗ per Definition 3.1. The cone-restricted spectral norm of a matrix X ∈ R

n×d

with respect to R at a point θ∗ is defined as σR(X) = supu∈CR(θ∗)∩Sd−1 ‖Xu‖�2
.

We note that the above definition is a natural extension of the spectral norm of a matrix. It is well
known that the spectral norm of the feature matrix plays a crucial role in the convergence behavior
of least-square problems. The cone-restricted spectral norm defined above plays a similar role in the
convergence of constrained least-squares problems.
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238 A. SALMAN AVESTIMEHR ET AL.

Furthermore, the convergence behavior of the encoded iterates is also related to that of the uncoded
iterates. The following two definitions, adapted from [14], concern the convergence of the uncoded
iterates.

Definition 3.5 (Convergence rate). Consider the iterations 2.3. Let θ∗ ∈ R
d and X ∈ R

n×d and R be
the regularizer function as well as μ be the learning rate. We define

ρ(μ) := ρ(μ, X, R, θ∗) = sup
u,v∈CR(θ∗)∩Sd−1

uT
(

I − μXTX
)

v.

It is known that ρ(μ) characterizes the convergence rate of the uncoded iterations (2.3) [14].

Definition 3.6 (Noise amplification). Consider the iterations 2.3. Let θ∗ ∈ R
d and X ∈ R

n×d and R
be the regularizer function with w denoting the noise. We define

ξ(X) := ξ(X, R, θ∗, w) = sup
v∈−CR(θ∗)∩Sd−1

vTXT w
‖w‖�2

.

It is known that the uncoded iterations eventually converge to a neighborhood of the unknown
parameter θ∗ [14]. The noise amplification factor defined above plays a crucial role in characterizing the
size of this neighborhood. In particular, [14] shows that the diameter of this neighborhood is proportional
to ξ(X) ‖w‖�2

.
With these definitions in place, we are now ready to state our main theorem regarding the

convergence of the encoded iterates (2.4).

Theorem 3.7 Let A ∈ R
m×n be a matrix with i.i.d. N (0, 1) entries. Also, assume the number of

straggler rows obeys sτ = ∣∣Sτ

∣∣ � s with s the straggler toleration parameter per Definition 2.2 obeying
s � m. Furthermore, let m0 = M(R, X, θ∗, η) denote the minimal computational load per Definition 3.3.
Then the encoded iterative updates (2.4) obey

sup
Sτ ⊂{1,2,...,m}

∥∥θ τ+1 − θ∗∥∥
�2

� κRρ(μ̃τ )
∥∥θ τ − θ∗∥∥

�2
+ μ̃τ · κR · σ 2

R(X) ·
(

2 + 9sτ log(em/sτ )

m
+ 4

√
m0

m − sτ

)∥∥θ τ − θ∗∥∥
�2

+ κR

(
μ̃τ · ξ(X) + μ̃τ√

2
· σR(X)

√
m0

m − sτ

)
‖w‖�2

, (3.1)

for all τ with probability at least 1 − 6e− η2

8 − e− η2

2 − e− m
2 . Here, ρ is the convergence rate per

Definition 3.5, ξ is the noise amplifications per Definition 3.6, σR(X) is the cone-restricted spectral
norm of X per Definition 3.4. Furthermore, the tuning parameter is set to R = R(θ∗) and the learning

rate is equal to μτ = μ̃τ

β2
sτ ,m

with βs,m = min

(√
3(m − s) log

(
em

m−s

)
,
√

m

)
and μ̃τ is the learning rate in

the uncoded iterations (2.3). Finally, κR = 1 for convex R and κR = 2 for non-convex R.

Remark 3.8 Theorem 3.7 essentially connects the convergence behavior of the encoded iterations to
that of the uncoded iterations. Consider the limit m → ∞ and note that for a Gaussian matrix ASc

τ
,
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AT
Sc

τ
ASc

τ
→ (m − sτ )I and thus the encoded iterations reduce to the uncoded iterations (modulo a

constant factor in the step size). In this case, the convergence bound provided by Theorem 3.7 reduces to∥∥θ τ+1 − θ∗∥∥
�2

� κRρ(μ̃τ )
∥∥θ τ − θ∗∥∥

�2
+ κR√

2
μ̃τ · ξ(X)) ‖w‖�2

. (3.2)

The first term gives the convergence rate to the true parameter. The second term characterizes the
size of the neighborhood (of the true parameter) to which the iterates converge, demonstrating that the
iterates eventually approximate the true parameter up to a term that is proportional to the Euclidean
norm of the noise. The bound (3.2) was proven recently in [14] . Our result generalizes this result to the
encoded case while recovering the special uncoded case in the limit m → ∞.

Remark 3.9 Theorem 3.7 characterizes the minimal computational load for convergence of (2.4) in
the presence of stragglers. Comparing (3.1) with (3.2), we see that as long as the computational load is
sufficiently large the effect of coding is only a slight increase in the convergence rate and the size of
approximation neighborhood. For instance, to ensure that in the encoded case the convergence rate only
increases by ε the computational load must obey

m − s � 260
m0 + s

ε2
� 64

m0 + s

ε2
κ2
R

(
μ̃τ · σ 2

R(X)
)2.

In the last inequality, we used κR � 2 and the fact that μ̃τ typically scales with 1/σR(X)2 (as step
size typically scales with the inverse of the smoothness parameter). Thus, as long as the computational
load exceeds the sum of the number of stragglers and the minimal computational load by a constant
factor, i.e.

m � c(m0 + s) (3.3)

holds for some numerical constant c depending only on ε, then the increase in the convergence rate is
small. Similarly, the increase in the size of the approximation neighborhood remains small as long as
(3.3) holds.

Remark 3.10 We now briefly discuss how our results compare with related work. Theorem 3.7
demonstrates that the encoded iterates converge at a linear rate while dealing with arbitrary and possibly
non-convex constraints. Karakus et al. [8] also demonstrates a linear convergence, albeit in terms of
the optimal value. However, [8] only focuses on the special case where there are no constraints on the
optimization variables. Furthermore, [8] requires a computational load that is larger than the sum of the
number of stragglers and the total number of data points, i.e. m � n + 2s. In comparison, our results
require a near minimal number of samples that is commensurate to the sum of the straggler toleration
and the amount of prior knowledge (m � c(m0 + s)). This allows for a much smaller computation load
that can even be significantly smaller than the number of data points, i.e. m << n. Finally, we would like
to mention related work in [16] where the authors focus on sketching of constrained convex programs.
This paper focuses on the properties of the optimal solution to problems of the form (2.2) without any
stragglers. In comparison, we focus on analyzing the convergence behavior of iterative algorithms when
stragglers are present.

Remark 3.11 Theorem 3.7 focuses on an adversarial model for stragglers. Specifically, when bounding
the error in each iteration we assume a maximal number and adversarial form/location of stragglers in
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each iteration. However, we can apply this theorem for other models such as random faults in which
number/location of stragglers varies in each iteration in a random fashion. Furthermore, we assume that
every straggler is a full straggler which means that it completely fails and cannot send any result to the
master. It may be the case that some stragglers fail completely but some others are slow compared to
normal workers but can still send some results to the master. We believe that our results can be extended
to deal with these scenarios and hope to address this in future work.

Remark 3.12 In Theorem 3.7, we assume that the parameter R is tuned perfectly and is set to R =
R(θ∗). It is not necessary to know R(θ∗) in advance. For uncoded iterations and in the absence of
stragglers [14, Theorem 2.6] discusses the effect of not setting R to R = R(θ∗) and characterizes the
effect of this mismatch. Theorem 3.7 can also be generalized in a similar fashion to account for this
mismatch.

Remark 3.13 (Convergence rate vs. computational load). Theorem 3.7 characterizes the effect of
the computational load on the convergence rate. In particular, this theorem shows that the increase
in the convergence rate is proportional to 1/

√
m. Therefore, as the computational load increases the

convergence rate decreases. Thus, a larger computational load ensures a faster convergence of the
encoded iterates.

Remark 3.14 (Convergence rate vs. straggler toleration). Theorem 3.7 also characterizes the effect of
stragglers on the rate of convergence. This result demonstrates a rate proportional to 1/

√
m − s so that

as the number of stragglers increase, the convergence rate decreases leading to a slower convergence of
the encoded iterates.

Remark 3.15 (Computational load vs. straggler toleration). We also note that Theorem 3.7 indirectly
characterizes a trade-off between the computational load and the straggler toleration of the encoded
iterations through (3.3). Indeed, (3.3) demonstrates that for a fixed convergence rate the computational
load must scale linearly with the number of stragglers.

4. Numerical results

In this section, we corroborate the resource trade-offs characterized in Theorem 3.7 via experiments on
synthetic data. We generate the true parameter θ∗ ∈ R

d with d = 4000 and sparsity level k = 20,
where the support is chosen at random and the values on support are distributed i.i.d N(0, 1). Moreover,
we generate the data matrix X ∈ R

n×d i.i.d. ∼ N(0, 1) with n = 3000 and set the output vector via
y = Xθ∗. In our simulations, we vary the computational load m and the straggler toleration s and
then plot the various trade-offs. We use two different encoding matrices: a random Gaussian matrix
and a random discrete cosine transform (DCT) matrix. In the Gaussian case, the entries of the matrix
are generated i.i.d. ∼ N(0, 1). The random DCT matrix is generated according to A = HD where
H ∈ R

m×n is obtained by selecting m rows of an n × n DCT matrix at random, and D ∈ R
n×n is a

diagonal matrix with i.i.d. ±1 entries on the diagonal. In our simulations in each iteration, we assume
a different set of straggler rows chosen i.i.d. at random from the m rows. To reconstruct θ∗, we run
encoded PGD iterations (2.4) for solving (2.2) with learning rates μτ = 1

5m and μτ = 1/3 for the
Gaussian and randomized DCT encoding matrices, respectively. We use R(θ) = ‖θ‖�1

with tuning
parameter R = ||θ∗||1. We run the encoded PGD iterates for 500 iterations and record the relative error
‖θ τ − θ∗‖�2

/‖θ∗‖�2
.

• Convergence rate vs. computational load. In this simulation, we fix the straggler toleration at
s = 100 and vary the computation load m. We depict the relative error as a function of iterations
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Fig. 1. These two diagram show the empirical rates of convergence for Gaussian encoded PGD in two different scenarios. (a)
Depicts the converge rate as a function of the computational load m when the straggler toleration is fixed at s = 100. (b) Shows
the convergence rate as a function of the straggler toleration with a fixed computational load at m = 800.

in Fig. 1(a). This figure confirms that the convergence is indeed linear and increasing m leads to
a faster convergence as predicted by Theorem 3.7.

• Convergence rate vs. straggler toleration. In this simulation, we fix the computational load
at m = 800 and vary the straggler toleration s and depict the relative errors as a function of the
iterations in Fig. 1(b). This figure confirms that the iterates converge at a linear rate and increasing
s leads to a slower convergence as predicted by Theorem 3.7.

• Computational load vs. straggler toleration. In this simulation, we vary the computational
load m, and straggler toleration s and for each case run the encoded PGD iterations. We stop
after 500 iterations and record the empirical probability of success. The empirical probability of
success is an average over 50 trials, where in each instance, we generate new random parameter
vectors, data and encoding matrices. We declare a trial successful if the relative error of the
reconstruction ‖θ − θ∗‖�2

/‖θ∗‖�2
falls below 10−3.

• Figure 2(a) depicts the empirical success probabilities via a color map for different straggler
tolerations s and computational loads m. Yellow represents certain success, while blue represents
certain failure. In the experiments of this figure, the encoding matrix is Gaussian. This figure
clearly shows that there is a phase transition curve for the computational load as a function
of the straggler toleration. On one side of this curve encoded PGD updates is successful with
high probability on the other side it fails with high probability. Figure 2(a) also shows that
the computational load scales linearly in terms of the straggler toleration parameter confirming
the relationship (3.3) predicted by Theorem 3.7. Figure 2(b) depicts the results for randomized
DCT matrices. Encoding with such matrices is very efficient requiring only a DCT transform.
Perhaps unexpectedly, randomized DCT matrices exhibit very similar behavior to the Gaussian
matrix demonstrating that such matrices can act as computational friendly surrogates for encoding
purposes. Proving Theorem 3.7 extends to randomized DCT matrices is an interesting direction
for future research.
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Fig. 2. These two diagrams depict the empirical probability that encoded PGD successfully reaches the global optimum of the
uncoded optimization problem for (a) Gaussian and (b) randomized DCT encoding matrices. The colormap tapers between yellow
and blue where yellow represents certain success, while blue represents certain failure.

Fig. 3. Illustration of runtime of encoding iterations as a function of m with s = 100.

• In the next, we consider another set of experiments in order to investigate the effect of m, size of
encoding matrix, on the runtime of iterations. Here we use shifted exponential model proposed
in [10].

• We consider the same setting described above except that we assume that computing each partial
gradient at every iteration takes a random amount of time 10−4 + exp(mean) where mean =
10−3. We insert delay and measure the runtime using the commands pause as well as tic, toc
in MATLAB. Furthermore, in various settings, we measure the runtime of reaching the error to
10−8. Figure 3 depicts the effect of m on the runtime of iterations. If we choose too small m then
the speed of convergence is low and it takes a huge time to reach to the desired level of error. On
the other hand, if we choose too large m the total computation time becomes very large. As Fig. 3
shows there is an optimal m for which the runtime is optimal.
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5. Proofs

In this section, we prove Theorem 3.7. In the absence of stragglers, the problem reduces to uncoded
iterations. Our proofs is based on relating the coded iterates to uncoded ones that can be seen as the
average over the random choice of the coding matrix. Thus, the uncoded iterates can be thought of as
a ‘population counterpart’ and the limit of coded iterations with m → ∞. The proof consists of three
main steps. In the first step, we utilize a deterministic convergence analysis from [14, Theorem 1.2] and
decompose the convergence rate into two terms. The first term is the population term (averaging over the
randomness in the coding matrix) and has the same rate of convergence as the uncoded iterations. The
second term is a deviation that captures the perturbation of the convergence rate from its population
counterpart. We also perform some simplifications to formulate the deviation in terms of uniform
convergence of quadratic stochastic processes. In the second step, we prove a result on the uniform
concentration of stochastic processes in the presence of stragglers. In the final step, we combine steps I
and II to bound the deviation term and complete the proof.

Step 1: In this step, we decompose the convergence rate into two terms. The first term is the
convergence rate of the uncoded iterates and the second term can be thought of the deviation from
this expected term. We then cast this deviation in the form of deviations of certain quadratic stochastic
processes.

Specifically, define the error vector hτ := θ τ − θ∗ and the cones C̃ := CR(θ∗) ∈ R
d and C :=

XC̃ ∈ R
n. Utilizing [14, Theorem 1.2], we have

∥∥hτ+1

∥∥
�2

� κR

(
sup

ũ,ṽ∈C̃∩Sd−1

ũT(I − μτ XTAT
Sc

τ
ASc

τ
X)ṽ

)∥∥hτ

∥∥
�2

+ κR · μτ · sup
ũ∈−C̃∩Sd−1

ũTXTAT
Sc

τ
ASc

τ
w.

(5.1)

We now proceed by simplifying each of these two terms. To simplify the first term, define u :=
Xũ

‖Xũ‖�2
∈ S

n−1 and v := Xṽ
‖Xũ‖�2

∈ S
n−1 and note that

ũT(I − μτ XTAT
Sc

τ
ASc

τ
X
)
ṽ = ũT

(
I − μ̃τ XTX

)
ṽ + μ̃τ · ‖Xũ‖�2

· ‖Xṽ‖�2
uT

(
I − 1

β2
sτ ,m

AT
Sc

τ
ASc

τ

)
v.

Now we can use the fact that supremum of sum is less than sum of suprema. Thus,

sup
ũ,ṽ∈C̃∩Sd−1

ũT(I − μτ XTAT
Sc

τ
ASc

τ
X)ṽ

� sup
ũ,ṽ∈C̃∩Sd−1

ũT
(

I − μ̃τ XTX
)

ṽ

+ μ̃τ

(
sup

ũ∈C̃∩Sd−1

‖Xũ‖�2
· sup

ṽ∈C̃∩Sd−1

‖Xṽ‖�2
· sup

u,v∈C∩Sn−1
uT

(
I − 1

β2
sτ ,m

AT
Sc

τ
ASc

τ

)
v
)

= ρ(μ̃τ ) + μ̃τ · σ 2
R(X) sup

u,v∈C∩Sn−1
uT

(
I − 1

β2
sτ ,m

AT
Sc

τ
ASc

τ

)
v. (5.2)
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In above, we used the cone-restricted spectral norm of X per Definition 3.4. We now focus on

simplifying the second term in 5.1. To this aim, for a vector u ∈ R
n define u⊥ = u − uT w

‖w‖2
�2

w. We

can use this definition to separate the second term in (5.1) into two terms as follows:

μτ · ũTXTAT
S c

τ
AS c

τ
w = μτ ‖Xũ‖�2

(
uTAT

S c
τ
AS c

τ
w
)

= μτ ‖Xũ‖�2
(uT⊥AT

S c
τ
AS c

τ
w) + μτ

ũTXTw

‖w‖2
�2

∥∥∥AS c
τ
w
∥∥∥2

�2
.

Thus, using μτ = μ̃τ /β
2
s,m we have

μτ · sup
ũ∈−C̃∩Sd−1

ũTXTAT
S c

τ
AS c

τ
w

� μ̃τ

β2
sτ ,m

· sup
ũ∈−C̃∩Sd−1

‖Xũ‖�2
· sup

u∈−C∩Sn−1
uT⊥AT

S c
τ
AS c

τ
w

+

∥∥∥AS c
τ
w
∥∥∥2

�2

β2
sτ ,m · ‖w‖2

�2

· μ̃τ ·
(

sup
ũ∈C̃∩Sd−1

ũTXT w
‖w‖�2

)
‖w‖�2

= μ̃τ · σR(X)

β2
sτ ,m

· sup
u∈−C∩Sn−1

uT⊥AT
S c

τ
AS c

τ
w + 1

β2
sτ ,m

∥∥∥AS c
τ
w
∥∥∥2

�2

‖w‖2
�2

· μ̃τ · ξ(X) ‖w‖�2
. (5.3)

All that remains is to bound the extra additive term in (5.2) and the extra additive and multiplicative
terms in (5.3). To this aim note that for any γτ , we have

uT
(

I−γτ AT
S c

τ
AS c

τ

)
v =1

4

(
‖u+v‖2

�2
−γτ

∥∥∥AS c
τ
(u + v)

∥∥∥2

�2

)
+ 1

4

(
γτ

∥∥∥AS c
τ
(u − v)

∥∥∥2

�2
−‖u − v‖2

�2

)
.

(5.4)

To proceed, we state a lemma about bounding set-restricted eigenvalues, which is proved in the
Appendix section.

Step 2: In this step, we bound the deviation terms in (5.4). To this aim, we state a lemma regarding
concentration of quadratic stochastic processes adjusted so as to deal with the effect of worst-case
stragglers.

Lemma 5.1 Let T ∈ R
n and define σ(T ) := sup

v∈T
‖v‖�2

. Also assume the random encoding matrix

A ∈ R
m×n is a matrix with i.i.d. N (0, 1) entries. Furthermore, define αs,m =

√
m − 2 − 5s log

( em
s

)
and
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βs,m = min

(√
3(m − s) log

(
em

(m−s)

)
,
√

m

)
. Then for all u ∈ T

sup
S⊂{1,2,...,m}, |S|=s

∥∥AS c u
∥∥

�2
� βs,m ‖u‖�2

+ (ω(T ) + η) , (5.5)

holds with probability at least 1 − 2e
− η2

8σ2(T ) . Furthermore, for all u ∈ T

inf
S⊂{1,2,...,m}, |S |=s

∥∥AS cu
∥∥

�2
� αs,m ‖u‖�2

− (ω(T ) + η) , (5.6)

holds with probability at least 1 − 4e
− η2

8σ2(T ) .

This lemma relates the concentration of the Gaussian process ASc u to the Gaussian width of the set
which u belongs to. By having a small corresponding Gaussian width, the concentration bound would
be tighter.

Step 3: In this step, we utilize Lemma 5.1 to complete the bound 5.4 and provide convergence
guarantees for the coded iterations (2.4). To use the above lemma, define T+ = (

C ∩ S
n−1

)+(C ∩ S
n−1

)
and T− = (

C ∩ S
n−1

)− (
C ∩ S

n−1
)
. Also note that σ(T−) � 2, σ(T+) � 2, ω(T−) � 2ω(C ∩ S

n−1),
ω(T+) � 2ω(C ∩ S

n−1) and u + v ∈ T+. Thus, by Lemma 5.1 equation (5.6)

‖u + v‖2
�2

− γτ

∥∥∥AS c
τ
(u + v)

∥∥∥2

�2
� ‖u + v‖2

�2
− γτ

(
αsτ ,m ‖u + v‖�2

− (
ω(T+) + η

))2
�
(

1 − γτα
2
sτ ,m

)
‖u + v‖2

�2

+ 2γταsτ ,m

(
ω(T+) + η

) ‖u + v‖�2
− γτ

(
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)2
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(

1 − γτα
2
sτ ,m

)
‖u + v‖2

�2

+ 2γταsτ ,m

(
2ω(C ∩ S
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(
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(5.7)
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holds with probability at least 1 − 4e− η2

32 . Also, u − v ∈ T−, thus by Lemma 5.1 equation (5.5)

γτ

∥∥∥AS c
τ
(u − v)

∥∥∥2

�2
− ‖u − v‖2

�2
�
(
γτβ

2
sτ ,m − 1

)
‖u − v‖2

�2
+ 2γτβsτ ,m

(
ω(T−) + η

) ‖u − v‖�2

+ γτ

(
ω(T−) + η

)2
=
(
γτβ

2
sτ ,m − 1

)
‖u −v‖2

�2
+ 2γτβsτ ,m

(
2ω(C ∩ S

n−1)+ η
)

‖u − v‖�2

+ γτ

(
2ω(C ∩ S

n−1) + η
)2

(5.8)

holds with probability at least 1 − 2e− η2

32 . Plugging these bounds into (5.4) with ‖u + v‖�2
� 2 and

‖u − v‖�2
� 2 and using the short-hand ω := ω(C ∩ S

n−1), we conclude that for γτ = 1
β2

sτ ,m

uT(I − γτ AT
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τ
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τ
)v � 1

4
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�2
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2
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β2
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(
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2

)
βsτ ,m

(5.9)

holds with probability at least 1 − 6e− η2

32 . Using a change of variable η to 2η together with the fact that√
m − sτ � βsτ ,m � √

m, we arrive at

uT(I − μτ AT
S c

τ
AS c

τ
)v ≤ 2 + 5sτ log(em/sτ )

m
+ 4

√
m0

m − sτ

,

holds with probability at least 1 − 6e− η2

8 completing the proof of the bound on the extra term of (5.2).
Now we focus on the extra additive and multiplicative terms in (5.3). We begin with the additive

term. To this aim note that since u⊥ is orthogonal to w, uT⊥AT
Sc

τ
ASc

τ
w has the same distribution

as ‖w‖�2
uT⊥AT

Sc
τ
a with a distributed as a ∼ N (0, Im−|Sτ |) and independent from A. Similarly,

‖w‖�2
uT⊥AT

Sc
τ
a has the same distribution as ‖a‖�2

‖w‖�2
(uT⊥g) with g ∼ N (0, In). Therefore,
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holds with probability at least 1 − e− η2

2 − e− m
2 .
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We now focus on the extra multiplicative term in (5.3). To this aim note that since w is fixed ASc
τ
w

is distributed as ‖w‖�2
a with a distributed as N (0, Im−|Sτ |). Therefore,

∥∥∥AS c
τ
w
∥∥∥2

�2

‖w‖2
�2

= ‖a‖2
�2

� 2(m − ∣∣Sτ

∣∣), (5.11)

holds with probability at least 1 − e− m
2 . Plugging (5.10) and (5.11) into (5.3), we conclude that
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holds with probability at least 1 − e− η2

2 − e− m
2 .
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Appendix A

In this section, we aim to prove Lemma 5.1 stated in the proofs section. Our proof is related to the proof
of Gordon’s celebrated escape through the mesh [5, Theorem A]. We will first show the bound (5.5). To
this aim, we make use of Slepian’s lemma stated below.

Lemma A.1 (Slepian’s inequality). [9, Section 3.3] If Xt and Yt are a.s. bounded, Gaussian processes on
T such that E[Xt] = E[Yt] and E[X2

t ] = E[Y2
t ] for all t ∈ T and

E
[
(Xt − Xs)

2] ≤ E
[
(Yt − Ys)

2],
for all s, t ∈ T , then for all real t,

E

[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
. (A.1)

Furthermore,

P

{⋃
t∈T

[Xt > ηt]

}
≤ P

{⋃
t∈T

[Yt > ηt]

}
. (A.2)

Define ISc ∈ R
(m−s)×n as the part of the identity matrix that keeps the rows indexed by Sc. For

u ∈ T and v ∈ S
m−s−1 = {v ∈ R

m−s; ‖v‖�2
= 1}, we define three Gaussian processes:

X(u,S),v = v∗IS c Au, Y(u,S),v = ‖u‖�2
v∗IS c a + g∗u and Z(u,S),v = ‖u‖�2

(v∗IS c a − βs,m) + g∗u.
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Here a ∈ R
m is distributed as N (0, Im) and g ∈ R

n is distributed as N (0, In). It follows that for all
u, ũ ∈ T, v, ṽ ∈ S

m−s−1 and S, S̃ ⊂ {1, 2, . . . , m}, we have

E

∣∣∣Y(u,S),v − Y
(ũ,S̃),ṽ

∣∣∣ 2 − E

∣∣∣X(u,S),v − X
(ũ,S̃),ṽ

∣∣∣ 2

=
∥∥∥‖u‖�2

IT
S cv − ‖ũ‖�2

IT
S̃

c ṽ
∥∥∥2

�2
+ ‖u − ũ‖2

�2
−
∥∥∥∥u
(

IT
S c v

)T − ũ
(

IT
S̃

c ṽ
)T
∥∥∥∥2

F

=
(
‖u‖2

�2
+ ‖ũ‖2

�2

)
− 2 ‖u‖�2

‖ũ‖�2
〈IT

S c v, IT
S̃

c ṽ〉 − 2〈u, ũ〉 + 2〈u, ũ〉〈IT
S cv, IT

S̃
c ṽ〉

=
(
‖u‖2

�2
+ ‖ũ‖2

�2

)
− 2 ‖u‖�2

‖ũ‖�2
〈IT

S c v, IT
S̃

c ṽ〉 − 2〈u, ũ〉
(

1 − 〈IT
S cv, IT

S̃
c ṽ〉
)

≥ 2 ‖u‖�2
‖ũ‖�2

− 2 ‖u‖�2
‖ũ‖�2

〈IT
S c v, IT

S̃
c ṽ〉 − 2〈u, ũ〉

(
1 − 〈IT

S c v, IT
S̃

c ṽ〉
)

= 2
(‖u‖�2

‖ũ‖�2
− 〈u, ũ〉) (1 − 〈IT

S c v, IT
S̃

c ṽ〉
)

≥ 0. (A.3)

AIt is trivial to check that E[X(u,S),v] = E[Y(u,S),v] and E[X2
(u,S),v] = E[Y2

(u,S),v] for all u ∈ T, v ∈
S

m−s−1 and S ⊂ {1, 2, . . . , m}. Thus, the two Gaussian processes X(u,S),v and Y(u,S),v obey the three
assumptions of Slepian’s inequality.

Now define the function f (x) = supS⊂{1,2,...,m}, |S|=s

∥∥xSc
∥∥

�2
and let

S c
x = arg max

S⊂{1,2,...,m}, |S |=s
f (x) and S c

y = arg max
S⊂{1,2,...,m}, |S |=s

f (y).

We wish to bound f (a) with high probability. To this aim first note that by concentration of Lipschitz
functions of Gaussians

P

{ ∥∥aS c
∥∥

�2
− E[

∥∥aS c
∥∥

�2
≥ δ

}
� e

−δ2
2 .

Note that since E[‖aSc‖�2
] �

√
E[‖aSc‖2

�2
] = √

m − s, by substituting δ = η +√
2(m − s) log

(
em

m−s

)
, we have

P

{∥∥aS c
∥∥

�2
− √

m − s ≥ η +
√

2(m − s) log

(
em

m − s

)}
� e

−
(
η+

√
2(m−s) log( em

m−s )
)2

2

� e
−
(√

2(m−s) log( em
m−ms )

)2

2 e
−η2

2 .
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Using union bound, we have

P

{
sup

S⊂{1,2,...,m}, |S |=s

∥∥aS c
∥∥

�2
≥ η + √

m − s +
√

2(m − s) log

(
em

m − s

)}

�
(

m

m − s

)
e

−
(√

2(m−s) log( em
m−s )

)2

2 e
−η2

2

=
(

m

m − s

)(
em

m − s

)−s

e
−η2

2

� e
−η2

2 .

We thus conclude that

P

{
sup

S⊂{1,2,...,m}, |Sc|=s

∥∥aS c
∥∥

�2
≥ η + √

m − s +
√

2(m − s) log

(
em

m − s

)}
�e

−η2

2 . (A.4)

Also note that

√
m − s +

√
2(m − s) log

(
em

m − s

)
� min

(√
3(m − s) log

(
em

m − s

)
, m

)
:= βs,m.

The latter together with (A4) allows us to conclude that

P

{
f (a) � βs,m + η

}
� e− η2

2 . (A.5)

Now consider the relationship of following sets:{
a : ‖u‖�2

f (a) � ‖u‖�2
βs,m + η

}
⊂
{

a : ‖u‖�2
f (a) � ‖u‖�2

βs,m + ‖u‖�2

η

σ(T )

}
,

=
{

a : f (a) � βs,m + η

σ(T )

}
.

Furthermore, note for every u ∈ T,
{

a : ‖u‖�2
f (a) � ‖u‖�2

βs,m +η
}

is a subset of
{

a : f (a) �

βs,m + η
σ(T )

}
. Combining the latter with (A.5), we arrive at

P

⎧⎨⎩⋃
u∈T

{
a : f (a) ‖u‖�2

> ‖u‖�2
βs,m + η1

}⎫⎬⎭ ≤ P

{
a : f (a) � βs,m + η1

σ(T )

}
� e

− η2
1

2σ2(T ) ,

which immediately implies

P

{
max
u∈T

‖u‖�2

(
f (a) − βs,m

)
>

η

2

}
� e

− η2

8σ2(T ) . (A.6)
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Also by the concentration of Lipschitz functions of Gaussians for the function max
u∈T

(g∗u) and the

definition of Gaussian width, we have

P

{
max
u∈T

(
g∗u

)
> ω(T ) + η

2

}
= P

{
max
u∈T

(
g∗u

)
> E

[
max
u∈T

(
g∗u

)]+ η

2

}
� e

− η2

8σ2(T ) . (A.7)

So far, we have obtained upper bounds on the probability of sets
{

max
u∈T

‖u‖�2

(
f (a) − βs,m

)
>

η
2

}
and

{
max
u∈T

(g∗u) > ω(T ) + η
2

}
. In order to utilize these two sets, we combine them in the following

way. Note that if

max
u∈T

(‖u‖�2

(
f (a) − βs,m

)+ g∗u
)

> η + ω(T ),

then we have either max
u∈T

‖u‖�2

(
f (a) − βs,m

)
>

η
2 or max

u∈T
(g∗u) > ω(T ) + η

2 , which implies that

{
a, g : max

u∈T

(‖u‖�2
f (a) + g∗u − βs,m ‖u‖�2

)
> ω(T ) + η

}
is a subset of{

a, g : max
u∈T

‖u‖�2

(
f (a) − βs,m

)
>

η

2

}⋃{
a, g : max

u∈T

(
g∗u

)
> ω(T ) + η

2

}
.

Using the latter together with (A.6) and (A.7) and using the independence of a and g, we have

P

{
max
u∈T

(‖u‖�2

(
f (a) − βs,m

)+ g∗u
)

> ω(T ) + η

}
� P

{
max
u∈T

‖u‖�2

(
f (a) − βs,m

)
>

η

2

}
+ P

{
max
u∈T

(
g∗u

)
> ω(T ) + η

2

}

� 2e
− η2

8σ2(T ) .

Using the definition of f (x) = supS⊂{1,2,...,m}, |S|=s‖xS c‖�2
, the latter statement can be rewritten

in the form

P

{
sup

S⊂{1,2,...,m}, |S |=s
max
u∈T

‖u‖�2

(∥∥aS c
∥∥

�2
− βs,m

)
+ g∗u > ω(T ) + η

}
� 2e

− η2

8σ2(T ) . (A.8)

As we defined the Gaussian process Z(u,S),v = ‖u‖�2
(v∗ISca − βs,m) + g∗u, we can write

sup
S⊂{1,2,...,m}, |S |=s

max
u∈T, v∈Sm−s−1

Z(u,S),v = sup
S⊂{1,2,...,m}, |S |=s

max
u∈T

‖u‖�2

(∥∥aS c
∥∥

�2
− βs,m

)
+ g∗u.

This together with (A8) implies

P

{
sup

S⊂{1,2,...,m}, |S |=s
max

u∈T, v∈Sm−s−1
Z(u,S),v > ω(T ) + η

}
� 2e

− η2

8σ2(T ) .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/231/5926762 by U
niversity of Southern C

alifornia user on 17 June 2021



FUNDAMENTAL RESOURCE TRADE-OFFS FOR ENCODED DISTRIBUTED OPTIMIZATION 253

Also, Z(u,S),v = Y(u,S),v − βs,m ‖u‖�2
implies that

P

⎧⎨⎩ ⋃
S⊂{1,2,...,m}, |S |=s, u∈T,v∈Sm−s−1

[
Y(u,S),v > βs,m ‖u‖�2

+ ω(T ) + η
]⎫⎬⎭ � 2e

− η2

8σ2(T ) .

As we noted that the two Gaussian processes X(u,S),v and Y(u,S),v have the three assumptions of
Slepian’s inequality, we can use Slepian’s second inequality (A2) with ηu,v = βs,m ‖u‖�2

+ η + ω(T ).
This implies that

P

⎧⎨⎩ ⋃
S⊂{1,2,...,m}, |S |=s, u∈T,v∈Sm−s−1

[
X(u,S),v > βs,m ‖u‖�2

+ ω(T ) + η
]⎫⎬⎭

� P

⎧⎨⎩ ⋃
|S |=s, u∈T,v∈Sm−s−1

[
Y(u,S),v > βs,m ‖u‖�2

+ ω(T ) + η
]⎫⎬⎭

� 2e
− η2

8σ2(T ) .

Using the fact that
∥∥AScu

∥∥
�2

= maxv∈Sm−s−1 v∗IScAu = maxv∈Sm−s−1 X(u,S),v, So

P

{
sup

S⊂{1,2,...,m}, |S |=s

∥∥AS cu
∥∥

�2
� βs,m ‖u‖�2

+ ω(T ) + η

}

= P

⎧⎨⎩ ⋃
|S |=s, u∈T

max
v∈Sm−s−1

X(u,S),v > ‖u‖�2
βs,m + ω(T ) + η

⎫⎬⎭
= P

⎧⎨⎩ ⋃
|S |=s, u∈T, v∈Sm−s−1

[
X(u,S),v > βs,m ‖u‖�2

+ ω(T ) + η
]⎫⎬⎭

concludes the proof.
Next, we turn our attention to proving (5.6). To this aim we begin by stating a lemma due to

Gordon [5].

Lemma A.2 [Gordon’s inequality] Let (Xij) and (Yut), 1 � i � n, 1 � j � m, be Gaussian random
vectors. Assume that we have the following inequalities for all choices of indices:

E[Xi,jXi,k] � E[Yi,jYi,k] for all i, j, k,

E[Xi,jX�,k] � E[Yi,jY�,k] for all i �= � and j, k,

E[X2
i,j] = E[Y2

i,j] for all i, j. (A.9)
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Then, for all real numbers λi,j,

P

⎧⎨⎩⋂
i�n

⋃
j�m

[Xij � λij]

⎫⎬⎭ � P

⎧⎨⎩⋂
i�n

⋃
j�m

[Yij � λij]

⎫⎬⎭ .

Consequently,

E

[
min
i�n

max
j�m

Yij

]
� E

[
min
i�n

max
j�m

Xij

]
.

Define IS c ∈ R
(m−s)×n as the part of the identity matrix that keeps the rows indexed by S c. For

u ∈ T and v ∈ S
m−s−1 = {v ∈ R

m−s; ‖v‖�2
= 1}, we define two Gaussian processes

X(u,S),v = v∗IS cAu + ‖u‖�2
g and Y(u,S),v = ‖u‖�2

v∗IS c a + g∗u.

Here, a ∈ R
m is distributed as N (0, Im), g ∈ R

n is distributed as N (0, In), and g ∈ R is distributed as
N (0, 1). The next few steps are essentially identical to the proof of [5, Lemma 3.1] with the text directly
borrowed. We mention this part of the argument for the sake of completeness and also to ensure that
proper modifications are applied when necessary. Note that

E
[
X(u,S),vX

(ũ,S̃),ṽ

]− E
[
Y(u,S),vY

(ũ,S̃),ṽ

]
= 〈u, ũ〉〈IT

S cv, IT
S̃

c ṽ〉 + ‖u‖�2
‖ũ‖�2

− ‖u‖�2
‖ũ‖�2

〈IT
S c v, IT

S̃
c ṽ〉 − 〈u, ũ〉

= (‖u‖�2
‖ũ‖�2

− 〈u, ũ〉) (1 − 〈IT
S cv, IT

S̃
c ṽ〉
)

� 0

and equal to zero if (u, S) = (ũ, S̃) so that the first two inequalities in (A.9) hold. It is also trivial to
check that

E
[
X2

(u,S),v

] = E
[
Y2

(u,S),v

]
.

Thus, all three inequalities in (A.9) trivially hold. Now note that for each u ∈ T and S ⊂ {1, 2, . . . , m}
obeying |S| = s the set⋃

v∈Sm−s−1

[
X(u,S),v � λu,S

] = [ ∥∥AS c u
∥∥

�2
+ g ‖u‖�2

� λu,S

]
is closed in the probability space {Rmn+1,P}, where P is the canonical Gaussian measure of Rmn+1.
Hence, ⋂

|S |=s

⋂
u∈T

⋃
v∈Sm−s−1

[
X(u,S),v � λu,S

]
is closed. The same is true about the corresponding expression with Y(u,S),v. By Lemma A.2 above, for
each finite set {(ui, Si)}N

1 ⊂ T × {1, 2, . . . , m}, we have

P

⎧⎨⎩
N⋂

i=1

⋃
v∈Sm−s−1

[
X(u,S),v � λu,S

]⎫⎬⎭ � P

⎧⎨⎩
N⋂

i=1

⋃
v∈Sm−s−1

[
Y(u,S),v � λu,S

]⎫⎬⎭
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and so, ordering the collection of finite subsets of T × {1, 2, . . . , m} (denoted by F) by inclusion, we
obtain that the limits exist and satisfy the inequality

lim
F

P

⎧⎨⎩
N⋂

i=1

⋃
v∈Sm−s−1

[
X(u,S),v � λu,S

]⎫⎬⎭ � lim
F

P

⎧⎨⎩
N⋂

i=1

⋃
v∈Sm−s−1

[
Y(u,S),v � λu,S

]⎫⎬⎭ .

Now using the fact that the sets

⋂
|S |=s

⋂
u∈T

⋃
v∈Sm−s−1

[
X(u,S),v � λu,S

]
and

⋂
|S |=s

⋂
u∈T

⋃
v∈Sm−s−1

[
Y(u,S),v � λu,S

]

are closed and P is a regular measure, it follows easily that the two respective limits over F are equal to
and satisfy the inequality

P

⎧⎨⎩ ⋂
|S |=s

⋂
u∈T

⋃
v∈Sm−s−1

[
X(u,S),v � λu,S

]⎫⎬⎭ � P

⎧⎨⎩ ⋂
|S |=s

⋂
u∈T

⋃
v∈Sm−s−1

[
Y(u,S),v � λu,S

]⎫⎬⎭ .

This immediately implies that

P

⎧⎨⎩ ⋂
|S |=s

⋂
u∈T

[ ∥∥AS cu
∥∥

�2
+ g ‖u‖�2

� λu,S

]⎫⎬⎭ � P

⎧⎨⎩ ⋂
|S |=s

⋂
u∈T

[ ‖u‖�2

∥∥aS c
∥∥

�2
+ g∗u � λu,S

]⎫⎬⎭ .

Now setting

λu,S = αs,m ‖u‖�2
− (ω(T ) + η) ,

we conclude that
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Since taking infimum over a set is equivalent to taking intersection over all elements of that set, we
can write

P

⎧⎨⎩⋂
u∈T

[
g∗u � −

(
ω(T ) + η

2

) ]⎫⎬⎭ = P

{
inf

u∈T
g∗u � −

(
ω(T ) + η

2

)}

= P

{
− sup

u∈T
− g∗u � −

(
ω(T ) + η

2

)}
,

= P

{
sup
u∈T

− g∗u �
(
ω(T ) + η

2

)}
,

� 1 − e
− η2

8σ2(T ) . (A.11)

In the last inequality, we used the concentration of Lipschitz functions of Gaussians and the
definition of Gaussian width.

Now define the function g(x) = infS⊂{1,2,...,m}, |S|=s

∥∥xSc
∥∥

�2
and let

S c
x = arg min

S⊂{1,2,...,m}, |S |=s

∥∥xS c
∥∥

�2
and S c

y = arg min
S⊂{1,2,...,m}, |S |=s

∥∥yS c
∥∥

�2
.

We claim that g(x) is a Lipschitz function and then we can utilize the concentration of measure for
Gaussian random variables. Without loss of generality, we assume g(x) � g(y). Thus,

|g(x) − g(y)| = g(x) − g(y) =
∥∥∥xS c

x

∥∥∥
�2

−
∥∥∥yS c

y

∥∥∥
�2

�
∥∥∥xS c

y

∥∥∥
�2

−
∥∥∥yS c

y

∥∥∥
�2

�
∥∥∥(x − y)S c

y

∥∥∥
�2

� ‖x − y‖�2
.

Hence, g(a) is a Lipschitz function of a Gaussian random variable. Thus, the random variable
Z := g(a) obeys

Var(Z) � 1 ⇒ E[Z2] − (E[Z])2 � 1 ⇒ E[Z] �
√
E[Z2] − 1.

Therefore,

E

[
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�2

]
�
√
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∥∥2

�2

]
− 1

�

√√√√E

[
‖a‖2

�2
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∥∥aS

∥∥2
�2

]
− 1

=
√√√√m − 1 − E

[
sup

S⊂{1,2,...,m}, |S |=s

∥∥aS

∥∥2
�2

]

�
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. (A.12)
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In the last line, we used the fact that supS⊂{1,2,...,m}, |S|=s

∥∥aS

∥∥
�2

is a Lipschitz function of a and

therefore the random variable X := supS⊂{1,2,...,m}, |S|=s

∥∥aS

∥∥
�2

obeys

Var(X) � 1 ⇒ E[X2] � (E[X])2 + 1.

We now wish to prove that

E

[
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S⊂{1,2,...,m}, |S |=s

∥∥aS

∥∥
�2

]
�
√

5s log
(em

s

)
. (A.13)

To this aim first note that using (A.4) with changing m − s to s and S c to S, we have

P

{
sup

S⊂{1,2,...,m}, |S |=s

∥∥aS
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�2

� η + √
s +

√
2s log

(em

s

)}
� e

−η2

2 .

To bound the expected value, we use the tail bound above together with the fact that s � 1 (s = 0 is
trivial) to conclude that

E[X] =
∫ +∞

0
P{X > t}dt

=
∫ √

s+√
2s log( em

s )

0
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∫ +∞
√

s+√
2(s) log( em

s )
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e
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)
+
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2 dt

�
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2s log
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)
+
√

π

2

�
√

s +
√

2s log
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s

)
+
√

πs

2

�
√

5s log
(em

s

)
concluding the proof of (A.13).

Combining (A.12) with (A.13), we arrive at

E

[
inf

S⊂{1,2,...,m}, |S |=s

∥∥aS c
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�2

]
�
√

m − 2 − 5s log
(em

s

)
:= αs,m. (A.14)

As mentioned earlier, g(a) is Lipschitz function of a. Thus, by concentration of Lipschitz functions
of Gaussians, we have

P

{
g(a) � E[g(a)] − η

2σ(T )

}
� 1 − e

− η2

8σ2(T ) . (A.15)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/231/5926762 by U
niversity of Southern C

alifornia user on 17 June 2021



258 A. SALMAN AVESTIMEHR ET AL.

Using the fact that
‖u‖�2
σ(T )

� 1 and together with (A.12) as well as (A.15), we can deduce that
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[
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(A.16)
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So far we have obtained lower bounds on the probability of sets

{⋂
u∈T
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. In the following, we aim to employ these

two lower bounds. Note that if
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This implies that
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Considering the probability of these sets, we have
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Taking complements of both sides and using the bounds from (A.11) and (A.16), we conclude that
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The latter inequality together with (A.10) implies that
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In order to find the relationship between the probability of the latter set with the probability of the
set defined in (5.6), we define the following three probabilities:
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Now note that by the above definitions and the independence of A and g, we can conclude that

1 � p+ � p0 � p−. (A.20)
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By the law of total probability p = p−+p+
2 . Now using the fact that p+ � 1 together with (A.20), we can

conclude that

1 − p = 1 − p−
2

+ 1 − p+
2

�
1 − p−

2
� 1 − p0

2
⇒ p0 � 2p − 1.

The latter inequality together with (A.19) implies that

P

{
inf|S |=s
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}
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8σ2(T ) ,

concluding the proof of (5.6).
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