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Abstract: Clay dehydration at great depth generates fluids and overpressures in organic-rich
sediments that can release isotopically light boron from mature organic matter, producing '°B-rich
fluids. The B can be incorporated into the tetrahedral sites of authigenic illite during the illitization
of smectite. Therefore, the crystal-chemical and geochemical characterization of illite, smectite or
interlayered illite—smectite clay minerals can be an indicator of depth (temperature) and reactions
with the basin fluids. The aim of this study was to determine the detailed clay mineralogy, B-content
and isotopic composition in illite-smectite rich samples of mud volcanoes from the Gulf of Cadiz,
in order to evaluate interactions of hydrocarbon-rich fluids with clays. Molecular modeling of the
illite structure was performed, using electron density functional theory (DFT) methods to examine
the phenomenon of B incorporation into illite at the atomic level. We found that it is energetically
preferable for B to reside in the tetrahedral sites replacing Si atoms than in the interlayer of expandable
clays. The B abundances in this study are high and consistent with previous results of B data on
interstitial fluids, suggesting that hydrocarbon-related fluids approaching temperatures of methane
generation (150 °C) are the likely source of B-rich illite in the studied samples.

Keywords: mud volcano; B isotopes; illite-smectite; molecular modelling fluids; Gulf of
Cadiz; hydrocarbons

1. Introduction

Mud volcanoes (MVs) are generated by extrusion activity involving the transport of clay-rich
sediments, liquids and gases (mainly methane) from deeper regions to the surface [1-8]. In recent
years, both the source of material and fluids have been the focus of research as they give us important
information about the presence of hydrocarbon resources at depth or global methane fluxes to the
atmosphere [9-12]. Extensive work has been done in the study of fluid sources and pathways in
sedimentary basins, where a close relation exists between fluids and the nature of clays, as a result
of clay dehydration at depth resulting in smectite illitization processes [13]. The illitization process
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generates fluids and overpressures at temperature ranges of ~80 to ~150 °C [14-16] and smectite is
transformed to randomly interstratified (RO) illite-smectite minerals (I-S) and to more illitic ordered
(R1-R3) I-S [14-19].

Boron is abundant in marine sediments [20] and sedimentary clay minerals illite/smectite (I-S) [21,22],
which contain orders of magnitude more boron than other common diagenetic minerals (e.g., quartz,
carbonates and feldspars). Boron is a highly mobile element, preferring aqueous phases to that of most
minerals [23]. Thus, by understanding how the aqueous B is incorporated into clay minerals, important
insights may be gained to the fluid and chemical dynamics of a sedimentary basin. To use this geochemical
tool, one must be able to interpret the boron isotopic composition of paleofluids that were present in
a basin at the time of clay mineral diagenesis. Boron is incorporated into the clay mineral structure in
tetrahedral sites and can also be adsorbed to clay surfaces, including those in the clay interlayers [24,25].
B adsorption on clays causes a preferential 1’B uptake in tetrahedral sites of the clay related to bond
strength. There is a coordination change of B from trigonal in water (at pH < 7) to tetrahedral on the clay
surfaces [26,27]. This fractionation of B isotopes between trigonal and tetrahedral coordination during
fluid-rock interactions is temperature dependent and insensitive to mineral composition [24,28].

Several recent studies have highlighted the potential utility of B-isotope ratios as a tracer for
fluid-rock interactions [25,26,29,30]. The adsorption of B on clay surfaces has been extensively
studied [27,31,32], because it can be easily exchanged [26]. However, fixed-B is more useful for
interpreting paleofluid B composition because the B-isotopic composition is fixed when B substitutes
for Si as Si-O bonds are broken.

Thermal maturation of organic matter during the burial process produces oil, wet gas and dry
gas (mainly methane). Numerous studies of light stable isotopes in clays (e.g., [32-36]) have shown
that trace elements (N, B and Li) commonly found in I-S are associated with hydrocarbon-related
fluids generated during the maturation of organic source rocks. In these studies, it was shown that
the light isotope of each of these “heteroatoms” released from organic matter dominates the fluids,
thus these trace elements are ideal tracers of organic inputs to pore fluids. Thus, organic matter can
release considerable amounts of B, producing '°B-rich fluids [24]. Late-stage or deep diagenesis of clay
minerals [37] coincides with the time/temperatures associated with organic maturation processes that
lead to the expulsion and accumulation of hydrocarbons. Thus, 1°B-rich fluids are a source of B that
can be incorporated into the tetrahedral layers of illite during the process of illitization of smectite at
depth. The authigenic illite preferentially incorporates 1°B, thus the remaining fluids are relatively
enriched in !B [24]. Therefore, the crystal-chemical and geochemical characterization of illite, smectite
or interlayered illite—smectite (I-S) clay minerals can be an indicator of temperature and reactions with
the basin fluids.

Molecular modeling is a useful tool for determining many aspects of minerals at atomistic scale
helping the interpretation of many experimental phenomena related with minerals, especially clay
minerals [38—40], including with borate anions [41]. In this work, Density Functional Theory (DFT)
methods were used to obtain information about the incorporation of B into the clay mineral structure,
for understanding the experimental results.

In the Gulf of Cadiz, extensive work has been done on the study of fluid sources and pathways [42—46],
including basin-scale reactive-transport models [47]. These studies conclude that clay mineral dehydration
during reaction of smectite to illite, from Mesozoic to Tertiary shale and marl units has been the
major influence on fluid compositions in many of the Mud volcanoes [42]. Some samples from deep,
hotter regions are associated with B and Li-rich fluid compositions, which have been associated with
production of methane from organic rich sediments [48,49]. The chemical analysis of clay minerals and the
study of the diagenetic evolution of these units is therefore of high interest in order to better characterize
the fluid circulation system present in fluid venting areas such as the Gulf of Cadiz.

In this work, a detailed mineralogical characterization of samples coming from several mud
volcanoes and the content and isotopic values of B in clay minerals were analyzed to determine the
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Table 1. Geographical position of the MVs sampled in the framework of this study. All M3 samples

correspond to a diapiric structure, not a mud volcano.

Location
Mud Volcano Samples Water Depth (m)
Lat. Long.
Diapir M3 10-14 600 34°59'42.4” N 6°49'50.4” W
Mekness M4 18-22 694 34°59'06.6” N 7°04'21.6” W
Almanzor M8 58-62 1440 35°20’57.6” N 7°3040.4” W
Pixie M12 66-70 1639 35°20'13.2” N 7°50’38.4” W
MVSeis M14 138-142 1611 35°23/42.6” N 7°51'28.8” W
Guadix M25 34-38 1435 35°30’56.4” N 7°32’45.0” W
Cid M26 50-54 1330 35°26'29.4” N 7°29'04.2” W
Boabdil M27 18-22 1106 35°25’49.2” N 7°10'45.0” W
Gazul M29 106-110 411 36°33/29.4” N 6°56’06.0” W
Albolote C332-33 353 36°34'27.2” N 6°52/46.6” W
Tarsis C4 36-37 550 36°29’17.4” N 7°14’39.9” W
Anastasya C7 38-39, A2 48-50 457 36°31'20.9” N 7°09'04.8” W
Almazan C9 84-85, A8 70-71 830 36°03’08.0” N 7°20'01.6” W
Aveiro C10 27-28 1060 35°52’19.1” N 7°26’15.2" W
Faro A14 26-30 795 36°05’31.8” N 7°23'44.4" W
Gades A4 48-50 915 36°14’17.4” N 7°37'01.2" W

3. Experimental Methodology

3.1. X-ray Diffraction and Deconvolution

X-ray diffraction (XRD) patterns of oriented samples with a size fraction of <2 um were obtained
using a Bruker D8 Advance diffractometer, located at The University of Cadiz (Cadiz, Spain), with a
graphite monochromator, operating at 40 kV and 40 mA using Cu-K« radiation. Each sample was first
washed with distilled water until the supernatant was chloride-free, sonicated and then the <2-um
fraction was separated by centrifugation [62]. Each suspension was smeared on glass slides and air
dried in atmospheric conditions. The slides were then saturated with ethylene glycol at 80 °C for 24 h to
ensure maximum saturation. XRD patterns were acquired on the oriented clay mounts in both air dried
and ethylene glycol saturated state to determine the percent of illite in I-S [63]. To discriminate between
detrital smectite and I-S mixed-layer phases, deconvolution of the patterns obtained from the oriented
mount after glycolation were performed using the MacDiff 4.2.6 program (4.2.6, Johann Wolfgang
Goethe-Universitdt, Frankfurt, Germany). The determination of the illite percentage (% illite) and type
of order (Reichweite; R) in I-S was performed according to the position of XRD peaks 001/002 and
002/003 in the regions 8-11° 260 and 14-19° 20, respectively [64,65]

3.2. Transmission Electron Microscopy

Grain morphology within the bulk and <2-um fractions and quantitative chemical analyses by
analytical electron microscopy (AEM) were obtained using a Philips CM20 transmission electron
microscope (TEM) at the University of Granada (Granada, Spain). Powdered portions deposited on a
holey C-coated Au grid were used to collect AEM spectra in scanning transmission electron microscopy
(STEM) mode on areas of 200 Ax 1000 A using a 70-A diameter spot size. To check volatilization of
light elements, analyses were taken at 15 and 40 s. The structural formulae of smectites, micas and
interstratified I-S were calculated on the basis of 22 negative charges, i.e., O19(OH),, adjusting the
occupation of the octahedral sheet to 2 atoms per formula unit.

3.3. Secondary Ion Mass Spectrometry

Secondary ion mass spectrometry (SIMS) (Arizona State University SIMS Facility, Tempe, AZ,
USA) was used to characterize the content and isotopic composition of B in the clay minerals. Analytical
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protocols for measurement of B contents and 511B values have been described elsewhere [49,66—68]
and particularly for measurements of clay minerals by [24].

3.3.1. Sample Preparation

Boron is strongly adsorbed to the surfaces of clay minerals at room temperature, with a distribution
coefficient >30 [68]. During burial, B can be found in two sites of clay minerals: exchangeable B in
the interlayer and substituted B in the tetrahedral layer. Therefore, special preparations are required
to separate exchangeable B from that held in the silicate framework before any isotope analysis
of the structurally substituted B. First, the samples were treated with a 1N solution of mannitol a
B-complexing polyhydric alcohol, which removes exterior surface B contamination [69], but not clay
interlayer B. Samples were sonicated in an ultrasonic disaggregator, centrifuged at high speed to
concentrate particles (or clusters of minerals), and then washed in triplicate in “B-free” deionized water
filtered through Amberlite resin [33]. An aliquot of the mannitol-treated sample was mounted for
isotope analysis of the total B (B tetranedral + B interlayer) by drying a 5-mL suspension onto a one-inch
(25-mm) diameter B-free glass slide. Several samples were placed on a single round B-free glass slide,
including standards. Then, the measurement of total-B content was determined by SIMS using a
calibration curve based on the counts of B (mass 11) relative to Si (mass 30). The calibration curve was
measured on standard reference materials with known B-content [33].

The remaining clay was cation exchanged with 1 N NH4Cl by standard procedures [62] to remove
exchangeable B from the interlayer [70]. Samples were rinsed again in mannitol and then mounted for
isotope analysis as above. These samples only contain B substituted in tetrahedral sites.

3.3.2. Boron Content and Isotope Analysis

A Cameca IMS 6f at Arizona State University (Tempe, AZ, USA) was used with a primary beam
of mass-filtered '°O~ ions accelerated at 12.5 kV onto the sample held at 9 kV for a total impact
energy of ~21.5 kV. Primary beam currents below 10 nA were used with beam diameters defocused to
40-60 um. Positive secondary ions were accelerated away from the sample, and energy filtering (-75 V
sample offset) was used for measurements of B-content [66]. No energy filtering was used for isotope
ratio measurements.

B isotope ratios are reported in delta notation as:

§1'B = [{(*'B/'Bsample)/(*!B/!*Bstandard) — 1}*1000] — IMF (1)

where the standard is NBS SRM 951, boric acid, with a 1'B/19B ratio of 4.0437 [71]. The instrumental
mass fractionation (IMF) is determined by measuring a mineral standard on which the 5!!B is known.
B-isotope analyses were calibrated by measuring clay mineral standard IMt-1 (Silver Hill Illite) from
the Clay Minerals Repository (http://www.clays.org/sourceclays) that had been characterized by bulk
thermal ionization mass spectrometry (TIMS) [24], with a §!1B of =9 + 0.6%o. The isotope ratio analyses
averaged 50-100 cycles of measurements on each spot (depending on the B-content) and analytical
errors were compared to predicted errors. Where analytical errors were >2 times predicted errors,
the analysis was discarded. Multiple spots were analyzed on each sample and results were averaged.
The internal standard was measured in between analyses of the unknowns to test for changes in IMF
due to instrumental drift.

3.4. Computational Methodology

We created models of Al(OH)3; and B(OH)3; molecules enveloped in a hydrogen-bonding network
of water molecules which simulates B- and Al-rich fluids that are present in the illitization process (at
low pH). Two different models of illite structures were also created: one of them with tetrahedral Al
(Al-illite) and the other one with B incorporated to the tetrahedral layer by replacing the Al (B-illite).
The comparison of energies of these optimized components can show us whether the incorporation
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of B in the tetrahedral sites is energetically favorable. Furthermore, montmorillonite models were
created to compare optimization energies between montmorillonite with B as hydroxide (B(OH)4™) in
the interlayer and montmorillonite with B in the tetrahedral layer, replacing Si sites.

The electronic structure of AI(OH); and B(OH)3; molecules was studied by quantum chemical
calculations with the Hartree-Fock approximation and the second-order Moeller-Plesset method for
all electrons. A triple-( basis set with polarization functions was used for all atoms including H atoms
(MP2/6-311G** level) as implemented in the Gaussian03 program package [72]. All geometries were
fully optimized using the Berny analytical gradient method. No geometry constraint was applied to
the molecules. Normal mode analyses were performed to the same level to confirm the nature of the
various stationary points, finding only positive eigenvalues for minima.

Ab initio total energy calculations of the periodic illite crystal models and Al(OH); and B(OH)3
hydrated models were performed using density functional theory (DFT) methods implemented in
the SIESTA program (version 3.0, Max Centre of Excellence, Modena, Italy) [73]. The generalized
gradient approximation (GGA) was used with the Perdew—Burke-Ernzerhof (PBEsol) parameterization
of the exchange-correlation function optimized for solids [74]. Core electrons were replaced by
norm-conserving pseudopotentials [75]. Calculations were restricted to the I point in the irreducible
wedge of the Brillouin zone. In all structures, the geometry of each atom was relaxed by means of
conjugated gradient optimizations at constant experimental volume. In SIESTA, the basis sets are made
of strictly localized numerical atomic orbitals (NAOs) with a localization cut-off radius corresponding
to an energy shift of 270 meV. The basis sets used here are double-Z polarized (DZP) following the
perturbative polarization scheme. This approach was successfully used in previous calculations on
phyllosilicates [76] and hydrated systems [77-79]. A uniform mesh with appropriate plane-wave cut-off
energy is used to represent the electron density, the local part of the pseudopotential, and the Hartree
and exchange-correlation potentials. Total energy calculations were performed with cut-off energy
values of 350 Ry. These conditions are consistent with previous studies with phyllosilicates [39,80].

Models

Based on previous works reporting quantum mechanical calculations [81,82], models of hydrated
Al(OH)3 and B(OH)3 molecules were created, consisting of AI(OH)3 or B(OH)3; molecules optimized at
MP2/6-311G** level, encaged in a cavity of a hydrogen-bonded network formed by 24 water molecules.
Those models were also optimized using the DFT methodology implemented in the SIESTA program
in the same conditions as the mineral structures.

Illite models were based on previous pyrophyllite models [38]. Pyrophyllite is a dioctahedral
phyllosilicate [83] with a structure similar to illite, but without cation substitutions causing the
layer charge on basal siloxane surfaces. The trans-vacant crystal form was used in all models [39].
To obtain a reasonable size illite model, a 4 X 2 X 1 supercell was generated. Two types of illite
models were created, Al-illite and B-illite. The Al-illite model was generated from the supercell by
replacing eight tetrahedrally coordinated Si** by AI**, and four octahedral Al** were replaced by
Mg?*. Layer charge is balanced by twelve K* cations per supercell in the interlayer, resulting in a
simulation cell composition of [Ki][AlpgMga][SiseAlg]O160(OH)3,. The B-illite model was created
similar to Al-illite model, but replacing one of tetrahedral AI** by B3*, resulting in a simulation cell
composition of [K12] [Alngg4][Si56A7Bl]Ol60(OH)32.

In both cases, maximum dispersion of the substituted cations in the tetrahedral and octahedral
sheets was made according to previous studies [40,84]. Initial lattice parameters of each 4 x 2 x 1 illite
supercell are a =21.14 A, b =18.35 A, c = 9.79 A; a = 91°, § = 100°, y = 90°.

Montmorillonite models were created with a unit cell of a = 5.16 A, b =897 A, c=13.61 A;
«=91.2°, 3 =100.5°, v = 89.6°, leaving enough space in the interlayer for avoiding additional variables
related with interlayer complexes. Supercells of 2 X 2 X 1 were generated by replacing one octahedral
AP* by Mg?*. Layer charge is balanced with one K* cation per supercell. Two montmorillonite
models were created: One with the salt K* B(OH);~ in the interlayer, resulting in a simulation cell
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composition of [B(OH)4~][Kz][Al15Mg11[Siz2]O0s0(OH)16, and the other with B replacing one tetrahedral
Si atom and Si(OH), in the interlayer, resulting in a simulation cell composition of [Si(OH)4][K;]
[Al15Mg1]1[Siz1B1]1080(OH)16. In the illite and montmorillonite models the effect of the presence of water
molecules can be considered similar in both cases with B and without B complex for the study on which
is focused this work. Then, water molecules were not included to avoid additional computational
effort and convergency problems found in our preliminary calculations.

4. Results

4.1. Clay Mineralogy

XRD and TEM analyses of samples were performed to characterize the clay minerals. Although
preliminary XRD data indicated that samples were mainly smectite [61], the deconvolution (using
MacDiff 4.2.6) of the pattern obtained from the oriented mount after glycolation in the regions 8-11°
20 and 14-19° 20 showed that detrital micas and mixed-layer I-S phases are present in addition to
smectite (Figure 2). I-S from all samples have similar characteristics, presenting Reichweite (R) values

corresponding to both the R0 ég,ﬁz;,lg) and R1 (nearest neighbor) ordem\wstages (Table 2).
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Table 2. I-S peaks characteristic of the deconvoluted XRD patterns. Illite proportions were calculated

following standard [64] procedures.

Sample R °20 (001/002)/% Illite  °20 (002/003)/% Illite °A26/% Illite

RO 10.31/10% 15.75/10% 5.44/10%

B 1014 RO 9.85/45% 16.25/50% 6.40/45%

R1 9.17/80% 16.83/75% 7.66/75%
Tlite 8.78 17.61 8.93

RO 10.29/10% 15.83/15% 5.54/15%

RO 9.82/45% 16.16/45% 6.34/45%

M418-22 R1 9.18/80% 17.07/80% 7.89/80%
Tlite 8.83 17.51 8.68

RO 10.32/10% 15.78/10% 5.46/10%

MS 58-62 R1 9.64/55% 16.61/60% 6.97/60%
Tllite 8.84 17.72 8.88

RO 10.35/10% 15.82/10% 5.47/10%

RO 9.99/40% 16.04/35% 6.05/35%

M12 66-70 R1 9.54/65% 16.70/60% 7.16/65%

R1 9.30/75% 16.97/75% 7.67/75%
Tllite 8.89 17.73 8.84

RO 10.22/15% 15.86/15% 5.64/15%

R1 9.78/50% 16.48/55% 6.70/55%

Mi4132-138 R1 9.36/75% 16.90/75% 7.54/75%
Tlite 8.82 17.56 8.74

R1 9.72/55% 16.45/55% 6.73/55%

M25 34-38 R1 9.16/80% 17.04/80% 7.88/80%
Tlite 8.73 17.71 8.98

RO 10.23/15% 15.82/15% 5.59/15%

M26 50-54 R1 9.74/55% 16.44/55% 6.70/55%
Tllite 8.79 17.65 8.86

RO 10.17/25% 15.96/25% 5.79/25%

R1 9.68/55% 16.40/55% 6.72/55%

M2718-22 R1 9.22/75% 16.85/75% 7.63/75%
Tlite 8.83 17.53 8.70

RO 10.05/30% 15.99/30% 5.94/30%

R1 9.74/55% 16.32/55% 6.58/55%

M29106-110 R1 9.19/80% 17.11/80% 7.92/80%
Tlite 8.86 17.82 8.96

RO 10.30/10% 15.80/10% 5.50/10%

C332-33 RO 9.76/50% 16.28/50% 6.52/50%
Tlite 8.87 17.81 8.94

RO 10.09/30% 15.97/25% 5.88/25%

C436-37 R1 9.81/45% 16.29/50% 6.48/50%
Tllite 8.84 17.74 8.9

RO 10.06/30% 15.98/25% 5.92/30%

C736:37 R1 9.55/60% 16.58/60% 7.03/60%
Tllite 8.92 17.74 8.82

RO 10.07/30% 15.99/30% 5.92/30%

C823-24 R1 9.68/55% 16.52/55% 6.84/55%
Tlite 8.97 17.69 872

RO 10.28/15% 15.84/15% 5.56/15%

€9 84-85 R1 9.67/55% 16.46/55% 6.79/55%
Tlite 8.87 17.75 8.88

Rl 9.18/80% 17.06/80% 7.88/80%
C1027-28 Tllite 8.87 17.81 8.94

RO 10.22/20% 15.83/20% 5.61/20%

RO 9.81/50% 16.35/50% 6.54/50%

A2 4850 R1 9.31/75% 16.92/75% 7.61/75%
Tlite 8.81 17.69 8.88

RO 10.08/30% 15.98/25% 5.90/30%

R1 9.66/55% 16.47/55% 6.81/55%

A4 48-50 R1 9.33/75% 17.04/80% 7.71/75%
Tlite 8.90 17.80 8.90

RO 9.77/50% 16.19/45% 6.42/45%
A8 110-111 Tllite 8.84 17.78 8.94

RO 9.94/40% 16.12/40% 6.18/40%
Al426-30 Tllite 8.79 17.36 8.57
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peaks allows estimating the proportion of illite in each I/S, because each d value corresponds to

R-orderigiyRe TEM study combining chemistry and the imagery of individual clay-mineral
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shdhabaley carkananid ahgrga ths pregdsdimiebalrpitake Berencasiheivacn 4y suamiite and
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Ieensistent Wwithiereyignd T sbeekyitinpe Anwaketitg llieation I hKaakipphexagonahpartisieiand

@abgerskite fibers were also present in the samples in minor amounts (Figure 3).
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Figure 3. TEM micrographs of the major phases present. Sme, Smectite; Kln, Kaolinite; Plg, Palygorskite;

Figupe; 3. SHEMmniriegsanhticf. Siamprior BMRISSPESIH) MTEsERedier S8 sKaplindts s,
Ne)xaosskitegl/SnHlifs smestits interstratified. Samples: (a) M8 58-62; (b) M12 50-54; (c) C9 84-85; (d)
C8 23-24; (e) M25 34-38; and (£) A2 48-50.

Figure 4 shows compositional variation of individual clay crystals determined by analytical
electron microscopy (AEM). Figure 4a is a plot of tetrahedral Al content vs. interlayer K, showing
trends that relate to particle morphology as defined by [85]. Chemical ranges correlate with TEM
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Figure 4 shows compositional variation of individual clay crystals determined by analytical
electron microscopy (AEM). Figure 4a is a plot of tetrahedral Al content vs. interlayer K, showing
trends that r\%}ggg z%(z)ogt?];trl&lzep mor Eghology as defined by [85]. Chemical ranges Correlate w1th TEM
observations, where smectite flakes, aggregates, round and polygonal particles are characterized.
The substititienvafors blyeleenactied]datn hegtesd tsitesipdevd gely goniatit dfirreelciegatiizedrdketionship

between theSebstitstisrepi S by §g ]%% Qﬁﬁhedral sites provides a well-defined negative relationship between
18

these two elements (Figure 4b).
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Figure 4. Co‘i&%ﬁ%fs%t%‘E’[ﬁW&HHﬂ&ﬁrBP?Hé’fs‘i]ife%fﬁ%%t%fr?&dI I$ ﬁhﬁé&?f&}%{ﬁi (3 We 3%0rhs and 2
OH) groups pet SECtiTal 0 “C“” Q‘jlff Dntent Vs & tt‘?éﬁ{‘; dral ‘t}gﬂ} (B); S ci:r“iT/% minum
( & p (RE‘F) econ e rah ra zgfl)lmmum Al conten S Vs ecor%erﬁ

(A1) vs. Fe gpmpm) @)&e@a@qd@h@@m%@d vs. Mg content; (d). Mg vs. Fe content; (e) Total

Al (A1 TOT) ys. S content; (£) Layer charge vs Si.
A similar negative relationship is also observed between Al and Mg (Figure 4c). No significant

A simil4#158 %@reﬁrfaﬁ%ﬁ 104 fi5rn B Mp B vei Hena migharsd %@%ﬂymf&%ﬁ nificant

sitiv el t1onsh1p et e an d). There is a tive re atlo between AI
trends were fepnd BERVERRANT Fe Srol ST REE (bt bR RO P ek I8 oorly defined

positive relam&upa?&tmaeg@ Egnddvig-(Figire fmﬂ;r Bereiise negativievelatenshiphetyeen Al TOT
and Si (Figuleyete)dnge imatingthy genlerdtiontsfitetvahdiradchangetnkighinwtéd fshpless-théaelstionship
between layéP %ﬁg@%@f@f EBR’t@ff’tOfvéhere malnl beidellitic samples have more than half of the

1 h E) é fdataé R3 2R3-3R2 am 8 A(_]i)&ge@ clearl s}t10wsd fere; tchemlcairan be al
ayer charge b 51e nge es % rorlﬁam%lf} rr?o} A'End bAYSY R tgcrg11195551 YonsETH cop Pe also

represented byﬂl@&‘%@xs@@ﬂ@m@gyshultlple points w1th compositions between smectite and 1111te
The plot of data in MR3-2R3-3R2 diagram [86] (Figure 5) clearly shows different chemical ranges

in the samples analyzed, from montmorillonite and beidellite to illite compositions. The presence of
I-S phases is represented by multiple points with compositions between smectite and illite.
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and 10.03 A for B-illite. The main geometrical features of the hydrated Al(OH)s and B(OH)s models
(Figure 6) are presented in Table 4. This table shows average values being smaller bond distances in
B(OH)s molecule than in AI(OH)s. These bond lengths are consistent with B-O and Al-O distances
observed in the B-illite model described in Table 4. In the B hydrated complexes, the structure is
hlghly symmetrlc w1th the cation and O atoms in the same plane accordmg to prev1ous studles at gas
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consistent with experimental values (Table 3), with a mean basal d(001) value of 10.02 A for Al-illite
and 10.03 A for B-illite. The main geometrical features of the hydrated Al(OH); and B(OH)3 models
(Figure 6) are presented in Table 4. This table shows average values being smaller bond distances in
B(OH)3 molecule than in AI(OH)3. These bond lengths are consistent with B-O and Al-O distances
observed in the B-illite model described in Table 4. In the B hydrated complexes, the structure is
highly symmetric with the cation and O atoms in the same plane according to previous studies at
gas phase [88], whereas the H atoms are twisted to a different plane and oriented towards the vicinal
O atom of the same molecule. However, in the AI(OH); hydrated complex, the Al cation forms
a pyramidal form with the O atoms; similar non-planar configurations have been reported in Al
hydrates previously [89]. There are strong H bonding interactions between the metal hydroxides and
the surrounding water molecules. Hence, different B-O bond lengths are found d(B-O1) = 1.355 A,
d(B-02) = 1.371 A and d(B-O3) = 1.394 A and consequently different BO-H bond lengths are found,
d(O1-H) = 1.023 A, d(O2-H) = 1.004 A and d(O3-H) = 1.002 A. This can be explained due to a strong H
bond with one water molecule d(O1H ... Ow) = 1.563 A, d(O2H ... Ow) = 1.633 A, d(BO2 ... Hw) =
1.495 A, d(O3H ... Ow) = 1.795 A, Some correlation can be observed: a stronger H bond, a longer
O-H bond and a stronger B-O bond length is. A similar effect is observed in AI(OH); with d(Al-O1)
=1.743 A, d(A1-02) = 1.787 A and d(Al-O3) = 1.836 A and also strong H bonds d(O1H ... Ow) =
1.554 A, d(O2H ... Ow) = 1.640 A and d(AIO2 ... Hw) = 1.262 A, d(O3H ... Ow) = 1.567 A. During
the optimizations, proton exchanges are observed by dissociation of water molecules, according to
previous works on Al hydrates [90].

Table 3. Cell parameters and select interatomic distances of Al-illite and B-illite unit cells (distances in
A and angles in °).

Features Exp ? Al-illite B-Illite
a 522 5.24 5.24
b 9.02 9.10 9.08
c 10.07 10.09 10.08
d(001) 10.02 10.02 10.03
04 90.0 101.1 101.1
B 95.7 95.8 95.9
Y 90.0 89.9 89.9
d(Si-0) 1.65 1.67 1.67
d(B-O) 1.48
d(AIV1-0) 1.96 1.95 1.94
d(O-H) 0.97 0.97

2 XRD experimental data [91].

Table 4. Interatomic distances of hydrated Al(OH); and B(OH); models (distances in A and angles
in °).

Average Features

Hydrated A1(OH)3; Model Hydrated B(OH)3; Model
d(Al-O) 1.75 d(B-O) 1.37
d(O-H) 1.01 d(O-H) 1.01

a(Al-O-H) 120.11 «(B-O-H) 110.83
d(Hw-Ow) 1.05 d(Hw-Ow) 1.05
dHyw ... Ow) 1.50 dHyw ... Ow) 1.55

d(Hp ... Ow) 1.76 d(Hg ... Oyw) 1.67
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The optimization energies of the two illite models (Figure 7) are compared with the energies of
the hydrated Al(OH); and B(OH); models by proposing the next reaction:

UAaLitite + UpOH)3 € B-illite + UAI(OH)3 )

where U is the internal energy of the system. Our results shows that UAl-illite+UB(OH)s is less stable

(—105751. 2580 eV) than UB-illite + UAI(OH)3 (-105751.6327 eV) in 36.7 KJ/mol. This means that the

fixHHSH A B o TR FetFled ral layer instead of Al atoms is energetically favorable.  >°f%

(b)
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K+(OH). The B(OH)s forms a H bond with basal tetrahedral O atoms, d(O...H) = l 75 and with the

OH anion d(O...H) = 1.68 A. Our energetic result is consistent with prev1ous emplrlcal studies [92]
that indicated B(OH)s dominates in the I-S interlayer space.

Further calculations will be performed exploring these phyllosilicate models with different
moisture grade (water molecules) and several pressure conditions (sediments environments) to
complete this study but they are out of the scope of the present work.
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The B(OH); forms a H bond with basal tetrahedral O atoms, d(O ... H) =1.75 A, and with the OH
anion d(O ... H) = 1.68 A. Our energetic result is consistent with previous empirical studies [92] that

ridicdtetlB (OH FORMEER KFe¥HWMhe I-S interlayer space. 16 of 27
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5. Dikeusbioncalculations will be performed exploring these phyllosilicate models with different
moisture grade (water molecules) and several pressure conditions (sediments environments) to
bompleyelthiwstlogy bt hisgenetiodiuwf thesafpieet Hediprestanimlonkaulf of Cadiz

5. Disedsigiages and XRD data show that smectite and interstratified illite-smectite (I-5) are present
as well as other clay minerals such as detrital mica, kaolin plates and palygorskite. The chemical
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discussed by numerous papers addressing the potential for reaction through solid state
transformation or dissolution/precipitation mechanisms [17,19,61,85]. Although the coexistence of
different I-S phases in a sample can correlate with a prograde evolution in a diagenetic sequence, in
this study, the physical mixture of clay minerals may come from different stratigraphic units as a
restilt of fliiid expulsion durine emblacement of the muid volcano (131 Nevertheless morpholooical
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All the clay geochemical trends are related to prograde diagenetic changes, where the dominant
clay minerals provide clues about the burial/thermal history of sedimentary basins [19]. The reduction
of expandable layers or the smectite—illite transformation processes have been related to the evolution
of petroleum systems, as illitization of smectite overlaps the oil window [93-98], as discussed
by numerous papers addressing the potential for reaction through solid state transformation or
dissolution/precipitation mechanisms [17,19,61,85]. Although the coexistence of different I-S phases in
a sample can correlate with a prograde evolution in a diagenetic sequence, in this study, the physical
mixture of clay minerals may come from different stratigraphic units as a result of fluid expulsion
during emplacement of the mud volcano [13]. Nevertheless, morphological changes observed by
TEM (polygonal to euhedral) point to similar mechanisms described previously [85] in a series of
experimental hydrothermal conditions as seen by X-ray diffraction and TEM, where they suggest
illitization mechanism driven by dissolution/crystallization processes.

MYV clay mineral samples in this study, with §''B values ranging from +2.2 to 12.7 and an average
of —2.2%o fixed-B abundances, are relatively high, 82-145 ppm. Again, a precipitation process is the
most probable mechanism to incorporate B in the tetrahedral layer of illite as described previously by
the authors of [68,99], showing that, during diagenesis, as temperatures approach 120 °C, B-adsorption
becomes negligible and substitution of Si by B occurs as illite forms [100]. Molecular models presented
in this work are in agreement with this statement, as these calculations prove that it is energetically
favorable for B to reside in the tetrahedral sites of illite. Although B-O bonds in the tetrahedral layer
are shorter (1.48 A) than Al-O and Si-O bonds (1.78 and 1.67 A, respectively), the lattice parameters of
B-illite models are similar to the Al-illite model and to the experimental illite values, meaning that the
incorporation of B in tetrahedral sites has no effect on the crystal structure.

Boron geochemistry has been studied recently in different environments as an indicator of fluid
circulation and diagenetic grade. A set of samples from different mud volcanoes around the world as
indicators of progressive diagenesis show a good correlation between B contents and §!'B isotopic
values [101,102], although these studies did not carefully separate tetrahedral B from interlayer (trigonal)
B. Besides B, the uptake of N in illite (as NH4" substituting for K*) increases during diagenesis as
illitization proceeds and has been studied in hydrocarbon-bearing sedimentary basins suggesting a
kerogen source for both elements [32,103-105]

The nature of clay and clasts present in the mud breccia of the Gulf of Cadiz mud volcanoes can be
used to infer the possible depth of the underlying units [42,56]. In Yuma mud volcano in the Moroccan
margin, more than 200 clasts from the mud breccia were studied [106], displaying a very complex
mixture of material from the sedimentary successions. The reconstructed sedimentary succession
showed sediments at least as old as Eocene, with the presence of several clayey units Miocene in age
(Aquitanian and Tortonian).

The detailed clay mineral characterization and the chemical composition made in this study
indicates that although I-S content can vary among the mud volcanoes, the clay mineralogy is similar
to that found in Tertiary units (Miocene in age) common in Mediterranean Messinian sediments.
The Messinian clay minerals taken in DSDP legs 13 and 42A contained large amounts of smectite
and are constant throughout the Mediterranean Basin [107,108]. Similar results were found by [109]
and [110] in the Lower Messinian in Sicily or by [111] in the Upper Cenomanian-Turonian sediments in
the high Atlas in Morocco. In addition, clays (dioctahedral smectite and illite) are a common component
in the Miocene-Pliocene lithostratigraphic formations (Gibraleon clays) of the lower Guadalquivir
Basin [112-114].

Based on the §'!B values of I-S in MVs of the Gulf of Cadiz (—12.7%o to +5.3%o; Table 5), the average
clays equilibrated in fluid with ''B < 10%o, (calculated using the mineral-water fractionation factor
1000 In & min-water = 3-28 — 10.35 (1000/T); [33], which is significantly more 1°B-enriched than seawater
(+39%o0). We interpret the B-isotope composition of the I-5 in MVs of the Gulf of Cadiz to result from
illitization of the smectite-rich sediments, probably from Messinian sources over a range of temperature
during organic maduration of primary source rocks (~80-150 °C). Hydrocarbon-related fluids generated



Minerals 2020, 10, 651 16 of 25

at temperatures of methane production (~150 °C) are enriched in 1B [24,115], thus hydrocarbon related
fluids are the likely source of isotopically light B in I-S in all the studied samples, from north to south
and from the shelf to 1639 m depth. There are no mineralogical sources in these sediments that could
be a source of such high concentrations of 1°B-enriched fluids.

Table 5. Boron isotope analysis. mw, Mannitol washed samples; xc, NH4Cl exchanged samples.
Standard IMt-1 is analyzed to determine IMF for each analytical session. This value is subtracted from
the delta value. SE is standard error of the average. PE is predicted error, which is the best possible
error based on counting statistics.

Sample  Preparation 11/10 IMF s1B SE %o PE %o n B (ppm)
mw 39.192 —278 3 1.0 0.9 3 142
M3 10-14 xc 39.151 —278 4 0.3 0.8 3 132
mw 39.139 —278 43 0.6 1.0 3 104
M4 18-22 xc 39.090 —278 55 05 0.5 2 88
mw 39.568 —278 6.3 20 14 3 %
M8 58-62 xc 39361 —278 12 05 0.4 2 82
M12 mw 39.163 —278 37 0.9 0.5 2 9
66-70 xc 39.115 —278 ~49 0.1 0.6 2 89
Mi14 mw 39.030 —278 —7 0.1 0.6 2 105
138-142 xc 38.965 —278 ~86 05 0.5 2 102
M25 mw 39.305 246 34 0.6 0.4 2 137
34-38 xc 39.192 246 ~62 0.6 0.4 2 134
M26 mw 39.024 246 54 0.6 0.3 2 101
50-54 xc 39.204 246 -59 05 0.4 2 94
M27 mw 39.442 246 0 0.7 0.3 2 146
18-22 N 39.236 246 51 0.8 0.4 2 141
M29 mw 39337 246 26 05 0.3 2 132
106-110 xc 39.171 246 ~67 0.6 0.3 2 122
mw 39.685 246 6 0.6 0.3 2 126
C332-33 xc 39.657 246 53 0.8 0.5 2 115
mw 39.644 246 5 0.7 0.5 2 113
C436-37 xc 39.499 246 14 0.6 0.4 2 103
mw 39.309 246 33 0.6 0.4 2 120
C738-39 xe 39.058 246 95 0.6 0.4 2 113
mw 39.596 246 38 0.9 0.5 2 163
C823-24 xc 39297 246 36 0.7 0.4 2 145
mw 39.220 2318 17 05 0.4 2 97
C984-85 xc 39.050 318 25 0.5 0.4 2 %
C10 mw 39.001 2318 37 0.6 0.4 2 137
27-28 N 38.892 318 —6.4 0.7 04 2 121
mw 38.908 2318 6 07 0.4 2 139
A2 48-50 N 38.840 318 77 0.8 0.4 2 138
mw 38913 318 59 08 0.4 2 129
A4 48-50 xe 38.638 318 —127 08 0.4 2 117
A8 mw 39.446 318 73 08 04 2 111
110-111 N 39.200 318 12 07 0.4 2 110
Al4 mw 39.628 2318 118 07 05 2 125
26-30 N 39.240 318 22 0.7 0.4 2 122

5.2. B Isotopes and Origin of Fluids in the Gulf of Cadiz

The affinity of the light isotope 1°B for tetrahedral coordination and the heavy isotope !B for
trigonal coordination was shown by [27]. Hence, during illitization, clay minerals will concentrate 10
in the process of crystallization under hydrothermal conditions [24]. It was shown [116] that kerogen
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in the Gulf of Mexico sedimentary basin oil source rocks have a B isotopic composition of —4%o to
+10%o. B-isotopic values from Gulf of Cadiz mud volcano samples are similar to those previously
reported by [116] (Figure 9). However, mud volcano samples show higher dispersion of 5''B data
ranging from —7%o to +11.8%o for the bulk (mw) samples and from —12.7%o to +5.3%o for the cation
Mierials 3020 ey Y BERRPIEY (i%ble 5), perhaps reflecting mineralogical variations arising from el
fluid sources, as e ected in the processes of exp ulsion of fluids in a mud yolcano. Taple 5 shows that
ere are sma %:: rences in 1SOfOPIC COMPOSItions e%'veen mannit cation exchanged sam }es
e e are S erences in 1soto 1C com 51t10ns etween rnanmto § cation exchanged samples
e

1r1 terll erE oto 1C eaVJer tfl{le tetr
1ca m erlayer b 1S 1soto 1ca av1ert ant tetrahedral-

Figure 9. Gulf of Cadiz bathymetric map modified from [60] showing mud volcanoes locations with
B isotopes and abumdzmnces in ezt ssanpdte: (Left) Mammitol weshed semyplles; amd ((Rigt) NHLCl
exchanged samples. Values in brackets are !B (%), B content (ppm).

Figure 10 represents B eoncentration and B isotope eompeosition of MV from different loeations:
It can be seen that the pere Meids fiom NIV dpy mineuls ane B-enriched compared to the elay
minerals. Whlldenhimman paipacticetloet thinenineraltoy fitest fonationasi®) iohBoe eAlsasrailestsxthe
srikigref basivalwidteeavwthieepos7:0Y.39 e khd Brigdlup Bitntapadtiasiiogabivore epapEn{pr 331
hé [rabtibeatiaativentiasn hifiveeanditgtand twiserat (HBthanensthenstigen esatiaemy e treyis
Thafeforbherafaitarpillisipprecgitaied with 8118 792, (abifable SaSpmpls AdstSe5 ey Wwoatddike in
equilibivan wilh +8.4% water. This isctopically light " Bweatar compasition, compaed to seavater,
is consistent with 1B ensichment from organie sources. Furthermore, Gulf of Cadiz MV samples show
5B compositions nearr vl liessaasesiated vt aivigeccosbdiekegencarspieplios dtherhvidrgehibertsish
sechmeeiitaenayibading el 371109 Thighieh st b 1laes aneasrgeceinifame samplded wppteo+3.3%e)
may represent more mixing with seawater or samples less influenced by hydrocarbon-telated waters.
Seawater eontains only about 5 ppm B, thus the high B content of the mud voleanoes requires a high
fuid:rodk nalie, as oxgrated ffor MM Runthermasee Whesedtleevases ppHweahighhe fhbam 88 B
dominates the fluid, and, because ‘9B prefers tetrahedral coordination, there is litde fractionation
between B(OH)~ dlaniinated fluidl andliillite 28]
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process, B released from kerogen, enriched in 108, was incorporated into the tetrahedral layer of
diagenetic illite. The Gulf of Cadiz MVs are dominated by minerals with high B-content and low §!!B,
suggesting that they formed at depth, in equilibrium with hydrocarbon-related fluids at temperatures
hot enough to have generated methane that is associated with these MVs. This interpretation is
supported by theoretical atomistic calculations demonstrating the preferred incorporation of 1B in
the tetrahedral sheet rather than in the interlayer space of the I-S. From an oil industry point of view,
this contribution is very important, as it helps to prospect for hydrocarbon reservoirs, since 5!!'B gives
information on the organic matter maturation state of the oilfield.
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