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CONSPECTUS. From the venerable Robinson annulation to the irreplaceable Diels-Alder 

cycloaddition, annulation reactions have fueled the progression of the field of natural product 

synthesis throughout the past century. In broader terms, the ability to form a cyclic molecule 

directly from two or more simpler fragments has transformed virtually every aspect of the chemical 

sciences from the synthesis of organic materials to bioconjugation chemistry and drug discovery. 

In this Account, we describe the evolution of our meroterpene synthetic program over the past five 

years, enabled largely by the development of a tailored anionic annulation process for the synthesis 

of hydroxylated 1,3-cyclohexanediones from lithium enolates and the reactive b-lactone-

containing feedstock chemical diketene.  

First, we provide details on short total syntheses of the prototypical polycyclic polyprenylated 

acylphloroglucinol (PPAP) natural products hyperforin and garsubellin A which possess complex 
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bicyclo[3.3.1]nonane architectures. Notably, these molecules have served as compelling synthetic 

targets for several decades and induce a number of biological effects of relevance to neuroscience 

and medicine. By merging our diketene annulation process with a hypervalent iodine-mediated 

oxidative ring expansion, bicyclo[3.3.1]nonane architectures can be easily prepared from simple 

5,6-fused bicyclic diketones in only two chemical operations. Leveraging these two key chemical 

reactions in combination with various other stereoselective transformations allowed for these 

biologically active targets to be prepared in racemic form in only 10-steps.  

Next, we extend this strategy to the synthesis of complex fungal-derived meroterpenes generated 

biosynthetically from the coupling of 3,5-dimethylorsellinic acid (DMOA) and farnesyl 

pyrophosphate. A Ti(III)-mediated radical cyclization of a terminal epoxide was used to rapidly 

prepare a 6,6,5-fused tricyclic ketone which served as an input for our annulation/rearrangement 

process, ultimately enabling a total synthesis of protoaustinoid A, an important biosynthetic 

intermediate in DMOA-derived meroterpene synthesis, and its oxidation product berkeleyone A. 

Through a radical-based, abiotic rearrangement process, the bicyclo[3.3.1]nonane cores of these 

natural products could again be isomerized, resulting in the 6,5-fused ring systems of the andrastin 

family and ultimately delivering a total synthesis of andrastin D and preterrenoid. Notably, these 

isomerization transformations proved challenging when employing classic, acid-induced 

conditions for carbocation generation, thus highlighting the power of radical biomimicry in total 

synthesis.  Finally, further oxidation and rearrangement allowed for access to terrenoid and the 

lactone-containing metabolite terretonin L.  
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Overall, the merger of annulative diketene methodology with an oxidative rearrangement 

transformation has proven to be a broadly applicable strategy to synthesize bicyclo[3.3.1]nonane-

containing natural products, a class of small molecules with over 1000 known members.    

 

KEY REFERENCES 

• Ting, C. P.; Maimone, T. J. Total Synthesis of Hyperforin. J. Am. Chem. Soc. 2015, 137, 10516–

10519.1 Initial discovery of an annulation reaction between lithium enolates and diketene and its 

application to a short total synthesis of the polycyclic polyprenylated acylphloroglucinol (PPAP) 

natural product hyperforin. 

• Shen, X.; Ting, C. P.; Xu, G.; Maimone, T. J. Programmable Meroterpene Synthesis. Nat. 

Commun. 2020, 11, 508.2 This work reported an extended substrate scope of the diketene 

O

O
O

HO

O

OH

O
H

O OH

Annulate

hydroxylated
1,3-cyclohexanediones

complex
bicyclo[3.3.1]nonanes

Rearrange

PPAPsDMOA-derived
meroterpenes

simple
ketones

[O]



 
 

 

 

4 

annulation process and disclosed a 10-step total synthesis of the PPAP natural product garsubellin 

A. 

• Ting, C. P.; Xu, G.; Zeng, X.; Maimone, T. J. Annulative Methods Enable a Total Synthesis of 

the Complex Meroterpene Berkeleyone A. J. Am. Chem. Soc. 2016, 138, 14868–14871.3 This 

manuscript describes a total synthesis of Berkeleyone A, the first bicyclo[3.3.1]nonane-containing 

meroterpene derived from dimethylorsellinic acid (DMOA) to be prepared through total synthesis. 

• Xu, G.; Elkin, M.; Tantillo, D. J.; Newhouse, T. R.*; Maimone, T. J.* Traversing Biosynthetic 

Carbocation Landscapes in the Synthesis of Andrastin and Terretonin Meroterpenes. Angew. 
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INTRODUCTION Transformations wherein two molecular units are merged and two new bonds 

created – annulation reactions – remain some of the most powerful tools in the synthetic organic 

chemistry repertoire.5 Given the assortment of polycyclic ring systems found in natural products, 

annulations have had a particularly meaningful impact on the field of total synthesis. Equally, 

natural product structures themselves have likewise served as inspiration for the development of 

new annulative processes. Throughout the 20th century, a variety of powerful annulation reactions, 

particularly those forming two C–C bonds, have been strategically employed on problems in total 

synthesis including Robinson’s classic synthesis of cholesterol employing a polar, anionic 

annulation,6,7 Stork’s synthesis of cantharidin featuring an early application of the Diels-Alder 

reaction,8,9 Curran’s radical annulation-based synthesis of albene,10,11 and Trost’s transition metal-

mediated synthesis of loganin aglycone leveraging a transition metal-catalyzed annulation (Figure 
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1).12,13  While these annulations all serve the general goal of forming a new ring, the diversity of 

the reaction mechanisms and reactive intermediates involved is both distinct and notable. 

Over the past five years, our laboratory has initiated a program in the synthesis of 

biologically active polyketide/terpenoid hybrids (i.e. meroterpenes) featuring bicyclo 

[3.3.1]nonane-containing scaffolds.1-4,14 Beginning with the popular polycyclic polyprenylated 

acylphloroglucinol (PPAP) family and then advancing to meroterpenes derived from 

dimethylorsellinic acid (DMOA) and farnesyl pyrophosphate, we devised synthetic routes to these 

natural products which required the invention of a new annulation process at the retrosynthetic 

planning stages. Specifically, we developed a polar, anionic annulation reaction between diketene 

and lithium enolates derived from substituted cyclopentanones resulting in cyclic 1,3-diketone 

motifs amenable to further rearrangement into bicyclo[3.3.1]nonanes (see inset, Figure 1). Herein, 

we detail the evolution of this program resulting in concise and modular routes to a variety of 

complex meroterpenes including hyperforin, garsubellin A, berkeleyone A, andrastin D, and 

terretonin L.   
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Figure 1. Selected annulation processes used in the assembly of polycyclic natural products 

during the 20th century.  

POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS (PPAPs): 

INSPIRATION FOR A NEW ANNULATION PROCESS   

Owing to both their structural diversity and biological activity, which include antiproliferative, 

antidepressant, antibacterial, and antiviral effects, the large family of bicyclo [3.3.1] nonane-

containing polycyclic polyprenylated acylphloroglucinols (PPAPs) remain the most well-studied 

family of meroterpenes from a synthetic chemistry perspective (Figure 2). To date, a large number 

of PPAP natural products have been prepared through total synthesis via a variety of highly 

creative approaches.15  
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Figure 2. Selected members of the large family of bicyclo[3.3.1]nonane-containing polycyclic 

polyprenylated acylphloroglucinols (PPAPs).  

 The bicyclo[3.3.1]nonane 2,4,9-trione motif of the PPAPs is formed in nature through a 

multi-step, dearomative process involving the three-component coupling of a trisubstituted 

phloroglucinol derivatives and two units of either prenyl or geranyl-based electrophiles in most 

cases (abbreviated in Figure 3). Through this process, not only is molecular complexity rapidly 

generated from simple achiral precursors, but the substituents surrounding the PPAP core can be 

easily “mixed and matched” by varying the chemical inputs (see colored balls, Figure 3) and 

enzyme cyclization modes. While direct annulation to forge the PPAP bicyclo[3.3.1]nonane 

polycycle has proven to be a popular synthetic disconnections,16 we traced this motif (see 6, Figure 

3) back to 5,6-fused bicycle 7 via a rearrangement process involving carbonyl a-oxidation and 

1,2-alkyl shift. Bicycle 7 could then be viewed as the product of a higher oxidation state Robinson-

type annulation between hypothetical intermediate 9 and a highly-substituted cyclopentanone-

derived enolate. At the outset of our studies, we recognized that the merger of these two 

disconnections could serve as a powerful strategy to access complex bicyclo[3.3.1]nonane 

architectures (see 6) from readily accessible substituted cyclopentanones. Importantly, we believed 

that a concerted 1,2-shift could smoothly transfer the stereochemical information of structurally 

diverse cyclopentanone building blocks, and in analogy to the biosynthesis, would enable highly 

modular syntheses of conserved structural types. Key to the success of this proposal though would 
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be the identification of an annulation reagent capable of mimicking the reactivity of hypothetical 

intermediate 9 and its subsequent inclusion into a diastereoselective synthesis of 7.     

 

Figure 3. A comparison of Nature’s modular blueprint for PPAP construction and our abiotic 

synthetic approach. LG = leaving group 

We began our investigation by preparing highly-substituted cyclopentanone 11 in three 
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the ability of diketene to react with diisopropylamine, tert-butyllithum (t-BuLi) and lithium 

tetramethylpiperidine (LTMP) were examined as bases and both improved the amount of 

annulated product formed (entries 3 & 4). In an effort to reduce the O-acylation product, studies 

were conducted using ethereal solvents of varying polarity (entries 5-7), and ultimately identified 

THF/Et2O mixtures as optimal for this substrate. After further temperature optimization, we were 

able to produce 12 in 35% isolated yield (45% BRSM) and as a single diastereomer (entry 8). 

 

Figure 4. A lithium enolate annulation with diketene: Discovery and optimization. 
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be annulated generating adducts 33 and 34, respectively. It is worth noting that many of these 

hydroxylated 1,3-cyclohexanedione products are only a simple water loss removed from 

aromatization to diphenols thus highlighting the mild nature of the annulation process. 

 

Figure 5. Hydroxylated 1,3-cyclohexanediones successfully prepared by a diketene–enolate 

annulation. 
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Shibasaki,20 Shair,21 Nakada,22 Barriault,23 as well as our own lab;1,14 in each case, distinct tactics 

were employed to generate the key bicyclo[3.3.1]nonane substructure.14  

 Annulated bicycle 12 could be methylated with trimethylsilyldiazomethane generating 

vinylogous ester isomers 35 and 36 in near quantitative yield, but with no regioselectivity. Notably, 

canonical basic methylation conditions (Me2SO4, K2CO3, acetone) or acid methanolysis (MeOH, 

HC(OMe)3, TsOH) both favored isomer 35 which unfortunately failed in later chemistry (vide 

infra). As a small consolation, 35 could be hydrolyzed back to 12 for enhanced material 

throughput. With 36 in hand, we evaluated the second step in our synthetic plan, namely the 

oxidative rearrangement of the 5,6-fused bicycle to the bicylo[3.3.1]nonane ring system. Inspired 

by oxidative rearrangements of cholestanone derivatives (see 37® 38), wherein a mechanistically 

related C–C bond shift presumably occurs,24 we found that under similar conditions (PhI(OAc)2, 

MeOH/KOH) compound 36 very cleanly isomerizes to 40, possibly via intermediate 39.25  

With compound 40 prepared, only the functionalization of C-1 and C-3 was required to complete 

the total synthesis of 1. The C-3 position could be deprotonated with LTMP, allowing for a 

subsequent chlorination to take place upon exposure to toluenesulfonyl chloride. With C-3 

blocked, a critical bridgehead (C-1) deprotonation and functionalization occurred cleanly 

according to Shair’s protocol (LTMP, then isobutyryl cyanide),21 generating 42 in 70% yield. 

Finally, treating 42 with excess i-PrMgCl•LiCl and LDA regenerated the C-3 anion which could 

be converted into the corresponding cuprate (lithium 2-thienylcyanocuprate) and alkylated with 

prenylbromide. Finally, demethylation (LiCl, DMSO, D) afforded hyperforin in seven steps from 

annulation product 12.  
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The described route to 1, albeit racemic, significantly reduced the number of steps needed to 

access this prized PPAP. Moreover, all of the substituents surrounding the bicyclo[3.3.1]nonane 

core were installed using simple anionic chemistry, a feature we viewed as ideal for accessing 

analogs and other PPAP members in a highly modular fashion. Importantly, this study laid the 

groundwork for exploring the diketene annulation/rearrangement strategy for other bioactive 

meroterpenes.  

Scheme 1. Total synthesis of hyperforin from diketene annulation product 12. 
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acetyltransferase (ChAT) levels in P10 rat septal neurons 154% relative to control suggesting, like 

with other PPAPs, possible applications in the treatment of neurodegenerative diseases.26 

Garsubellin A has attracted substantial synthetic interest worldwide, with the groups of 

Shibasaki,27 Danishefsky,28 Nakada,29 and our own group reporting full solutions to this intriguing 

problem in PPAP synthesis.2 

We began our investigations toward 2 by preparing diprenylated cyclopentanone building block 

45, but modified our initial route to allow for the use of intact dimethylallyl-containing building 

blocks (Scheme 2). Thus, the kinetic enolate of methylcyclopentenone was alkylated with 

prenylbromide to generate 43 and this material converted to allylic alcohol 44 by the addition of 

prenylmagnesium chloride. Finally, the reverse prenyl group underwent anionic oxy-Cope 

rearrangement to generate an enolate, which after addition of MgBr2, could be alkylated with 

methyl iodide.  

Scheme 2. Short total synthesis of garsubellin A (2).  
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 The crucial diketene annulation of 45 proceeded to generate 46 in analogy to the hyperforin 

series, but with slightly higher isolated yield. With the rigid 5,6-fused bicycle in hand we turned 

toward construction of the key tetrahydrofuran unit of garsubellin A cognizant that cyclic ether 

motifs found in the PPAPs have at times proven challenging to access by prenyl side chain 

epoxidation and acid-promoted cyclization. After significant experimentation we found that 

catalytic quantities of palladium acetate in the presence of a stoichiometric copper (II) acetate led 

to the formation of tricycle 47 as a single diastereomer in very high yield (95%), presumably via 

an unusual Wacker-type cyclization of a vinylogous acid. Additionally, from a strategic 

perspective, installation of the THF ring at this stage allowed us to avoid the unselective 

vinylogous acid methylation that plagued the synthesis of hyperforin (see 12 ® 35 + 36, Scheme 

1).  
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 With a five-step route to tricycle 47, we were positioned to evaluate our key I(III)-mediated 

oxidative ring expansion. Despite the presence of the additional rigidifying ether ring, treatment 

of this substrate with (diacetoxyiodo)benzene under basic conditions again smoothly forged the 

PPAP bicyclo[3.3.1]nonane skeleton in good yield (75% of 48). Next, a cobalt-catalyzed 

Mukaiyama hydration of 48 chemoselectively furnished the tertiary alcohol motif, which 

conveniently could be silylated in the same pot with trimethylsilyl chloride. Tricycle 49 could 

again be taken through a two-step procedure consisting of vinylic deprotonation and chlorination 

(LTMP, TsCl) to form 50, and bridgehead acylation (LTMP, i-PrCOCl) to generate 51 in analogy 

to the hyperforin synthesis. Finally, we were able to elicit linear-selective prenylation of the vinyl 

chloride under Pd-catalysis,30 a process which could be telescoped with desilylation to arrive at 

garsubellin A (2) in 10 steps from commercially available methylcyclopentenone along with a 

small amount of 52 which can also be converted into 2.28 This short route to 2, highlights how 

simply switching the cyclopentanone input into our annulation/rearrangement-based synthetic 

platform produces a different PPAP member with similar yields and efficiency.  

DMOA-DERIVED MEROTERPENES 

Members of the fungal kingdom are proficient at assembling highly complex meroterpene natural 

products with numerous biological activities.31 Specifically, over one hundred ornate and 

structurally distinct natural products can be assembled via the union of the polyketide-derived 

fragment 3,5-dimethylorsellinic acid (DMOA) with the C-15 isoprenoid farnesyl pyrophosphate 

(FPP) (see 54-60, Figure 6).32 In analogy to the biosynthesis of PPAPs, dearomative coupling 

between these two building blocks generates intermediate 53, and a subsequent polyene cyclization 

forges complex bicyclo[3.3.1]nonane architectures typified by berkeleyone A (54), preaustinoid 

A (55), and berkeleytrione (56). Further rearrangement and oxidation of this core then leads to the 



 
 

 

 

16 

scaffolds found in 57-60 thus highlighting the significance of the bicyclo[3.3.1]nonane architecture 

as a potential gateway into multiple DMOA-derived meroterpene skeletal types. Given our success 

in synthesizing the PPAPs hyperforin and garsubellin A, we wondered if our general 

annulation/rearrangement strategy could be exploited in these even more complex and demanding 

molecular settings. 

 

Figure 6. Selected meroterpene families biosynthesized from 3,5-dimethylorsellinic acid 

(DMOA) and farnesyl pyrophosphate (FPP). 

TOTAL SYNTHESIS OF BERKELEYONE A 

 Berkeleyone A (54), an anti-inflammatory meroterpene isolated from Penicillium rubrum 

found growing in the toxic Berkeley Pit, a former copper mine turned waste lake of pH ~ 2.5, was 

chosen as our initial DMOA-derived target.33 To date, only our lab and the Newhouse group have 

reported total syntheses of this meroterpene natural product;3,34 moreover, despite interest from the 

enzymatic synthesis communities,32,35 these works represent the only completed total syntheses of 

any complex DMOA-derived members.    

Scheme 3. Total synthesis of berkeleyone A (54). 
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Farnesyl bromide was first reacted with the anion of propionitrile and this alkylation 

product was converted to epoxide 61 via one-pot bromohydrin formation/cyclization sequence 

(Scheme 3). While nature employs a cationic polyene cyclization in the formation of berkeleyone 

A, we elected to employ a reductive, epoxide-opening radical cyclization to construct the trans-

fused decalin core of 54.36 Under slightly modified conditions reported by Fernández-Mateos 

(Cp2TiCl2, Zn0, D),37 61 cyclized to tricyclic ketone 62 in 42% isolated yield after silylation of the 

secondary alcohol.  

With gram-scale access to 62, the key diketene annulation was evaluated and found to 

produce 1,3-diketone 19 in 30% isolated yield (36% of recovered 62 was also isolated). Notably, 

this bond-forming step constructs a hindered tetracyclic compound possessing four methyl groups 

in nearly axial orientations. Next we proceeded to evaluate the second pivotal transformation in 

the synthetic pathway–conversion of the 5,6-fused ring system into the bicyclo[3.3.1]nonane 

skeleton. Following high-yielding, but unselective O-methylation of the 1,3-diketone with 

trimethylsilyldiazomethane, our previously developed I(III)-mediated oxidative ring expansion 

(PhI(OAc)2, KOH/MeOH) performed well in this non-PPAP setting, affording 63 in 84% isolated 
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yield.1,2 A high-yielding Wittig olefination of the hindered ketone followed by chlorination of the 

C-9 position (LTMP then TsCl) led to polycycle 64 in excellent yield.  

We envisioned that deprotonation of the bridgehead position (C-11) of 64 and reaction with 

methylchloroformate could forge the final, challenging all-carbon quaternary stereocenter of the 

target, but in contrast to the bicyclo[3.3.1]nonane trione system found in the PPAPs, the C-11 

proton in 64 is much less acidic as a result of one, not two, neighboring carbonyl groups. To our 

delight however, deprotonation of this material with LDA, followed by quenching with 

methylchloroformate led to the desired functionalization in 56% isolated yield. Akin to our 

synthesis of garsubellin, the vinyl chloride participated in an efficient Suzuki coupling 

(MeB(OH)2, Pd(OAc)2/SPhos) to install the final requisite alkyl group in excellent yield. Acidic 

cleavage of the tert-butyldimethylsilyl ether then afforded 65 in 76% yield (two steps). Chloride-

mediated demethylation (LiCl, DMSO, D) of 65 proceeded smoothly to generate the previously 

isolated DMOA-derived metabolite protoaustinoid A (66), a biosynthetic precursor to berkeleyone 

A. Gratifyingly, we were able to telescope the demethylation reaction with a diastereoselective 

hydroxylation of the 1,3-dicarbonyl motif using meta-chloroperbenzoic acid. Under such 

conditions, berkeleyone A (54) was isolated in 43% yield thus completing a thirteen-step route to 

this significant DMOA-derived metabolite. 

 Our total synthesis of 54 provided the first laboratory route to a complex DMOA-derived 

meroterpene and validated the diketene annulation/rearrangement platform outside of the PPAP 

space. Additionally, this chemistry proved scalable, and allowed for gram quantities of 

bicyclo[3.3.1]nonane-containing polycycles to be prepared for further biomimetic investigations. 

TOTAL SYNTHESES OF ANDRASTIN D AND TERRETONIN L 
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With a synthetic pathway to protoaustinoid A and berkeleyone A secured, we had the 

unique opportunity to study the biosynthetic relationships between various DMOA-derived 

meroterpene skeletons. In particular, we were keen to explore the interconversion of the 

bicyclo[3.3.1]nonane skeletons of these compounds into the 6,5-fused rings systems found in the 

andrastins (see 69) and preterretonins (see 70) (Figure 7). The protoaustinoid A carbocation (67), 

an intermediate generated by the cyclase-mediated polyene cyclization of 53 is believed to be 

involved in the biosynthesis of the majority of members. Importantly, 67 can undergo a 1,2-acyl 

shift to generate alternative carbocation 68.32 Selective loss of a proton from 67 or 68 then leads 

to 66, 69, or 70. While these processes are controlled by various cyclases in fungi,38 DFT 

calculations hinted to the feasibility of replicating the 67®68 rearrangement in the laboratory.4  

 

Figure 7. Biosynthetic connection between bicyclo[3.3.1]nonane-containing DMOA-derived 

meroterpenes and those featuring a 6,5-fused bicyclic motif. 
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never able to isomerize 71 to the andrastin ring system via classical alkene protonation methods. 

Seeking alternative methods for carbocation generation, we were drawn to Shigehisa’s 

exceedingly mild, Co-catalyzed hydroalkoxylation reaction via an oxidative variant of the classic 

Mukaiyama radical hydration/hydroperoxidation.39 Subjecting 71 to modified Shigehisa 

conditions (cat. Co(II), PhSiH3, N-fluoropyridinium salt (F+) oxidant) yet omitting the alcohol 

trapping agent cleanly promoted the desired rearrangement in a remarkable 90% isolated yield. 

We suspect that the initially formed radical in this process (72) likely reacts in a 3-exo-trig 

cyclization with the neighboring alkene owing to its very close proximity thus producing 

cyclopropane-containing radical 73 which fragments to 74 completing a homoallylic 

rearrangement process.40 Oxidation of 74 to 75 followed by proton loss then forms the andrastin 

skeleton; a final, lithium chloride-mediated demethylation then completes a total synthesis of 

andrastin D (59), the first andrastin meroterpene to be prepared synthetically.41  

While this approach offers selective entry into the andrastin family, it presents clear challenges 

for the synthesis of terretonin-type metabolites (see 60 Figure 6, 78-80 Scheme 5) which possess 

an exocyclic 1,1-disubstituted alkene rather than the thermodynamically more stable trisubstituted 

olefin isomer. Recognizing that loss of a proton and loss of a hydrogen atom (i.e. HAT process) 

can lead to distinct alkene isomers,42 we wondered if a purely radical-based homoallyl-type 

rearrangement/HAT process could be leveraged to solve this problem. 

Scheme 4. Total synthesis of andrastin D (59) via an abiotic radical rearrangement. 
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 Subjecting tetracycle 71 to modified alkene hydrochlorination conditions reported by 

Carreira (cat. Co(II), PhSiH3, TsCl) lead to the formation of 77 in 43% yield (85% BRSM) and 

with minimal formation of isomer 76 (Scheme 5).43 We suspect that steric congestion surrounding 

radical 74 precludes efficient trapping with TsCl and that a final hydrogen atom transfer (HAT) 

from the less-hindered methyl position ensues instead, forming 77. With a route to the exocyclic 

olefin in place, we demethylated 77 (LiCl, DMSO, D) generating the natural product preterrenoid 

(78) and setting the stage for exploration of the late-stage oxidative chemistry of this scaffold. 

Stereoselective a-oxidation of the 1,3-diketone group with magnesium monoperoxyphthalate 

(MMPP) afforded terrenoid (79) as a single diastereomer in analogy to the oxidation of 

protoaustinoid A to berkeleyone A (vide supra); the stereochemistry of the hydroxylation was 

confirmed by single crystal X-ray crystallography. With 79 secured we proceeded to evaluate the 

key biomimetic ring expansion linking the andrastin-type 1,3-cyclopentanedione motif and the 

distinct 6-membered ketolactone found in terretonin metabolites.44 Under carefully optimized 

conditions, we found that treatment of cold, methanolic solutions of 79 with catalytic quantities of 

NaOMe afforded terretonin L (80) in reasonable yield (46%) presumably via a retro-

Claisen/esterification cascade. Notably, a single diastereomer – confirmed by X-ray analysis – was 
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obtained, likely due to a preference for the newly-formed methyl stereocenter to occupy a 

pseudoequatorial position away from the b-face of the polycyclic ring system.  

Our work in the andrastin and terretonin area importantly showed that simple chemical reagents 

could “revert” the berkeleyone scaffold to other DMOA-derived meroterpene frameworks without 

the need to exactly generate the same presumed biosynthetic intermediate. Key to the success of 

these interconversions, was the use of abiotic radical-based chemistry which provided distinct, but 

similarly efficient solutions to nature’s carbocation-based chemistry.42,45 

Scheme 5. Divergent synthetic entry into the terretonin meroterpenes. 
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grow.46 In the case of PPAPs, simple anionic chemistry (i.e. cuprate conjugate addition, Grignard 

1,2-addition, and enolate a-alkylation) provided the requisite annulation precursors; alternatively, 

a straightforward radical polyene cyclization was employed for DMOA-derived meroterpenes. For 

PPAP synthesis in particular, we estimate that only a small panel of cyclopentanones are needed 

to access a large percentage of family members;2 moreover, this strategy easily renders itself 

amenable to flexibly incorporating side chains not found in natural PPAPs.                                              

         While our own contributions are modest, annulation reactions continue to advance the 

science of complex molecule synthesis, and a survey of modern-day total syntheses finds such 

processes alive and well (Figure 8). Morken’s double allylation in the asymmetric synthesis of 

pumilaside aglycon,47 Carreira’s cyclohexyne-based annulation en route to guanacastepenes,48 

Pronin’s forskolin synthesis leveraging a radical/polar cross-over annulation,49 and Dong’s 

enantioselective annulation by C–C bond activation to access the alkaloid cycloclavine all 

beautifully leverage annulative processes as key steps.50 Many of these tandem processes have 

been made possible through advances in asymmetric synthesis, contemporary radical chemistry, 

and methods for inert bond functionalization – all cutting-edge synthetic areas with annulative 
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potential.7,9,11,13,51 We fully suspect this trend of advancement to continue, heralding powerful new 

annulations and ultimately improved synthetic pathways to complex polycyclic natural products.  

  

Figure 8. Annulative C–C bond construction in contemporary total syntheses.  
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