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Abstract—The growing size of modern datasets necessitates
splitting a large scale computation into smaller computations and
operate in a distributed manner. Adversaries in a distributed
system deliberately send erroneous data in order to affect the
computation for their benefit. Boolean functions are the key
components of many applications, e.g., verification functions in
blockchain systems and design of cryptographic algorithms. We
consider the problem of computing a Boolean function in a
distributed computing system with particular focus on security
against Byzantine workers. Any Boolean function can be mod-
eled as a multivariate polynomial with high degree in general.
However, the security threshold (i.e., the maximum number of
adversarial workers can be tolerated such that the correct results
can be obtained) provided by the recent proposed Lagrange
Coded Computing (LCC) can be extremely low if the degree of
the polynomial is high. We propose three different schemes called
coded Algebraic normal form (ANF), coded Disjunctive normal
form (DNF) and coded polynomial threshold function (PTF). The
key idea of the proposed schemes is to model it as the concate-
nation of some low-degree polynomials and threshold functions.
In terms of the security threshold, we show that the proposed
coded ANF and coded DNF are optimal by providing a matching
outer bound.

Index Terms—Boolean function, coded computing, distributed
computing.

I. INTRODUCTION

W ITH the growing size of modern datasets for appli-
cations such as machine learning and data science, it

is necessary to partition a massive computation into smaller
computations and perform these smaller computations in a
distributed manner for improving overall performance [2].
However, distributing the computations to some external enti-
ties, which are not necessarily trusted, i.e., adversarial servers
make security a major concern [3]–[5]. Thus, it is important to
provide security against adversarial workers that deliberately
send erroneous data in order to affect the computation for their
benefit.

Boolean functions are primarily used in the design of cryp-
tographic algorithms [6]. In particular, computing Boolean
functions is one of the key components of blockchains. In
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the blockchain systems, Boolean functions can be used to
represent the verification functions which validate the trans-
actions in the new proposed blocks [7]. Specifically, each
node computes function is_valid_txn ∈ {True,False}
to determine whether a transaction is valid or not [8]. Due
to the heavy computation cost incurred by validating all the
blocks, the nodes with limited resources cannot verify all the
blocks independently. To improve the efficiency (e.g., number
of transactions verified by the system), the leading solution is
via sharding [9] whose idea is to partition the blockchain into
sub-chains and the block validations are executed distributively
in each node.

In this article, we consider the problem of computing a
Boolean function (e.g., block validation) in which the com-
putation is carried out distributively across several workers
with particular focus on security against Byzantine work-
ers. Specifically, using a master-worker distributed computing
system with N workers, the goal is to compute the Boolean
function f : {0, 1}m → {0, 1} over a dataset of K samples
X1, . . . , XK , i.e., f (X1), . . . , f (XK), in which the (encoded)
datasets are prestored in the workers such that the com-
putations can be secure against adversarial workers in the
system. Especially, we consider the adversarial model in
which the malicious workers do not have any computa-
tional restriction and are capable of sending erroneous data.
To measure the robustness against adversaries of a given
scheme S, we use the metric security threshold βS which
is defined as the maximum number of adversarial workers
that can be tolerated by the master, i.e., the correct results
can be recovered even if there are up to βS adversarial
workers.

Any Boolean function can be modeled as an Algebraic nor-
mal form (i.e., multivariate polynomial) [6]. Thus, the recently
proposed Lagrange Coded Computing (LCC) [10], a univer-
sal encoding technique for arbitrary multivariate polynomial
computations, can be used to simultaneously alleviate the
issues of resiliency, security, and privacy. In overview, for
the problem of computing an arbitrary multivariate polyno-
mial f : V → U over a field F, LCC encodes X1, . . . , XK ∈ V

by evaluating the well-known Lagrange polynomial, and each
encoded data is stored in a different worker. The workers
then apply the multivariate polynomial of interest f (e.g.,
Boolean function) on their encoded data and return the com-
putation results back to the master. Since the computation
executed in each worker can be viewed as a composition of
a multivariate polynomial and a univariate polynomial, the
problem becomes a polynomial interpolation with errors and
erasures. The master recovers the computation by evaluat-
ing the interpolated polynomial at the appropriately chosen
points.
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Fig. 1. Modeling the Boolean function as a general polynomial can result
in the high-degree difficulty which makes the security threshold low by using
LCC encoding. The main idea of our proposed approach is to model it as the
concatenation of some low-degree polynomials and the threshold functions.

The security threshold provided by LCC is �N−(K−1)degf −1
2 �

(given N and K) which can be extremely low if the degree
of corresponding multivariate polynomial degf is high (see
more details in Section III). Such degree problem can be fur-
ther amplified in complex Boolean functions whose degree
can be high in general. Thus, our main problem is as fol-
lows: what is the maximum possible security threshold and
the corresponding scheme, given f , N and K?

A. Main Contributions

As main contributions of this article, instead of modeling
the Boolean function as a general polynomial, we propose the
three schemes modeling it as the concatenation of some low-
degree polynomials and the threshold functions (see Figure 1).
To illustrate the main idea of the proposed schemes, consider
an AND function of three input bits X[1], X[2], X[3] which is
formally defined by f (X) = X[1] ∧ X[2] ∧ X[3]. The function
f can be modeled as a polynomial function (Algebraic normal
form) X[1]X[2]X[3] which has a degree of 3. For this poly-
nomial, LCC achieves the security threshold �N−3(K−1)−1

2 �.
Instead of directly computing the degree-3 polynomial, our
proposed approach is to model it as a linear threshold func-
tion sgn(X[1] + X[2] + X[3] − 5

2 ) in which f (X) = 1 if and
only if sgn(X[1]+X[2]+X[3]− 5

2 ) > 0. Then, a simple linear
code (e.g., (N, K) MDS code) can be used for computing the
linear function X[1]+X[2]+X[3], which provides the optimal
security threshold �N−K

2 �.
We propose three different schemes called coded Algebraic

normal form (ANF), coded Disjunctive normal form (DNF)
and coded polynomial threshold function (PTF). The idea
behind coded ANF (DNF) is to first decompose the Boolean
function into some monomials (clauses) and then construct a
linear threshold function for each monomial (clause). For both
of coded ANF and coded DNF, an (N, K) MDS code is used

TABLE I
PERFORMANCE COMPARISON OF LCC AND THE PROPOSED THREE

SCHEMES FOR THE BOOLEAN FUNCTION f : {0, 1}m → {0, 1}
WHICH HAS THE SPARSITY r(f ) AND WEIGHT w(f )

to encode the datasets. On the other hand, the proposed coded
PTF models the Boolean function as a low-degree polynomial
threshold function, and LCC is used for the data encoding.

For any general Boolean function f , the proposed coded
ANF and coded DNF achieve the security threshold �N−K

2 �,
which is independent of degf . In terms of security threshold,
we prove that coded ANF and coded DNF are optimal by
deriving a matching theoretical outer bound. To demonstrate
the impact of coded ANF and coded DNF, we consider the
problem of computing 8-bit S-box in the application of block
cyphers using a distributed computing system with 100 work-
ers. We show that coded ANF and coded DNF can significantly
improve the security threshold by 150% as compared to LCC.

In Table I, we summarize the performance comparison of
LCC and the proposed three schemes in terms of the secu-
rity threshold and the decoding complexity. As compared to
LCC, coded ANF and coded DNF provide the substantial
improvement on the security threshold. In particular, coded
ANF has the decoding complexity O(r(f )N log2 N log log N)

which works well for the Boolean functions with low
sparsity r(f ); coded DNF has the decoding complexity
O(w(f )N log2 N log log N) which works well for the Boolean
functions with small weight w(f ) (see the definitions of r(f )
and w(f ) in Section II). For the Boolean functions with the
polynomial size of r(f ) and w(f ), coded PTF outperforms LCC
by achieving the better security threshold and the almost lin-
ear decoding complexity which is independent of m (see more
details in Section VI).

Finally, we extend the problem to a more general com-
putation model, i.e., f is a multivariate polynomial function.
To resolve the high-degree difficulty arising in computing
general polynomials, we propose two schemes: coded data
logarithm and coded data augmentation. By taking the log-
arithm of original data, the proposed coded data logarithm
scheme reduces the degree of polynomial computations, and
improves the security threshold as compared to LCC. On the
other hand, the proposed coded data augmentation scheme pre-
stores some low-degree monomials in advance to make the
polynomial computation’s degree reduced.

B. Related Prior Work

Next, we provide a brief literature review that covers two
main lines of work: polynomial threshold functions represent-
ing Boolean functions, and coded computing.
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The expressive power of real polynomial threshold func-
tions for representing Boolean functions has been exten-
sively studied over the decades. The study of representing
Boolean functions by polynomial threshold functions was ini-
tiated in [11]–[13]. The following works focused largely on
the degree of PTF needed to represent a Boolean function
(e.g., [14]–[18]), and the density of PTF needed to represent a
Boolean function (e.g., [17], [19]–[21]). Polynomials thresh-
old functions also play a vital role in complexity theory and
learning theory (e.g., [22], [23]).

Coded computing broadly refers to a family of tech-
niques that utilize coding to inject computation redundancy
in order to alleviate the various issues that arise in large-
scale distributed computing. In the past few years, coded
computing has had a tremendous success in various prob-
lems, such as straggler mitigation and bandwidth reduction
(e.g., [24]–[35]). Coded computing has also been expanded
in various directions, such as heterogeneous networks
(e.g., [36]), partial stragglers (e.g., [37]), secure and pri-
vate computing (e.g., [10], [38]–[44]), distributed optimization
(e.g., [45]), federated learning (e.g., [46]–[48]), blockchains
(e.g., [7], [49]) and dynamic networks (e.g., [50]–[52]).

So far, research in coded computing has focused on devel-
oping frameworks for some linear functions (e.g., matrix
multiplications). However, there has been no works prior to our
work that consider coded computing for Boolean functions. In
this article, we make the substantial progress of improving the
security threshold by proposing coded ANF, coded DNF and
coded PTF which leverage the idea of the threshold function
representation.

Notation: For the Boolean logical operations, we denote the
logical operators of AND, OR, XOR and NOT by ∧, ∨, ⊕
and ∼ respectively.

II. SYSTEM MODEL

We consider the problem of evaluating a Boolean function
f : {0, 1}m → {0, 1} over a dataset �X = (X1, . . . , XK), where
X1, . . . , XK are m-dimensional vectors over the field {0, 1}.
Given a distributed computing environment with a master and
N workers, our goal is to compute f (X1), . . . , f (XK).

Each Boolean function f : {0, 1}m → {0, 1} can be rep-
resented by an Algebraic normal form (ANF) [6], [53] as
follows:

f (X) =
⊕

S⊆[m]

μf (S)
∏

j∈S
X[j] (1)

where X[j] is the j-bit of data X and μf (S) ∈ {0, 1} is the
ANF coefficient of the corresponding monomial

∏
j∈S X[j].

The total degree1 of the ANF representation of Boolean func-
tion f is denoted by degf . We denote the sparsity (number
of monomials) of f by r(f ), i.e., r(f ) = ∑

S⊆[m] μf (S). Since
each monomial in ANF has the degree up to degf , the total
complexity of computing f (X1), . . . , f (XK) via ANF of f is
O(Kr(f )degf ).

1The total degree of a multivariate polynomial is the maximum among all
the total degrees of its monomials.

Furthermore, we denote the support of f by Supp(f ) which
is the set of vectors in {0, 1}m such that f = 1, i.e., Supp(f ) =
{X ∈ {0, 1}m : f (X) = 1}. Let w(f ) be the weight of Boolean
function f , defined by w(f ) = |Supp(f )|. Alternatively, each
Boolean function f can be represented by a Disjunctive normal
form (DNF) as follows:

f = T1 ∨ T2 ∨ · · · ∨ Tw(f ) (2)

where each clause Ti has m literals2 in which each literal cor-
responds to an input Yi such that f (Yi) = 1. For example,
if Yi = 001, then the corresponding clause is ∼ Yi[1]∧ ∼
Yi[2] ∧ Yi[3]. Since each clause of DNF has m literals, the
total complexity of computing f (X1), . . . , f (XK) via DNF of f
is O(Kmw(f )).

Prior to computation, each worker has already stored
a fraction of the dataset in a possibly coded manner.
Specifically, each worker n stores X̃n = gn(X1, . . . , XK), where
gn : {0, 1}m × · · · × {0, 1}m

︸ ︷︷ ︸
K

→ U is the encoding function

of worker n and U is an arbitrary vector space. We restrict
our attention to linear encoding schemes, which guarantee
low encoding complexity. Each worker n computes h(X̃n) and
returns the result back to the master, in which h is the mul-
tivariate polynomial function decided by the master and f (X)

is function of h(X). Then, the master aggregates the results
from the workers until it receives a decodable set of local
computations. We say a set of computations is decodable
if h(X1), . . . , h(XK) can be obtained by computing decoding
functions over the received results.

More concretely, given any subset of workers that return
the computing results (denoted by K), the master computes
vK({h(X̃n)}n∈K), where each vK is a deterministic function.
We refer to the vK’s as decoding functions. Finally, the master
computes f (X1), . . . , f (XK) based on h(X1), . . . , h(XK).

In particular, we focus on finding the scheme (�g, h) to
be robust to as many adversarial workers as possible in the
system where �g = (g1, . . . , gN) is the collection of encoding
functions. To measure the robustness against adversaries of a
given scheme, we use the metric security threshold defined as
follows:

Definition 1 (Security Threshold): For an integer b, we say
a scheme S is b-secure if the master can be robust against b
adversaries, i.e., the master can recover all the correct results
even if up to b workers return arbitrarily erroneous results.
The security threshold, denoted by βS, is the maximum value
of b such that a scheme S is b-secure, i.e.,

βS � sup{b : S is b-secure}. (3)

Based on the above system model, the problem is now for-
mulated as: What is the scheme which achieves the optimal
security threshold with low decoding complexity?

Remark 1: To see how much computation cost that the
master can save using a given scheme, it is important to
compare the total complexity of computing K evaluations
f (X1), . . . , f (XK) (by the master itself) with the complexity
incurred by the scheme. Since the encoding process of a

2A literal is a Boolean variable or the complement of a Boolean variable.
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scheme is only executed once before starting any computa-
tions, we focus on the decoding complexity which is the main
cost incurred by a scheme throughout this article.

Remark 2: To see how the distributed Boolean computation
is applicable to a sharded blockchain system, we can consider
a blockchain system PolyShard [7] which is implemented
distributedly over some untrusted nodes. At each time epoch,
each node stores a coded version of sub-chain and computes
a validation function directly on the coded sub-chain and a
coded block (generated by computing an encoding function
on the incoming blocks). After the computations, each node
broadcasts the computed result to all other nodes. Then, each
node computes the decoding function on the received com-
putation results to reduce the desired validation result and
determines the validity of block. That is, each node plays
the role of a master node after the procedure of broadcast-
ing. When there is a new participant joining the network, a
new coded sub-chain can be generated and stored in this new
node. When there is a participant leaving the network, the
blockchain with remaining nodes can still work since each
node stores a coded sub-chain and the system can follow the
same procedure for the block validations.

III. OVERVIEW OF LAGRANGE CODED COMPUTING

In this section, we consider the recently proposed Lagrange
Coded Computing (LCC) [10], which is a universal encoding
technique for the class of multivariate polynomial functions.
Then, we show how it works for our problem.

Since Lagrange coded computing requires the underlying
field size to be at least the number of workers N, we first
extend the field size of {0, 1} such that the size of extension
field is at least the number of workers N. More specifically,
we embed each bit Xk[j] ∈ {0, 1} of data Xk into a binary
extension field F2t such that with 2t ≥ N. The embedding
X̄k[j] ∈ F2t of the bit Xk[j] is generated such that

X̄k[j] =

⎧
⎪⎪⎨

⎪⎪⎩

00 · · · 0︸ ︷︷ ︸
t

, Xk[j] = 0,

00 · · · 0︸ ︷︷ ︸
t−1

1, Xk[j] = 1.
(4)

Note that over extension field the output of Boolean function
f is 00 · · · 0︸ ︷︷ ︸

t

if the original result is 0; 00 · · · 0︸ ︷︷ ︸
t−1

1 if the original

result is 1.
For the data encoding by using LCC, we first select K

distinct elements β1, β2, . . . , βK from the binary extension
field F2t , and let u be the respective Lagrange interpolation
polynomial:

u(z) �
K∑

k=1

X̄k

∏

l∈[K]\{k}

z − βl

βk − βl
, (5)

where u : F2t → F
m
2t is a polynomial of degree K − 1

such that u(βk) = X̄k. Then we can select distinct elements
α1, α2, . . . , αN ∈ F2t , and encode X̄1, . . . , X̄K to X̃n = u(αn)

for all n ∈ [N], i.e.,

X̃n = u(αn) �
K∑

k=1

X̄k

∏

l∈[K]\{k}

αn − βl

βk − βl
. (6)

Each worker n ∈ [N] stores X̃n locally. Following the above
data encoding, each worker n computes function f on X̃n and
sends the result back to the master upon its completion. Since
the computation is over the extension field, the complexity at
each worker is O(tr(f )degf ).

After receiving results from all the workers, the master can
obtain all coefficients of f (u(z)) by applying Reed-Solomon
decoding [54], [55]. Having this polynomial, the master eval-
uates it at βk for every k ∈ [K] to obtain f (u(βk)) = f (X̄k).
The complexity of decoding a length-N Reed-Solomon code
with dimension (K−1)degf +1 for one symbol over the exten-
sion field is O(tN log2 N log log N). To have a sufficiently large
field for LCC, we pick t = �log N�. Since there are m sym-
bols in each X̃n, the decoding process by the master requires
complexity O(mN log3 N log log N).

In the following, we present the security threshold provided
by LCC. By [10], to be robust to b adversarial workers (given
N and K), LCC requires N ≥ (K − 1)degf + 2b + 1; i.e., LCC
achieves the security threshold

βLCC =
⌊

N − (K − 1)degf − 1

2

⌋
. (7)

The security threshold achieved by LCC depends on the
degree of function f , i.e., the security guarantee is highly
degraded if f has high degree. To mitigate such degree
effect, we model the Boolean function as the concatenation
of some low-degree polynomials and the threshold functions
by proposing three schemes in the following sections.

IV. SCHEME 1: CODED ALGEBRAIC NORMAL FORM

In this section, we propose a coding scheme called coded
Algebraic normal form (ANF) which computes the ANF
representations of Boolean function by the linear threshold
functions (LTF) and a simple linear code is used for the data
encoding. We start with an example to illustrate the idea of
coded ANF.

Example 1: We consider a function which has an ANF
representation defined as follows:

f (X) = X[1]X[2] · X
[m

2

]
. (8)

Then, we define a linear function over real field as follows:

L(X) =
m
2∑

j=1

X[j] (9)

with a bias term B = −m
2 + 1

2 , where L(X) + B = 1
2 if and

only if f (X) = 1. Otherwise, L(X) + B ≤ − 1
2 . Thus, we can

compute f (X) by computing its corresponding linear threshold
function sgn(L(X) + B), i.e., f (X) = 1 if sgn(L(X) + B) = 1;
otherwise, f (X) = 0 if sgn(L(X) + B) = −1. Unlike comput-
ing the function f (X) with the degree m

2 which results in low
security threshold, computing the linear function L(X) allows
us to apply a linear code on the computations which can lead
to a much higher security threshold.
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A. Formal Description of Coded ANF

Given the ANF representation defined in (1), we now
present the proposed coded ANF scheme in the following.
For each monomial

∏
j∈S X[j] such that μf (S) = 1, we define

a linear function LS : Rm → R and a bias term BS ∈ R as
follows3:

LS(X) =
∑

j∈S
X[j], BS = −|S| + 1

2
. (10)

It is clear that LS(X) + BS = 1
2 if and only if

∏
j∈S X[j] = 1.

Otherwise, LS(X)+BS ≤ − 1
2 . Thus, there are r(f ) constructed

linear threshold functions, and each monomial
∏

j∈S X[j] can
be computed by its corresponding linear threshold function
sgn(LS(X) + BS).

By considering each bit in real field, the master encodes
X1, X2, . . . , XK to X̃1, X̃2, . . . , X̃N using an (N, K) MDS code.
Each worker n ∈ [N] stores X̃n locally. Each worker
n∈[N] computes the functions {LS(X̃n)}{S⊆[m],μf (S)=1} and
then sends the results back to the master. After receiving the
results from the workers, the master first recovers LS(Xk) for
each k ∈ [K] and each S ∈ {G : G ⊆ [m], μf (G) = 1}. Then,
the master has

∏
j∈S Xk[j] = 1 if sgn(LS(Xk) + BS) = 1;∏

j∈S Xk[j]=0 if sgn(LS(Xk) + BS) = −1. Lastly, the mas-
ter recovers f (X1), . . . , f (XK) by summing the monomials.
Since each of r(f ) linear functions has up to m variables, the
complexity at each worker is O(mr(f )).

Remark 3: We can demonstrate the decodability of
{LS(X̃n)}n∈[N]’s by converting our problem to the dis-
tributed matrix-matrix multiplications as follows. Computing
{LS(Xk)}k∈[K] for each S is equivalent to computing K matrix-
matrix multiplications X1A, X2A, . . . , XKA (X1, . . . , XK are
considered as row vectors) where A is an m by |S| matrix and
each column of matrix A is the coefficients of X[j]’s in the cor-
responding LS(X). Similarly, computing {LS(X̃n)}n∈[N] for the
corresponding S is equivalent to computing N matrix-matrix
multiplications X̃1A, X̃2A, . . . , X̃NA. Therefore, our problem
can be converted to the coded distributed matrix-matrix mul-
tiplication in which an (N, K) MDS code is used to each
element of the matrices X1, . . . , XK and the encoded matri-
ces X̃1, . . . , X̃N are obtained. In [24], it is shown that matrix
multiplications X1A, X2A, . . . , XKA can be recovered from any
K out of N coded results X̃1A, . . . X̃NA by the MDS property
and the linear property of matrix-matrix multiplications. In our
problem, we deal with adversarial workers which are treated
as errors. Since the system can be robust to N − K erasures,
one can show that the system can be robust to �N−K

2 � errors
(adversaries) by Lemma 3 proved in [35].

B. Security Threshold of Coded ANF

To decode the (N, K) MDS code, coded ANF applies Reed-
Solomon decoding. Successful decoding requires the number

3The linear threshold function defined in (10) is adapted from the degree-1
polynomial threshold function p(X) = ∑m

j=1 Z[j]X[j] − m + 1
2 considered in

[17] where X ∈ {−1, 1}m and p(X) > 0 iff X = Z. Since the Boolean domain
considered in [17] is {−1, 1} instead of {0, 1} and all the bits are taken into
account in p(X), we define (10) by letting Z[j] = 0, ∀j /∈ S and the bias term
to be −|S| + 1

2 such that only the bits X[j], ∀j ∈ S in the domain {0, 1} are
taken into account in (10).

of errors of computation results such that N ≥ K + 2b. The
following theorem shows that the security threshold provided
by coded ANF is �N−K

2 � which is independent of degf .
Theorem 1: Given a number of workers N and a dataset

X = (X1, . . . , XK), the proposed coded ANF can be robust
to b adversaries for computing {f (Xk)}K

k=1 for any Boolean
function f , as long as

N ≥ K + 2b; (11)

i.e., coded ANF achieves the security threshold

βANF =
⌊

N − K

2

⌋
. (12)

Whenever the master receives N results from the workers,
the master decodes the computation results using a length-
N Reed-Solomon code for each of r(f ) linear functions
which incurs the total complexity O(r(f )N log2 N log log N).
Computing all the monomials via the signs of correspond-
ing linear threshold functions incurs the complexity O(Nr(f )).
Lastly, computing f (X1), . . . , f (XK) by summing the mono-
mials incurs the complexity O(Nr(f )) since there are r(f ) − 1
additions in function f . Thus, the total complexity of decoding
step is O(r(f )N log2 N log log N) which works well for small
r(f ). Note that the operation of this scheme is over real field
whose size does not scale with size of m.

V. SCHEME 2: CODED DISJUNCTIVE NORMAL FORM

In this section, we propose a coding scheme called coded
Disjunctive normal form (DNF) which computes the DNF rep-
resentations of Boolean function by LTFs and a simple linear
code is used for the data encoding. We start with an example
to illustrate the idea behind coded DNF.

Example 2: Consider a function which has an ANF repre-
sentation defined as follows:

f (X) = (X[1] · · · X[m]) ⊕ (X[1] ⊕ 1) · · · (X[m] ⊕ 1)

which has the degree degf = m − 1 and the number of mono-
mials r(f ) = 2m − 1. Alternatively, this function has a DNF
representation as follows:

f (X) = (X[1] ∧ · · · ∧ X[m]) ∨ (∼ X[1] ∧ · · · ∧ ∼ X[m])

which has the weight w(f ) = 2.
For the clause X[1]∧· · ·∧X[m], we define a linear function

over real field as follow:

L1(X) = X[1] + · · · + X[m] (13)

with a bias term B1 = −m + 1
2 , where X[1] ∧ · · · ∧ X[m] = 1

if and only if L1(X) + B1 = 1
2 . Otherwise, L1(X) + B1 ≤ − 1

2 .
Similarly, for the clause ∼ X[1] ∧ · · · ∧ ∼ X[m], we define a
linear function over real field as follows:

L2(X) = −X[1] − · · · − X[m] (14)

with a bias B2 = 1
2 , where ∼ X[1] ∧ · · · ∧ ∼ X[m] = 1 if

and only if L2(X) + B2 = 1
2 . Otherwise, L2(X) + B2 ≤ − 1

2 .
Therefore, we can compute f (X) by computing sgn(L1(X) +
B1) and sgn(L2(X) + B2), i.e., f (X) = 1 if at least one of
sgn(L1(X)+B1) and sgn(L2(X)+B2) is equal to 1. Otherwise,
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f (X) = 0. Unlike directly computing the function f (X) with
the degree of m−1, computing the linear functions L1(X) and
L2(X) allows us to apply a linear code on the computations.

A. Formal Description of Coded DNF

Given the DNF representation defined in (2), we now
present the proposed coded DNF scheme in the following.
For each clause Ti with the corresponding input Yi ∈ Supp(f )
such that f (Yi) = 1, we define a linear function Li : Rm → R

and a bias term Bi ∈ R as follows4:

Li(X) =
m∑

j=1

Zi[j]X[j], Bi = −
m∑

j=1

Yi[j] + 1

2
(15)

where

Zi[j] =
{

1, if Yi[j] = 1
−1, if Yi[j] = 0.

(16)

It is clear that Li(Yi) + Bi = 1
2 and Li(X) + Bi ≤ − 1

2 for all
other inputs X �= Yi. Thus, there are w(f ) constructed linear
threshold functions, and each clause Ti can be computed by
its corresponding linear threshold function sgn(Li(X) + Bi).

By considering each bit over real field, the master encodes
X1, X2, . . . , XK to X̃1, X̃2, . . . , X̃N using an (N, K) MDS code.
Each worker n ∈ [N] stores X̃n locally. Each worker n
computes the functions L1(X̃n), . . . , Lw(f )(X̃n) and then sends
the results back to the master. After receiving the results
from the workers, the master first recovers Li(Xk) for each
i ∈ [w(f )] and each k ∈ [K] via MDS decoding. Then,
the master has Ti(Xk) = 1 if sgn(Li(Xk) + Bi) = 1; oth-
erwise Ti(Xk) = 0. Lastly, the master has f (Xk) = 1 if at
least one of T1(Xk), . . . , Tw(f )(Xk) is equal to 1. Otherwise,
f (Xk) = 0. Since each of w(f ) linear functions has m variables,
the complexity at each worker is O(mw(f )).

B. Security Threshold of Coded DNF

Similar to coded ANF deploying Reed-Solomon code for
the decoding process, we have the following theorem to show
that the security threshold provided by coded DNF is �N−K

2 �
which is independent of degf .

Theorem 2: Given a number of workers N and a dataset
X = (X1, . . . , XK), the proposed coded DNF can be robust
to b adversaries for computing {f (Xk)}K

k=1 for any Boolean
function f , as long as

N ≥ K + 2b; (17)

i.e., coded DNF achieves the security threshold

βDNF =
⌊

N − K

2

⌋
. (18)

Upon receiving N results from the workers, the master
decodes the computation results using a length-N Reed-
Solomon code for each of w(f ) linear functions which incurs
the total complexity O(w(f )N log2 N log log N). Computing all

4Similar to the linear threshold function defined in (10), we define (15)
by adjusting the bias term such that the threshold function can work in the
domain of {0, 1}.

the clauses via the signs of corresponding linear threshold
functions incurs the complexity O(Nw(f )). Lastly, computing
f (X1), . . . , f (XK) by checking all the clauses requires the com-
plexity O(Nw(f )). Thus, the total complexity of decoding step
is O(w(f )N log2 N log log N) which works well for small w(f ).

Remark 4: Learning the DNF representation of a Boolean
function is an intensively studied problem in computational
learning theory and is hard in general [56]. Thus, people focus
on some more tractable classes of functions, e.g., O(log n)-
term DNF is considered in PAC learning literature [57], which
well motivates our proposed coded DNF.

Remark 5: Although both coded ANF and coded DNF
achieve the security threshold �N−K

2 �, coded ANF has the
decoding complexity O(r(f )N log2 N log log N) and coded
DNF has the decoding complexity O(w(f )N log2 N log log N).
Based on the sparsity r(f ) and the weight w(f ), one can choose
either one of two schemes that has a smaller decoding com-
plexity. When r(f ) is smaller than w(f ), coded ANF should
be chosen. One the contrary, we can choose coded DNF.

VI. SCHEME 3: CODED POLYNOMIAL

THRESHOLD FUNCTION

In this section, we propose a coding scheme called coded
polynomial threshold function (PTF) which computes the DNF
representations of Boolean function by PTFs and LCC is used
for the data encoding.

A. Formal Description of Coded PTF

Given the DNF representation defined in (2), we now
present coded PTF. Following the construction proposed
in [17], [56], we now construct a polynomial threshold func-
tion sgn(P(X)) for computing f (X) where P : Rm → R is a
polynomial function with the degree at most �log2 w(f )� + 1.
The construction of such PTF has the following steps.

1) Decision Tree Construction: We construct an w(f )-leaf
decision tree over variables X[1], . . . , X[m] such that
each input in Supp(f ) arrives at a different leaf. Such
a tree can be always constructed by a greedy algo-
rithm. Let �i be a leaf of this tree in which Yi reaches
leaf �i. We label �i with the linear threshold function
sgn(Li(X) + Bi) where Li(X) and Bi are defined in (15).
The constructed decision tree, in which internal nodes
are labeled with variables and leaves are labeled with
linear threshold functions, computes exactly f .

2) Decision List Construction: For this w(f )-leaf decision
tree, we construct an equivalent �log2 w(f )�-decision list.
Following from the definition that the rank of an w(f )-
leaf tree is at most �log2 w(f )�. We find a leaf in the
decision tree at distance at most �log2 w(f )� from the
root, and place the literals along the path to the leaf as
a monomial at the top of a new decision list. We then
remove the leaf from the tree, creating a new decision
tree with one fewer leaf, and repeat this process [58].
Without loss of generality, we let �i be the i-th removed
leaf in the process of list construction with the corre-
sponding monomial Ci of at most �log2 w(f )� variables.
The constructed list is defined as if C1(X) = 1 then
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output 1+sgn(L1(X)+B1)
2 ; else if C2(X) = 1 then output

1+sgn(L2(X)+B2)
2 ; · · · else if Cw(f )(X) = 1 then output

1+sgn(Lw(f )(X)+Bw(f ))

2 .
3) Polynomial Threshold Function Construction: Having

the constructed decision list, we now construct the
polynomial function P(X) with degree of at most
�log w(f )� + 1 as follows:

P(X) = A1C1(X)(L1(X) + B1) + · · ·
+ Aw(f )Cw(f )(X)

(
Lw(f )(X) + Bw(f )

)

where A1 � A2 � A3 · · · � Am > 0 are appropriately
chosen positive values.

After constructing the corresponding PTF sgn(P(X)) for
Boolean function f (X), the procedure of computations is as
follows. By considering each bit over real field, the master
encodes X1, X2, . . . , XK to X̃1, X̃2, . . . , X̃N using LCC. Each
worker n ∈ [N] stores X̃n locally. Each worker n computes
the function P(X̃n) and then sends the result back to the
master. After receiving the results from the workers, the mas-
ter first recovers P(X1), . . . , P(XK) via LCC decoding. Then,
the master has f (Xk) = 1 if sgn(P(Xk)) = 1; otherwise
f (Xk) = 0. Since Ci(X)’s are monomials with the degree of
at most �log2 w(f )�, computing AiCi(X) incurs the complexity
O(�log2 w(f )�). Also, computing Li(X) + Bi incurs the com-
plexity O(m). Thus, computing function P(X) at each worker
incurs the total complexity O(w(f )(�log2 w(f )� + m)).

B. Security Threshold of Coded PTF

Since P(X) has degree of at most �log2 w(f )� + 1, to be
robust to b adversaries, LCC requires the number of workers
N such that N ≥ (K − 1)(�log2 w(f )� + 1) + 2b + 1. Then, we
present the security threshold provided by coded PTF in the
following theorem.

Theorem 3: Given a number of workers N and a dataset
X = (X1, . . . , XK), the proposed coded polynomial thresh-
old function can be robust to b adversaries for computing
{f (Xk)}K

k=1 for any Boolean function f , as long as

N ≥ (K − 1)
(⌊

log2 w(f )
⌋ + 1

) + 2b + 1; (19)

i.e., coded PTF achieves the security threshold

βPTF =
⌊

N − (K − 1)
(⌊

log2 w(f )
⌋ + 1

) − 1

2

⌋
. (20)

Whenever the master receives N results from the workers,
the master decodes the computation results using a length-N
Reed-Solomon code for the polynomial function which incurs
the total complexity O(N log2 N log log N). Lastly, computing
f (X1), f (X2), . . . , f (XK) by checking the signs requires the
complexity O(N). Thus, the total complexity of decoding step
is O(N log2 N log log N).

In the following example, we show that coded PTF outper-
forms LCC for the Boolean functions with the polynomial size
of r(f ) and w(f ).

Example 3: Consider a function which has an ANF repre-
sentation defined as follows:

f (X) = (X[1] ⊕ X[2]) · · · (X[2m′ − 1
]) ⊕ X[2m′]

)

× X
[
2m′ + 1

] · · · X[m] (21)

where m′ = �log2 m2�. Note that here we focus on the case
that m is large enough such that m > m′ = �log2 m2�. The
function f has the degree of m − �log2 m2�, the sparsity of
≈ m2 and the weight of ≈ m2.

For the Boolean function considered in Example 3, coded

PTF achieves the security threshold �N−(K−1)(�log2 m2�+1)−1
2 �

which is greater than the security threshold

�N−(K−1)(m−�log2 m2�)−1
2 � provided by LCC. Although coded

ANF and coded DNF achieve security threshold �N−K
2 � but

they require decoding complexity O(m2N log2 N log log N)

which has the order of m2, i.e., they only work for small m.
With the security slightly worse than coded ANF and coded
DNF, coded PTF achieves the better decoding complexity
which is independent of m, i.e., coded PTF can work for
large m.

C. Coded D-Partitioned PTF

In this section, we extend coded PTF by proposing coded
D-partitioned polynomial threshold function whose idea is
to partition the Boolean function into some DNFs and con-
struct their corresponding PTFs with low-degree. It allows
us to apply LCC on the corresponding low-degree PTFs for
improving the security threshold.

Given the DNF representation defined in (2) of Boolean
function f and an integer D (1 ≤ D ≤ w(f )), we partition the
DNF representation of f to D different DNF representations
as follows:

f = G1 ∨ G2 ∨ · · · ∨ GD (22)

where each Gd includes w(f )
D clauses of m literals, e.g.,

G1 = T1 ∨ · · · ∨ T w(f )
D

. (23)

Thus, we have that each Gd is a Boolean function with weight
of w(f )

D . By the PTF construction described in Section VI-A,
each Boolean function Gd can be computed by a PTF
sgn(Pd(X)) where Pd(X) has degree of at most �log2

w(f )
D �+1.

Similar to coded PTF using LCC for data encoding, each
worker n ∈ [N] stores X̃n locally. Each worker n computes the
function P1(X̃n), . . . , PD(X̃n) and then sends the results back
to the master. Upon receiving the results from the workers,
the master first recovers Pd(X1), . . . , Pd(XK) for each d via
LCC decoding. Then, the master has f (Xk) = 1 if at least
one of sgn(P1(Xk)), . . . , sgn(PD(Xk)) is equal to 1. Otherwise,
f (Xk) = 0. Similar to coded PTF, computing D polynomial
functions with the degree up to �log2

w(f )
D �+1 at each worker

incurs the complexity O(w(f )(�log2
w(f )

D � + m)).
Since each Pd(X) has degree of at most �log2

w(f )
D �+1, to be

robust to b adversaries, LCC requires the number of workers
N such that N ≥ (K − 1)(�log2

w(f )
D � + 1) + 2b + 1. Formally,

we have the following theorem.
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Theorem 4: Given a number of workers N and a dataset
X = (X1, . . . , XK), the proposed coded D-partitioned poly-
nomial threshold function can be robust to b adversaries for
computing {f (Xk)}K

k=1 for any Boolean function f , as long as

N ≥ (K − 1)

(⌊
log2

w(f )

D

⌋
+ 1

)
+ 2b + 1; (24)

i.e., coded D-partitioned PTF achieves the security threshold

βPTF(D) =
⎢⎢⎢⎣

N − (K − 1)
(⌊

log2
w(f )

D

⌋
+ 1

)
− 1

2

⎥⎥⎥⎦. (25)

Whenever the master receives N results from the workers,
the master decodes the computation results using a length-N
Reed-Solomon code for D constructed polynomial function
which incurs the total complexity O(DN log2 N log log N).
Then, computing f (X1), f (X2), . . . , f (XK) by checking
the signs and OR operations requires the complexity
O(DN). Thus, the total complexity of decoding step is
O(DN log2 N log log N).

Remark 6: The proposed coded D-partitioned PTF char-
acterize a tradeoff between the security threshold and the
decoding complexity. For each chosen D(1 ≤ D ≤ w(f )),
the pair of the security threshold and the decoding com-

plexity (�N−(K−1)(�log2
w(f )

D �+1)−1
2 �, DN log2 N log log N) can

be achieved by the proposed coded D-partitioned PTF. In par-
ticular, the proposed coded DNF and coded PTF schemes
correspond to the two extreme points of this tradeoff that
minimize the security threshold and the decoding complexity
respectively. Coded DNF corresponds to the point D = 1, i.e.,
no partition performed. On the other hand, coded corresponds
to the point D = w(f ), i.e., each DNF after partition process
only contains one vector in {0, 1}m. Thus, coded D-partitioned
PTF generalizes our previously proposed coded DNF and
coded PTF, and allows to systematically operate at any points
on this tradeoff.

Remark 7: The total complexity of computing K evalua-
tions f (X1), . . . , f (XK) via ANF is O(Kr(f )degf ). Thus, it
is more efficient to use coded ANF than computing all the
evaluations at the master when degf > N

K log2 N log log N.
On the other hand, since computing f (X1), . . . , f (XK) via
DNF incurs the total complexity O(Kmw(f )), we can con-
clude that it is more efficient to use coded DNF when
m > N

K log2 N log log N. When mw(f ) > DN
K log2 N log log N,

coded D-partitioned PTF is more efficient than computing all
the evaluations at the master.

VII. MATCHING OUTER BOUND FOR CODED

ANF AND CODED DNF

In this section, we show that coded ANF and coded DNF
are optimal in terms of the security threshold. We start by
defining the recovery threshold and the hamming distance of
a scheme as follows:

Definition 2: For any integer k, we say a scheme is
k-recoverable if the master can recover h(X1), . . . , h(XK)

given the computing results from any k workers. We define
the recovery threshold of a scheme (�g, h), denoted by

K(�g, h), as the minimum integer k such that scheme (�g, h)

is k-recoverable.
Definition 3: We define the Hamming distance of any

scheme (�g, h), denoted by d(�g, h), as the maximum integer
d such that for any pair of input dataset whose computa-
tion results h(X1), . . . , h(XK) are different, at least d workers
compute different values of h(X̃n).

We prove the matching outer bound for coded ANF and
coded DNF by the following theorem whose proof can be
found in Appendix A.

Theorem 5: For a distributed computing problem of com-
puting Boolean function f using N workers over a dataset
X = (X1, . . . , XK), any scheme (�g, h) can achieve the security
threshold up to

β∗ =
⌊

N − K

2

⌋
. (26)

By Theorem 5, we have shown that the proposed coded
ANF and coded DNF schemes are optimal in terms of the
security threshold.

VIII. APPLICATION TO CRYPTOGRAPHY

To demonstrate the impact of the proposed schemes, we
consider a cryptosystem which is designed to enable two par-
ties to securely communicate over an insecure channel [59].
In a cryptosystem, the plaintext is encrypted to the cypher-
text before the communication from one user to the another
user, e.g., one user of a party shares the same secret key
with the user of another party to communicate secretly. Since
the security of symmetric cryptosystems is strongly influenced
by Boolean functions, many properties of Boolean functions
must be utilized (e.g., high nonlinearity, high algebraic degree,
and etc) in order to resist the known mathematical attacks.
More specifically, a cipher must not be well-approximated
by linear functions to be secure against linear attacks [60].
High algebraic degree of Boolean function increases the
linear complexity in block ciphers and result in more compli-
cated systems of equations describing the cipher which make
structural attacks of the cipher more difficult [61].

In particular, we focus on one of subclasses of symmetric
key cryptosystem: block cyphers. As the non-linear component
in most block ciphers, S-boxes are one of the most important
building blocks in symmetric cryptography and chosen to be
cryptographically strong enough against the attacks. Formally,
an S-box s : {0, 1}m → {0, 1}m is represented by a collection
of m Boolean functions of m input bits, and each Boolean
function is one of the coordinates of function s. Please see
Table II for an example of a 4-bit S-box.

Each coordinate of s(X) presented in the example in Table II
can be represented by a degree-3 ANF representation as
follows:

s(X)1 = 1 ⊕ X[1] ⊕ X[3] ⊕ X[4] ⊕ X[2]X[3] ⊕ X[2]X[4]

⊕ X[3]X[4] ⊕ X[1]X[3]X[4] ⊕ X[2]X[3]X[4] (27)

s(X)2 = 1 ⊕ X[4] ⊕ X[1]X[2] ⊕ X[1]X[3] ⊕ X[1]X[4]

⊕ X[1]X[2]X[3] ⊕ X[1]X[2]X[4] ⊕ X[1]X[3]X[4]

(28)
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TABLE II
EXAMPLE OF A 4-BIT S-BOX. EACH COORDINATE OF s(X) CAN BE REPRESENTED BY A DEGREE-3 ANF REPRESENTATION

s(X)3 = 1 ⊕ X[2] ⊕ X[4] ⊕ X[1]X[2] ⊕ X[2]X[3]

⊕ X[3]X[4] ⊕ X[2]X[4] ⊕ X[1]X[2]X[4]

⊕ X[1]X[3]X[4] (29)

s(X)4 = 1 ⊕ X[3] ⊕ X[4] ⊕ X[1]X[3] ⊕ X[2]X[4]

⊕ X[3]X[4] ⊕ X[1]X[3]X[4] ⊕ X[2]X[3]X[4]. (30)

Desirably, S-box functions are designed such that the degree
of the polynomial in S-box is large, which makes more diffi-
cult the application of higher order differential attacks. As the
size of datasets grows, it is necessary to take advantage of the
power of distributed computing, i.e., the data encryption com-
putations are computed in a distributed manner. Let us consider
the encryption problem of computing a 8-bit S-box function
over a dataset X = (X1, . . . , X10) using a system of N = 100
workers. The best possible degree of 8-bit S-box degs is equal
to 7 [62]. For computing s(X1), . . . , s(X10) distributedly, the
security threshold achieved by LCC is �N−(K−1)degs−1

2 � = 18.
Our proposed coded ANF and coded DNF provide the optimal
security threshold of �N−K

2 � = 45. As compared to LCC, the
proposed coded ANF and coded DNF schemes improve the
security threshold by 150%.

IX. EXTENSION TO GENERAL MULTIVARIATE

POLYNOMIALS

In this section, we extend our problem to a more general
computation model. More specifically, we focus on computing
multivariate polynomial f : V → U over a dataset X1, . . . , XK

using a master and N workers, where V and U are arbitrary
vector spaces over the certain field F. We denote by r(f ) the
number of monomials appearing in f (X).5

As we see in the problem of computing Boolean functions,
the security threshold provided by LCC can be low if degf
is high. To resolve such high degree difficulty which arises
in computing general polynomials, we propose two different
schemes: coded data logarithm and coded data augmenta-
tion. Especially, the proposed coded data logarithm scheme
reduces the degree of polynomial computations by computing
the logarithm of original data; and the proposed coded data
augmentation reduces the degree of polynomial computations
by pre-storing some low-degree monomials in advance.

A. Coded Data Logarithm

First, we illustrate the idea behind coded data logarithm by
the following example.

5Similar to the case of Boolean functions, the total complexity of computing
f (X1), . . . , f (XK) is O(Kr(f )degf ).

Example 4: Consider the problem of computing function
f (X) = X2 in real field using 3 workers over a dataset �X =
(X1, X2), where input Xi’s are 2 × 2 matrices.

We start by constructing a degree-1 multivariate polynomial
for the function f (X). The function f (X) = X2 can be explicitly
written as follows:

f (X) =
[

[X]2
11 + [X]12[X]21 [X]11[X]12 + [X]12[X]22

11[X]21 + [X]21[X]22 [X]12[X]21 + [X]2
22

]

which includes 7 monomials:

[X]2
11, [X]2

22, [X]12[X]21, [X]11[X]12,

[X]12[X]22, [X]11[X]21, [X]21[X]22.

By taking the logarithm of the absolute value of each mono-
mial appearing in f (X), we have

2 log |[X]11|, 2 log |[X]22|, log |[X]12| + log |[X]21|,
log |[X]11| + log |[X]12|, log |[X]12| + log |[X]22|,
log |[X]11| + log |[X]21|, log |[X]21| + log |[X]22|,

which can be rewritten as:

2[W]11, 2[W]22, [W]12 + [W]21, [W]11 + [W]12,

[W]12 + [W]22, [W]11 + [W]21, [W]21 + [W]22,

where [W]ij = log |[X]ij|. We define a degree-1 multivariate
polynomial h(W) as follows:

h(W) = [2[W]11, 2[W]22, [W]12 + [W]21, [W]11 + [W]12,

[W]12 + [W]22, [W]11 + [W]21, [W]21 + [W]22].

To take advantage of the function h(W) with the degree of
1, we take the logarithm of each entry’s absolute value in X1
and X2 and define two matrices W1 and W2 as follows:

W1 =
[

log|[X1]11| log|[X1]12|
log|[X1]21| log|[X1]22|

]
,

W2 =
[

log|[X2]11| log|[X2]12|
log|[X2]21| log|[X2]22|

]
. (31)

Then, we encode W1 and W2 to W̃1, W̃2 and W̃3 using an
(3, 2) MDS code. Each worker n computes h(W̃n) where each
entry of h(W) is a linear combination of the logarithm of
the corresponding X’s entries’ absolute values. By calculating
the exponential of each entry in h(W), the master can obtain
the absolute values of all monomials appearing in f (X), e.g.,
[W]12 + [W]21 = log |[X]12| + log |[X]21| = log |[X]12[X]21|.

Computing the degree-1 (linear) function h(W) allows us
to apply a simple linear code to achieve the optimal security
threshold.

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2021 at 01:43:50 UTC from IEEE Xplore.  Restrictions apply. 



YANG AND AVESTIMEHR: CODED COMPUTING FOR SECURE BOOLEAN COMPUTATIONS 335

In the following, we formally present the proposed coded
data logarithm scheme. Given any multivariate polynomial
function f : V → U over real field, the proposed coded data
logarithm scheme first constructs the logarithmic data and a
degree-1 multivariate polynomial function h by the followings.

1) Logarithmic Data Construction: For each Xk, we con-
struct a logarithmic data Wk where each entry of Wk

is the logarithm of Xk ’s corresponding entry’s absolute
value,6 i.e., Wk[j] = log |Xk[j]| where we denote by Xk[j]
the j-th input value of Xk without loss of generality.

2) Degree-1 Multivariate Polynomial Construction:
Construct a multivariate polynomial function h(W) with
degree of 1 which computes the logarithm of absolute
values of all monomials appearing in f (X), i.e., for each
monomial

∏
j∈S X[j] appearing in f (X), the function

h(W) computes
∑

j∈S log |X[j]| = ∑
j∈S W[j].

After the construction of corresponding logarithmic data
W1, . . . , WK for X1, . . . , XK , the procedure of computations is
as follows. The master encodes W1, . . . , WK to W̃1, . . . , W̃N

using an (N, K) MDS code. Each worker n computes h(W̃n)

and then sends the result back to the master. Upon receiv-
ing all results from the workers, the master first recovers
h(W1), . . . , h(Wk) and calculates the exponential of each entry
of h(Wk) which recovers the absolute values of all mono-
mials appearing in f (Xk). Then, each monomial term can
be determined by changing the sign accordingly. Lastly, the
master recovers f (X1), . . . , f (XK) by summing the monomial
terms and the bias terms. Since each of r(f ) monomials has
the degree up to degf , the complexity at each worker is
O((degf )r(f )).

Reed-Solomon decoding is used for decoding the (N, K)

MDS code. Successful decoding requires the number of errors
of computation results such that N ≥ K + 2b. The following
theorem shows the security threshold achieved by the proposed
coded data logarithm scheme.

Theorem 6: Given a number of workers N and a dataset
X = (X1, . . . , XK), the proposed coded data logarithm scheme
can be robust to b adversaries for computing {f (Xk)}K

k=1 for
any multivariate polynomial f , as long as

N ≥ K + 2b; (32)

i.e., coded data logarithm achieves the security threshold

βLOG =
⌊

N − K

2

⌋
. (33)

Using a length-N Reed-Solomon code for each
of r(f ) linear functions incurs the total complexity
O(r(f )N log2 N log log N). Computing the exponential of
all the monomials incurs the complexity O(Nr(f )). Lastly,
computing f (X1), . . . , f (XK) by summing the monomials
incurs the complexity O(Nr(f )). Thus, the total complexity
of decoding step is O(r(f )N log2 N log log N). Coded data
logarithm provides the optimal security threshold, and has low

6Note that if there is any entry of X1, . . . , XK is zero, we can replace
that entry by a non-zero value and proceed the proposed scheme. Since the
monomials with a zero entry is always equal to zero, we can set them to zero
in the decoding process.

decoding complexity for computing the sparse polynomials
(small r(f )).

B. Coded Data Augmentation

In the following example, we show how the proposed coded
data augmentation scheme reduces the degree of polynomial
computations.

Example 5: Consider the problem of computing a multi-
variate polynomial function f with degree of 8 defined as
follows:

f (X) = x5
1x3

2 + x2x3
3 + 2 (34)

where each input X has three entries x1, x2, x3.
To reduce the degree of computation such that using LCC

can be robust to more adversaries in the system, we augment
each input X by adding all degree-2 monomials as follows:

X̄ =
[
x1 x2 x3 x2

1 x2
2 x2

3 x1x2 x1x3 x2x3

]

= [
x1 x2 x3 y1 y2 y3 y4 y5 y6

]
. (35)

With data augmentation above, computing f (X) is equivalent
to computing h(X̄) defined as follows:

h
(
X̄
) = y2

1y2y4 + y3y6 + 2 (36)

which is the function with degree of 4.
By prestoring the twice amount of data in each worker, the

system can be robust to number of 4(K−1)
2 = 2(k − 1) more

adversaries using LCC. Such pre-storing some low-degree
polynomials enable us to enhance the robustness against
Byzantine workers in the system.

In the following, we formally present the proposed coded
data augmentation scheme. Given any multivariate polynomial
f : V → U over a field F with an integer q, coded data
augmentation first augments data and construct a low degree
polynomial as follows.

1) Data Augmentation: For each Xk, we construct X̄k by
adding all the monomials of Xk’s entries with the degree
up to q, i.e., adding

∏
j∈S X[j] for all S ⊆ [q].

2) Low Degree Polynomial Construction: By substituting
each added monomial as a new variable, we construct
a multivariate polynomial function h(X̄k) with degree of
u+1{r>0}, in which degree of f can be uniquely written
as degf = qu + r and 0 ≤ r ≤ q − 1. We note that such
constructed polynomial is not unique but degree of h is
unique.

The procedure of computations is as follows. The master
encodes X̄1, . . . , X̄K to X̃1, . . . , X̃N using LCC encoder. Each
worker n computes h(X̃n) and then sends the result back
to the master. Whenever the master receives N results from
the workers, the master recovers h(X̄1), . . . , h(X̄K) using a
length-N Reed-Solomon code. Lastly, the master has f (X1) =
h(X̄1), f (X2) = h(X̄2), . . . , f (XK) = h(X̄K). Since each of r(f )
monomials has the degree up to u + 1{r>0}, the complexity at
each worker is O((u + 1{r>0})r(f )).

Because the constructed function h(X̄) has degree of u +
1{r>0} (deg f = qu + r), to be robust to b adversaries, LCC
requires the number of workers N such that N ≥ (K − 1)(u +
1{r>0}) + 2b + 1. Then, we have the following theorem.

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2021 at 01:43:50 UTC from IEEE Xplore.  Restrictions apply. 



336 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

Theorem 7: Given a number of workers N and a dataset
X = (X1, . . . , XK), the proposed coded data augmentation
scheme with parameter q can be robust to b adversaries for
computing {f (Xk)}K

k=1 for any multivariate polynomial f , as
long as

N ≥ (K − 1)
(
u + 1{r>0}

) + 2b + 1; (37)

i.e., coded data augmentation with parameter q achieves the
security threshold

βAUG =
⌊

N − (K − 1)
(
u + 1{r>0}

) − 1

2

⌋
. (38)

where degf = qu + r and 0 ≤ r ≤ q − 1.
Decoding the computation results using a length-N Reed-

Solomon code for the constructed polynomial function incurs
the total complexity O(N log2 N log log N). By trading the cost
of storing more data for improving robustness against adver-
sarial workers, coded data augmentation can be applied to any
multivariate general polynomials and robust to (K −1)(degf −
u − 1{r>0})/2 more adversaries than LCC.

Remark 8: Since computing all K evaluations
f (X1), . . . , f (XK) at the master incurs the total com-
plexity O(Kr(f )degf ), it is more efficient to use coded
data logarithm when degf > N

K log2 N log log N. When
r(f )degf > N

K log2 N log log N, coded data augmentation
is more efficient than computing all the evaluations at the
master.

X. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this article, we focus on computing a Boolean function
in a distributed manner against adversarial servers. To resolve
the degree problem of using LCC (i.e., the security thresh-
old provided by LCC can be low if the polynomial’s degree
is high), the proposed schemes called coded ANF, coded
DNF and coded PTF largely improve the security threshold
by modeling the polynomial as the concatenation of some
low-degree polynomial functions and threshold functions. It
is shown that coded ANF and coded DNF are optimal by
matching to the derived theoretical outer bound; and increase
the security threshold by 150% for computing 8-bit S-box in
the application of block cyphers using a distributed computing
system with 100 workers.

There are many interesting directions can be pursued on
the problem of coded Boolean computations. For example,
the proposed coded ANF and coded DNF require embedding
bits to reals, which might lead to some floating-point errors
during decoding process. Thus, one direction is to implement
two schemes in an actual computing system and measure the
effect of field transformation.
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