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ABSTRACT
Many teachers have come to rely on the affordances that computer-
based learning platforms offer in regard to aiding in student as-
sessment, supplementing instruction, and providing immediate
feedback and help to students as they work through assigned con-
tent. Similarly, researchers commonly utilize the large datasets of
clickstream logs describing students’ interactions with the plat-
form to study learning. For the teachers that use this information
to monitor student progress, as well as for researchers, this data
provides limited insights into the learning process; this is partic-
ularly the case as it pertains to observing and understanding the
effort that students are applying to their work. From the perspec-
tive of teachers, it is important for them to know which students
are attending to and using computer-provided aid and which are
taking advantage of the system to complete work without effec-
tively learning the material. In this paper, we conduct a series of
analyses based on response time decomposition (RTD) to explore
student help-seeking behavior in the context of on-demand hints
within a computer-based learning platform with particular focus
on examining which students appear to be exhibiting effort to learn
while engaging with the system. Our findings are then leveraged
to examine how our measure of student effort correlates with later
student performance measures.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Applied computing→ Interactive learning environments.
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1 INTRODUCTION
Computer-based learning platforms guide students’ learning through
the implementation of various principles of learning and cognitive
sciences. Learning platforms have adopted differing approaches in
∗Both authors contributed equally to this research.
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supporting learners’ needs through varying degrees of student- or
instructor-paced approaches in determining the content presented
to students. In the self-paced paradigm, the systems determine the
sequence, and often the difficulty, of content that is presented to the
student based on demonstrated performance and mastery of the ma-
terial; conversely, instructor-paced systems rely on the instructor
to determine these assignment parameters. Despite these differ-
ences, both of these learning system designs rely on the system to
supplement the instruction and provide additional aid to students
as they work; this can simply be done through, for example, im-
mediate correctness feedback, but many systems incorporate more
involved instructional aids in the form of hint messages[1, 24, 33],
scaffolding problems[34, 40], or other forms of explanations or
worked examples. Although the implementation of self-paced and
instructor-paced systems often differ, there is a significant overlap
in the design principles between the two approaches as both utilize
principles of learning sciences and cognitive sciences to enhance
learning through these offered supports. These principles have
been extensively researched, and various works have explored their
effectiveness [25, 32].

Regardless of the learning system’s design, there is an underlying
assumption that is commonly made regarding student engagement
with help provided by the platform. It is presumed that students,
when requesting or offered help through the system, are attending
to the delivered feedback and using this to learn effectively. While
this assumption is likely true for a large population of students,
there is certainly evidence that many students take advantage of
computer-provided help to work through assignments without ef-
fectively learning the material [12, 26]. It is important for students
to use help productively, and it is similarly important for instruc-
tors to know which students are effectively learning that assigned
material.

Our goal in this work is to explore student help-seeking behavior
within a computer-based learning platform with a focus on identify-
ing and examining students who are attending to hints they receive
through the system. The purpose of this work is to explore this
behavior toward the development of a measure of student effort,
accounting for systemic differences in the format of help provided
(e.g., text-based hint messages or video-based worked examples).
In self-paced systems, such a metric could help the system more
accurately assess student knowledge and deliver content appropri-
ately [4], or otherwise help instructors monitor and assess student
performance more effectively. In either scenario, a measure of stu-
dent effort, particularly on the help they receive, can help in better
understanding the behavior and deploying learning interventions
that promote more productive help-seeking strategies.

https://doi.org/10.1145/3448139.3448167
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Using data collected from students interacting with a learning
system in real classrooms, we conduct a series of exploratory analy-
ses based on Response Time Decomposition (RTD; c.f., [15, 38, 41]).
We further use the findings of these analyses to explore the re-
lationship between identified student help-seeking behavior and
later student performance. In this way, this paper addresses the
following research questions:

(1) Are students using hints appropriately as determined by the
amount of time spent on problems?

(2) What is the relationship between time spent on hints and
later performance?

(3) What is the relationship between the time spent on hints
and the prior knowledge of a student?

The remainder of this paper is structured as follows. Section 2
describes the related works in the field of Learning Analytics with
a focus on student help-seeking behavior. Section 3 explains our
theoretical framework that decomposes help usage by users and
our hypothesis of the user’s mental model that dictates the actions a
user takes after receiving help. Section 4 describes the dataset used
in this work and Section 5 breaks down the exploratory analysis
conducted to test if the data supports the cogency of our theoretical
framework. We use our findings from the exploratory analysis
to define user behavior in terms of effort. Section 6 builds on our
findings from Section 5 and explores the relationship between effort
and other performance metrics. Section 6, 7, and 8 examine our
findings and their relevance to research areas in learning analytics
to inform future directions.

2 BACKGROUND
Most, if not all, computer-based learning platforms log the actions
(clickstream data) of all users interacting with the system. The
actions of the students, coupled with measures of performance,
are commonly used to generate reports that help teachers monitor
student progress. Although these reports provide an overview of
the learners’ activity on a given problem set, often in aggregate,
the reports provide only limited insight into the learners’ engage-
ment and learning behavior exhibited while working. Efforts in
the learning analytics community have helped develop better re-
ports and visualizations that describe several dimensions of stu-
dent performance, and activity [13, 20]. In this way, developers
have attempted to leverage learning analytics research to develop
measures that provide finer-grained insights into student learning.
Measures of partial credit, for example, help to inform teachers
about their students’ knowledge and performance beyond a simple
binary correctness measure [37]. Similarly, developing measures
of student engagement can better direct teachers’ attention to the
students in most need. Researchers have found that the real-time
reporting of related measures help teachers spend more time with
lower-performing students [20].

The study of help within computer-based learning platforms
has similarly led to questions pertaining to the effectiveness of
tutor-provided aid within such systems among the learning sci-
ence and learning analytics communities [3, 6, 19]. In some cases,
studies conducted into the role of on-demand help within learn-
ing platforms have provided us with valuable insight into help
seeking behaviors and various design approaches and principles

that can lead to a more effective usage of hints by users [2]; this
has been supported, in part, through the study of help-seeking
behavior exhibited by learners [1, 36]. Related to this, Researchers
have previously studied the use of self-explanation strategies as a
method of helping students engage with content [35], while others
have explored the format of help delivery through text-based and
video-based feedback [24]. Similarly, researchers have explored the
effect of hints versus explanation [17] on student learning, as well
as the use of erroneous examples to encourage student engagement
with help and learning in general [23]. Finally, there has been other
noteworthy research conducted in the field considering how the
source or authorship of computer-provided help impacts student
learning and engagement [31, 39].

In many cases, these studies have concluded that the effective-
ness of help varies greatly and depends on many factors, with
perhaps the most prominent of these being the level of student
engagement. Regardless of the type of help provided, format, or
authorship (e.g., expert-authored versus crowdsourced), these sup-
ports cannot help a student who does not attend to and engage with
the provided aid. In this way, previous works examining student
engagement, or conversely a lack of engagement, are particularly
relevant to the study of student help-seeking behavior. Most notably,
perhaps, is the large body of work pertaining to the study of stu-
dents who “game the system” [5, 12, 26, 27]. Commonly referred to
simply as “gaming,” this behavior is characterized by students who
take advantage of aspects of the system to complete assignments
rather than effectively learn the material. In the context of help,
students may exhaust available hints [28] or other aids to be given
the correct answer or to be given easier questions. Many have the-
orized and explored aspects that may cause students to disengage,
including work pertaining to the study of student affect [9, 16, 23].
Building off these and similar ideas, some researchers have tried
to use affect detection to effectively adjust teaching strategies for
disengaged behaviour [21], and explore how affect and engagement
relate to future student performance [11, 29].

It is clearly important to promote engagement among students
and to similarly promote positive help-seeking strategies, but it is
also the case that engagement and persistence is not always pro-
ductive. The example of “wheel spinning” behavior (c.f., [7]), for
example, illustrates the negative aspects of persistence. Wheel spin-
ning is defined as a student’s struggle to master a given skill despite
being given multiple practice opportunities; practically speaking,
wheel spinning as been previously defined as a student being un-
able to demonstrate understanding of a concept by answering three
consecutive questions correctly by the tenth item on a mastery
learning assignment [7]. In light of wheel spinning behavior, and
in consideration of the many works referenced in this section, it is
important to identify students who are truly struggling and where
the computer-provided help is failing to aid them. Toward this, it
is the goal of this work to develop a measure of student effort as
defined by engagement and attentiveness to assigned work. We
seek to distinguish students who are applying effort from those who
may appear to be exhibiting wheel spinning, but are, in actuality,
not “spinning their wheels” in the context of computer-provided
hints. This paper focuses its attention to the sub-action level, ob-
serving variations in time between requested help actions within a
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learning platform to examine these aspects of student learning and
help-seeking behavior.

3 THEORETICAL FRAMEWORK BEHIND
DECOMPOSITION OF HELP USAGE

While students work through assigned problems, regardless of the
learning platform, there is a subtle disconnect between what is
being logged and the learning processes taking place. It is certainly
the case that actions logged by a learning system provide evidence
to latent learning constructs (e.g., knowledge[10, 30]), as the ac-
tions were taken by a student and aspects of those actions (i.e.,
correctness) provide evidence of underlying cognitive and behav-
ioral processes. However, these actions are not direct measurements
of these latent attributes andmust be viewed in conjunction with ex-
pectations as to what occurs between actions logged in the system
to gain better insight into processes of learning.

Consider, for instance, the example illustrated in Figure 1. In this
example, a student begins a problem in a learning system and is able
to ultimately reach the correct solution after receiving help. From
the perspective of the system, what is logged is just four actions: the
start of a problem followed by two help requests, and an attempt
to answer with the correct solution. However, in that example, the
actions themselves are not able to represent shifts in an activity
that occurred external to the system. It is not, for example, able to
capture when the student finished reading the question and began
to think through how to formulate a response. We can hypothesize
that the student was perhaps confused or lacked the knowledge to
solve the problem in that the student requested a hint, but there is
a large degree of uncertainty as to what the true reasoning for the
action was in addition to the sequence of actions, behaviors, and
thoughts that occurred external to the system between the start of
the problem and the help request.

In order to measure these actions and behaviors, there are several
approaches that can be explored. First, the use of additional sensors
(such as video) or human observers can help record activity that
occurs outside the learning system; such methods have previously
been applied to studymindwandering [22] and student affect [8, 14],
for example. These methods, however, can be potentially intrusive,
expensive, and difficult to implement in classroom settings due to
other ethical and privacy concerns. Another method is that of self-
reports. By asking a student to reflect on their thought processes, we
may be able to gain insights into aspects of the student’s approach
to problem-solving that was missed by the system. This method,
however, can be potentially disruptive depending on when it is
asked, or unreliable if the student is not able or not willing to
articulate their approach with precision. The last method is the
examination and analysis of data to make inferences of student
activity based on the evidence provided through those actions that
are logged and the time between them. While not as definitive as
the other methods, as it is more difficult to externally validate many
of the inferences made, this method can be applied post-hoc to
large amounts of data without facing the concerns exhibited by the
other two methods.

Given the actions logged by the system, coupled with the time
between those actions, we hypothesize that we can gain insight into
the productivity of student usage of help by decomposing the time

spent after requesting help in a learning system. In the example
illustrated in Figure 1, the student read through each requested
hint and took the time to think through the new information as it
related to formulating the correct solution; it is theorized that such
students who are attending to the help would spend more time
after the hint and would be more likely to answer the following,
related problem correctly than a student who does not exhibit the
same effort. By observing the response times in conjunction with
the following actions, we hope to gain this measure of effort, even
if we are unable to specifically identify the specific latent processes
exhibited beyond this valence metric.

4 DESCRIPTION OF DATASET
For our exploratory analyses, we collected a dataset1 by randomly
sampling 20,000 student-assignment interaction logs from ASSIST-
ments [18] from the 2018-2019 and first half of the 2019-2020 school
years (i.e., before the shift to remote learning in response to the
COVID-19 pandemic). ASSISTments is a computer-based learn-
ing platform that allows teachers to assign content (primarily in
the domain of middle-school mathematics) and monitors student
progress, while supplying students with immediate correctness
feedback and, on many problems, computer-provided help in the
form of on-demand hints and scaffolding. Teachers are able to as-
sign several types of assignments including a “complete all” that
requires students to complete all assigned problems (similar to tra-
ditional paper-and-pencil assignments with the added benefit of
computer supports), as well as “skill builder” assignments, which in-
stead are mastery-based; skill builder assignments require students
to demonstrate an understanding of the material by answering 3
consecutive questions correctly on the first attempt without the
use of computer-provided aid. The data used in this paper observes
both types of assignments but is primarily composed of skill builder
work.

While working through assigned problems in ASSISTments, stu-
dents are able to make multiple attempts to answer as well as
receive aid by requesting help in the form of hints (available on
many problems in the form of either text- or video-based messages
and examples), or scaffolding questions that help break the problem
into smaller steps. Problems may contain multiple hints which may
be requested by the student, where, in all cases, the final “bottom-
out” hint provides the student with the answer. Students are not
able to move on to the next problem without eventually providing
the correct answer.

The dataset contains the action logs from students who started
work on the randomly-sampled assignments. Overall, the dataset
contains 644,095 action logs from distinct 14,824 students working
on problems across 6,569 problem sets that have a total of unique
36,441 problems. The difference between the total users and assign-
ment logs indicates that we have records for users who did more
than one assignment on the platform. The purpose of randomly
sampling student-assignment interactions in this way was an at-
tempt to create a sizeable dataset that is not based on a particular
subset of content or groups of students; the selection of 20,000 such
logs was an arbitrary decision, but we argue is sufficient to conduct

1The data and code used in this work are made publicly available at
http://tiny.cc/LAK21-28
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Figure 1: Visual representation of the student behaviour for a user interacting with a Computer-based learning platform.

the analyses and make impactful claims regarding the observed
behaviors of students therein.

In our context, an action is logged every time a user interacts
with the system. The system logs actions, for example, when the
users start the assignment, start working on a problem, make an
attempt, ask for help (as hint, explanation, or request for the correct
answer), complete a problem and complete the assignment, among
others (there are many system-level actions that can be taken de-
scribing a student ending a session and resuming, for example).
Each action is accompanied by a timestamp to indicate when each
action was taken by the user on the system. The dataset has a
unique identifier for each individual user and each assignment as
well as other descriptives incluing, for instance, the start and end
time for each assignment. The dataset also has unique identifiers to
represent the problem set and the problems the users are working
on.

As we are interested in decomposing the amount of time a user
takes between actions, we explore the data in regard to action
pairs representing sequences of recorded actions; as exemplified in
Figure 1, it is the goal of this work to take a step toward identifying
processes that occur between actions and intend to use the observed
time between actions as a means of addressing this goal. We first
combined all the actions into pairs, denoted throughout this paper
in the form “(first action, second action)” where these represent
two consecutive actions taken within the session (i.e., we do not
consider an action pair where the student logged out and resumed
before continuing). Action pairs help us calculate the amount of
time, in seconds, a user took after an action before taking the next
action. While exploring the data, we discovered that the time a
user took between first and second action ranged from close to
0 seconds to, in a small number of cases, more than an hour; as
such, we applied a natural log-transform to the student response
time to observe trends and relationships using the measure as an
approximate-normal distribution.

4.1 Action pairs considered
As it is our goal to decompose student response time in regard
to help-seeking behavior, we filtered the action pairs to include
only those involving student help requests from the system. This
work excludes the observance of scaffolding requests and instead
focuses on hints within the system; as scaffolding problems may

Table 1: filteredActionPairs of studentswho asked for a hint

Action pairs N

( Hint Request, Attempt) 808
( Hint Request, Hint Request) 414

offer hints themselves, a deeper exploration of this type of aid is
more complex and is planned as part of future work. Particularly,
there are two notable types of hint requests that existed within
the dataset: hints and explanations. The system defines these as
separate forms of help, with hints often occurring in a series (i.e.,
there may be multiple hints), while explanations are singular and
give the answer to the student following instruction or a worked
example. We found, in our dataset, there were very few samples
containing explanations, and fewer samples where the student
actually requested such an explanation. As such, we further limited
our analyses to explore only hint requests made within the system.
We also excluded requests for the last hint in the sequence, referred
to as the bottom-out hint, as this gives away the answer; we do
not expect students to attend to the given answer in the same
manner as a more-instructional hint, and therefore limit the scope
of this work to focus specifically on non-answer-giving hints. Given
this filtering to examine only hints, we will refer to help within
the analyses described in this paper as “hints” to avoid conflating
results with potential differences that may be examined in future
works regarding other forms of help.

From this, we observe two primary types of action pairs, distin-
guished by the subsequent action taken after requesting a hint in
the system. The intuition behind this is that students likely take
additional time to formulate an answer when the subsequent action
is an attempt as opposed to another hint request, or otherwise the
response time is likely to incorporate different processes that lead
to the different subsequent action. Namely, these action pairs are:

• (Hint Request, Attempt): The action pair (Hint Request, At-
tempt) represents all the instances when the user asked for a
hint from the system, and the next action the user took after
getting the hint was to attempt to answer the problem.

• (Hint Request, Hint Request): The action pair (Hint Request,
Hint Request) represents all the instances when the user
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asked for a hint from the system, and the next action the
user took was to ask for the next hint.

In order to explore the theoretical framework behind decompos-
ing help usage, we look at the instances when the user asked for
a hint or multiple hints within the first 4 actions of working on a
problem for both the action pairs. The action pair time represents
the amount of time the user spent analyzing the hint before taking
the second action in the action pair. We then z-scored the action
pair time taken (again, represented as log-time) for each action pair
and filtered the records with a value outside of the range ( -3, 3);
this filtering step is an attempt to remove very large outliers that
may influence our results in unpredictable ways. The final resulting
number of action pairs used in our analyses are shown in Table 1.

5 EXPLORATORY ANALYSES
In this section, we discuss the response time decomposition ex-
ploratory analyses conducted in examining student hint usage. As
part of this, we examine not only differences in response time, but
also explore potential systemic explanations for any differences
observed (e.g., the format and length of hints requested). We used
python for our analysis and the plots were generated using the
Seaborn data visualization library. The y-axis in the charts of this
section are the Kernel Density Estimation of the Gaussian distribu-
tion.

5.1 Analyzing action pairs
First, we observe student response time comparing the second
action taken in regard to the first action that students take on the
given problem. In other words, we hypothesize that students may
use help differently depending on if they felt confident enough
to attempt the problem before requesting a hint as opposed to
requesting a hint as the first action on the given problem. As such,
we observe first the time taken across all first actions and compare
this to only the students who request a hint as the first action on
the given problem.

5.1.1 Examining students across all first actions. We analyzed the
two sets of action pairs by plotting the log-transformed distribution
of the time taken across students exhibiting each of the action pairs.
We found that the distribution of the (Hint Request, Hint Request)
action pair to be distinctly bimodal in nature whereas the (Hint
Request, Attempt) appeared to be closer to a unimodal distribution.
Figure 2 shows the overlayed distribution of both action pairs.

The distribution illustrated in Figure 2 suggests that the users
who ask for a hint and make an attempt to answer the question
are similar to users spending more time on hints; we hypothesize
that these students may be those who spend more time attempting
to understand and appropriate the information given by a hint
before taking a second action. The alignment between the students
spending more time on hints with those students who attempt an
answer following a help request suggests that these students may
be related in their usage of the hint; of course this claim cannot be
verified from this plot alone, but does align with our theory that
students who spend more time on help may be using that time
productively to remedy gaps in knowledge. This also helps us intuit
that users in the first half of the (Hint Request, Hint Request) action
pair distribution (i.e., the left “peak” of the bimodal distribution)

Figure 2: distribution curve of (Hint Request, Attempt) and
(Hint Request, Hint Request) action pairs using natural log-
transformed values of time taken for each action pair

may not be devoting the same attention to the hint as those students
spending more time; the cause of this is unclear, however, as it could
suggest that these students are not reading or attending to the hint,
but it could also suggest that these students are able to recognize
that the hint is not helpful early and request a second hint in search
of the information they need.

5.1.2 Examining students who request a hint first. In order to further
refine our analysis, we also analyzed the response time for users
whose first action after reading a problem was to ask for a hint.
Figure 3 shows the normal distribution of both action pairs; we used
the natural log-transformed values of the two pairs as that allows us
to compare the two distributions. It is imporant to note that there are
many similarities found between this and Figure 2, with the largest
differences being seen in the shape of the (Hint Request, Attempt)
distribution; we use the description of “differences” with hesitation
here as there were very few meaningful differences between the
two distributions.

Again, while subtle, the distributions depicted in Figure 3 show
some variations. The (Hint Request, Attempt) action pairs distri-
bution, for example, appears to be slightly smoother than was
observed in Figure 2. this is rather unsurprising as we would expect
observing the distribution of this subset of students would result in
a smoother distribution, however, the smoothing shifts the mean
of this distribution in favor of longer response times. This suggests
that students who ask for a hint as the first action and make an
attempt to answer as the second action, such students are spending
more time on the requested hint. No such trend is observed for the
students who are requesting multiple hints.

5.2 Examining Potential Systemic Causes
In order to better understand our observations in regards to the
response time during hint requests, we explore the existence of
any potential systemic causes driving user behavior in both the
(Hint Request, Attempt) and (Hint Request, Hint Request) action
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Figure 3: distribution curve of (Hint Request, Attempt) and
(Hint Request, Hint Request) action pairs, when their first
action was asking for hint after reading the problem, using
natural log-transformed values of time taken for each ac-
tion pair

pairs. For the (Hint Request, Attempt) action pair, we also explored
if the correctness/incorrectness of the user’s subsequent attempt
impacted the nature of the action pair’s time distribution.

5.2.1 Video vs Text . The system can provide hints to a user as a text
or video. We wanted to explore if the format of the hint influenced
the amount of action pair time observed, particularly examining
whether this formatting could explain the bimodal distributions
observed in the previous plots. Figure 4 shows another seemingly-
bimodal distribution of the (Hint Request, Hint Request) action pair
and the shape of the distribution when we only take text hints vs
video hints; we used the log-transformed values of the two pairs
as that allows us to compare the distributions as was conducted in
the previous analysis.

Figure 5 shows the normal distribution of (Hint Request, At-
tempt) action pair and the nature of the distribution when we only
take text hints vs video hints; we used the two pairs’ natural log-
transformed values to compare the distributions.

5.2.2 Correct Attempt vs Incorrect Attempt. In observing action
pairs containing an attempt as the second action, we further ex-
amined if there were any meaningful differences in response time
when the attempt was assessed to be correct as opposed to incor-
rect. Figure 6 shows the distribution of (Hint Request, Attempt)
action pairs for these attempts. It can be seen in this figure that
students tended to spend less time on incorrect attempts, but does
not exhibit a large, meaningful difference; the distributions follow
a nearly-unimodal shape despite the observed trend.

5.2.3 Other Explored Systemic Explanations. In addition to the
systemic explanations explored above, we additionally examined
the content of hints to observe whether the length and inclusion
of visual components such as tables and mathematical formulae
explained some of the differences in response time observed in the

previous plots. These observations are summarized below; plots
are not included for these due to spacing constraints.

(1) Length of Textual Hints: We analyzed the amount of time a
user spent trying to understand a hint based on the length of
the hint. The hints were divided into 4 quartiles based on the
number of words per hint. We found users investing more
time to understand hint when they were given a shorter
hint i.e., hints with less than 18 words. We did not find a
difference in the correctness of subsequent user attempts
based on the length of the hints. While the length of hint did
correlate with the amount of time spent after the request,
the same bimodal distribution emerged as before, suggesting
that the length of hints did not explain away this observed
difference.

(2) Tables and Formulae: We found some hints contained visual
content such as tables and formulae. Performing a similar
visual analysis comparing the response time for such cases,
the resulting distributions did suggest that the inclusion of
such content is correlated with higher observed response
times, but, similar to the number of words in the hint, did
not explain the previously-observed bimodal distributions. It
is difficult to make stronger claims in regard to this finding,
however, as the presence of tables and formulae in hints was
too sparse in the data.

6 EXAMINING STUDENT EFFORT
6.1 Defining Effort
Our findings from the exploratory analysis, in the previous sec-
tion, of the response time decomposition of users upon receiving
help(hint) goes to support our theoretical model of user behavior.
As the user response distribution for (Hint Request, Hint Request)
action pair is bimodal in nature and the (Hint Request, Attempt) ac-
tion pair distribution overlaps with the second peak of the bimodal
distribution we use the information to formulate our definition of
user exhibiting effort upon receiving help from a computer-based
learning platform. In our theoretical model, we hypothesize that
the amount of time a student spends on a problem trying to solve
the problem is influenced by their understanding of the problem
and the underlying concept the problem is trying to address. The
amount of time they spend trying to understand the hint provided
by the system is influenced by their understanding of the core idea
behind the problem and the soundness of their mental model they
formulated in order to solve the problem. A student sincerely try-
ing to solve the problem would put in time understanding the hint,
recalibrating their mental model to solve the problem, and decide if
they have the answer or they need further help. Using the evidence
from our analysis we hypothesize that the students in the first hump
of the distribution for (Hint Request, Hint Request) action pair are
not putting in the effort to understand the hint hence we define
those users as exhibiting “low-effort” on the problem, the students
in the second hump, we believe, put in the effort to understand
the hint and tried to formulate an answer using the hint hence we
define those users as exhibiting “high-effort” on the problem.
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Figure 4: There are too few instances of video hint for us to draw a conclusion but the data does seem to indicate that the type
of hint does not influence the action pair response time

Figure 5: There are too few instances of video hint for us to draw a conclusion but the data does seem to indicate that the type
of hint does not influence the action pair response time

6.2 Modeling Student Effort
The students exhibiting high-effort on both action pairs (Hint Re-
quest, Hint Request) and (Hint Request, Attempt) overlap on their
time distribution for high-effort behavior; we merge our two action
pairs into a single action pair (Hint Request, Action). As our primary
interest is on decomposing user response to help and the amount
of time a user spends unpacking the hint. As this distribution is
bimodal in nature we apply Gaussian Mixture Models(GMM) to
calculate the likelihood of the time spent by the student, under-
standing the hint, is part of the distribution of high-effort users, and
the likelihood that the user is part of the distribution of low-effort
users. GMM are a probabilistic model of representing a normally
distributed subpopulation within an overall population. GMM is an
unsupervised learning algorithm that uses Expectation Maximiza-
tion to cluster the observations in a population into a subpopula-
tion using probabilistic estimation that it is part of a subpopulation
within the overall population. We clustered the bimodal distribution

Table 2: the mean(𝜇) and standard deviation(𝜎) for the high
and low effort clusters using Gaussian Mixture Modelling

mean(𝜇) standard deviation(𝜎)

Low-effort 1.7 0.757
High-effort 3.9 0.909

into two clusters using GMM; Table 2 shows the mean((𝜇)) and the
standard deviation(𝜎) of the two clusters.

We now use the mean((𝜇)) and the standard deviation(𝜎) from
the two clusters to calculate the area under curve for every response
time if it were part of the low-effort distribution and the high-effort
distribution. This provides us with insight into where the response
time falls in the low effort distribution and high effort distribution if
it were a user exhibiting low or high effort respectively. We realized
that there were three major regions in the distribution where a user
response time can fall. For the instances where the area under curve
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Figure 6: The amount of time a user spends after getting a hint is the same for students who made a correct or an incorrect
attempt

is less than 50 percent for low effort, we label them as low effort
and for the instances where the area under curve is larger than 50
percent for high effort we label them as high effort; however, for
the instance that do not meet these requirements we can intuit the
effort exhibited by the user but we cannot definitively say if they
are exhibiting high or low effort so we did not label them.

6.3 Exploring the Relationship Between Effort
and Performance Metrics

To explore the relationship between our measure of student ef-
fort and later performance metrics, we paired the action-level data
used in previous analyses with both prior and later student perfor-
mance measures. These additional measures include assignment
completion, wheel spinning in the assignment (as defined by [7]),
next problem correctness, prior percent correct (i.e. the percent of
problems answered correctly by the student prior to each observed
problem), and prior completion rates. We wanted to investigate
if the students exhibiting effort perform better in the immediate
next problem, if they are more likely to complete the assignment,
and if they are more likely to exhibit wheel spinning during the
assignment.

We used regression analyses to investigate the relationship be-
tween student effort and each of these outcome measures while
controlling for prior completion rate, prior percent correct, and
prior completion rate respectively. The observed models and re-
sults of our regression analysis are observed in Tables 3, 4, and 5,
and are discussed further in the next section.

7 RESULTS
We trained a logistic regression to explore the relationship between
effort and next problem correctness while controlling for prior
percent correct; it is important to highlight, as this is a logistic
regression, that the coefficients are reported in log-odds units and
should therefore be interpreted in terms of their magnitude rather
than in terms of standard deviations or percents as is commonly
afforded by linear regression models. We found that the model (𝑅2
= 0.048) showed that low effort behaviour, B = -0.7053, p=0.4, was

a significant predictor of next-problem correctness. This suggests
that students exhibiting low effort are more likely to answer the
next problem incorrectly. The same cannot be said for the students
who are exhibiting high effort. The regression analysis is reported
in Table 3. It is also important to note that the r-squared of the
model is relatively low, which, while it does not detract from our
findings, suggests that there are other larger factors that we did not
account for that explain the dependent variable (e.g., likely other
skill- or content-based factors).

We also examined the relationship between effort and wheel
spinning behavior while controlling for prior completion. We found
the model (𝑅2 = 0.091) found that low effort behavior, B = 1.0741,
p < 0.001, was a significant predictor of wheel-spinning behavior.
The analysis found that high effort behavior, B=-0.5815, p=0.053
was a strong indicator of wheel spinning behavior.This indicates
that the students who are exhibiting low effort on the problem
are highly likely to wheel-spin during the assignment where as
there is a strong indication that students in the students exhibiting
high effort are less likely to wheel-spin. The regression analysis is
reported in Table 4.

We also examined the relationship between effort and assign-
ment completion while controlling for prior completion. We found
the model (𝑅2 = 0.104) found neither high nor low effort to be sig-
nificant predictors of assignment completion although there was an
indication that high effort is a predictor for assignment completion.
Here, we found that the students who exhibit high effort will likely
complete the assignment however the findings were not significant.
The regression analysis is reported in Table 5.

8 DISCUSSION AND FUTUREWORKS
Our analysis found that user behavior can be categorized into ex-
hibiting low and high response times, which, in consideration of
our exploratory analyses, we posit correspond to measures of high
and low effort; we hypothesize from our findings that we are able
to identify students applying effort as evidenced by the time taken
and aspects of their subsequent action. With this definition of our
metric, We found low effort students to correlated strongly with
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Table 3: Logistic Regression analysis exploring the relationship between effort and next problem correctness while controlling
for prior percent correct (𝑅2 = 0.048)

coefficient std. err conf. interval p-value

intercept -1.7747 0.360 [-2.481, -1.069] 0.000
High effort -0.2652 0.271 [-0.797, 0.267] 0.328
Low effort -0.7053 0.343 [-1.378, -0.033] 0.040

Prior percent correct 2.2975 0.615 [1.091, 3.504] 0.000

Table 4: Logistic Regression analysis exploring the relationship between effort and wheel spinning while controlling for prior
completion (𝑅2 = 0.091)

coefficient std. err conf. interval p-value

Intercept 0.3809 0.387 [-0.378, 1.139] 0.325
High effort -0.5815 0.301 [-1.171, 0.008] 0.053
Low effort 1.0741 0.294 [0.497, 1.651] 0.000

Prior completion -1.8236 0.502 [-2.808, -0.840] 0.000

Table 5: Logistic Regression analysis exploring the relationship between effort and assignment completion while controlling
for prior completion (𝑅2 = 0.104)

coefficient std. err conf. interval p-value

Intercept -3.3584 0.484 [-4.307, -2.410] 0.000
High effort 0.3614 0.246 [-0.121, 0.844] 0.142
Low effort -0.1617 0.296 [-0.741, 0.418] 0.584

Prior completion 3.6991 0.577 [2.569, 4.829] 0.000

wheel-spinning, even more so than the high effort students. This
finding is a noteworthy contribution as it contradicts the inten-
tional definition of wheel spinning behavior; many of the students
exhibiting wheel spinning, in this way, appear to be spending little
time and effort while working through their assigned work. We
argue, and look to address in future work, that such students should
not be considered as exhibiting wheel spinning and the definition
of such behavior should be updated to consider these aspects of
student work.

This work did not explore any interaction between effort and
affect or other theories of behavior and engagement, but also may
provide insights into student behavior across problems; the cur-
rent analyses focuses at the sub-action level, and future works are
planned to explore how our findings extend across an assignment.
We are particularly interested in exploring the relationship between
our measure of student effort and previously-developed measures
of gaming behavior [25] while working on problems.

Other works have suggested that videos work better than hints in
certain contexts [24], and future works intend to explore further if
similar results may be better explained when accounting for student
effort and attention devoted to the requsted help. Additionally, in
the future, we want to investigate if the effect in such studies is
mediated by indicators of effort.

Similarly, the development of student models may benefit from
further insights into student effort and engagement. Cognitive
models such as that of Knowledge Tracing [10], for example, rely

on correctness and incorrectness of student actions for modelling
knowledge state, and we intuit that using a more continuous mea-
sure of effort might improve the performance of these types of
cognitive models.

We implore researchers and developers to use our findings and
exploration of effort to develop better measures and reports for
teachers that consider effort in the assessment of students. We
strive, in future works, to develop externally-validated measures of
student engagement and effort toward these goals.

9 CONCLUSION
This paper presents evidence that provides new insights into user be-
havior pertaining to student help-seeking behavior. User response
time can be categorized into users exhibiting high-effort and low-
effort in their hint usage before taking the next action. We con-
ducted exploratory analyses that helped to eliminate obvious sys-
temic and performance confounds and still found distinguishable
groups of students by the time devoted to hint requests. The re-
sponse time decomposition work is an essential step in quantifying
student effort while working on a problem as teachers often rely
upon the amount of effort a student exhibits in conjunction with
the student’s problem-level correctness scores in gauging student
progress while working on their assignment.

We also explored the interaction between effort and wheel spin-
ning as well as other student outcome measures. We found that
lower effort students are highly correlated with wheel spinning
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behavior, contradicting the intended definition of the behavior; we
argue that this is a significant finding as it attests to the fact that
the definition of wheel-spinning needs further work as the current
definition does not account for whether students are truly “spinning
their wheels” by applying effort.
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