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Abstract. We analyze the geometrical structure of the passage times in the last
passage percolation model. Viewing the passage time as a piecewise linear function
of the weights we determine the domains of the various pieces, which are the subsets
of the weight space that make a given path the longest one. We focus on the case
when all weights are assumed to be positive, and as a result each domain is a pointed
polyhedral cone. We determine the extreme rays, facets, and two-dimensional faces
of each cone, and also review a well-known simplicial decomposition of the maxi-
mal cones via the so-called order cone. All geometric properties are derived using
arguments phrased in terms of the last passage model itself. Our motivation is to
understand path probabilities of the extremal corner paths on rectangles in Z2, but
all of our arguments apply to general, finite partially ordered sets.

1. Introduction

Last passage percolation is a well-studied model in probability theory that is
simple to state but notoriously difficult to analyze. In recent years it has been shown
to be related to many seemingly unrelated things: longest increasing subsequences
in random permutations, eigenvalues of random matrices, long-time asymptotics
of solutions to stochastic partial differential equations, and much more. All of
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these problems are of great interest due to the asymptotic behavior of various
related statistics, neither of which are predicted by the classical strong law of large
numbers or central limit theorem. The last passage model has been a particularly
fertile ground for exploring this new frontier of probability theory due to its rich
solvability structure. For certain choices of the random inputs the last passage
model can be analyzed exactly, through various connections with representation
theory of the symmetric group and rings of symmetric polynomials.

We briefly recall the setup of the last passage percolation model on Z2. Consider
the rectangle of integer points in Z2 with lower left corner at (1, 1) and upper right
corner at (m,n), where m,n > 1. At each of the m · n integer points (i, j) we
place a random variable ω(i, j) (a weight). The variables are typically assumed to
be independent and identically distributed (iid) across points, and in this paper
we will assume that they are always positive. We then consider the set P(m,n)
of up-right paths from (1, 1) to (m,n), an up-right path being one whose steps are
always either (1, 0) or (0, 1). To each γ ∈ P(m,n) we assign a random length ℓ(γ)
that is the sum of the ω along the path, i.e.

ℓ(γ) =
∑

(i,j)∈γ

ω(i, j).

In a lot of the literature on last passage percolation, either the start weight or the
end weight of the path is left out in the length, so that concatenating paths is easier.
It turns out that in our description, it is more convenient to consider all weights.
Last passage percolation studies the maximal length over all paths, also known as
the passage time:

G(m,n) := max
γ∈P(m,n)

ℓ(γ) = max
γ∈P(m,n)

∑

(i,j)∈γ

ω(i, j).

The passage time G(m,n) is itself a random variable but its statistical distribution
(or law) is very complicated. For any fixed path γ, the law of the length ℓ(γ) is well
understood by the Strong Law of Large Numbers and the Central Limit Theorem.
The maximum length, however, is determined by the joint law which describes the
statistics of the entire collection of random lengths, and the complicating feature is
that there is a very strong correlation between these different lengths. Whenever
two paths share common vertices the random numbers at those vertices both con-
tribute to their lengths, and so knowing the length of one path gives information
about the length of the other. The more two paths intersect, the greater the correla-
tion between their random lengths, and since there are (m+n−2)!/((m−1)!(n−1)!)
paths but only m · n vertices the correlation effects are significant.

Remarkably though, these correlation effects can be overcome when the choice
of the input weights is assumed to be iid across vertices (i, j) and coming from
either the geometric or exponential distribution. In these cases exact formulas can
be computed for the distribution function of G(m,n). The formulas are somewhat
complicated, however, and typically involve determinants of linear operators on the
sequence space ℓ2, with the operator determined by certain families of orthogonal
polynomials. Nonetheless, the formulas are somewhat explicit and tractable enough
to perform asymptotic analysis as m,n → ∞. Three very important and well known
such asymptotic results are the following:
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• the limit shape (the almost sure, non-random limit of G(⌊nx⌋, ⌊ny⌋)/n as
n → ∞, as a function of x and y, whose existence follows from Kingman’s
subadditive ergodic theorem),

• the magnitude and distribution of the fluctuations of the passage time
G(⌊nx⌋, ⌊ny⌋) as n → ∞ (the growth of the fluctuations being n1/3 and the
convergence of the centered and appropriately normalized passage time to
the Tracy-Widom law),

• and the magnitude of the transversal fluctuations of the maximal path away
from the diagonal (the maximal path from (1, 1) to (n, n) is thought to go
distance n2/3 away from the main diagonal, and is known to do so in certain
solvable models).

The limit shape results are originally due to exact bijections between LPP and the
TASEP process (Rost, 1981; Aldous and Diaconis, 1995; Seppäläinen, 1997), or for
stationary models that exist for certain special weight distributions (O’Connell and
Yor, 2001; Cator and Groeneboom, 2005; Balázs et al., 2006; Seppäläinen, 2012).
More recent work (Georgiou et al., 2016, 2017) provides variational formulas for the
limit shape for very general weight distributions in terms of infinite dimensional
objects called cocycles, although obtaining explicit results for these formulas is
generally difficult. Exact Tracy-Widom limits for fluctuations are originally based
on connections with generalized permutations and the Robinson-Schensted-Knuth
algorithm (Johansson, 1998), often based on ideas from random matrix theory
(see also Priezzhev and Schütz, 2008; Georgiou and Ortmann, 2018 in the case of
Bernoulli weights). In some cases these results have been re-understood through
different means Johansson (2010), but in general all methods to date require a
special choice of random input (see also Corwin, 2014, 2018 for further references).

Nonetheless, it is widely believed that there is a certain universality aspect to the
last passage model. This specifically refers to the distribution of the fluctuations of
the passage time G(⌊nx⌋, ⌊ny⌋) as n → ∞, which is believed to be the same Tracy-
Widom law for a wide class of random inputs, not just the special cases mentioned
above. This is analogous to the Central Limit Theorem for sums of iid random
variables, where the fluctuations of the sum follow the Gaussian distribution for a
very broad class of input variables. While universality in the Central Limit Theorem
is now understood via many different techniques and proofs, less progress has been
made for universality results of the last passage model.

This paper explores a possible method for studying various aspects of the last
passage model using tools from combinatorics and geometry. The main idea is to
embed the model into a suitable high-dimensional space, determined by the random
input weights, and in this space study the geometry of the last passage problem.
The basic setup is relatively simple. For any fixed path γ its length ℓ(γ) is clearly a
linear function of the weights ω, and therefore the passage time G(m,n) is piecewise
linear. The main purpose of this article is to determine the geometry of the domains
of the pieces, each one of which corresponds to a different path. The main strength
of this approach is that it is purely geometric, with no probabilistic input at all until
a measure is put on the space of weights. This flexibility allows one to study many
different types of random inputs with the same underlying geometric framework,
and it is our hope that it will allow for a new conceptual framework for the last
passage problem while at the same time shedding new light onto previously solvable
models. Our interest in this approach was primarily driven by one simple question:
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among all paths in P(n, n) (take m = n for simplicity), which one is the most likely
to be the maximizer? Even in the exactly solvable cases this does not seem to be
an easy question to answer, as we explain later in Section 6. While much attention
has been paid to the paths with transversal fluctuations n2/3, in particular the
recent work Dauvergne et al. (2018) proves the existence of scaling limit for these
objects in terms of the so-called Airy sheet (Corwin et al., 2015), less attention has
been paid to the more extreme paths. We are quite confident that the most likely
maximal path is the extreme one that goes straight up from (1, 1) to (1, n) and then
straight right from (1, n) to (n, n) (or its symmetric version that goes right and then
up). We do not have a proof but the intuition is straightforward: the weights that
are picked up by the extreme path are shared by a relatively small number of other
paths, and therefore the extremal path should have a much larger portion of the
environment space in which it is longest. For example, the extremal path gets the
weight at (1, n) entirely to itself. In contrast, the paths going through the interior
share the weights they pick up with many other paths, meaning each individual
path has a hard time distinguishing itself as the longest. In fact, we expect that the
probability of the extremal path being longest is substantially larger (in n) than
the probability of the middle path being longest (the middle path being the one
that alternates between up and right steps). This heuristic fits with the expectation
that the transversal fluctuations are larger than the n1/2 magnitude obtained by the
uniform measure on paths. In fact some sort of behavior of this type seems necessary
to obtain superdiffusive fluctuations, although on its own it does not explain why
the magnitude of the fluctuations should be precisely n2/3. We expect that the
n2/3 corresponds to the region where the low probabilities for the “middle paths”
balances out the fact that the bulk of the paths are in the middle. In other words,
even though we believe that the extremal path (which has transversal fluctuation
of order n) is the mode of the path distribution, a typical sample from the path
distribution has transversal fluctuations of much smaller magnitude because there
are so many more paths there.

In the last section of the paper we discuss some other results that we believe
follow from this intuition, such as a negative correlation result between the location
of the maximizer and the path length itself. The present paper comes from a desire
to solidify our intuition by understanding more about the structure of the parts
of environment space that makes a given path the longest. We also hope it will
help to separate out how much of the expected universal behavior is due to the
geometry of the last passage time function and how much is due to the particular
probability distribution on the weights. One advantage of our framework is that it
extends beyond the traditional study of LPP on Z2. In fact all that is required is
a notion of directedness, which allows us to carry out the analysis on general finite
posets.

General Setup and Main Results. Although we are largely motivated by the last
passage problem on Z2, our approach assumes nothing other than the paths being
directed. On Z2 this is forced by the assumption that paths are up-right (and hence
not allowed to go backwards), but in fullest generality we can force a direction by
studying the problem on an arbitrary partially ordered set (poset). This has the
advantage of allowing for different correlation structures among path lengths, which
is determined by the structure of the underlying poset as follows.
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Let (P,≤) be a finite poset. The general last passage problem will be considered
on P , which we often think of in terms of its Hasse diagram (definition below),
and so we will commonly refer to the elements of P as vertices. We will often say
that vertices u,v ∈ P are in order if u ≤ v or v ≤ u, and otherwise we say they
are out of order. We will assume throughout that P is connected, meaning that
its Hasse diagram is connected as a graph, since otherwise we may consider the
problem individually on the different connected components. The cover relations
of the poset will be denoted by ⋖, where we recall that for v,w ∈ P , v⋖w means
that v < w and there is no u ∈ P such that v < u < w. The Hass, for example,e
diagram of P is the directed graph with P as its vertex set and an edge from v

to u iff v ⋖ u. On a general poset the paths of the last passage problem are the
maximal chains of P , the set of which we denote by ΠP . Recall that a maximal
chain is an ordered subset {v1, . . . ,vn} of P such that v1 ⋖v2⋖ . . .⋖vn and there
are no elements u or w such that u ⋖ v1 or vn ⋖w. Intuitively we see that this
corresponds to all nearest-neighbor paths in the Hasse diagram of P that are as
“long” as possible.

For the (positive weight) last passage problem on P we place a weight ω(v) ∈
R+ = [0,∞) on each element v ∈ P . The vector ω ∈ RP

+ is collectively referred
to as the weight, and the length of each element of π ∈ ΠP is the the sum of the
weights along the path:

ℓ(π) :=
∑

v∈π

ω(v).

Note that we can naturally associate each path π ∈ ΠP to a vector in RP
+ (which

we also call π) via π(v) = 1 {v ∈ π}, where 1 is the indicator function. Via this
association we have that the length is simply the standard inner product between
the path and the weight vector, i.e.

ℓ(π) = 〈ω, π〉.

The passage time of the poset P , under the weight vector ω, is the largest length
of all possible paths, i.e.

GP = GP (ω) := max
π∈ΠP

〈ω, π〉.

More generally we may consider the vector of passage times determined by the
weight vector ω, which encodes the length of the longest path up to each given
vertex and is defined as

GP (v) = GP (v;ω) := max
π∈ΠP (v)

〈ω, π〉,

where ΠP (v) is the set of all maximal chains in the subposet of elements below v

(the so-called lower set of v, see below for a definition), extended to RP by adding
zeros. Then the passage time can be written as

GP = max
v∈P

GP (v).

The collection of passage times GP (v) can also be built up from the weight vector
ω via the recursion

GP (v) = ω(v) + max
u:u⋖v

GP (u) (1.1)
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with the “initial condition” GP (v) = ω(v) if v is a minimal element of P . Con-
versely, given the vector of passage times GP (v) this recursion can be inverted to
solve for the corresponding weight vector ω via

ω(v) = GP (v) − max
u:u⋖v

GP (u),

again with GP (v) = ω(v) for v minimal. Regardless of how GP is constructed, for
P fixed and ω allowed to vary, this definition implies that GP is a piecewise linear
function of ω, and the main purpose of this article is to determine the regions on
which the function is equal to each of the various linear maps that define it. Since
in this case the maps are defined by the paths π there is a natural region in RP

+

associated to each path: the set of weight vectors ω that give path π the longest
weight. More precisely, this is the set

C(π) :=
{

ω ∈ RP
+ : GP (ω) = 〈ω, π〉

}

=
{

ω ∈ RP
+ : 〈ω, π〉 ≥ 〈ω, π′〉 for all π′ ∈ ΠP

}

.
(1.2)

From this definition and especially the second equality we immediately see that
each set C(π) is a polyhedral cone, namely a finite intersection of half-spaces of RP .
The inequalities defining the half-spaces are those of the form 〈ω, π− π′〉 ≥ 0, with
π and π′ regarded as vectors in RP

+, but also those inequalities implicitly given by
the condition that the cone is a subset of RP

+. Explicitly, the cone being a subset
of RP

+ means that ω(v) ≥ 0 for all v ∈ P , and these inequalities are an important
part of (1.2).

As with all polyhedral cones the sets C(π) are both convex and invariant under
positive scaling, since the half-spaces that define them are also and these properties
are preserved under intersection. Both properties also follow from their interpre-
tation via the last passage model, since if two weight vectors make the same path
maximal then so does their sum and any positive scalar multiple.

Beyond the fact that the maximal sets are polyhedral cones, a more detailed de-
scription of the structure of the sets is required to perform any meaningful analysis.
There are two common descriptions of a polyhedral cone: via the set of half-spaces
that bound it (the H-decomposition), or via the extreme rays that span it (the V-
decomposition). For a polyhedral cone there are at most finitely many half-spaces
and extreme rays that define it, and in this article we will determine both for each
given path π. It turns out that both descriptions have a very beautiful structure,
and moreover can be determined solely by working with their description in terms
of the last passage model. The V-decomposition is already known in Stanley (1986)
but our argument is different in that it is phrased in terms of the last passage model.
To the best of our knowledge our determination of the H-decomposition is new, and
we regard it as the most significant of our results. In both cases the idea is that the
geometry of each maximal set C(π) is naturally encoded in the poset P , and our
arguments are based on a comparison of π to the other paths in ΠP . In an intuitive
sense we are analyzing the ability of the other paths to compete with π to be the
maximal one. We will prove two main theorems on the H and V decompositions
of the sets C(π). We begin with the H-decomposition, which requires the following
definitions.

Definition 1.1. A vertex v ∈ P is a corner of a path π ∈ ΠP if v ∈ π and there
exists another path π′ ∈ ΠP such that π \ v ⊂ π′ and v 6∈ π′.
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The notion of a corner of a path can be easily visualized in the Hasse diagram
of the poset.

Definition 1.2. Fix π, π′ ∈ ΠP . The disorder graph of π and π′, denoted by
∆(π, π′), has as its vertex set the symmetric difference π△π′ (with π and π′ seen
as subsets of the poset), and an edge connecting u,v ∈ π△π′ iff u and v are out of
order.

An important property of ∆(π, π′) is that it constitutes a bipartite graph, with
one part consisting of the vertices belonging to π and the other part consisting of the
vertices belonging to π′. The bipartiteness follows because two vertices belonging
to the same path are always in order. See Figure 1.1 for examples of the disorder
graphs.

With these definitions in hand we now state the H-decomposition.

Theorem 1.3 (H-decomposition of maximal sets). For each path π ∈ ΠP the
minimal set of inequalities that define the cone C(π) are those of the form:

i) ω(v) ≥ 0 for v ∈ P\π,
ii) ω(v) ≥ 0 for v ∈ π but not a corner of π,
iii) 〈ω, π−π′〉 ≥ 0 for paths π′ ∈ ΠP \{π}, whose disorder graph with π is connected.

The second and third conditions are motivated by their meaning on Z2, which
for the second condition is geometrically intuitive and in the third condition means
that π and π′ form at most a single loop. See Figure 1.1 and the remark below for
more.

Note that the statement of Theorem 1.3 is that this is the minimal set of in-
equalities needed to define the cone, so that removing any one of them would lead
to a larger set than C(π). These inequalities define the facets of the cone, the
co-dimension one boundary sets of C(π). Note that (1.2) already defines C(π) via
these various inequalities, but what Theorem 1.3 amounts to showing is that many
of these facets are redundant. Reducing the inequalities to only the irredundant
ones allows for a fuller analysis of the cone, and is usually required for computa-
tional algorithms. In more probabilistic language Theorem 1.3 is describing the
event that a given path π is longest in terms of the smallest possible number of
intersections of events of the form {π is longer than π′}.

Remark 1.4. For posets of the form [1,m] × [1, n] in Z2 the condition that the
disorder graph ∆(π, π′) is connected is equivalent to saying that π and π′ form a
single loop. That is, π and π′ may start out the same, diverge for a while, and then
recombine with each other, but after recombining cannot diverge again. Diverging
more than once would mean that there are multiple loops between π and π′, which
is equivalent to saying that π−π′ can be written as the sum of the individual loops.
Since each individual loop is already a face of C(π) the sum is redundant. It is also
easy to see that π and π′ forming multiple loops is equivalent to the disorder graph
being disconnected, since between any two consecutive loops there is a subpath in
π ∩ π′ that connects the loops together. This subpath prevents the two loops from
being connected in ∆(π, π′). See Figure 1.1.

We prove Theorem 1.3 for the H-representation in Section 3. In Section 4 we also
describe a related object called the order graph, which forms connections based on
ordering relations between the supported vertices of two extreme rays of C(π) (see
the start of Section 2 for the definition of extreme rays). We use the order graph
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(1, 1)

(9, 9)

π

π
′

(1, 1)

(9, 9)

π

π
′

Figure 1.1. Two examples of paths π and π′ on the subposet
[1, 9]2 of Z2, with the associated disorder graphs on the right. In
the disorder graph elements of π\π′ are in grey while elements of
π′\π are in black. In the first example the disorder graph is discon-
nected, while in the second graph it is connected. On rectangles
in Z2 connectedness of the disorder graph is equivalent to π and
π′ forming a “single loop”.

to determine when two extreme rays of C(π) form a two-dimensional boundary face
of the cone, see Theorem 4.2.

To describe the extreme rays of the cones requires the notion of an antichain of
the poset P and a particular geometric embedding of it, which we define next.

Definition 1.5. An antichain of the poset P is a subset of P such that no two
elements are in order. We will naturally embed an antichain A ⊂ P into an element
a ∈ RP

+ via a(v) = 1 {v ∈ A}.

In particular, an antichain can contain at most one vertex from a given path in
ΠP , since by definition the elements along a path are in complete order with each
other. This leads to the following theorem.

Theorem 1.6 (V -decomposition of maximal sets). For each path π ∈ ΠP the ex-
treme rays of the cone C(π) are precisely the geometric embeddings of the antichains
which intersect π exactly once.

Theorem 1.6 gives the following characterization of an extreme ray: a vector in
RP

+ is an extreme ray of C(π) if and only if there is one non-zero entry along the
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(1, 1)

(9, 9)

π

Figure 1.2. A single path π on the subposet [1, 9]2 of Z2, and
three of the antichains of the poset that intersect π. The two
vertices in white form one antichain, the four in gray form a second,
and the two in black form the third. Note that the vertices within
an antichain must be out of order with each other, the vertices in
two distinct antichains do not need to be out of order. To convert
these antichains into extreme rays of C(π) simply put an entry of
1 at each element of the antichain, and an entry of zero elsewhere.

path π, and all other non-zero entries have the same value and are out of order
with each other in the poset. We will canonically take the non-zero entry to be 1,
although by scaling invariance it could clearly be any positive value. Commonly
we will use the notation:

Definition 1.7. For each fixed π ∈ ΠP we let E R(π) denote the set of extreme
rays of the polyhedral cone C(π).

The structure of extreme rays is essentially already stated by Stanley Stanley
(1986) through what he calls the chain polytope. See also the earlier works refer-
enced within Stanley (1986). The chain polytope can be formed by intersecting
each maximal cone C(π) with the unit cube [0, 1]P and then taking the union of
what remains over all paths π. Our description of the extreme rays for each in-
dividual cone C(π) is not a very extensive refinement of Stanley’s result, but our
proof is different in that it is framed entirely in terms of the last passage model.
The antichains turn out to be precisely the directions in which one can perturb the
path lengths while keeping the longest path the longest, and this turns out to be
the key argument in our proof. This is laid out in Section 2.

The explicit structure of E R(π) also allows us to determine its size for certain
types of posets, in particular for [1,m] × [1, n] ⊂ Z2. See Theorem 2.9. For all
but pathological posets and paths the number of extreme rays in E R(π) is much
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greater than the dimension |P | of the ambient space RP , meaning that the maximal
cones C(π) are far from simplicial. Nonetheless it is possible to use the extreme
rays in E R(π) to give an explicit simplicial decomposition of each maximal cone
C(π), without the need to introduce additional rays.

Theorem 1.8. For each π ∈ ΠP there is a decomposition of C(π) into disjoint
simplicial cones (disjoint up to boundary intersections) such that the extreme rays
of each simplicial cone only use elements from E R(π).

This theorem can be found in Stanley (1986, 2012) so we only explain it briefly in
Section 5. On Young diagrams (which we regard as subposets of Z2) it is equivalent
to using Young tableaux to partition the space into simplices. From this partitioning
we obtain the following result:

Corollary 1.9. There exists functions Λ1, . . . ,Λ|P | : R
P
+ → R such that

GP (ω) =

|P |
∑

i=1

Λi(ω).

The main purpose of this corollary is that it converts a complicated maximum
of random variables into a sum of the same number of random variables. While
sums are usually easier to handle, the mapping from ω to Λ is piecewise linear and
induces a complicated correlation structure on the Λi random variables, even when
the underlying ω distribution is nice. This representation of the passage time as a
sum of random variables is equivalent to the corner growth representation of the
last passage model Seppalainen (2009); Romik (2015), in which the elements of the
poset are “filled in” at random times that obey the ordering of the poset. We briefly
explain this connection towards the end of Section 5. In Section 6 we give some ex-
planation of how the iid exponential distribution for the weight variables interacts
nicely with the geometry of the last passage function; this gives some additional
intuition into why the exponential distribution tends to produce the most precise
results. In Section 7 we describe how the geometrical description of the maximal
cones can be used to give an alternative description of the passage time for iid
Uniform(0, 1) weights, in terms of Stanley’s order cone (Stanley, 1986). Finally, in
Section 8 we list a series of open problems that this work has led us to.

Terminology and Notation: Throughout we write R+ = [0,∞). Functions
ω : P → R and vectors ω ∈ RP are identified in the natural way. Subsets A ⊂ P
are often associated with their indicator functions, considered as elements of RP . If
ω ∈ C(π) we often say “π is maximal under ω", or equivalently that “π is a maximal
path for ω". Subset inclusions ⊂ and ⊆ are the same throughout, for strict inclusion
we write (.

2. Extreme Rays

In this section we concentrate on proving Theorem 1.6. We recall that for a
vector ω to be an extreme ray of a polyhedral cone means that it can only be
written as a (positive) weighted sum of (positive) multiples of itself, i.e. if ω, ω1, ω2

are all in the same polyhedral cone then

ω = αω1 + βω2 with α, β > 0 =⇒ ω1, ω2 ∈ Span+{ω}.
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Another way of saying this is that the only linear subspace of directions in which
one can move infinitesimally away from ω and still remain in the cone is Span{ω}.
We will use this type of argument throughout our analysis, which leads to the
following definition:

Definition 2.1. For a path π ∈ ΠP and a vector ω ∈ C(π), we define the pertur-
bation space of ω in the cone C(π) by

Dπ(ω) =
{

σ ∈ RP : ∃ ǫ > 0 such that ω ± ǫσ ∈ C(π)
}

.

If ω 6∈ C(π) we set Dπ(ω) = ∅.

Note that as long as ω ∈ C(π) then scale invariance of the cone implies that
Span{ω} ⊂ Dπ(ω). Furthermore, from this definition it is straightforward to verify:

Lemma 2.2. The perturbation space Dπ(ω) is a linear subspace of RP . Moreover,
if ω ∈ C(π) then it is an extreme ray of C(π) if and only if Dπ(ω) = Span{ω}.

The previous lemma will be our key tool for proving Theorem 1.6. First we
will show that all antichains of P that intersect π have only their span in their
perturbation space, and then conversely that all weight vectors that make a given
path maximal and have only their span in their pertubation space must be maximal.
To this end we first note the following simplification.

Remark 2.3. Fix a path π. Then to determine the perturbation space of a vector
ω ∈ C(π) it is enough to consider only the non-zero entries of the vector that can
be perturbed. Indeed, the zero entries can never be perturbed since necessarily the
perturbation in either the positive or negative direction will take them out of RP

+,
which violates that C(π) is a subset of RP

+. We will use this simple fact repeatedly
so we define:

Definition 2.4. For a vector ω ∈ RP we define the support of ω to be the subset
of vertices on which ω is non-zero, i.e. supp(ω) := {v ∈ P : ω(v) 6= 0}. We let
zero(ω) = P\supp(ω) = {v ∈ P : ω(v) = 0}.

Remark 2.5. In all proofs that follow we assume that supp(ω) 6= ∅, since that only
happens in the trivial case of ω equal to the zero vector.

Proof of Theorem 1.6: Antichains are extreme rays: Fix π ∈ ΠP and suppose that
a is an antichain of P . The first observation is that all paths have length either 0
or 1 under the weight vector ω = a (recall that we naturally associate the subset a
with a vector through its indicator function; see Definition 1.5). This follows since
the vertices along a path are in order and the elements of a are completely out of
order, hence a given path can intersect a at most once. If a is non-zero at some
vertex of π then clearly π has length 1 under a and therefore is maximal under a,
i.e. a ∈ C(π).

Now let σ ∈ Dπ(a). By the last remark we can assume that σ has zero entries at
all vertices where a has zero entries, i.e. supp(σ) ⊂ supp(a). Now suppose that σ is
not constant on supp(a). Choose ǫ > 0 such that a− ǫσ ≥ 0 (this is possible since
a is strictly positive on supp(a)). Then under the weight vector a+ ǫσ the maximal
paths are those which were maximal under a and pass through vertices in supp(a)
at which σ achieves its maximal value, which by the non-constancy assumption is
not all of supp(a). If π is not one of these paths then it is no longer one of the
longest, so by definition a + ǫσ 6∈ C(π), and this holds for all ǫ > 0. If π is one of
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these paths then the non-constancy assumption means it cannot be longest under
a− ǫσ, again for all ǫ small enough. Thus if σ is not constant on supp(a), it cannot
be in Dπ(a), which completes the proof. �

To prove the opposite direction is relatively simple but slightly lengthier, so we
break the proof into several smaller supporting results. First recall the following
terminology:

Definition 2.6. For A ⊂ P the lower set L(A) of A is the set of elements below
A in P , i.e. L(A) = {u ∈ P : u ≤ v for some v ∈ A}. Similarly the upper set is
U(A) = {u ∈ P : u ≥ v for some v ∈ A}. We also define their boundaries ∂L(A)
and ∂U(A) as the maximal and minimal elements of L(A) and U(A), respectively.

Note that both ∂L(A) and ∂U(A) are antichains of P , and from this one imme-
diately has that:

Lemma 2.7. A subset A ⊂ P is an antichain of P iff ∂L(A) = A = ∂U(A).

Proof : See Stanley (2012, Section 3.1), where upper and lower sets are referred to
as order ideals. �

We will use this lemma for the subset supp(ω) determined by a weight vector
ω ∈ RP . In particular we use it to show that:

Lemma 2.8. If ω is an extreme ray of C(π) then necessarily supp(ω) is an antichain
of P .

Proof : For shorthand write ∂L = ∂L(supp(ω)) and ∂U = ∂U(supp(ω)). We will
show that ∂L = ∂U . First observe that any path π′ can pass through at most one
element from each of ∂L and ∂U , since both are antichains and the path is ordered.
Suppose π′ is one of the paths which is longest under ω. Define S = π′ ∩ supp(ω).
Since S ⊂ π′, it has a unique minimal element v. If v 6∈ ∂U , there exists w < v

with ω(w) > 0 (since v ∈ U(supp(ω))). Then we can construct a path π′′ such that
w ∪ S ⊂ π′′, which would mean that π′′ is longer than π′ under ω; contradiction.
This shows that π′∩∂U 6= ∅, and in a similar manner we can show that π′∩∂L 6= ∅.
Hence for all such π′ we have that 〈π′,1∂L〉 = 1 = 〈π′,1∂U 〉, where 1∂L and 1∂U

are the indicator functions of ∂L and ∂U , respectively.
Now let ǫ1 = min{〈π′, ω〉 − 〈π′′, ω〉 : 〈π′, ω〉 > 〈π′′, ω〉}, ǫ2 = min{ω(v) : v ∈

supp(ω)}) and ǫ = min(ǫ1, ǫ2). Note that ǫ > 0. Define a vector σ ∈ RP by

σ =
ǫ

2
(1∂L − 1∂U ).

Because ǫ ≤ ǫ2, we have that ω−σ ≥ 0 (because supp(σ) ⊂ ∂L∪∂U ⊂ supp(ω), so
that σ is zero at all vertices where ω is). We proceed by contradiction. Using from
above that 〈π′, 1∂L〉 = 1 = 〈π′, 1∂U 〉 for any π′ which is longest under ω (including
π itself), we have

〈π′, ω ± σ〉 = 〈π′, ω〉 ±
ǫ

2
(〈π′, 1∂L〉)− 〈π′, 1∂U 〉) = 〈π′, ω〉,

so that all paths which were longest under ω are still longest under ω ± σ (here we
use that ǫ ≤ ǫ1, so that second longest paths cannot overtake any of the longest
paths). In particular π itself is still a longest path, so ω ± σ ∈ C(π), which implies
that σ ∈ Dπ(ω). But the assumption ∂L 6= ∂U also gives that σ 6∈ Span{ω}, which
is a contradiction to ω being an extreme ray. �
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To complete the proof of Theorem 1.6 it only remains to be shown that each
extreme ray must be constant on its support.

Proof of Theorem 1.6: Extreme rays must be constant on antichains: Let ω be an
extreme ray of C(π). Then by the last lemma its support is an antichain of P . Thus
π can pass through at most one element of supp(ω), but it must pass through at
least one since otherwise its length would be zero and it could not be maximal.

Let v be the element of supp(ω) that π passes through. If ω(v) < ω(w) for some
w ∈ supp(ω) then π could not have been longest under ω since any path that goes
through w would be longer. If, on the other hand, ω achieves its maximal value at
v then let A = {w ∈ supp(ω) : ω(v) > ω(w)}. Then under ω the maximal paths
are those which pass through supp(ω)\A. Let ǫ = min{ω(v) − ω(w) : w ∈ A},
which we note is strictly positive, and then define a vector σ ∈ RP by

σ =
ǫ

3
(1supp(ω)\A − 1A).

Then any path π′ which was longest under ω is still longest under ω±σ, and hence
σ ∈ Dπ(ω). But if A 6= ∅ then σ 6∈ Span{ω}, and this says Dπ(ω) is strictly larger
than Span{ω}. This contradicts that ω is an extreme ray of C(π). �

Finally, we end this section by proving a formula for the number of extreme rays
of a maximal cone C(π) on the subposet [1,m]× [1, n] of Z2.

Theorem 2.9. Let m,n > 1 and P = [1,m] × [1, n] as a subposet of Z2 with the
componentwise ordering. Write a path π ∈ ΠP as the ordered collection of ver-
tices (ui, vi) with (u1, v1) = (1, 1), (um+n−1, vm+n−1) = (m,n), and (ui+1, vi+1) −
(ui, vi) ∈ {(0, 1), (1, 0)}. Then the number of extreme rays in E R(π) is

m+n−1
∑

i=1

(

n+ ui − vi − 1

ui − 1

)(

m− ui + vi − 1

vi − 1

)

. (2.1)

Proof : Consider a rectangle of the form [1, a]× [1, b] for integers a, b ≥ 1, considered
as a subposet of Z2. Any antichain of [1, a]× [1, b] can have at most one non-zero
entry in each row and column, thus at most a ∧ b non-zero entries overall. To
construct antichains with exactly k ≥ 1 non-zero entries do the following: indepen-
dently choose subsets A ⊂ {1, . . . , a} and B ⊂ {1, . . . , b} with |A| = |B| = k, and
from them form k vertices by pairing the elements of A, sorted in increasing order,
with the elements of B, sorted in decreasing order. By construction these k vertices
are all out of order and hence form an antichain. Conversely, given any antichain
of with exactly k ≥ 1 vertices the corresponding subsets A and B are determined
uniquely. Therefore the block [1, a]× [1, b] has exactly

J(a, b) =

a∧b
∑

k=1

(

a

k

)(

b

k

)

antichains. By Vandermonde’s identity

1 +

a∧b
∑

k=1

(

a

k

)(

b

k

)

=

a∧b
∑

k=0

(

a

k

)(

b

k

)

=

(

a+ b

a

)

.

Now for the formula for |E R(π)|, recall that by Theorem 1.6 every antichain must
contain exactly one vertex along the path. The sum in (2.1) partitions the elements
of E R(π) according to which vertex is included. Each such vertex (ui, vi) naturally
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breaks the poset [1, a]× [1, b] into four quadrants, and any extreme ray containing
(ui, vi) in its support must have the rest of its non-zero entries in the northwest and
southeast quadrants. More precisely, the support must be in the complementary set
of L((ui, vi))∪U((ui, vi)). The northwest quadrant is precisely [1, ui−1]× [vi+1, n]
and the southwest one is [ui +1,m]× [1, vi − 1]. The total number of extreme rays
containing (ui, vi) can then be broken into four distinct types: those with non-zero
entries in both quadrants, those with non-zero entries in only one of the quadrants,
and the single extreme ray supported only at (ui, vi). Therefore the total number
of extreme rays of [1,m]× [1, n] that have (ui, vi) in their support is

(1 + J(ui − 1, n− vi))(1 + J(m− ui, vi − 1))

Combining this with Vandermonde’s identity completes the proof. �

3. Facets

In this section we prove Theorem 1.3 on the facets of the maximal cones C(π),
again using reasoning that is purely in terms of the last passage model. For each
path π ∈ ΠP we start with the definition (1.2) of C(π) and determine which in-
equalities that define it are redundant and which are necessary. The necessary ones
are precisely the facets of the cone.

To accomplish this we let Nπ be the set of normal vectors which describe the
half-spaces defining C(π), i.e.

Nπ = P ∪ {π − π′ : π′ ∈ ΠP \{π}} .

Note that we are considering the elements of P as the basis vectors δv, v ∈ P , in
this case. Then for each η ∈ Nπ we define C(π; η) to be the same polyhedral cone
as C(π) but after removing the hyperplane with normal η, i.e.

C(π; η) = {ω ∈ RP : 〈ω, η′〉 ≥ 0 for all η′ ∈ Nπ\{η}}.

Geometric considerations show that η is redundant if C(π; η) = C(π) and necessary
otherwise. Equivalently, η ∈ Nπ is necessary iff C(π) is a proper subset of C(π; η)
i.e. C(π) ( C(π; η). Our strategy is to go through the normal vectors in Nπ and,
for each one, try to find a weight vector that is in C(π; η) but not in C(π). That
this strategy works can be seen by a duality argument, see the remark at the end
of this section for more details. It can be used to quickly determine which of the
inequalities of the form ω(v) ≥ 0 are necessary and which are redundant.

Proof of Theorem 1.3: Weights off the path must be positive: Suppose v ∈ P\{π}.
Take any ω ∈ C(π) and make the entry at v a negative value. That is, set ω′(u) =
ω(u) for u 6= v, and ω′(v) = −1 (we use −1 for concreteness). Under ω′ the length
of π is unchanged, and the length of any other path does not increase, so π is still
maximal under the new vector. This proves that ω′ ⊂ C(π;v)\C(π), hence C(π) is
a proper subset of C(π;v) and ω(v) ≥ 0 is a necessary inequality.

Proof of Theorem 1.3: ω(v) ≥ 0 for v a corner of π is redundant: If v is a corner
of π then there is another path π′ such that π \ {v} ⊂ π′ and v 6∈ π′. Define
S = π′ \ π (note that S 6= ∅) and ω ∈ C(π;v). Since π is still the longest path for
ω (but possibly ω is negative at v), and therefore at least as long as π′, we get

ω(v) ≥
∑

v′∈S

ω(v′).
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But for ω ∈ C(π;v) we still have that ω(v′) ≥ 0 for all v′ ∈ S, hence ω(v) ≥ 0
also by the proof above (that weights off the path must be positive). Therefore
inequality ω(v) ≥ 0 is implied by the other inequalities, hence C(π;v) = C(π) and
ω(v) ≥ 0 is redundant.

Proof of Theorem 1.3: ω(v) ≥ 0 for v on the path but not a corner is necessary:
Let L > 0, choose 0 < ǫ < L, and consider a weight vector ω defined by

ω(u) =







−ǫ, u = v

L, u ∈ π\{v}
0, u 6∈ π

Then ω is negative at v, so ω 6∈ C(π). Now suppose π′ is longer than π under ω,
where π′ is some other maximal chain π′. Since the only positive weights are in
π\{v}, the only way this is possible is if π\{v} ⊂ π′. But this would imply that v

is a corner of π, and this is a contradiction. Since ω is non-negative on P\{v}, we
see that ω ∈ C(π;v), making this inequality necessary. �

The necessity and redundancy of the normal vectors of the form π − π′ proof
requires a better understanding of the properties of the disorder graph, which leads
to the following proposition. We begin by reviewing the notion of saturated chains
within a poset.

Definition 3.1. A saturated chain of a poset P is a totally ordered subset A ⊂ P
such that if v,w ∈ A and v < w then there is no u ∈ P\A such that v < u < w.
On finite posets (which are all that we consider) this means that in every pair of
successive elements the larger one covers the smaller one.

We will also use the following notation for the neighbor set of a vertex in ∆(π, π′).

Definition 3.2. For v ∈ ∆(π, π′) let Nv denote its set of neighbors in the disorder
graph.

Part (i) of the next proposition shows that if v ∈ π\π′ then Nv is a subset of π′,
and vice versa.

Proposition 3.3. Suppose π and π′ are two different paths (maximal chains) on
P . The disorder graph ∆(π, π′) has the following properties.

(i) ∆(π, π′) is a bipartite graph, where the two parts are π \ π′ and π′ \ π.
(ii) If ∆(π, π′) is connected then π\π′ and π′\π are saturated chains in P .
(iii) If v ∈ ∆(π, π′) then Nv is a non-empty saturated chain in P . Hence if

v ∈ π\π′ (resp. π′\π) then Nv is a non-empty interval in π′ (resp. π).
(iv) If v < u for v,u ∈ π \ π′ then

minNv ≤ minNu and maxNv ≤ maxNu.

The analogous statement holds for v,u ∈ π′ \ π.
(v) The minimal element of π\π′ must be out of order with the minimal element

of π′\π, and hence are connected in the disorder graph. The same holds for
the maximal elements.

(vi) Suppose ∆(π, π′) is not connected. Then there are v ∈ π, v′ ∈ π′ (possibly
v = v′) such that

{u ∈ π\π′ : u < v} ∪ {u′ ∈ π′\π : u′ < v′}

and {u ∈ π\π′ : u ≥ v} ∪ {u′ ∈ π′\π : u′ ≥ v′}
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are not connected in ∆(π, π′), and these four sets are non-empty.

Proof :

(i) Clearly, all vertices in π are ordered, so there is no edge between these vertices,
and the same holds for vertices in π′.

(ii) Let u,w ∈ π\π′. Suppose v ∈ π and u < v < w. We want to show that
∆(π, π′) being connected implies that v ∈ π\π′. Suppose not. Then it must be
that v ∈ π∩π′, from which it follows that every element in U(v)∩∆(π, π′) is in
order with every element in L(v)∩∆(π, π′) (they are in order through v) hence
these two sets are disconnected subsets of ∆(π, π′). This is a contradiction
unless either U(v) ∩∆(π, π′) = ∅ or L(v) ∩∆(π, π; ) = ∅, which is impossible
because u ∈ L(v) ∩∆(π, π′) and w ∈ U(v) ∩∆(π, π′).

(iii) We will prove a slightly more general statement: for any v ∈ P \ π, the set
Ov of elements in π that are out of order with v is a non-empty saturated
chain. We do this by contradiction, so first suppose Ov is empty. This means
that v is in order with every element of π, contradicting the fact that π is a
maximal chain. Hence Ov is non-empty, and by definition it is a subset of the
maximal chain π, thus it must have a unique minimal element denoted by u0

and a unique maximal element denoted by u1. It is possible that u0 = u1.
Now suppose u ≥ u0. Then it cannot happen that u < v, since this would
imply that u0 < v, and we know that u0 and v are out of order. A completely
analogous argument shows that if u ≤ u1, then it cannot happen that u > v.
Therefore if u0 ≤ u ≤ u1 then u must be out of order with v, so Ov is indeed
a saturated chain.

(iv) We proceed by contradiction. If minNu < minNv then there must be a
u′ ∈ Nu such that u′ < minNv. The latter means that u′ 6∈ Nv, which
implies that u′ must be in order with v, i.e. either u′ < v or v < u′.
The latter is impossible because it would imply v < minNv and we know
that these two vertices are out of order. Thus u′ < v. But also v < u

by assumption, so therefore u′ < u, which contradicts the fact that u′ ∈ Nu.
Thus minNu < minNv is impossible, but because Nu and Nv are both subsets
of the ordered chain π′ the only remaining option is that minNv ≤ minNu.
The statements for the max follow from completely similar arguments.

(v) Suppose v is the minimal element of π\π′ and v′ is the minimal element of
π′\π. If v < v′ was true, then v could be “inserted” into the path π′ to form
a longer chain, i.e.

(π ∩ π′ ∩ L(v)) ∪ (π′ ∩ U(v))

would be a chain in P that contains v and π′ (recall that L(v) and U(v)
are the lower and upper sets of v, see Definition 2.6). But since v 6∈ π′ this
contradicts that π′ is a maximal chain. For the analogous reason we cannot
have v′ < v. Therefore v and v′ must be out of order.

(vi) By part (v) the minimal element of π\π′ is connected to the minimal element
of π′\π in the disorder graph. Let C be the connected component of ∆(π, π′)
containing them both. Then C 6= ∆(π, π′) by assumption. Thus we may
suppose that there exists a minimal v ∈ π\π′ that is not in C (the case
of a minimal element of π′\π not in C is handled similarly). For this v it
automatically follows that {u ∈ π\π′ : u < v} is non-empty (it includes
the minimal element of π\π′) as is {u ∈ π\π′ : u ≥ v} (it contains v). By



Passage Time Geometry of LPP 227

part (iii), there is a minimal v′ ∈ π′\π such that v and v′ are out of order
(i.e. v′ is the minimal neighbor of v in the disorder graph). Then we must
have v′ 6∈ C, because if v′ ∈ C then v being connected to v′ in the disorder
graph would imply v ∈ C also, which contradicts the definition of v. Thus
{u ∈ π′\π : u < v′} is non-empty (it contains the minimal element of π′\π
which is in C and therefore different from v′), as is {u ∈ π′\π : u ≥ v′}. This
shows that each of the four sets is non-empty.

Finally, we show that the two sets are not connected in the disorder graph.
Let u∗ ∈ π\π′ with u∗ < v. Then by definition of v this means u∗ ∈ C.
Therefore u∗ and v′ cannot be connected in the disorder graph (else it would
imply v ∈ C) so therefore u∗ < v′. Thus u∗ cannot be connected in the
disorder graph to {u′ ∈ π\π′ : u′ ≥ v}. Further u∗ already cannot be
connected to {u ∈ π\π′ : u ≥ v}. Thus {u ∈ π\π′ : u < v} is not connected
to {u ∈ π\π′ : u ≥ v} ∪ {u′ ∈ π′\π : u′ ≥ v′}, and by an analogous argument
the latter set is also not connected to {u ∈ π′\π : u < v′}. This completes
the proof. �

Now we return to the redundancy and necessity of inequalities of the form 〈π −
π′, ω〉 ≥ 0.

Proof of Theorem 1.3: If ∆(π, π′) is disconnected then π − π′ is redundant.
By part (vi) of Proposition 3.3, there exists v ∈ π and v′ ∈ π′ such that v is
above every vertex u′ < v′, and v′ is above every vertex u < v, and these two
sets are non-empty. Let π1 be the path which follows π′ until just before v′ and
then switches to v and follows π afterwards. Then 〈π − π1, ω〉 ≥ 0 on C(π;π − π′).
Similarly, let π2 be the path which follows π until just before v, then switches to
v′ and follows π′ afterwards. Then 〈π − π2, ω〉 ≥ 0 on C(π;π − π′). But since
π − π1 + π − π2 = π − π′, this implies that 〈π − π′, ω〉 ≥ 0 automatically on
C(π;π − π′), which means that π − π′ is redundant (or C(π;π − π′) = C(π)). �

Proof of Theorem 1.3: If ∆(π, π′) is connected then π − π′ is necessary.
We need to show that the cone C(π;π − π′) is strictly larger than C(π), mean-
ing that there is a weight ω ∈ RP

+ under which π′ is the unique longest path and π
is the second longest path (although π may be tied for second longest with several
other paths). We will give an explicit such weight vector. To do so we write π\π′

as u0 ⋖ u1 ⋖ . . . ⋖ uℓ, recalling that π\π′ is a saturated chain in P because the
disorder graph is connected (Proposition 3.3, part ii). Recall that we denote the
upper set of u by U(u). The claimed weight vector ω is

• ω(v) = 1 for v ∈ π′,
• ω(u0) = |π′\π| − |(π′\π) ∩ U(u0)| − 1, and
• ω(ui) = |(π′\π) ∩ U(ui−1)| − |(π′\π) ∩ U(ui)| for i = 1, . . . , ℓ,
• ω(v) = 0 otherwise.

Note that all weights are non-negative, since U(ui) ⊂ U(ui−1) and there exists at
least one vertex in π′ \ π that is not an element of U(u0) (the lowest element of
π′ \ π is out of order with u0, by part (v) of Proposition 3.3). Under this weight
vector the length of π′ is 〈π′, ω〉 = |π′|, since there is weight one on each element
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of π′. Furthermore, the length of π under ω is

〈π, ω〉 = 〈π ∩ π′, ω〉+ 〈π\π′, ω〉

= |π ∩ π′|+ ω(u0) + ω(u1) + . . .+ ω(uℓ)

= |π ∩ π′|+ |π′\π| − 1− |(π′\π) ∩ U(uℓ)|

= |π′| − 1

= 〈π′, ω〉 − 1.

The fourth equality follows because uℓ, the highest element of π\π′, is out of order
with the highest element of π′\π and hence no element of π′\π can be above uℓ.
Thus |(π′\π)∩U(uℓ)| = 0. Now since ω has only integer entries, any paths with dis-
tinct weights must have lengths that differ by at least one, hence 〈π, ω〉 = 〈π′, ω〉−1
shows that π is necessarily a second longest path. Thus ω satisfies the required con-
ditions so long as there is no other path (distinct from π and π′) with the same
length as π′ under ω. Since the non-zero weights in ω are only distributed along
π∪π′, any such path would have to switch between π and π′, while also containing
the common part π ∩ π′.

We start by proving that switching from π to π′ will not increase the length of
a path. To do this we show that wherever we switch along π, the remaining weight
available along π′ is the same as the remaining weight available along π. Suppose
that ui for i ≥ 1 is the first weight along π that we do not use, meaning that ui−1 is
the last element along π that we still go through. Then the weight available along
π′ by making this switch is |U(ui−1) ∩ (π′\π)|. On the other hand, had we stayed
on π the remaining weight we would have picked up on π\π′ is

ℓ
∑

j=i

|(π′\π) ∩ U(uj−1)| − |(π′\π) ∩ U(uj)| = |(π′\π) ∩ U(ui−1)|.

Again the last equality uses that |(π′\π) ∩ U(uℓ)| = 0. This proves that making a
switch from π to π′ and staying on π′ is never profitable.

Now consider a switch from π′ to π. Let v′ be the element of π′\π that we switch
from and ui be the first element of π\π′ that it is possible to switch to from v′.
Then it must be that v′ < ui. Let w′ be the unique element in π′ that covers v′

(so it is the next point on π′ after v′). It cannot be that ui < w′, since otherwise
the path π′ could be extended by going from v to ui to w′; this would contradict
that π′ is a maximal chain. Thus w′ ∈ π′\π also. Now suppose ui−1 < w′.
Then {u0, . . . ,ui−1} is not connected in ∆(π, π′) to the set {u′ ∈ π′ : u′ ≥ w′},
while {ui, . . . ,ul} and {u′ ∈ π′ : u′ < w′} are not connected either: this would
imply that ∆(π, π′) is not connected. Thus ui−1 < w is impossible, and therefore
w′ 6∈ U(ui−1). This implies that

|(π′\π) ∩ U(w′)| > |(π′\π) ∩ U(ui−1)|.

But the left hand side is how much weight would be picked up along π′\π by staying
on π′ after v′, while the right hand side is the weight that would be picked up along
π\π′ by switching from v′ to ui, since

|(π′\π) ∩ U(ui−1)| =
ℓ
∑

j=i

|(π′\π) ∩ U(uj−1)| − |(π′\π) ∩ U(uj)| =
ℓ
∑

j=i

ω(uj).

Thus it is more profitable to stay on π′ than to switch to π.
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3 0

1 0

2

2 0

1 0

1

Figure 3.3. Two paths π, π′ on the subposet [1, 9]2 of Z2, and the
vertices of the disorder graph on the right. The vertices of π\π′

are in grey, those of π′\π are in black. On the right is the weight
vector in C(π;π − π′) described in the proof of Theorem 1.3 (all
unlabeled vertices have zero weight). Note that π′ has length 12
and π has length 11, and there are no other maximal chains in the
poset with length greater than 11.

Together, these two facts imply that π′ is the unique longest path, and therefore
that ω ∈ C(π;π − π′) \ C(π). �

Remark 3.4. A more standard way of proving Theorem 1.3 would be to use the
dual cone

C(π)∗ = {ξ ∈ RP : 〈ξ, ω〉 ≥ 0 for all ω ∈ C(π)},

which defines the set of half-spaces containing C(π) (through their normal vectors).
The extreme rays of C(π)∗ are exactly the normals to the facets of C(π), and argu-
ments similar to those in Section 2 can be used to verify which vectors are extreme
rays of the dual cone. We chose the exposition above since it is more in the spirit
of the last passage model, but the duality argument is also useful in its own right.
For example, it makes clear the assertion that η is necessary iff C(π) ( C(π; η),
since on the dual side it corresponds to the statement that a cone becomes smaller
when an extreme ray is removed from it. Moreover, the duality argument in this
case is made much simpler by the nature of the extreme rays to C(π), as proved in
Theorem 1.6. Indeed, using that theorem the dual cone can be rewritten as

C(π)∗ = {ξ ∈ RP : 〈ξ, a〉 ≥ 0 for every antichain a with supp(a) ∩ supp(π) 6= ∅}.
(3.1)

The only candidates for extreme rays of the dual cone are vectors of the form ξ = δv
or ξ = π − π′, and in that case it is clear that 〈ξ, a〉 is always either 0 or 1, for
any antichain a that intersects π exactly once. Using this fact, one can show that
a vector ξ of the type either δv or π − π′ is an extreme ray of C(π)∗ if and only if

⋂

a∈E R(π):
〈ξ,a〉=0

Span(a)⊥ = Span(ξ), (3.2)
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where E R(π) is the set of extreme rays of C(π). This simple fact can be used
to make a relatively quick determination of the extreme rays of the dual cone.
Specifically, for the ξ of the form π − π′ the relevant antichains are those which
are supported on one vertex of π\π′ and one vertex of π′\π, with the two vertices
being out of order to maintain the antichain condition. This forces that any vector
in the left hand side of (3.2) must have entries with opposite values at each such
pair of vertices, and thus on each connected component of ∆(π, π′) the entries on
each partite set within the component must be the same, and the negative of the
common entry on the other partite set.

4. Two-Dimensional Faces of Maximal Cones

Fix a path π ∈ ΠP . In this section we will describe when two extreme rays
a1, a2 ∈ E R(π) form a two-dimensional face of C(π). There are several equivalent
definitions of what this means, and we will use one that has a description in terms
of the last passage problem. Clearly since a1 and a2 are in C(π) so too is their sum
a1 + a2. Then a1 and a2 form a two-dimensional face precisely when there are only
two linearly independent directions from which one can perturb away from a1 + a2
and remain in the cone C(π). Formally this means

a1, a2 form a two-dimensional face of C(π) ⇐⇒ Dπ(a1 + a2) = Span{a1, a2}.
(4.1)

We will assume throughout that a1 and a2 are distinct, otherwise they certainly
do not form a two-dimensional face. Since they are extreme rays this means there
must be at least one vertex where a1 or a2 takes on the value one and the other
is zero. It is possible that there are vertices at which both a1 and a2 take the
value one, but excluding the case a1 = a2 means that supp(a1) and supp(a2) are
necessarily distinct. With this in mind we state the following result about edges.
It relies on an object which we define next, called the order graph.

Definition 4.1. For two extreme rays a1 and a2 of a maximal cone C(π), their
order graph is the bipartite graph G(a1, a2) with one part being the vertices in
supp(a1)\supp(a2), the other part being the vertices in supp(a2)\supp(a1), and an
edge placed between two vertices iff they are in order.

With this definition in hand the result is:

Theorem 4.2. Two extreme vectors a1, a2 of C(π) form a two-dimensional face in
the cone C(π) iff their order graph G(a1, a2) is connected.

Observe that the order graph and the theorem don’t make any reference to the
vertices in supp(a1) ∩ supp(a2). Those vertices would only make trivial changes to
the order graph. Since they appear in both extreme rays the natural choice would
be to include the vertex in both partite sets with an edge between them. However,
such vertices cannot be in order with any of the other vertices from either a1 or
a2 since they are extreme rays. Therefore they would only appear in the graph as
isolated components, and we will see in the proof that their presence would only
make trivial changes to the statement of the theorem.

Also note that because a1 6= a2 the order graph is always non-empty, but it is
possible that one of the parts supp(a1)\supp(a2) or supp(a2)\supp(a1) is empty.
In that case the order graph is connected iff the non-empty part consists of exactly
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(1, 1)

(9, 9)

π

Figure 4.4. A path π in the subposet [1, 9]2 of Z2, along with two
extreme rays of the cone C(π) (in white and grey). Every vertex
of the antichains/extreme rays is in the order graph, but the order
graph is not connected because of the isolated grey vertex in the top
left. Hence these two extreme rays do not form a two-dimensional
face of C(π).

one element. Thus it is always possible to build two-dimensional faces of C(π) by
picking an arbitrary a1 ∈ E R(π) and then forming a2 by adding one element of P
that is out of order with supp(a1), if such an element exists. Adding more than one
out of order element will not form a two-dimensional face. As the theorem shows,
however, not all two-dimensional faces come about from this type of construction.

In the rest of this section we prove Theorem 4.2. We begin with simplifications
of (4.1).

Lemma 4.3. For ω ∈ C(π) the perturbation space Dπ(ω) of Definition 2.1 is also
equal to

Dπ(ω) = Span {a ∈ E R(π) : ∃ ǫ > 0 s.t. ω ± ǫa ∈ C(π)} .

Proof : Define the set

E = {a ∈ E R(π) : ∃ ǫ > 0 s.t. ω ± ǫa ∈ C(π)} .

Comparing with the definition of Dπ(ω) we see that E = E R(π)∩Dπ(ω) ⊂ Dπ(ω),
and hence Span(E) ⊂ Dπ(ω). For the reverse inclusion, suppose σ ∈ Dπ(ω) so that
there exists ǫ > 0 such that ω ± ǫσ ∈ C(π). Since ω ± ǫσ are in the cone C(π) they
are positive linear combinations of at least some elements of E R(π). That is, there
exist finite sets F,G ⊂ E R(π) such that ω + ǫσ and ω − ǫσ are strictly positive
linear combinations of all extreme rays in F and G respectively. But then ω, as the
mean of these two vectors, will be a strictly positive combination of all elements
of F ∪ G. Since it is a stricly positive combination one can perturb away from
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ω in the direction of any extreme ray in F ∪ G and remain in C(π), so therefore
F ∪G ⊂ E. Using the latter fact, and writing ǫσ = ω + ǫσ − ω, we see that σ is a
linear combination of extreme rays in E, hence σ ∈ Span(E). �

Remark 4.4. Suppose a1, a2 ∈ E R(π). Clearly a1 and a2 are always in C(π).
Therefore, using Lemma 4.3, a1 and a2 forming a face is equivalent to the fact that
for all a ∈ E R(π)

a1 + a2 ± ǫa ∈ C(π) ⇐⇒ a = a1 or a2,

or, more succinctly, that E R(π) ∩Dπ(a1 + a2) = {a1, a2}.

Using the last remark and the properties of extreme rays it is possible to greatly
reduce the number of extreme rays a ∈ E R(π) that are possibly in Dπ(a1 + a2).

Lemma 4.5. Let a be an extreme ray of C(π). Then a ∈ Dπ(a1 + a2) iff a is zero
at all vertices where both a1 and a2 are (i.e. supp(a) ⊂ supp(a1) ∪ supp(a2) =
supp(a1 + a2)) and any path that is maximal under a1 + a2, is also maximal under
a.

Proof : First suppose a ∈ Dπ(a1 + a2). Then the vector a1 + a2 − ǫa must be non-
negative at every vertex. Thus if a1 and a2 are both zero at some vertex then so
must be a.

For the second part, suppose that π′ is a maximal path for a1 + a2. Note that
π is a maximal path for all the vectors a1 + a2, a and a1 + a2 ± ǫa. So using that
〈a1 + a2, π − π′〉 = 0 and 〈a1 + a2 ± ǫa, π − π′〉 ≥ 0, we see that 〈a, π′〉 = 〈a, π〉.
This shows that π′ is also a maximal path for a.

For the reversed statement, suppose that supp(a) ⊂ supp(a1)∪supp(a2) and that
all paths maximal under a1 + a2 are also maximal under a. For ǫ small enough,
a1 + a2 − ǫa is still non-negative at every vertex. Now consider a path π′. If
〈a1 + a2, π〉 > 〈a1 + a2, π

′〉, then again for ǫ small enough and for all such π′ we
would have

〈a1 + a2 ± ǫa, π − π′〉 > 0.

Now suppose that 〈a1 + a2, π
′〉 = 〈a1 + a2, π〉, so π′ is a maximal path for a1 + a2.

Then it is also maximal under a, so we get

〈a1 + a2 ± ǫa, π − π′〉 = 0.

This shows that indeed a ∈ Dπ(a1 + a2). �

In geometric terms the previous lemma can be recast as saying that a ∈ E R(π)∩
Dπ(a1 + a2) iff supp(a) ⊂ supp(a1 + a2) and

a ∈
⋂

π′∈ΠP :

〈a1+a2,π−π′〉=0

Span(π − π′)⊥.

However, it is simpler to recast it in terms of the order graph.

Lemma 4.6. Let a be an extreme ray of C(π). Then a ∈ Dπ(a1 + a2) iff the
following three conditions simulaneously hold:

(1) supp(a) ⊂ supp(a1) ∪ supp(a2).
(2) For every edge (v,w) ∈ G(a1, a2) either a(v) = 1 or a(w) = 1 (but not

both).
(3) If v ∈ supp(a1) ∩ supp(a2) then a(v) = 1.
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Proof : Suppose a ∈ Dπ(a1 + a2). The first condition follows immediately from
Lemma 4.5. Now suppose (v,w) ∈ G(a1, a2). This means that v and w are in
order, and hence there exists a path π′ passing through both v and w. Therefore
π′ is maximal under a1 + a2 (a path can pick up at most one vertex of an extreme
ray, since all its vertices are out of order). But then by Lemma 4.5 π′ is also
maximal under any a ∈ E R(π) ∩ Dπ(a1 + a2). Since π′ can’t pass through any
other vertices from supp(a1) ∪ supp(a2) other than v or w, a must be non-zero at
either v or w in order for π′ to be maximal under a (here we use Condition 1).
However a can’t be non-zero at both, otherwise a would be not be extreme.

For v ∈ supp(a1) ∩ supp(a2) any path that passes through v is longest under
a1 + a2, and hence must also be longest under a. But this implies that a(v) = 1.

Now we wish to prove the reverse implication. Suppose π′ is maximal under a1+
a2. Since π is maximal under both a1 and a2, either there exists an edge in G(a1, a2)
or supp(a1) ∩ supp(a2) 6= ∅. In both cases we would have that 〈π′, a1 + a2〉 = 2
(otherwise π′ would not be maximal). If π′ picks up two vertices supp(a1)∪supp(a2),
then Condition 2 implies that 〈π′, a〉 = 1, so π′ is maximal under a. If π′ picks up a
vertex v in supp(a1)∩ supp(a2), then Condition 3 implies that a(v) = 1, so also in
that case π′ is maximal under a. Now Lemma 4.5 implies that a ∈ Dπ(a1+a2). �

This allows us to finish the proof of the theorem.

Proof of Theorem 4.2: First assume that a1 and a2 form a two-dimensional face.
Then a ∈ Dπ(a1+a2)∩E R(π) implies that a = a1 or a = a2. Suppose C ⊂ G(a1, a2)
is a connected component, strictly smaller than G(a1, a2). Define a ∈ RP in the
following way: a(v) = 1 for all v ∈ supp(a1)∩supp(a2), all v ∈ C∩supp(a1) and all
v ∈ (G(a1, a2)\C)∩ supp(a2). For all other v ∈ P a(v) = 0. Note that a ∈ E R(π):
two vertices in supp(a) cannot be in order, since all elements of C are out of order
with all elements of G(a1, a2)\C. Furthermore, define vi (for i = 1, 2) as the unique
element of supp(π) ∩ supp(ai). If v1 = v2, then v1 ∈ supp(a1) ∩ supp(a2), so
a(v1) = 1. If v1 6= v2, then they are in order, so they are either both in C (so
a(v1) = 1), or both in G(a1, a2) \ C (so a(v2) = 1). In all of these cases we have
that 〈π, a〉 = 1. It is also clear that a satisfies the three conditions of Lemma 4.6, so
we conclude that a ∈ Dπ(a1+a2)∩E R(π). However, a cannot be equal to a1 or a2:
there exists at least one vertex v ∈ C. If v ∈ supp(a1) \ supp(a2), then a(v) = 1.
If v ∈ supp(a2) \ supp(a1), then a(v) = 0. In both cases we have a 6= a2. Since
there exists also at least one vertex in G(a1, a2) \ C, we also see that a 6= a1. We
now contradict the assumption we started with, so G(a1, a2) must be connected.

For the reverse statement, we use a similar approach. Suppose a ∈ Dπ(a1+a2)∩
E R(π). Then a must satisfy the three conditions of Lemma 4.6. There also must
be at least one vertex v ∈ G(a1, a2). Suppose v ∈ supp(a1) \ supp(a2) (the other
case follows the same arguments). Suppose a(v) = 1. Since G(a1, a2) is a connected
bipartite graph and a satisfies Condition 2 of Lemma 4.6, it follows that a must
be 0 on supp(a2) \ supp(a1) and 1 on supp(a1) \ supp(a2), and therefore (together
with Condition 3 of Lemma 4.6) a = a1. If, on the other hand, a(v) = 0, then by
the same reasoning we would have that a = a2. This proves that a1 and a2 form a
two-dimensional face. �

Remark 4.7. We note that the definition of the order graph seems to somehow be
“dual” to the definition of the disorder graph, especially one if considers paths and
antichains as being in duality. However the order graph describes dimension 2 faces
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of the maximal cones, while the disorder graph describes the codimension 1 facets.
We are unsure of the exact reason for this discrepancy.

5. A Simplicial Decomposition of Maximal Sets

The analysis of polyhedral cones in a high-dimensional space is much simpler
when the cones are simplicial, which we recall means the following:

Definition 5.1. A polyhedral cone is simplicial iff its extreme rays form a basis
for the ambient space.

The major consequence of this fact is that every point in the cone can be uniquely
written as a positive, linear combination of the extreme rays, whereas the uniqueness
fails for a non-simplicial cone. Put another way, a simplicial cone is the image of a
one-to-one linear transformation of the positive orthant of the ambient Euclidean
space (the map that sends the standard basis vectors to the extreme rays of the
cone), and as a result integrals over the simplicial cone can be transformed into
integrals over the positive orthant. The results of Section 2 show that the number of
extreme rays of a maximal cone C(π) is typically much larger than the dimension |P |
of the Euclidean space that the problem is embedded into, and hence the cones are
far from simplicial. However, computations can be made tractable by partitioning
the polyhedral cone into a disjoint union of simplices (disjoint up to measure zero
boundary intersections), and general theory ensures that such a partition always
exists. In fact, it is always possible to find a decomposition such that the extreme
rays of every simplical cone are also extreme rays of the original cone. In this
section we describe a general scheme for finding such a decomposition for the last
passage model. Although we found this scheme independently, it already appears
in Stanley (1986).

The key is to consider the set of upper sets of the poset, sometimes also called the
order ideals. Recall that U ⊂ P is an upper set if v ∈ U and v ≤ u implies u ∈ U .
Further recall that ∂U is the set of minimal elements of U , which clearly forms an
antichain, and this establishes a bijection between upper sets and antichains. In
the context of the last passage model this bijection is very natural: if an antichain
is the weight vector then its corresponding upper set is the vector of passage times,
which encodes the maximal length up to each given vertex.

Definition 5.2. For a poset P the set of all upper sets of P , ordered by inclusion,
is itself a poset called J(P ).

It is well known and straightforward to see that J(P ) is in fact a distributive
lattice, meaning that any two elements of J(P ) have a unique least upper bound
and greatest lower bound that are, in this case, given by the union and intersection
of the elements, respectively. The unique minimal element of J(P ) is the empty set
and the unique maximal element is P itself. Furthermore, J(P ) is graded of rank
|P | and in this case the rank function ρ(U) of U ∈ J(P ) is simply the cardinality of
U . In particular the maximal chains of J(P ) all contain |P |+1 elements and can all
be written in the form U0⋖U1⋖ . . .⋖U|P | where each lower set Uj contains exactly
j vertices in P . For a review of these concepts see Stanley (2012, Chapter 3).

The maximal chains of J(P ) can be used to produce a simplicial decomposition
of the maximal sets C(π). The construction is best explained through an object
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called the order cone of P , which is a mild generalization of the order polytope of
Stanley (1986).

Definition 5.3. Define the order cone OC (P ) of P to be the subset of vectors in
RP

+ that obey the ordering of the poset, i.e.

OC (P ) :=
{

η ∈ RP
+ : v ≤ w =⇒ η(v) ≤ η(w)

}

.

It is straightforward to verifty that OC (P ) is a polyhedral cone, but also that it is
a proper subset of RP

+.

Theorem 5.4. Let U0 ⋖ U1 ⋖ . . .⋖U|P | be a maximal chain in J(P ). The conical

combinations of the antichains ∂U1, ∂U2, . . . , ∂U|P |, embedded as vectors in RP
+,

form a simplicial cone in RP
+. Moreover the set of all such simplicial cones forms

a partition of RP
+ (up to measure zero boundaries).

Proof : J(P ) forms a simplicial decomposition for OC (P ) in the following way: for
any η ∈ OC (P ) and for k = 1, 2, . . . , |P | let vk be the vertex at which η achieves
its kth smallest value. These vk are well-defined so long as η doesn’t take on
the same value at multiple vertices, which is Lebesgue almost all of OC (P ). Let
U∗
k = {vi : i ≥ k} for k = 1, . . . , |P | and U∗

0 = ∅. Then each U∗
k is an upper

set of P , due to the η obeying the order relation, and since U∗
k ⊂ U∗

k+1 with
U∗
k+1\U

∗
k = {vk} it follows that U∗

0 ⋖ U∗
1 ⋖ . . . U∗

|P | is a maximal chain in J(P ).
Thus each η ∈ OC (P ) produces a maximal chain in J(P ), and furthermore the
set of vectors η which produce any particular maximal chain forms a simplicial
cone in OC (P ). It is in fact a canonical simplicial cone, since it is determined by
an ordering of the η variables, and as such the indicator functions of the upper
sets U∗

1 , U
∗
2 , . . . , U

∗
|P | are its extreme rays. Since each vector in OC (P ) uniquely

determines one of these simplicial cones (Lebesgue almost surely), it follows that
we have a simplicial decomposition. Moreover this construction is reversible: every
maximal chain {Uk}k=0,...,|P | in J(P ) determines a sequence vk+1 := Uk+1\Uk and
the simplicial cone {η ∈ RP

+ : 0 ≤ η(v1) ≤ η(v2) ≤ . . . ≤ η(v|P |)} is in OC (P ).
To complete the proof we now associate each simplicial cone in OC (P ) to one

in RP
+. Use the linear mapping that takes Ui → ∂Ui for i = 1, . . . , |P |, which

is invertible as a transformation of RP due to the bijection between upper sets
and antichains. Hence it takes the simplex with extreme rays Ui to a simplex with
extreme rays ∂Ui, which is in RP

+ since the ∂Ui are. Note that it is a different linear
map for each maximal chain {Uk}k=0,...,|P |, and hence a different linear map applied
to each simplex defined by the maximal chain. Each mapping is simply the map
from the passage time vector back to the weight vector. Since each weight vector
uniquely determines an ordering of the passage times (Lebesgue almost surely) one
sees that disjoint simplices in OC (P ) are mapped to disjoint simplices in RP

+ (up
to measure zero boundaries). Moreover, since there is a bijection between weight
vectors and the vector of passage times all of RP

+ is covered by these mappings from
OC (P ) to RP

+. This completes the proof. �

Taking the above as an algorithm for producing simplicial cones, the next step
is to associate them to the maximal sets C(π) for π ∈ ΠP . By Theorem 1.6 it is
clear that the simplicial cone of Theorem 5.4 is a subset of C(π) iff the support of
each of its extreme rays ∂Ui intersects the support of π. The next result shows
that there is exactly one such path π, and that we can generate it directly from the
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sequence of extreme rays. The basic algorithm is to start at the element of P with
the longest passage time and then moving backwards to the element below it with
the next longest passage time, repeating until arrival at a minimal element.

Theorem 5.5. Let U0 ⋖ U1 ⋖ . . . ⋖ U|P | be a maximal chain in J(P ) and C be
its associated simplicial cone. For k = 1, 2, . . . , |P | let vk = Uk\Uk−1. Define an
integer-valued sequence gi by g1 = 1 and

gj+1 = min
{

k : vk ⋖ vgj

}

,

until reaching the first integer m such that vgm is a minimal element of P . Then
the reversed subsequence πi = vgm−i+1

is a path in ΠP , and moreover C ⊂ C(π).

Proof : That π is a maximal chain in ΠP is immediate from the way it is constructed
as a sequence of vertices one below the next. The construction is well-defined since
each vertex in P appears exactly once in the sequence vk. That π is defined as a
reversed subsequence is only so that the elements along it are in increasing rather
than decreasing order. Finally, to see that C ⊂ C(π) simply observe that every
extreme ray ∂Ui contains (exactly) one vertex in π. This is again by construction:
vg1 is in ∂Ui for i < g2, since Ui does not contain a vertex below vg1 . For the same
reason we have that vgj ∈ ∂Ui for gj ≤ i < gj+1. The last element vgm is in ∂Ui

for gm ≤ i ≤ |P |. This shows that every antichain ∂Ui is in C(π), by Theorem 1.6,
and since the maximal sets C(π) are disjoint for different π (up to measure zero
boundaries) this shows that C ⊂ C(π). �

Remark 5.6. There is also a simplicial decomposition of OC (P ), and hence of
RP

+, by lower sets. This can be seen via the standard bijection between upper
and lower sets, which relates the two through the bijection from upper sets to
antichains and then antichains to lower sets. The decomposition works in the same
way as the above, with each maximal chain in the poset of lower sets (ordered
by inclusion) determining a simplex in OC (P ) which is then linearly mapped to
a simplex in RP

+. In fact, the bijection between upper and lower sets also shows
that there is a bijection between maximal chains of each, and it follows that a
maximal chain of upper sets produces the same simplicial cone (in RP

+, not in
OC (P )) as the corresponding maximal chain of lower sets. Since upper sets have a
natural interpretation as passage time vectors of antichains we prefer to make the
description in terms of upper sets.

Remark 5.7. The maximal chains in P are also in bijection with the linear extensions
of P : the set of bijections σ : P → {1, . . . , |P |} such that v ≤ w =⇒ σ(v) ≤ σ(w).
The bijection is defined by letting Uk = {v ∈ P : σ(v) ≤ k}, with U0 = ∅. As such
the linear extensions simply correspond to the ordering of the passage time vector
(GP (v) : v ∈ P ), with the ordering being well-defined for Lebesgue almost all ω.
This implies the connection to the order growth model that we explain below.

Remark 5.8. The path produced by each maximal chain of J(P ) is often referred
to as the Schützenberger or jeu-de-taquin path (see Fulton, 1997 for review and
Romik and Śniady, 2015 for related results on infinite Young tableaux). While each
maximal chain in J(P ) determines the maximal path for a simplicial cone of weight
vectors, each given path π ∈ ΠP is typically produced by many maximal chains of
J(P ). Intuitively one expects that the probability that a given path is the longest
one should be larger for those paths produced by more maximal chains, although
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this is not entirely precise because it does not take into account the probability of
each simplicial cone/maximal chain under a given weight distribution. Enumerating
the number of a maximal chains which produce a given path π also appears to be
difficult, even on posets of the form [1,m]× [1, n].

The proof of Theorem 5.4 contains the useful fact that each maximal chain in
J(P ) induces a linear map from RP into itself defined by Ui 7→ ∂Ui for i = 1, . . . , |P |.
Coordinatewise the mapping works out to be of the form η 7→ ω where

ω(v) = η(v) −max
u⋖v

η(u),

if v is not a minimal element of P , and ω(v) = η(v) if it is. It is worth recording
the following important but well known observation (see Stanley, 2012, Chapter 3
for example).

Lemma 5.9. For each maximal chain U0 ⋖ U1 ⋖ . . . ⋖ U|P | of J(P ) the linear

mapping of RP to itself defined by Ui 7→ ∂Ui, i = 1, . . . , |P |, is volume preserving.

Proof : This follows because the matrix representing the mapping can be put into
an upper triangular form with all ones on the diagonal, in the following way. Define
for k = 1, . . . , |P | vk = Uk\Uk−1. We take v1, . . . ,v|P | as the standard basis vectors
of R|P |. Let A be the matrix defining our map in terms of our basis. Furthermore,
consider the sets Ui and ∂Ui as vectors in RP . Clearly, Av1 = v1 and for k > 1,

Avk = AUk −AUk−1 = vk +
∑

i<k

1{vi∈∂Uk} − 1{vi∈∂Uk−1}.

This shows that A has 1’s on the diagonal and 0’s below the diagonal, proving that
it is volume preserving. �

Converting the Passage Time into a Sum. The simplicial decomposition of RP
+ by

maximal chains in J(P ) provides a useful way of converting the passage time into
a sum, in the following way. For ω ∈ RP

+ let π∗(ω) be the (Lebesgue almost surely
unique) longest path in ΠP corresponding to ω, so that

GP = 〈π∗(ω), ω〉.

Now for a given maximal chain U0 ⋖ U1 ⋖ . . . ⋖ U|P | in J(P ) let E = EU be the
|P | × |P | matrix with columns ∂U1, ∂U2, . . . , ∂U|P |, as vectors in RP

+. Then E

is an invertible linear map of RP into itself (by Lemma 5.9), hence there exists
ΛU = Λ ∈ RP such that

ω = EUΛU . (5.1)

This leads to the expression

GP = 〈π∗(ω), EΛ〉 = 〈E′π∗(ω),Λ〉,

where E′ denotes the transpose of E, so that the rows of E′ are antichains of
P . Since each antichain intersects any given path at most once, this implies that
E′π∗(ω) is a vector whose entries are either zero or one:

(E′π∗(ω))i = 1 {supp(π∗(ω)) ∩ supp(∂Ui) 6= ∅} .
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Combining these together leads to the formula

GP =

|P |
∑

i=1

Λi1 {supp(π
∗(ω)) ∩ supp(∂Ui) 6= ∅} . (5.2)

Note that this formula holds for any choice of maximal chain U of J(P ), although
the value of the Λ changes with different choices of U . If the ω are random but
have density f(x) with respect to Lebesgue measure on RP

+ then the Λ have law
f(Ex).

The choice of U can be made depending on ω. For each ω ∈ RP
+ let U(ω) be

the maximal chain corresponding to the passage time vector (GP (v;ω) : v ∈ P ).
Then the longest path intersects each antichain ∂Ui(ω) exactly once, leading to the
identity

GP =

|P |
∑

i=1

Λi. (5.3)

In this case all Λi are positive but the density is more complicated. Now it becomes
the mixture

P((Λ1, . . . ,Λ|P |) ∈ dx) =
∑

U maximal

chains of J(P )

f(EUx)P(ω ∈ Span+{∂U1, . . . , ∂U|P |}).

Corner Growth Model. The formulas above express the last passage percolation
problem in terms of the corner growth model, which is a well known equivalent
description (see Seppalainen, 2009; Romik, 2015 for reviews). In the continuous
time version of corner growth the elements of P are ”filled in” at random times,
subject to the constraint that an element cannot be filled in until all elements in its
lower set have also been filled in. At any given time the “corners” are the elements
of P which are admissible to be filled in; this nomenclature is motivated by the
process on Z2. The process starts at time zero and ω(v) is the additional time it
takes for v ∈ P to be filled in after all elements of L(v)\{v} have been filled in. In
the case that L(v) = {v}, meaning that v is a minimal element of P , then there is
no waiting rule and ω(v) is the time at which v is filled in. Now GP (v) is exactly
the time at which element v is filled in, and if we take this as a definition of GP then
it implies the recursion (1.1). In fact this recursion shows that the corner growth
description is equivalent to the last passage one. The longest path is the maximal
chain π of P that takes the longest amount of time to be filled in, together with
the additional requirement that for every v ∈ π this same condition holds on L(v).

The corner growth representation also makes clear the basic idea behind (5.3).
The vector GP (v;ω)v∈P is in the order cone OC (P ) of P , due to the positivity of
ω ∈ RP

+. Then GP (v;ω) belongs to a unique (Lebesgue almost surely) simplex in
OC (P ) that corresponds to a maximal chain in J(P ). The simplex describes the
ordering according to which the elements of P are filled in for this particular ω,
and then each Λi is the time between the filling in of the ith and (i− 1)st elements
of P . More precisely, letting U0 ⋖ U1 ⋖ . . . ⋖ U|P | be the maximal chain of J(P )
determined uniquely by ω (Lebesgue almost surely), we let vk = Uk\Uk−1 ∈ P for
k = 1, 2, . . . , |P | (the vertices ordered according to the time at which they appear)
and then it follows that

Λi = GP (vi)−GP (vi−1)
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with GP (v0) = 0. This clearly implies (5.3).

Remark 5.10. When P is a Young diagram (including the poset [1,m]× [1, n]) the
maximal chains of J(P ) are in bijection with the Young tableaux for the particular
diagram. The Young tableaux describes a linear map from a simplex in OC (P ) to
a simplex in RP

+, with the outputted simplex being precisely the set of weights that
produce that particular ordering for the passage times.

6. Independent Exponential Weights

The last passage model with iid exponential weights is solvable, meaning that
exact formulas can be derived for various statistics such as the passage time, at least
on the poset [1,m]×[1, n]. One basic reason for this is that the memoryless property
of the exponential distribution makes the corner growth process a continuous time
Markov chain. It is a straightforward calculation to show that, when the ω are
iid exponential(1) random variables, at any fixed time the random amount of time
until the next corner is filled has an exponential distribution with parameter equal
to the number of available corners. This is made clear by the following simple fact
about the exponential distribution in several variables.

Lemma 6.1. Let X = (X1, . . . , Xn) with Xi ∼ exponential(λi) independent, and
let v1, . . . ,vn ∈ Rn

+ be linearly independent. Let C = Span+{v1, . . . ,vn}. Then

P(X ∈ C) = | detV |
n
∏

i=1

λi

〈vi, λ〉
, (6.1)

where λ = (λ1, . . . , λn) and V is the n×n matrix with columns v1, . . . ,vn. Moreover

L (X |X ∈ C ) = L

(

n
∑

i=1

Λivi

)

= L(VΛ),

where L(X |X ∈ C) denotes the conditional law of the random variable and Λi ∼
exponential(λi||vi||1) are independent and Λ = (Λ1, . . . ,Λ|P |).

The proof of this lemma comes by mapping Rn
+ into C using the matrix V , but

this type of mapping is one-to-one iff C is a simplex. Note that in this representation
the chosen length of the extreme rays is irrelevant since it always cancels out, as
in (6.1). Since we canonically take the extreme rays of the cones in Section 5 to
have entries either zero or one, it follows that the ℓ1 norm of any extreme ray of a
maximal cone C(π) is equal to the number of corners available in the corner growth
process.

As in the last section the weight vector ω can always be uniquely rewritten as a
linear combination of the extreme rays of the simplex that it belongs to (Lebesgue
almost surely), and the simplices are in bijection with the maximal chains of J(P ).
Lemma 6.1 implies that in the exponential last passage model, conditionally on
the choice of cone, the coefficients in the linear combination are again independent
exponentials. Alternatively, by forgetting about the conditioning one can think
of the Λi in (5.3) as exponential random variables with random parameters. The
parameters are independent of the exponentials and their joint law is determined by
the probabilities (6.1) and the ℓ1 lengths of the extreme rays, which as mentioned
are simply counting the number of corners available at a given time. Equivalently,
the joint law on parameters is determined by the directed random walk on J(P )
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started from the minimal element ∅ and with transitions proportional the to the
parameters λi of the vertices available at each time. This random walk produces a
random maximal chain of J(P ) and the vector of parameters is simply the number
of corners available at each time of the walk. The difficulty in using this approach
is that the sheer number of maximal chains of J(P ) makes it difficult to average
out over the random parameters. Even on the poset [1,m]× [1, n] the distribution
of the random parameters appears to be complicated.

The geometric point-of-view sheds additional some light on the unique properties
of the exponential distribution. Equation (6.1) can also be equated to the (suitably
normalized) volume of the cone C intersected with the hyperplane {x : 〈λ,x〉 = 1},
since on that part of the hyperplane the exponential density is constant. The
volume description of the probability does not require that C be a simplex, and
in particular implies that the probability of any given path π ∈ ΠP being the
maximal path is the (normalized) volume of the maximal cone C(π) intersected
with the same hyperplane. This intersection is a polyhedron with codimension 1,
and while algorithms for computing its volume exist they are in general #P hard
Brightwell and Winkler (1991). On certain posets it may be that the structure of
C(π) allows for more efficient computation, but in full generality it appears to be
intractable.

Since Lemma 6.1 only works for simplices, to compute path probabilities via this
formula would require using a simplicial decomposition of C(π) and summing over
all of the simplices. The simplicial decomposition of Section 5 is an obvious choice
but the sheer number of simplices involved makes it impractical. On the poset
[1,m]× [1, n] the decomposition involves finding all Young tableaux which produce
the π as its Schützenberger path. This appears to be difficult, but we expect that
among all paths the extreme corner paths have the largest number of associated
Young tableaux.

7. IID Uniform Weights

Independent and identically distributed uniform weights correspond to Lebesgue
measure on [0, 1]P , and in this case the chain polytope of Stanley (1986) is a useful
tool in the analysis.

Definition 7.1. The chain polytope C (P ) of a poset P is the subset of [0, 1]P

defined by

C (P ) = {ω ∈ [0, 1]P : v1 < v2 < . . . < vk =⇒ ω(v1) + ω(v2) + . . .+ ω(vk) ≤ 1},

where k is an arbitrary positive integer.

Clearly C (P ) is a bounded polytope, and by the positivity assumption on the
ω it is enough to restrict the chains in the definition to just the maximal chains.
Therefore C (P ) is the same as the event that {GP ≤ 1} for iid uniform weights.
This left-tail probability of the passage time distribution is shown in Stanley (1986,
Corollary 4.2) to be equal to

P(GP ≤ 1) = Vol(C (P )) =
e(P )

|P |!
, (7.1)

where e(P ) is the number of linear extensions of P (equivalently the number of
maximal chains in J(P )). For example, on the subposet [1,m] × [1, n] of Z2 this
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probability is

P(G(m,n) ≤ 1) =

m
∏

i=1

n
∏

j=1

1

m− i+ n− j + 1
,

thanks to the hook length formula. This particular probability is of limited use
since the event {GP ≤ 1} is so far from the typical behavior G(m,n) ∼ c(m+n) as
m,n → ∞, but we can still use the chain polytope to give a characterization of GP .
In particular, we can represent the passage time GP in terms of the ℓ1 norm of a
uniformly chosen point from a random chain polytope C (P ∗). Here P ∗ is a random
poset whose distribution is determined by P . It is constructed in the following
way: begin with (5.3) and let U = U(ω) be the (Lebesgue almost surely unique)
maximal chain corresponding to ω. Then ω ∈ Span+{∂U1(ω), . . . , ∂U|P |(ω)} implies
that there are Lebesgue almost surely positive λi(ω) such that ω = EUλU , or
equivalently

ω =

|P |
∑

i=1

λi(ω)∂Ui(ω).

But also, since ||ω||∞ ≤ 1 almost surely, this means that the λi must satisfy
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|P |
∑

i=1

λi∂Ui

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ 1.

Since the entries of each antichain ∂Ui are either one or zero, this means that

|P |
∑

i=1

λi1 {v ∈ supp(∂Ui)} ≤ 1, for all v ∈ P. (7.2)

Combined with the positivity condition, the set of λi satisfying these inequalities is
the chain polytope of some poset P ∗ = P ∗(U) that is determined by the particular
ordering U . In fact the choice of P ∗ is not unique, but this will not concern us since
we will only be concerned with the number of linear extensions of P ∗ which turns
out to be an invariant. For now let P ∗ be any poset such that

C (P ∗) =







λi ≥ 0 :

|P |
∑

i=1

λi1 {v ∈ supp(∂Ui)} ≤ 1 for all v ∈ P







.

Now ω being uniformly distributed on [0, 1]P means also that its density on CU ∩
[0, 1]P := Span+{∂U1, . . . , ∂U|P |} ∩ [0, 1]P is uniform. On the latter set there is a
bijection between ω ∈ CU ∩ [0, 1]P and λ ∈ C (P ∗) given by ω = EUλU , and since
EU is volume preserving (by Lemma 5.9) it follows that λ is uniformly distributed
on C (P ∗), and that

Vol(CU ∩ [0, 1]P ) =
e(P ∗)

|P ∗|!
=

e(P ∗)

|P |!
.

Now via the formula

GP =

|P |
∑

i=1

λi

for the passage time, this leads to a method for sampling GP when ω is iid
Uniform(0, 1):
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• sample a maximal chain U0 ⋖U1 ⋖ . . .⋖U|P | according to the probabilities
e(P ∗(U))/|P |!,

• sample λ as a uniform point in the associated chain polytope C (P ∗(U)),
• return the ℓ1 norm

∑|P |
i=1 λi as the passage time.

This characterizes GP as the ℓ1 norm of a point chosen uniformly from a random
chain polytope, although the distribution of the polytope seems to be complicated.
Evidently the final answer does not depend on the choice of P ∗ but for the sake of
concreteness we give one possible way of constructing it. By (7.2) the inequalities
defining C (P ∗) can be written as

τv
∑

i=ηv

λi ≤ 1,

where ηv = min{i : v ∈ supp(∂Ui)} and τv = max{i : v ∈ supp(∂Ui)} are the
first and last times that v is in supp(∂Ui), respectively. Now define a graph with
the times {1, 2, . . . , |P |} as its vertices and an edge connecting i, j iff there exists
a v ∈ P such that i, j ∈ [ηv, τv]. Thus an edge between two times i and j means
that there is an element of P which is in both ∂Ui and ∂Uj, or in other words
∂Ui ∩ ∂Uj 6= ∅. This graph may have multiple connected components, and each
component corresponds to a component of P ∗(U). It can quickly be seen that a
new component is born every time that there is a ∂Ui with exactly one non-zero
entry, so that

number of components of P ∗(U) = 1 + |{i : supp(∂Ui) is a singleton}|.

The constructed graph is the comparability graph of the poset P ∗. The compara-
bility graph of any poset is defined with the elements of P as its vertices and an
edge connecting two vertices iff the corresponding poset elements are comparable to
each other (i.e. one is in order with the other). See Golumbic (2004, Chapter 5) for
more. We have already encountered this object implicitly: the order graph of Defi-
nition 4.1 is the comparability graph of the poset restricted to supp(a1)∆supp(a2).
Similarly, the disorder graph of Definition 1.2 is the incomparability graph of the
poset restricted to π∆π′, where the incomparability graph is defined similarly but
with edges between elements that are incomparable to each other. The number of
linear extensions of the poset is determined by its comparability graph, showing
that the choice of P ∗ above is irrelevant. Constructing a candidate P ∗ is the prob-
lem of choosing a transitive orientation for the graph: an assignment of directions
to the edges such that the adjacency relation of the resulting directed graph is tran-
sitive. Algorithms for finding transitive orientations are found in Golumbic (2004,
Chapter 5), as are formulas for the number of transitive orientations of the graph.

8. Open Questions

Most Likely Paths. Our interest in this problem was primarily motivated by
the following question: on the subposet P = [1, n]2 of Z2, which up-right path
has the highest probability of being the largest? Or in other words, which path
π ∈ ΠP maximizes P(C(π)) for a fixed probability measure P on RP

+? Even in the
exactly solvable case of iid exponential weights this question appears to be difficult,
for the reasons described in Section 6. We are confident that the answer is the
extreme corner path that goes straight up to (1, n) and then straight over to (n, n)
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(or its obvious symmetric copy across the main diagonal) but we have been unable
to prove this. Certainly since the fluctuations of the path away from the main
diagonal are known to be of order n2/3 in the exactly solvable cases, and thought
to be of the same order in most iid cases, the paths that are outside of the window
of size n1/2 should have more weight than the paths inside this window, which of
course supports the bulk of the probability under the uniform measure on paths.

Negative Correlations Between Transversal Fluctuations of the Maxi-

mizer and its Length. Again we consider the poset [1, n]2 in Z2. Our belief
that the outside paths have the largest individual probability of being longest is
motivated by the idea that their maximal cones C(π) take up more of the envi-
ronment space than the other maximal cones. Since the passage time GP is the
inner product between the weight and the corresponding longest path, if a maxi-
mal cone C(π) is relatively large, then conditionally on ω being in that cone there
is more room for it to point away from the path vector π. Conversely, if C(π) is
relatively small then there is little room for an ω inside of it to point away from
π. Thus we expect that there should be a negative correlation between the length
of a path and its location in the rectangle. It would be interesting to see if this
relationship effectively cancels in terms of expected values, so that each path con-
tributes close to the same amount to the overall expected value of the passage time.

Structure of the Path Measure. For Lebesgue almost all ω ∈ RP
+ the path

lengths are all distinct, this leads to a total of |ΠP | possible path lengths. Yet they
are created from only |P | random variables, leading to a strong linear dependency
between the different path lengths. For example, in the case P = [1,m] × [1, n]
there are a total of

(

m+ n

n

)

different path lengths, yet it can be shown that the vector of these path lengths
lives in a subspace of dimension (m − 1)(n − 1) + 1 (it is actually slightly smaller
than mn). Consequently, every path length can be expressed as a linear combina-
tion of (m − 1)(n − 1) + 1 well chosen path lengths. We are curious to know if a
similar relationship holds for the path probabilities P(C(π)). Does knowing P(C(π))
for a relatively small subset of π ∈ ΠP determine P(C(π)) for all π ∈ ΠP ? A re-
sult of this type would be useful as it is generally difficult to describe the measure
P(π) := P(C(π)) on ΠP . If one thinks of LPP as a random walk in a random envi-
ronment (although really it is just a walk in a random environment), then P is the
averaged path measure. This P is not Markov, which immediately takes away one
of the nicest descriptions for path measures, and is generally difficult to compute
explicitly. On the other hand there should be more structure than it simply being a
point in the probability simplex of dimension |ΠP |. It does not seem unreasonable
to expect P to have some “low-dimensional” structure, although we are uncertain
of what precisely it would be.

Monotonicity of the Path Measure. If, for squares [1, n]2 in Z2, the outside
paths have the highest probability of being the longest and the middle paths have
the lowest probability, then we expect that there should be some sort of monotonic-
ity in the path probabilities as the paths move from the middle to the outside. It
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is not entirely clear to us what the proper ordering on paths should be, or even if a
total ordering exists. We expect that there should be a natural partial ordering on
the paths, based solely on their relative locations in space, such that their respective
probabilities obey the partial ordering. It would be interesting to derive a rate of
growth of these path probabilities along a chain in this partial ordering.

Path Measure Proportional to the Number of Extreme Rays. On [1,m]×
[1, n] in Z2 it would be interesting to study the path measure that is proportional to
the number of extreme rays per path, i.e. the measure on Π(m,n) with probabilities

P(π) =
|E R(π)|

∑

π |E R(π)|
.

This measure is purely combinatorial but may still exhibit many of the features of
the annealed last passage measure. Given that the extreme rays of E R(π) have
relatively large angles between them, one might expect that the number of extreme
rays of C (π) is a reasonable proxy its volume, under certain measures on RP

+. If
so it would give some understanding of the expected universality behavior of the
paths. In particular it would be interesting to know if the transversal fluctuations
of the path are superdiffusive under the annealed measure. One might also hope
that the asymptotics of probabilities of certain special paths, such as the extremal
ones, could be computed under this measure.

Face Lattice of C(π). The faces of a polyhedral cone are any of its intersections
with half-spaces with the property that no interior point of the cone lies on the
boundary of the half-space. The set of faces can be made into a lattice (in fact an
Eulerian lattice), where the partial ordering is determined by set containment of
faces. We have not been able to fully determine the full structure of these inclusions
for C(π), beyond Theorem 4.2 which explains the inclusion of the one dimensional
faces (the extreme rays) in the two-dimensional faces. Being simplicial, each of the
simplices ∂U1, . . . , ∂U|P | described in Section 5 has the well known binomial poset
of the appropriate size as its face lattice, but many of the faces will be interior to
C(π). A more useful description of the face lattice would be in terms of the extreme
rays of C(π) or the normal vectors π − π′ that define its facets, with the inclusions
being expressed in terms of relations between these vectors. Part of our decision to
explain the last passage model on general posets is motivated by a desire to explain
the face lattice. Our hope is that the description of the facets can be iterated in
some way to provide a description of the face lattice. Since the lower dimensional
faces can be seen as “facets of facets”, if the facets can be described as last passage
percolation problems on a smaller poset, then Theorem 1.3 can be applied again
without modification. This indeed works for the facets of the form ω(v) = 0, but
is more complicated for those of the form 〈π − π′, ω〉 = 0. We do not know of a
description of these facets as a last passage model on a smaller poset, but perhaps
there is such a description in terms of a matroid or a related object.

Number of Young Tableaux that Produce a Given Longest Path. The
simplicial decomposition of Section 5 suffers from the curse of dimensionality, in
that the number of simplices used to partition each cone C(π) is exponentially
larger than the ambient space. The number of such simplices could perhaps be
used as a rough proxy for the probability of each C(π). On [1,m]× [1, n] we expect
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that among all paths π ∈ ΠP the extreme corner paths have the largest number
of simplices in their decomposition, which would lead credence to our belief that
the corner paths are the modes of the distribution. This assertion is equivalent to
stating that the corner path is the Schützenberger path for the largest number of
Young tableaux. We would be interested in asymptotics of the number of Young
tableaux that produce a given longest path.

Polymerization. Closely related to the last passage percolation problem is the
notion directed polymers. Here the environment variables do not on their own
determine a path, instead there is some extra randomness involved. For each inverse
temperature β ≥ 0 and ω ∈ RP the directed polymer measure on ΠP is defined by
the Gibbs measure

Pω
β (π) = eβ〈π,ω〉/Zω

β

where Zω
β =

∑

π∈ΠP
eβ〈π,ω〉 is the partition function. Note that in this case we

remove the restriction that the ω have positive coordinates. With ω fixed this is
often referred to as the quenched measure. As β → ∞ it is clear that the quenched
measure concentrates on the longest path (or splits uniformly amongst all paths
that achieve the longest length, if there are several). In the finite temperature
setting of directed polymers the analogue of the maximal cones C(Π) are the sets
of ω which produce a given value of Pω

β (π), i.e. for each Q a probability measure
on ΠP one considers the set

Vβ(Q) =
{

ω ∈ RP : Pω
β = Q

}

.

Note that for many Q this measure is likely empty, and it is an interesting problem
to determine useful conditions on Q for which this is not the case. If it is not then
in the variables eβω(v) the set is an algebraic variety, and it would be interesting
if any meaningful description of it can be made. In particular, one might hope
that properties of the maximal cones C(π) can be transferred to properties of these
varieties.
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