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Pricing Multi-Interval Dispatch under Uncertainty
Part I: Dispatch-Following Incentives
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Abstract—Pricing multi-interval economic dispatch of electric
power under operational uncertainty is considered in this two-
part paper. Part I investigates dispatch-following incentives
of profit-maximizing generators and shows that, under mild
conditions, no uniform-pricing scheme for the rolling-window
economic dispatch provides dispatch-following incentives that
avoid discriminative out-of-the-market uplifts. A nonuniform
pricing mechanism, referred to as the temporal locational
marginal pricing (TLMP), is proposed. As an extension of
the standard locational marginal pricing (LMP), TLMP takes
into account both generation and ramping-induced opportunity
costs. It eliminates the need for the out-of-the-market uplifts and
guarantees full dispatch-following incentives regardless of the
accuracy of the demand forecasts used in the dispatch. It is also
shown that, under TLMP, a price-taking market participant has
incentives to bid truthfully with its marginal cost of generation.
Part II of the paper extends the theoretical results developed
in Part I to more general network settings. It investigates a
broader set of performance measures, including the incentives
of the truthful revelation of ramping limits, revenue adequacy of
the operator, consumer payments, generator profits, and price
volatility under the rolling-window dispatch model with demand
forecast errors.

Index Terms—Multi-interval economic dispatch. Look-ahead
dispatch. Ramping constraints. Locational marginal pricing.
Dispatch-following and truthful-bidding incentives.

I. INTRODUCTION

We consider the problem of pricing multi-interval look-

ahead economic dispatch when generators are ramp-

constrained and demand forecasts inaccurate. This work is

motivated by recent discussions among system operators on

the need for ramping products in response to the “duck-

curve” effect of renewable integrations [3]–[8]. A well-

designed multi-interval look-ahead dispatch that anticipates

trends of future demand can minimize the use of more

expensive ramp resources.

A standard implementation of a look-ahead dispatch is

the so-called rolling-window dispatch, where the operator

optimizes the dispatch over a few scheduling intervals into

the future based on load forecasts. The dispatch for the
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immediate scheduling interval (a.k.a. the binding interval) is

implemented while the dispatch for the subsequent intervals

serves as an advisory signal and is updated sequentially.

A common practice to price the rolling-window dispatch is

the rolling-window version of the multi-interval locational

marginal pricing (LMP).

LMP is a uniform pricing mechanism across generators

and demands at the same location in the same scheduling

interval. For the single-interval pricing problem, LMP has

remarkable properties. LMP supports an efficient market

equilibrium such that a profit-maximizing generator has

no incentive to deviate from the central dispatch. For a

competitive market with a large number of generators, a

price-taking generator has the incentive to bid truthfully

at its marginal cost of generation. LMP also guarantees a

nonnegative merchandising surplus for the system operator.

As a uniform pricing scheme, LMP is transparent to all

market participants, and the price can be computed easily

as a by-product of the underlying economic dispatch.

Most of the attractive features of LMP are lost, unfortu-

nately, when the rolling-window version of LMP (R-LMP)

is used and demand forecasts inaccurate. Indeed, even if

perfect forecasts are used in R-LMP, many nice properties

of LMP are not guaranteed. In particular, a missing-money

scenario arises when a generator is asked to hold back

its generation in order to provide ramping support for the

system to meet demands in future intervals. In doing so,

the generator incurs an opportunity cost and may be paid

below its offered price to generate. Expecting compensations

in future intervals for the opportunity costs, the generator

disappoints when the anticipated higher payments do not

realize due to changing demand forecasts. Examples of such

scenarios are well known and also illustrated in Example 2

in Sec V. It turns out that such examples are not isolated

instances unique to R-LMP. As we show in Theorem 2 in

Sec. III, they occur under all uniform pricing schemes.

To ensure that generators are adequately compensated, the

operator provides the so-called uplift payments to generators

suffering from underpayments in an out-of-the-market settle-

ment. The roles of uplifts have been discussed extensively

in the literature [9]–[12]. Such settlements are typically dis-

criminative and subject to manipulation. Examples exist that,

under LMP, a price-taking generator may have incentives to

deviate from truthful-bidding to take advantage the out-of-

the-market settlements. See Appendix I.
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A. Related work

Wilson discussed the issue of pricing distortion introduced

by ramping in [13]. He pointed out that the cause of such

pricing distortion is that the optimization model used in price

formation is imperfect. In the rolling-widow dispatch context,

both the imperfection of demand forecasts and the limited

look-ahead distort the dispatch-following incentives. The

use of out-of-the-market uplifts further distorts the truthful-

bidding incentives. The dispatch-following incentive issues in

pricing multi-interval dispatch have been widely discussed in

the literature [1], [4], [8], [12], [14]–[16], although a formal

way of analyzing such issues is lacking. The effects of the

out-of-the-market uplifts on truthful-bidding incentives are

not well understood.
Several marginal cost pricing schemes have been pro-

posed for the rolling-window dispatch policies. The flexible

ramping product (FRP) [5] treats ramping as a product to

be procured and priced uniformly as part of the real-time

dispatch. FRP is a two-part tariff consisting of prices of

energy and ramping. Ela and O’Malley proposed the cross-

interval marginal price (CIMP) in [14] defined by the sum

of marginal costs with respect to the demands in the binding

and the future (advisory) intervals. Multi-settlement pricing

schemes are proposed in [16], [17] that generalize the existing

two-settlement day-ahead and real-time markets.
Deviating from marginal cost pricing are two recent pro-

posals aimed at minimizing the out-of-the-market payments;

both employ separate pricing optimizations that are differ-

ent from that used in the economic dispatch. The price-

preserving multi-interval pricing (PMP), initially suggested

by Hogan in [18] and formalized in [15], adds to the objective

function the loss-of-opportunity cost for the generators for

the realized prices and dispatch decisions. In contrast, the

constraint-preserving multi-interval pricing (CMP) proposed

in [15] fixes the past dispatch decisions and penalizes ramp-

ing violations. Both have shown improvements over the

standard R-LMP policy.
All existing pricing schemes for multi-interval economic

dispatch are based on uniform pricing mechanisms. To our

best knowledge, no existing pricing policies can provide

dispatch-following incentives that eliminate discriminative

out-of-the-market settlements.

B. Summary of results, contexts, and limitations

The main contribution of this work is threefold. First, we

show in Theorem 2 that price discrimination is unavoidable

in pricing rolling-window dispatch. Specifically, all uniform

pricing mechanisms require some level of out-of-the-market

uplifts under the rolling-window dispatch model. While uni-

form pricing schemes are transparent and non discriminative

within the market clearing process, it is the out-of-the-

market uplift payments that make the overall payment scheme

discriminative.
Second, we generalize LMP to a nonuniform pricing

scheme, referred to as the temporal locational marginal

pricing (TLMP). TLMP prices the production of a generator

i based on its contribution to meeting the demand in interval

t. In doing so, TLMP encapsulates both generation and

ramping-induced opportunity costs in each interval.

As shown in Proposition 2, TLMP decomposes into energy

and ramping prices:

πTLMP

it = πLMP

t + μit − μi(t−1), (1)

where πLMP

t is the standard LMP, and the second term is the

increment of the Lagrange multipliers associated with the

ramping constraints in the economic dispatch optimization,

from μi(t−1) in interval (t−1) to μt in interval t. The above

decomposition is analogous to the energy-congestion price

decomposition of LMP. TLMP naturally reduces to LMP in

the absence of binding ramping constraints.

Third, we establish several key properties that make TLMP

a viable and potentially attractive alternative to standard uni-

form pricing schemes. A key property of TLMP is that, under

the dispatch and pricing models assumed in this paper, the

rolling-window implementation of TLMP (R-TLMP) elimi-

nates the need of out-of-the-market uplifts for the rolling-

window economic dispatch under arbitrary forecast errors.

Whereas all pricing schemes are necessarily discriminative,

R-TLMP stands out as one that discriminates inside rather

than outside the market clearing process. This property ties

real-time pricing closely to the actually realized ramping

conditions.

As a generalization of LMP, TLMP extends some of the

important properties of LMP to the rolling-window multi-

interval pricing setting, thanks to the property that R-TLMP

is a strong equilibrium price that decouples the profit max-

imization problem over the entire scheduling horizon into

single-interval ones. A significant property of TLMP (The-

orem 5) is that a price-taking profit-maximizing generator

has the incentive to bid truthfully with its marginal cost of

generation. In other words, there is no need for a generator

to internalize ramping-induced opportunity costs. Such a

property, however, does not hold for the rolling-window

implementation of the multi-interval LMP. See Appendix I.

Also significant (Proposition 3 of Part II) is that, under

TLMP, the operator’s merchandising surplus is the sum of

congestion and ramping surplus, which has significant impli-

cations on the revenue adequacy of ISO. We also demonstrate

that, under TLMP, the generators have incentives for truthful

revelation of ramping limits, and there are incentives for the

generators to improve their ramping capabilities.

Given that TLMP is discriminatory, one may question how

different it is from other discriminative pricing schemes such

as the pay-as-bid (PAB) pricing. The differences between

TLMP and PAB pricing are significant; TLMP is much closer

to LMP than it is to PAB. Comparing with LMP, PAB is more

vulnerable to manipulative bidding behaviors, and a market

participant has little incentive to bid truthfully. In contrast,

TLMP inherits and extends (in Theorem 5) the property of
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LMP (under the single-interval model) that a price taker

generator bids truthfully with its marginal cost.

Discriminative pricing is often criticized for its lack of

transparency, which makes it difficult for the operator to

provide public pricing signals to market participants. Because

of the decomposition of TLMP into the uniform energy

price (LMP) and a discriminative ramping price in (1), the

energy part of TLMP (LMP) is transparent to all participants.

The ramping price part of TLMP, like the out-of-the-market

uplifts, is nontransparent and discriminative. In this aspect,

TLMP has the same level of transparency as in LMP,

although the amount of the discriminative payments under

TLMP and uniform prices can be quite different. See Part II

of this paper for a numerical comparison [19].

Finally, in Part II of the paper, we generalize the theory of

dispatch-following incentives to more general models that in-

clude network constraints and discuss a broader set of incen-

tive and performance issues through numerical simulations.

When comparing different pricing schemes, our results shine

lights on practical tradeoffs along several dimensions: the

revenue adequacy of the ISO, consumer payments, generator

profits, and price volatilities.

A few words are in order on the scope and limitations

of this paper. We do not model strategic behaviors of the

generators, nor do we consider those market models that the

market operator does not price ramping costs and lets the

generators internalize their individual ramping costs. We dis-

cuss in Sec. VI some of the implications of these omissions.

We also ignore the role of unit commitment and the costs of

reserves. In Part I, we illustrate the properties of LMP and

TLMP with a toy example. Generalizations to systems with

network constraints and more elaborate numerical examples

are in Part II.

C. Notations and nomenclature

Designated symbols are listed in Table I. Otherwise, no-

tations used here are standard. We use (x1, · · · , xN ) for a

column vector and [x1, · · · , xN ] a row vector. All vectors

are denoted by lower-case boldface letters, nominally as

columns. The transpose of vector x is denoted by xᵀ.

Matrices are boldface capital letters. Matrix X = [xij ] is

a matrix with xij as its (i, j)th entry. Similar to the vector

notation, matrix X = [x1, · · · ,xN ] has xi as its ith column,

and matrix X = (xᵀ

1 , · · · ,x
ᵀ

N ) has x
ᵀ

i as its ith row.

II. MULTI-INTERVAL DISPATCH AND PRICING MODELS

We consider a bid-based real-time electricity market in-

volving one inelastic demand, N generators, and a system

(market) operator. The scheduling period of generations

involves T unit-length intervals H = {1, · · · , T }, where

interval t covers the time interval [t, t + 1). Typically, T is

the number of intervals in a day.

We assume that each generator produces a generation offer

that includes a bid-in cost curve along with its generation

TABLE I: Major symbols (in alphabetic order).

0,1: vector of all zeros and ones.
A: a W ×W lower bi-digonal matrix with 1 on

the diagonals and -1 on the off diagonals.
dt: the demand in interval t.
dt: dt = (dt, · · · , dt+W−1), the demand in the

look-ahead window of W intervals.
d: d = (d1, · · · , dT ) the overall demand vector.

d̂t, d̂t: demand forecasts of dt and dt.
fit(·): the bid-in cost of generator i in interval t.
F (·): aggregated bid-in cost curve in W or T intervals.
F−it(·): aggregated bid-in cost curve excluding generation

from generator i in interval t.
git: generation/dispatch of generator i in interval t
g[t]: generation/dispatch vector for all generators in

interval t, g[t] = (g1t, · · · , gNt).
G: generation/dispatch matrix. G =

[
g[1], · · · , g[T ]

]
.

gi: dispatch of generator i over a scheduling window,
e.g., gi = (gi1, · · · , giW ) or gi = (gi1, · · · , giT ).

Gt: the look-ahead dispatch policy at time t.
GED
t

: the look-ahead economic dispatch policy at time t.
gED
i

: one-shot economic dispatch for generator i.
gR-ED
i

: rolling-window economic dispatch for generator i.
Ht: scheduling window Ht = {t, · · · , t+W − 1}.
H : scheduling horizon H = {1, · · · , T}.
LOC: lost-of-opportunity cost uplift.
MW: make-whole uplift.
Pt,PLMP

t
: multi-interval pricing policy and LMP pricing policy.

π
LMP,πTLMP: one-shot LMP and TLMP.

π
R-LMP,πR-TLMP: rolling-window LMP/TLMP.

qit(·),qi(·): true cost of generation of generator i.
T : total number of scheduling intervals.
W : scheduling window size. W ≤ T .

and ramping limits. The operator collects bids from all

generating firms, allocates generation levels to all generators

in the form of dispatch signals, and determines the prices

of electricity in each scheduling interval. We assume that,

in pricing multi-interval dispatch, the operator incorporates

generation and ramping constraints. Because the bid of a

generator represents its willingness to generate, the generator

expects the total payment received over T intervals to be no

less than that computed from its offered prices; anything less

needs to be compensated by some forms of uplift payments

outside the market clearing process.

Part I of the paper assumes a single-bus network, which is

generalized in Part II to networks with M buses subject to

network constraints. We introduce two multi-interval schedul-

ing and pricing models. One is the one-shot model that sets

generation dispatch and prices over the entire scheduling

period at once, the other the rolling-window model that

sets the dispatch levels and prices sequentially with demand

forecasts for several intervals into the future.

A. One-shot multi-interval dispatch and pricing policies

At t = 1, the operator obtains the demand forecast vector

d̂ = (d̂1, · · · , d̂T ) over the entire scheduling horizon H ,

where d̂t is the demand forecast for interval t. Let the actual

demand be d = (d1, · · · , dT ). We assume that the forecast

of the first interval is accurate, i.e., d̂1 = d1.
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A one-shot dispatch schedules generations over the T -

interval scheduling horizon H based on the initial forecast

d̂. Let git be the dispatch of generator i in interval t,

gi = (gi1, · · · , giT ) the dispatch for generator i over H ,

g[t] = (g1t, · · · , gNt) the dispatch for all generators in

interval t, and the N × T matrix G =
[
g[1], · · · ,g[T ]

]
the

dispatch matrix with g
ᵀ

i as its ith row.

A one-shot dispatch policy G maps the demand forecast d̂

and the initial generation g[0] to a dispatch matrix G:

G(d̂,g[0]) = G,

where g[0] imposes the initial ramping constraints on the

generations in the first interval.

Similarly, a one-shot pricing policy P sets the prices in

all intervals at once. A one-shot uniform price is defined

by a vector π = (π1, · · · , πT ) with πt being the price of

electricity in interval t for all generators and the demand.

For a nonuniform pricing policy, P sets π0 the price vector

for the demand and πi = (πi1, · · · , πiT ) for generator i, for

i = 1, · · · , N .

B. One-shot economic dispatch and LMP

A special case of the one-shot dispatch is the multi-interval

economic dispatch GED over H . Let the aggregated bid-in

cost function be

F (G) :=

N∑
i=1

∑
t∈H

fit(git), (2)

where fit(·) is the bid-in cost curve* of generator i in interval

t, assumed to be convex and almost everywhere differentiable

for all t and i throughout the paper. Note that fit(·) is not

necessarily equal to the actual generation cost qit(·).
The dispatch policy GED is defined by

GED : minimize
{G=[git]}

F (G)

subject to for all i and t ∈H

λt :
N∑
i=1

git = d̂t,

(μ
it
, μ̄it) : −ri ≤ gi(t+1) − git ≤ r̄i

0 ≤ t ≤ T − 1,
(ρ

it
, ρ̄it) : 0 ≤ git ≤ ḡi,

(3)

where ḡi the generation capacity, and (ri, r̄i) the down

and up ramp-limits, λt the dual variable for the equality

constraints, and (ρ
it
, ρ̄it, μit

, μ̄it) ≥ 0 are dual variables for

the inequality constraints†.

The one-shot locational marginal price‡ (LMP for short)

is a uniform price πLMP = (πLMP

t ) with πLMP

t defined by the

*The derivative of the bid-in cost curve represents the supply curve of the
generator.

†Throughout the paper, all inequalities are written in the form of v(x) ≤ 0
with a non-negative dual variable.

‡We retain the LMP terminology even though the model considered here
does not involve a network.

marginal cost of generation with respect to the demand in

interval t. In particular, we have, by the envelope theorem,

πLMP

t :=
∂

∂d̂t
F (GED) = λ∗

t , t = 1, · · · , T,

where GED and λ∗
t are part of a solution to (3).

C. Rolling-window look-ahead dispatch model

A rolling-window dispatch policy G = (G1, · · · ,GT ) is

defined by a sequence of W -interval look-ahead policies

that generate dispatch signals g[1], · · · ,g[T ] sequentially,

as illustrated in Fig. 1. At time t, the policy Gt has a

look-ahead scheduling window of W intervals, denoted by

Ht = {t, · · · , t+W−1}. The interval t is called the binding

interval and the rest of Ht the advisory intervals. As time t

increases, Ht slides across the entire scheduling period H .

At time t, a W -interval one-shot policy Gt maps demand

forecast d̂t = (d̂t, · · · , d̂t+W−1) and previously realized

generation g[t−1] to an N×W generation scheduling matrix

Ĝt over Ht:

Gt(d̂t,g[t− 1]) =
[
ĝ[t], · · · , ĝ[t+W − 1]

]
= Ĝt.

The rolling window policy G sets generation in interval t by

g[t] := ĝ[t]. The rest of columns of Ĝt are not implemented.

1 2 3 T

Time

4 5

Binding interval

Advisory interval

G1

G2

G3

t = 1

t = 2

t = 3

Fig. 1: Rolling-window dispatch with window size W = 4
generated from one-shot dispatch policy Gt. The
same applies also to the rolling-window pricing.

Similarly, a rolling-window pricing policy P is defined by

a sequence one-shot pricing policies (P1, · · · ,PT ). At time

t, Pt sets the prices over Ht, and the price in the binding

interval t is implemented by P .

As an example, the rolling-window economic dispatch

policy GR-ED = (GED

1 , · · · ,GED

T ) where GED

t is the W -window

one-shot economic dispatch defined in (3) with T = W and

d̂ = d̂t. The rolling-window LMP policy PR-LMP is defined

by a sequence of W -interval LMP policies (PLMP

1 , · · · ,PLMP

T ).

III. DISPATCH-FOLLOWING INCENTIVES AND UPLIFTS

We say that a pricing mechanism provides dispatch-

following incentives if, given the realized prices, profit-

maximizing generators, by themselves, would have produced

generations that match the operator’s dispatch. Applying

market equilibrium models for dispatch-following incentives,

we consider two types of incentives: (i) the ex-post incentive

that applies to the entire scheduling period H after all
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generations have been realized; (ii) the ex-ante incentive

that applies to only the current (binding) scheduling interval.

The former guarantees dispatch-following incentives when a

generator considers the total profit over the entire scheduling

period. The latter guarantees dispatch-following incentives

only for the binding interval.

A. Ex-post incentives and general equilibrium

For a multi-interval dispatch and pricing problem, gen-

erations and consumptions in each interval are part of a

market separate from those in other intervals; we thus have

a set of T inter-dependent markets over H . For purposes

of analyzing dispatch-following incentives, we borrow the

notion of general equilibrium [20, p. 547] for the multi-

interval pricing problem.

Definition 1 (General equilibrium). Let d be the actual

demand, gi the dispatch for generator i and π the vector

of electricity prices over the entire scheduling period H .

Let the N × T matrix G = (gᵀ

1 , · · · ,g
ᵀ

N ) be the realized

generation matrix for all generators. We say (G,π) forms

a general equilibrium if the following market clearing and

individual rationality conditions are satisfied:

1) Market clearing condition:

N∑
i=1

git = dt for all t ∈ H .

2) Individual rationality condition: for all i, the dispatch

g(i) = (gi1, · · · , giT ) is the solution to the individual

profit maximization:

maximize
(g1,··· ,gT )

∑T

t=1(πtgt − fit(gt))

subject to for all t = 0, · · · , T − 1,
−ri ≤ gt+1 − gt ≤ r̄i,

0 ≤ gt ≤ ḡi, ∀t ∈ H .

(4)

We call π an equilibrium price supporting generation G.

In the context of analyzing dispatch-following incentives,

we are interested in whether price signal π and dispatch G

satisfy the general equilibrium condition. It turns out that, in

the absence of forecasting error, the one-shot LMP supports

the one-shot economic dispatch as stated in Theorem 1. This

result is analogous to the well-known property of LMP [21].

Theorem 1 (LMP as a General Equilibrium Price). When

there is no forecast error, d̂ = d, the one-shot economic

dispatch matrix GED and the one-shot LMP πLMP form a

general equilibrium.

As a general equilibrium price, πLMP does not guarantee

that πLMP

it git ≥ fit(git) for all (i, t). In other words, a

generator may be underpaid in some intervals despite that

the generator is maximally compensated under πLMP over the

entire scheduling period. See Example 1 in Sec. V.

B. Ex-ante incentives and partial equilibrium

When the rolling-window dispatch is used, the forecasts in

the look-ahead window (hence the dispatch over the window)

change, which creates the missing payment problem even

when the forecast over the look-ahead window is perfect.
Consider the example of rolling-window economic dis-

patch GR-ED and LMP PR-LMP policies. Suppose that a generator

i is underpaid in interval t, i.e., fit(g
R-LMP

it ) ≥ πR-LMP

t gR-ED

it . Be-

cause gR-ED

it is generated by the W -window economic dispatch

based on forecast d̂t, generator i expects the underpayment

in interval t be compensated later in t′ ∈ Ht. At time t′,

however, a different forecast d̂t′ is used to generate dispatch

gR-ED

it′ . There is no guarantee that πR-LMP

t′ is high enough to

compensate for the loss incurred in the interval t, hence the

missing payment problem.
To provide dispatch-following incentives under forecasting

uncertainty, we need stronger equilibrium conditions.

Definition 2 (Partial equilibrium and strong equilibrium).

Consider price vector π = (π1, · · · , πT ) and generation ma-

trix G over the entire scheduling horizon H . The dispatch-

price pair (g[t], πt) in interval t is a partial equilibrium

if it satisfies the market clearing and individual rationality

conditions in interval t:

1) Market clearing condition:
∑N

i=1 git = dt;

2) Individual rationality condition: for all i, the dispatch

of signal git is the solution to the individual profit

maximization:

maximize
g

(πtg − fit(g))

subject to 0 ≤ g ≤ ḡi
−ri ≤ g − gi(t−1) ≤ r̄i.

(5)

The dispatch-price pair (G,π) is a strong equilibrium if

(G,π) is a general equilibrium and (g[t], πt) a partial

equilibrium for all t.

The notion of partial equilibrium used here is slightly

different from the standard because of the sequential nature

of multi-interval dispatch and pricing problems. At time t, the

dispatch in the interval t is necessarily constrained by the past

dispatch. The dispatch in the future intervals is advisory and

subject to change, which is the reason that only the ramping

constraints from the previous interval are imposed.
The strong equilibrium conditions impose stricter con-

straints than that required by the general or partial equilib-

rium definitions; strong equilibrium implies general equilib-

rium. Unlike the case of a general equilibrium price that only

needs to satisfy the rationality condition at the end of the

scheduling horizon, a strong equilibrium price must provide

a dispatch-following incentive in every interval independent

of future realized dispatches. Consequently, even if schedules

and prices may change, for the binding interval, there is no

incentive for the generator to deviate from the dispatch signal.
An immediate corollary of Theorem 1 is that, in the

absence of ramping constraints, (GED,πLMP) forms a strong

equilibrium. However, we also know from Example 1
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in Sec. V that, when ramping constraints are binding,

(GED,πLMP) may not be a strong equilibrium. It turns out that

no uniform pricing schemes can satisfy the strong equilibrium

condition in general [22].

C. Out-of-the-market settlements

The out-of-the-market settlement, also known as uplift, is a

process for the operator to compensate market participants for

inadequate payments due to inaccurate, incomplete, or non-

convex models. Out-of-the-market settlements are in general

discriminative and determined in ex-post over the entire

scheduling horizon H [9], [11], [23]. Two popular schemes

are the make-whole (MW) settlement used in most operators

in the U.S. and the lost-of-opportunity-cost (LOC) settlement

implemented in ISO-NE.
Let π be the price vector over H and gi = (gi1, · · · , giT )

the generation of generator i. The make-whole (MW) pay-

ment MW(π,gi) and the lost-of-opportunity cost (LOC)

payment LOC(π,gi) for generator i are defined by, respec-

tively,

MW(π,gi) = max{0,

T∑
t=1

(fit(git)− πtgit)}, (6)

LOC(π,gi) = Qi(π)−

T∑
t=1

(πtgit − fit(git)), (7)

where Qi(π) is the maximum profit the generator would have

received if the generator self-schedules for the given price π:

Qi(π) = maximize
p=(p1,··· ,pT )

∑T

t=1(πtpt − fit(pt))

subject to 0 ≤ pt ≤ ḡi
−ri ≤ p(t+1) − pt ≤ r̄i.

(8)

It turns out that, when Qi(π) ≥ 0, we always have

LOC(π,gi) ≥ MW(π,gi). See [22].
The following proposition, an immediate consequence of

the general equilibrium conditions, shows that the LOC uplift

is a measure of the dispatch-following disincentives.

Proposition 1 (LOC and general equilibrium). A dispatch

matrix-price pair (G = [g1, · · · ,gN ]ᵀ,π) satisfies the gen-

eral equilibrium condition if and only if the LOC uplifts for

all generators are zero.

The following theorem shows that uniform pricing in

general will lead to non-zero LOC. Therefore, price discrim-

ination is unavoidable in practice.

Theorem 2 (Uniform pricing and out-of-the-market uplifts).

Let {gR-ED

it } be the rolling-window economic dispatch over the

entire scheduling horizon H. There does not exist a uniform

pricing scheme under which all generators have zero LOC if

there exist generators i and j and interval t∗ ∈ H such that

1) generators i and j have different bid-in marginal costs

of generation

d

dg
fit∗(g

R-ED

it∗ ) �=
d

dg
fjt∗(g

R-ED

jt∗ );

2) both generators are “marginal” in t∗, i.e.,

gR-ED

it∗ ∈ (0, ḡi), gR-ED

jt∗ ∈ (0, ḡj);

3) and both generators have no binding ramping con-

straints from intervals t∗−1 to t∗ and from t∗ to t∗+1.

Note that the conditions Theorem 2 are stated for the

rolling-window dispatch under arbitrary forecast errors. Note

also that condition (2) on the existence of simultaneously

marginal generators can happen because of the rolling-

window economic dispatch model. Empirical evaluations

under practical demand models show that conditions (2) and

(3) hold in high percentage when the ramping constraints are

tight. See Appendix H.

IV. TEMPORAL LOCATIONAL MARGINAL PRICE

Because uniform pricing cannot provide dispatch-

following incentives in general, we now consider nonuniform

pricing mechanisms. To this end, we extend LMP to the

temporal locational marginal price (TLMP) and establish that

TLMP is a strong equilibrium price, thus eliminating out-of-

the-market uplifts.

A. TLMP: a generalization of LMP

We first consider the one-shot TLMP defined over H ; the

rolling-window TLMP follows the same way as the rolling-

window LMP.

As in LMP, TLMP prices a load by the marginal cost

of satisfying its demand. Unlike LMP, TLMP prices the

generation from generator i by its contribution to meeting the

system load. In particular, we treat generator i as an inelastic

negative demand and pay generator i at the marginal benefit

of its generation. Roughly speaking, generator i is paid at

the marginal cost to the system when generator i reduces

one MW of its generation.

Define a parameterized economic dispatch by treating git
as a parameter rather than a decision variable in (3). Let the

partial cost be

F−it(G) := F (G)− fit(git),

which excludes the cost of generator i in interval t. The

parameterized economic dispatch is defined by (3) with

F−it(G) as the cost function and {gi′t′ , (i
′, t′) �= (i, t)} as

its decision variables.

Definition 3 (TLMP). The TLMP for the demand in interval

t is defined by the marginal cost of meeting the demand:

πTLMP

0t :=
∂

∂d̂t
F (GED).

The TLMP for generator i in interval t is defined by the

marginal benefit of generator i at git = gED

it :

πTLMP

it := −
∂

∂git
F−it(G

ED).

Proposition 2 gives an explicit expression for TLMP.
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Proposition 2. Let GED be the solution to the multi-interval

economic dispatch in (3) and (λ∗
t , μ

∗
t
, μ̄∗

t , ρ
∗
t
, ρ̄∗t ) the dual

variables associated with the constraints. The TLMP for the

demand in interval t is given by

πTLMP

0t = λ∗
t .

The TLMP for the generator i in interval t is given by

πTLMP

it = λ∗
t +Δ∗

it, (9)

where Δ∗
it = Δμ∗

it −Δμ∗
i(t−1), and Δμ∗

it := μ̄∗
it − μ∗

it
.

The intuition behind the TLMP expression is evident from

a dual perspective of the economic dispatch. Specifically, the

Lagrangian of the one-shot economic dispatch (3) with the

optimal multipliers can be written as

L =
∑
i,t

(
fit(git)−(λ

∗
t+Δ∗

it)git+(ρ̄∗it−ρ
∗
it
)git

)
+· · · (10)

where the rest of the terms above are independent of git. It is

evident that, with TLMP πTLMP

it := λ∗
t +Δ∗

it, the multi-interval

dispatch decouples into single-interval dispatch problems.

This property has significant ramifications in the equilibrium

properties of TLMP.

Proposition 2 reveals the structure of TLMP as a natural

extension of LMP; it adds to the uniform pricing of LMP

with a discriminative ramping price Δ∗
it. The LMP portion

of TLMP is public as it represents the system-wide energy

price whereas the private ramping price accounts for the

individual ramping capabilities. Note also that TLMP incurs

no additional computation costs beyond that in LMP.
Two interpretations of the ramping price Δ∗

it in TLMP

are in order. First, note that the TLMP expression above is

consistent with that in (1); both expressions give the inter-

pretation that the ramping price in TLMP is the increment of

the shadow prices associated with the ramping constraints.

Second, the ramping price Δ∗
it can be positive or negative.

When the ramping price Δ∗
it > 0, it can be interpreted as an

upfront payment for the ramping-induced lost-of-opportunity

cost, which ensures that the generator under TLMP is never

under-paid below its generation cost. When it is negative, it

has the interpretation of a penalty for the generator’s inability

to ramp for greater welfare. See discussions of Example I in

Sec. V and Proposition 4 and related discussions in Part II

[19].

B. Dispatch-following incentives of TLMP and R-TLMP

We now consider the equilibrium and dispatch-following

incentives. Because TLMP is a nonuniform pricing, the gen-

eral and partial equilibrium definitions given in the previous

section need to be generalized slightly.

• Instead of having a single price vector for all generator,

we now have an individualized price vector πi for each

generator i.

• The individual rationality conditions extend naturally by

replacing πt in (4-5) by πit.

Theorem 3 establishes the strong equilibrium property for

the one-shot TLMP.

Theorem 3 (One-shot TLMP as a strong equilibrium price).

When there is no forecasting error, i.e., d̂ = d, the one-

shot multi-interval economic dispatch policy G
ED

and the

TLMP policy P
TLMP

form a strong equilibrium, thus there is

no incentive for any generator to deviate from the economic

dispatch signal.

In addition, the one-shot TLMP guarantees revenue ad-

equacy for the operator with total merchandising surplus

equal to the ramping charge:

MS :=
∑
t

πTLMP

0t dt −
∑
i>0,t

πTLMP

it gED

it

=
∑
i,t

(μ̄∗
itr̄i + μ∗

it
ri) ≥ 0. (11)

The intuition behind the above theorem is evident from the

Lagrangian of the one-shot economic dispatch (10). Because

TLMP decouples the temporal dependencies of the multi-

interval dispatch, the optimal dispatch g∗it should always

satisfy the individual rationality condition for all i and t.

The non-negative merchandising surplus and (11) are,

perhaps, not surprising; they are analogous to the same

property for LMP when network congestions occur.

What happens when the load forecasts are not accurate?

More importantly, is the rolling-window TLMP a strong

equilibrium price for the rolling-window dispatch?

Theorem 4 (R-TLMP as a strong equilibrium price). Let

gR-ED

i be the rolling-window dispatch for generator i and

πR-ED

i its rolling-window TLMP. Then, for all i and under

arbitrary demand forecast error, (gR-ED

i ,πR-TLMP) forms a strong

equilibrium, and

LOC(πR-TLMP

i ,gR-ED

i ) = 0. (12)

Note that, when a generator has zero LOC uplift, then the

make-whole payment for the generator is also zero [22].

The above theorem highlights the most significant property

of TLMP for practical situations when the load forecasts used

in the rolling-window dispatch are not perfect. There is no

uniform pricing policy that can achieve the same.

C. Truthful-bidding Incentives under R-TLMP and R-LMP

For the single-interval dispatch and pricing problem, it

is known that a price-taking generator under LMP has the

incentive to bid truthfully based on its marginal cost of

generation. Here we show that a price-taker’s truthful-bidding

behavior generalizes to the multi-interval pricing model under

R-TLMP, but not under R-LMP.

At the outset, we note that the price-taking assumption is

restrictive; it typically applies to an ideal competitive market

and rarely holds strictly in practice. Under LMP, for instance,

a generator with the perfect foresight of an oracle can bid

in such a way to make itself a marginal generator so that
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its bid sets the clearing price. Note also that, depending on

realized demands, a generator can be a price-taker in some

intervals and price-setter in others under LMP or TLMP. In

practice, a generator without market power may reasonably

assume that its bid cannot influence the clearing price and

derive its bidding strategy ex ante based on the price-taking

assumption. It is under such a setting that we consider how a

price-taking profit-maximizing generator bid under R-TLMP.
Let q(·) = (q1(·), · · · , qT (·)) be the true marginal cost

of generation over T intervals of a specific generator§. Let

f(·|θ) = (ft(·|θt)) be the generator’s bid-in cost (supply)

curve parameterized by θ = (θt). Assume that f(·|θ∗) =
q(·).

With demands and bid-in costs from other generators

fixed, let gR-ED(θ) be the vector of cleared generation over

T intervals by the ISO under R-TLMP. The profit of the

generator is given by

Π(θ) = (πR-TLMP)TgR-ED(θ)−
T∑

t=1

qt(g
R-ED

t (θ)), (13)

where, under the price-taker assumption, the clearing price

πR-TLMP is not a function of θ.

The following theorem establishes that θ = θ∗ is a

maximum of Π(θ) defined in (13), i.e., bidding at the true

cost is optimal.

Theorem 5 (Truthful-bidding incentive of R-TLMP). Con-

sider a price-taking generator with convex generation cost

q(·). Under the rolling-window economic dispatch and R-

TLMP with arbitrary forcasting error, it is optimal that the

generator bids truthfully with its marginal cost of generation.

In contrast to R-TLMP, as shown in Appendix I, R-LMP

fails to provide truthful-bidding incentives for price-taking

generators because out-of-the-market uplifts are unavoidable

under R-LMP and other uniform pricing schemes. It is such

out-of-the-market uplifts that incentivize strategic behaviors.

V. ILLUSTRATIVE EXAMPLES

We consider two examples involving T = 3 intervals, one

for the one-shot dispatch and pricing policies with perfect

load forecasts, the other for the rolling-window policies with

inaccurate forecasts. The toy examples considered in this

section are designed to gain insights into the behavior of

these pricing mechanisms. The observations drawn from the

examples may not hold in general. In all our simulations,

we have quantities in MW and prices in $/MWh, of which

the units are dropped hereafter for simplicity. See Part II for

more elaborate Monte Carlo simulations [19].

A. Example I: one-shot dispatch and pricing

The economic dispatch, LMP, and TLMP over three inter-

vals are given in the right part of Table II. We make four

observations.

§For brevity, we drop the generator index.

TABLE II: One-shot economic dispatch, LMP, and TLMP
under linear costs. Initial generation
g[0] = (380, 40). The price for demand dt is
πLMP
t .

G1

G2

Capacity Marginal
cost 

Ramp
limit

(40, 25, 30)

420 590 590

(90, 35, 30) (90, 30, 30)

500 

500

25

30

500

50

(380, 25, 25) (500, 35, 35) (500, 30, 30)

(gED
it , π

LMP
t , πTLMP

it )

t = 1 t = 2 t = 3

dt

ḡi ci r
i
= r̄i

First, G1’s ramping limits are not binding over the three

intervals. The LMP and TLMP are the same for G1.

Second, the ramping constraint for G2 is binding between

the first and second intervals, making the price of generation

under TLMP different from its LMP. Note that in interval

t = 1, G2 is scheduled to generate at the LMP of $25/MWh,

$5/MWh below its marginal cost of $30/MWh. As a result,

G2 incurs an opportunity cost of $200 so that it can ramp up

to the maximum to the next interval and be paid at $5/MWh

above its marginal cost. Despite the loss in the first interval,

the total surplus over the three intervals is maximized. By the

general equilibrium property of LMP, there is no incentive

for G2 to deviate from the dispatch.
Third, in contrast to LMP, TLMP pays G2 up-front the

opportunity cost by adding $5/MWh to the energy price of

$25/MWh. The up-front payment removes the incentive for

G2 to deviate not knowing future demands. For this reason,

the discriminative part of TLMP in (9) has an interpretation

as the premium for the ramping-induced opportunity cost.

Note also that, the opportunity cost premium paid to G2 in

interval 1 is removed in interval 2.

Fourth, consider the case when the true ramping limit of

G2 is 100 MW. Had G2 reported the ramping limit truthfully,

G2 would have been dispatched to generate 0 MW in interval

1 and 90 in interval 2 at $30 MW/h with total profit of zero

dollar. But if G2 falsely declares that it has ramp limit of 50

MW as shown in Table II, we see that G2 under LMP would

have made $250 profit. This shows that under LMP, there is

an incentive for G2 to under-declare its ramp limit. Under

TLMP, on the other hand, there is no incentive for G2 to lie

about its ramp limit. See more examples in Part II [19].

B. Example II: rolling-window dispatch and pricing

Table III shows the rolling-window economic dispatch and

rolling-window prices with window size W = 2. The load

forecasts d̂t = (d̂t, d̂t+1) are listed and d̂t = dt being the

actual load. Note that d̂t contains forecast errors.

We again make four observations. First, the missing money

scenario happens in this example. G2 is underpaid by πR-LMP

1

in the interval t = 1. Unlike the one-shot LMP case,

the underpayment is never compensated under R-LMP. The
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underpayment is compensated out of the market. The LOC

and MW uplifts to G2 are both $250.

Second, from Table III, the dispatch of G2 satisfies the

conditions in Theorem 2. There is no uniform price can

remove LOC uplifts. For this example, the argument becomes

trivial. Consider interval t = 1, for any price greater than

$25/MWh, G1 self-scheduling would have generated more

than 370 (MW). If the price is $25/MWh, G2 self-scheduling

would have generated zero (MW).

Third, for G2 in interval t = 1, given the inaccurate

load forecast of 600 for interval t = 2, the rolling-window

dispatch for interval t = 2 is 100, which makes the ramping

constraints from t = 1 to t = 2 binding. The Lagrange

multiplier associated with this binding constraint is five. The

TLMP for G2 is $5/MWh above the LMP, which compen-

sates the underpayment of LMP to the level of marginal

cost. In intervals of t = 2, 3, there are no binding ramping

constraints for G2. G2 is paid at the LMP. No missing money

for TLMP.

Fourth, there is again no incentive for G2 to declare its

ramp limit untruthfully under TLMP; it will be paid at its

marginal costs. Under LMP, however, there is an incentive

for G2 to declare that it has high ramping limits, say 100

MW, and avoid the opportunity cost in the first interval.

TABLE III: Rolling-window economic dispatch, LMP, and
TLMP. Initial generation g[0] = (370, 50).
Load is settled at the LMP πLMP

t for all t.

G1

G2

Capacity Marginal
cost

Ramp
limit

(50, 25, 30)

(420,600) (590,600) (590,590)

(90, 30, 30) (90, 30, 30)

500

500

25

30

500

50

(370, 25, 25) (500, 30, 30) (500, 30, 30)

(gR-ED
it , πR-LMP

t , πR-TLMP
it )

t = 1 t = 2 t = 3

d̂t

ḡi ci r
i
= r̄i

VI. DISCUSSIONS

We discuss in this section aspects of pricing multi-interval

dispatch that are not covered in this two-part paper. The

purpose is to provide a broader perspective and contexts

beyond the scope of this paper.

We assume a bid-based market model where the market

operator collects bids (generation offers) and makes two

decisions: one is the allocation of the production levels of the

goods (the dispatch over multiple intervals); the other is set-

ting the prices of generation and consumption. In analyzing

generators’ bidding characteristics, we assume that generators

are profit-maximizing competitive firms that exhibit price-

taking behaviors. Under such an assumption, we have shown

that it is optimal for the generators to bid truthfully under

R-TLMP, but not so under R-LMP.

In practice, markets are rarely competitive, and not all

generators are price takers. To this end, it is more appropriate

to model strategic behaviors of generators explicitly. An

excellent example is the work of Hobbs [24] where a Nash-

Cournot competition is formulated in analyzing decentralized

(bilateral) and centralized (poolco) power markets. Another

example is the work of Philpott, Ferris, and Wets [25] on the

equilibrium, uncertainty, and risk in hydro-thermal systems,

which is relevant to the current work for its modeling of

inter-temporal constraints and uncertainty.

In pricing multi-interval economic dispatch with ramping

constraints, there is a larger question whether private param-

eters such as ramping limits, unlike congestion limits in a

public power network, should be modeled explicitly in the

operator’s pricing decisions. In this paper, as in some of the

recent proposals of ramping products [5], [14]–[18], it is the

market operator who sets the prices that cover ramping in-

duced costs. Under LMP and other uniform pricing schemes,

the cost of ramping manifests itself in the form of out-of-the-

market uplifts. For TLMP, on the other hand, ramping costs

show up in the shadow prices of ramping limits within the

market clearing process.

An alternative to the pricing model considered here is to

have generators internalize ramping costs in its offer, which

is highly nontrivial [13], [26]. Comparing the two approaches

is outside the scope of this paper.

VII. CONCLUSION

We have developed a theory for dispatch-following incen-

tives for multi-interval dispatch problems with inter-temporal

ramping constraints and forecast uncertainties. Since there is

no uniform pricing mechanism that can guarantee dispatch-

following incentives without discriminative out-of-the-market

uplifts, a non-uniform pricing mechanism such as TLMP can

be a valid alternative. As an extension of LMP, TLMP cap-

tures both the energy and the ramping-induced opportunity

costs. As a strong equilibrium pricing mechanism, TLMP

guarantees dispatch-following incentives under arbitrary fore-

cast errors and generalizes many properties of LMP.

Evaluating pricing schemes in practice must take into

account many factors. In Part II of this paper [19], we conduct

more careful simulation studies using relevant performance

metrics to compare several benchmark pricing schemes.
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APPENDIX

A. Preliminaries

We derive a more compact vector-matrix representation of

LMP, TLMP and associated representations. For convenience,

we focus on scheduling window H = {1, · · · ,W}. Let the

demand (or forecasted demand) be d = (d1, · · · , dW ) be

the demand in H , gi = (gi1, · · · , giW ) the generation of

generator i, and Gᵀ = [g1, · · · ,gN ] the generation matrix.

The W -interval economic dispatch in the vector-matrix form

is defined by

G
ED

: minimize
{G}

F (G) =
∑

i fi(gi)

subject to for all 1 ≤ i ≤ N

λ : Gᵀ1 = d

(ρ
i
, ρ̄i) : 0 ≤ gi ≤ ḡi,

(μ
i
, μ̄i) : −ri ≤ Agi ≤ r̄i,

(14)

where fi(gi) =
∑

t fit(git) is the total cost for generator

i, λ = (λ1, · · · , λW ), the vector of dual variables for

the equality constraints and (ρ
i
, ρ̄i,μi

, μ̄i) vectors of dual

variables for the inequalities associated generator i, and A is

a W ×W lower bi-digonal matrix with 1 on the diagonals

and -1 on the off diagonals.

Let the Lagrangian of G
ED

be

L =
∑
i

fi(gi) + λᵀ(d−Gᵀ1)

+
∑
i

(
μ̄

ᵀ

i (Agi − r̄i)− μᵀ

i
(Agi + ri)

)

+
∑
i

(
ρ̄
ᵀ

i (gi − ḡi)− ρᵀ

i
gi

)
. (15)

Let (GED,λ∗,ρ∗
i
, ρ̄∗

i ,μ
∗
i
, μ̄∗

i ) be the solution to G
ED

. The

KKT condition gives

∇fi(g
∗
i )− λ∗ +AᵀΔμ∗

i +Δρ∗
i = 0, (16)

where Δμ∗
i = μ̄∗

i − μ∗
i

and Δρ∗
i = ρ̄∗

i − ρ∗
i
.

The vector form of the multi-interval LMP and TLMP of

generator i are given by, respectively,

πLMP = λ∗, πTLMP

i = λ∗ −AᵀΔμ∗
i . (17)
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For the individual rationality condition, for generator i,

we have the following profit maximization problem for given

price π:

G̃i : minimize
g

fi(g)− gᵀπ

subject to (η, η̄) : − ri ≤ Ag ≤ r̄i,

(ζ, ζ̄) : 0 ≤ g ≤ ḡi.

(18)

By the KKT condition, the solution to the above must

satisfy

∇fi(g)− π +AᵀΔη +Δζ = 0, (19)

where Δη = η̄ − η and Δζ = ζ̄ − ζ.

B. Proof of Theorem 1

Let GED be the one-shot economic dispatch and πLMP the

LMP. The market clearing condition is already satisfied by

GED. The individual rationality condition (19) holds by setting

(g = gED

i ,Δηi = Δμ∗
i ,Δζi = Δρ∗

i ). �

C. Proof of Theorem 2

Let π = (πt) be an arbitrary uniform price and gR-ED

i the

rolling-window economic dispatch of generator i. If generator

i has zero LOC under π, then gR-ED

i must satisfy the KKT

conditions of its LOC optimization:

∇fi(g
R-ED

i ) = π −A�Δηi −Δζi,

where Δηi and Δζi are Lagrange multipliers associated with

the LOC optimization.

If condition (2) and (3) of Theorem 2 are satisfied for

generator i in interval t∗, the respective multipliers in Δηi

associated ramping at t∗ and generation limits Δζi must be

zero, which implies

d

dg
fit∗(g

R-ED

it∗ ) = πt∗ .

Likewise, if generator j �= i also satisfies the same two

conditions in the same interval t∗, we must have

d

dg
fit∗(g

R-ED

it∗ ) =
d

dg
fjt∗(g

R-ED

jt∗ ) = πt∗ ,

which contradicts to the fact that the two generators have

different marginal bid-in costs of generation in interval t∗. �

D. Proof of Proposition 2

TLMP for demand d̂t is same as LMP; it is defined by the

marginal cost of serving d̂t:

πTLMP

0t :=
∂

∂d̂t
F (GED) = λ∗

t .

To compute TLMP for generator i in interval t, consider

the modified multi-interval economic dispatch with generator

i in interval t fixed at the optimal economic dispatch level,

git = gED

it :

G′ : minimize
{G=[gjk,(j,k) �=(i,t)]}

F−it(G)

subject to for all j �= i and t′ ∈H � {t}

λit′ :
N∑
j �=i

gjt′ = dt′

(γ
jt′
, γ̄jt′) : 0 ≤ gjt′ ≤ ḡj ,

(η
jt′
, η̄jt′ ) : −rj ≤ gj(t′+1) − gjt′ ≤ r̄j ,

λit :
N∑
j �=i

gjt = dt − gED

it

(η
it
, η̄it) : −ri ≤ gi(t+1) − gED

it ≤ r̄i,

(η
i(t−1)

, η̄i(t−1)) : −ri ≤ gED

it − gi(t−1) ≤ r̄i.

(20)

By the envelope theorem, at the optimal solution G∗ =
[g∗it] and (γ∗

it
, γ̄′∗

it, η
′∗

it
, η̄′

∗
it) of G′

to
, we have

−
∂

∂g∗it
F−it(G

∗) = λ∗
it +Δη∗it −Δη∗i(t−1)

= λ∗
t +Δ∗

it,

where, for the last equality, we have λ∗
it = λ∗

t , η
∗
it = μ∗

it at

the optimal dispatch defined in (3). �

E. Proof of Theorem 3

We first show that (GED, (πTLMP

i )) satisfies the general

equilibrium conditions. Again, we only need to check the

individual rationality condition since the economic dispatch

GED already satisfies the market clearing condition as well as

all the ramping constraints.

For the individual rationality condition, we consider the

optimization G̃i (18) with π = πTLMP. Setting η = η̄ = 0 and

Δζ = Δρ∗
i , by the KKT condition, gED

i is a solution to G̃i.
Thus (πTLMP

i ,gED

i ) satisfies the individual rationality condition

for all i.

To show that (GED, (πTLMP

i )) also satisfies the strong equi-

librium condition, we note that (GED, η̄i = η
i
= 0, ρ̄∗

i ,ρ
∗
i
)

is a solution to (18). Because the dual variables for ramping

constraints are all zero, the multi-interval optimization de-

couples in time under πTLMP

i . We have qR-ED

it as a solution to

(5) for individual rationality.

To show the revenue adequacy for the operator, we com-

pute the merchandising surplus under TLMP. From (17),

MS = dᵀλLMP −
∑
i

(λLMP −AᵀΔμ∗
i )

ᵀgED

i

=
∑
i

(Δμ∗
i )

ᵀAgED

i

=
∑
i

r̄
ᵀ

i μ̄
∗
i + r

ᵀ

i μ
∗
i
≥ 0,

where the last equality comes from the complementary

slackness condition. �
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F. Proof of Theorem 4

Within this proof, we will focus on a particular generator,

say generator i. For brevity, we drop the subscript i of all

variables associated with generator i.

Let gR-ED = (gR-ED

1 , · · · , gR-ED

T ) be the rolling-window eco-

nomic dispatch over H and πR-TLMP = (πR-TLMP

1 , · · · , πR-TLMP

T )
the rolling-window TLMP vector.

Let gED

t be the W -window economic dispatch at time t

over Ht from (14) based on dt = (dt1, · · · , dtW ). Note

that dt1 = dt, the actual demand for interval t, and the rest

of entries of dt are forecasts with errors. Let πTLMP

t be the

corresponding TLMP vector given in (9).

From the proof of Theorem 3 (with T = W ), the profit

maximization,

G̃t : minimize
g=(g1,··· ,gW )

(ft(g)− gᵀπTLMP

t )

subject to (η, η̄) : − rt ≤ Ag ≤ r̄t,

(ζ, ζ̄) : 0 ≤ g ≤ ḡt,

(21)

has a solution gED

t with η = η̄ = 0, where ft(g) is the

generation cost over Ht. This means that gED

t is a solution

to the ramp-unconstrained optimization

gED

t = arg min
0≤g≤ḡt

(f(g)− gᵀπTLMP

t ).

By the rolling-window dispatch and pricing policies, the

first entry of gED

t is gR-ED

t —the dispatch that is implemented

in interval t—and the first entry of πTLMP

t is the the rolling-

window price πR-TLMP

t in interval t. We thus have

gR-ED

t = arg min
0≤g≤ḡ

(ft(g)− gπR-TLMP

t ), (22)

which implies that gR-ED is the solution to the ramp-

unconstrained optimization

gR-ED = arg min
0≤g≤ḡ

(f(g)− gᵀπR-TLMP).

Let g∗ be the solution to the (ramp-constrained) LOC

optimization (18) with π = πR-TLMP, we must have

f(gR-ED)− (gR-ED)ᵀπR-TLMP ≤ f(g∗)− (g∗)ᵀπR-TLMP.

Note, however, that gR-ED satisfies all the constraints in

(18), the above inequality holds with equality, and gR-ED is

a solution to (18). Therefore, LOC(gR-ED, πR-TLMP) = 0.
By Proposition 1, (GR-ED,ΠR-TLMP) is a general equilibrium.

From (22), we conclude that (GR-ED,ΠR-TLMP) also satisfies the

strong equilibrium conditions. �

G. Proof of Theorem 5

We focus on a specific generator, henceforth dropping the

generator index in the notation within this proof. Under the

price-taker assumption, from (13), we have

Π(θ∗) = (πR-TLMP)TgR-ED(θ∗)−

T∑
t=1

qt(g
R-ED

t (θ∗)).

From Theorem 4, we know that, when bidding truthfully,

there will be no LOC, which implies that

Π(θ∗) ≥ (πR-TLMP)Tg−

T∑
t=1

qt(g),

for every g in the profit maximization problem. Because a

price-taker’s bid can only influence dispatch gR-ED(θ), we have

Π(θ∗) ≥ Π(θ). �

Fig. 2: Top left: generator parameters. The ramp limit for
G1 is fixed at 25 (MW/h). Top right: a path of
ramping events. Bottom left: average demand.
Bottom right: demand traces.

H. Simulations on the conditions in Theorem 2

We present empirical test results on how frequently as-

sumptions in Theorem 2 of Part I hold. Fig. 2 shows the

parameters of the generators and load scenarios in this three-

generator-single-bus case. We evaluated assumptions under

different ramping limits along the path from scenarios A to H,

where scenarios A had the most stringent ramping constraints

and H the most relaxed. Moreover, we evaluated assumptions

under different load forecast errors with a standard forecast-

ing error model¶, where the demand forecast d̂(t+k)|t of dt+k

at time t had error variance kσ2 increasing linearly with k.

And σ varied from σ = 0% to σ = 6%.This simulation

setting was the same with cases in [19], and 400 realizations

with a standard deviation of 4% were tested with rolling-

window optimization over the 24-hour scheduling period,

represented by 24 time intervals. And the window size is

four intervals in each rolling window optimization.

It can be observed in the left panel of Fig. 3 that 80% -

90% realizations satisfied the conditions given in Theorem 2

under ramping scenarios A, B, C, where the system had most

binding ramping constraints. From ramping scenarios D to

H, binding ramping constraints were gradually relaxed until

¶The forecast d̂(t+k)|t at t of demand dt+k is d̂(t+k)|t = dt+k +
∑

k

i=1 εk where εk is i.i.d. Gaussian with zero mean and variance σ2.
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no binding ramping constraints existed at H, thus less cases

satisfied assumptions. The right panel of Fig. 3 shows that

with larger load forecast error, there were more realizations

satisfying the conditions of Theorem 2.

Fig. 3: Left: Percentage of realizations satisfied
assumptions vs. ramping scenarios from A to H at
σ = 6%. Right: Percentage of realizations satisfied
assumptions vs. load forecast error at ramping
scenario A.

We also conducted empirical tests on the larger ISO-

NE case with more practical simulation settings, including

network constraints. We observed a higher percentage of the

cases satisfying the conditions in Theorem 2. Specifically,

with the parameters and load scenarios in the companion

paper (Part II) [19], 99% - 100% realizations satisfied the

conditions given in Theorem 2 under ramping scenarios A,

B, C, D and E.

TABLE IV: Rolling-window economic dispatch, R-LMP,
and R-TLMP consider price taker G3. Initial
generation g[0] = (370, 50, 0).

I. Truthful-bidding incentives under R-LMP and R-TLMP

Under the similar parameter settings as in Example II in

Sec V, we added generator G3 with small generation capacity

to mimic a price taking generator and considered the bidding

decision process of G3 at t = 1 as a price taker under the

assumption that the true cost of generation is $28/MWh. Un-

der the forecasted demand d̂t=1 = (420, 600, 600), Table IV

shows the forecasted W = 2 window sized rolling-window

dispatch of the three generators ĝR-ED

it , the forecasted rolling-

window LMP π̂R-LMP

it , and the forecasted rolling-window

TLMP π̂R-TLMP

it . Only the dispatch and pricing decisions at

t = 1 is realized.

Table V shows the expected surplus, LOC, and total profits

of the price-taker G3 under the rolling-window dispatch and

pricing with different bids. The results showed that, under R-

LMP, G3 had higher expected profit when it bid at $29/MWh

when true cost is $28/MWh. Thus there was incentive for

the profit-maximizing price-taker G3 to deviate its bid from

the true cost. Note that the expected generation surpluses

were the same under different bids. Therefore, the gain in

profit came entirely from LOC due to untruthful bidding. In

contrast, under R-TLMP, there is no incentive for G3 to bid

untruthfully.

TABLE V: Ex-ante computation of generation surplus,
LOC, and profit of price taker G3.


