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Abstract—Pricing multi-interval economic dispatch of electric
power under operational uncertainty is considered in this two-
part paper. Part I investigates dispatch-following incentives
of profit-maximizing generators and shows that, under mild
conditions, no uniform-pricing scheme for the rolling-window
economic dispatch provides dispatch-following incentives that
avoid discriminative out-of-the-market uplifts. A nonuniform
pricing mechanism, referred to as the temporal locational
marginal pricing (TLMP), is proposed. As an extension of
the standard locational marginal pricing (LMP), TLMP takes
into account both generation and ramping-induced opportunity
costs. It eliminates the need for the out-of-the-market uplifts and
guarantees full dispatch-following incentives regardless of the
accuracy of the demand forecasts used in the dispatch. It is also
shown that, under TLMP, a price-taking market participant has
incentives to bid truthfully with its marginal cost of generation.
Part II of the paper extends the theoretical results developed
in Part I to more general network settings. It investigates a
broader set of performance measures, including the incentives
of the truthful revelation of ramping limits, revenue adequacy of
the operator, consumer payments, generator profits, and price
volatility under the rolling-window dispatch model with demand
forecast errors.

Index Terms—Multi-interval economic dispatch. Look-ahead
dispatch. Ramping constraints. Locational marginal pricing.
Dispatch-following and truthful-bidding incentives.

I. INTRODUCTION

We consider the problem of pricing multi-interval look-
ahead economic dispatch when generators are ramp-
constrained and demand forecasts inaccurate. This work is
motivated by recent discussions among system operators on
the need for ramping products in response to the “duck-
curve” effect of renewable integrations [3]-[8]. A well-
designed multi-interval look-ahead dispatch that anticipates
trends of future demand can minimize the use of more
expensive ramp resources.

A standard implementation of a look-ahead dispatch is
the so-called rolling-window dispatch, where the operator
optimizes the dispatch over a few scheduling intervals into
the future based on load forecasts. The dispatch for the
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immediate scheduling interval (a.k.a. the binding interval) is
implemented while the dispatch for the subsequent intervals
serves as an advisory signal and is updated sequentially.
A common practice to price the rolling-window dispatch is
the rolling-window version of the multi-interval locational
marginal pricing (LMP).

LMP is a uniform pricing mechanism across generators
and demands at the same location in the same scheduling
interval. For the single-interval pricing problem, LMP has
remarkable properties. LMP supports an efficient market
equilibrium such that a profit-maximizing generator has
no incentive to deviate from the central dispatch. For a
competitive market with a large number of generators, a
price-taking generator has the incentive to bid truthfully
at its marginal cost of generation. LMP also guarantees a
nonnegative merchandising surplus for the system operator.
As a uniform pricing scheme, LMP is transparent to all
market participants, and the price can be computed easily
as a by-product of the underlying economic dispatch.

Most of the attractive features of LMP are lost, unfortu-
nately, when the rolling-window version of LMP (R-LMP)
is used and demand forecasts inaccurate. Indeed, even if
perfect forecasts are used in R-LMP, many nice properties
of LMP are not guaranteed. In particular, a missing-money
scenario arises when a generator is asked to hold back
its generation in order to provide ramping support for the
system to meet demands in future intervals. In doing so,
the generator incurs an opportunity cost and may be paid
below its offered price to generate. Expecting compensations
in future intervals for the opportunity costs, the generator
disappoints when the anticipated higher payments do not
realize due to changing demand forecasts. Examples of such
scenarios are well known and also illustrated in Example 2
in Sec V. It turns out that such examples are not isolated
instances unique to R-LMP. As we show in Theorem 2 in
Sec. III, they occur under all uniform pricing schemes.

To ensure that generators are adequately compensated, the
operator provides the so-called uplift payments to generators
suffering from underpayments in an out-of-the-market settle-
ment. The roles of uplifts have been discussed extensively
in the literature [9]-[12]. Such settlements are typically dis-
criminative and subject to manipulation. Examples exist that,
under LMP, a price-taking generator may have incentives to
deviate from truthful-bidding to take advantage the out-of-
the-market settlements. See Appendix I.

0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 18,2021 at 12:47:04 UTC from IEEE Xplore. Restrictions apply.


guo-ye@sz.tsinghua.edu.cn

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3055730, IEEE

Transactions on Power Systems

A. Related work

Wilson discussed the issue of pricing distortion introduced
by ramping in [13]. He pointed out that the cause of such
pricing distortion is that the optimization model used in price
formation is imperfect. In the rolling-widow dispatch context,
both the imperfection of demand forecasts and the limited
look-ahead distort the dispatch-following incentives. The
use of out-of-the-market uplifts further distorts the truthful-
bidding incentives. The dispatch-following incentive issues in
pricing multi-interval dispatch have been widely discussed in
the literature [1], [4], [8], [12], [14]-[16], although a formal
way of analyzing such issues is lacking. The effects of the
out-of-the-market uplifts on truthful-bidding incentives are
not well understood.

Several marginal cost pricing schemes have been pro-
posed for the rolling-window dispatch policies. The flexible
ramping product (FRP) [5] treats ramping as a product to
be procured and priced uniformly as part of the real-time
dispatch. FRP is a two-part tariff consisting of prices of
energy and ramping. Ela and O’Malley proposed the cross-
interval marginal price (CIMP) in [14] defined by the sum
of marginal costs with respect to the demands in the binding
and the future (advisory) intervals. Multi-settlement pricing
schemes are proposed in [16], [17] that generalize the existing
two-settlement day-ahead and real-time markets.

Deviating from marginal cost pricing are two recent pro-
posals aimed at minimizing the out-of-the-market payments;
both employ separate pricing optimizations that are differ-
ent from that used in the economic dispatch. The price-
preserving multi-interval pricing (PMP), initially suggested
by Hogan in [18] and formalized in [15], adds to the objective
function the loss-of-opportunity cost for the generators for
the realized prices and dispatch decisions. In contrast, the
constraint-preserving multi-interval pricing (CMP) proposed
in [15] fixes the past dispatch decisions and penalizes ramp-
ing violations. Both have shown improvements over the
standard R-LMP policy.

All existing pricing schemes for multi-interval economic
dispatch are based on uniform pricing mechanisms. To our
best knowledge, no existing pricing policies can provide
dispatch-following incentives that eliminate discriminative
out-of-the-market settlements.

B. Summary of results, contexts, and limitations

The main contribution of this work is threefold. First, we
show in Theorem 2 that price discrimination is unavoidable
in pricing rolling-window dispatch. Specifically, all uniform
pricing mechanisms require some level of out-of-the-market
uplifts under the rolling-window dispatch model. While uni-
form pricing schemes are transparent and non discriminative
within the market clearing process, it is the out-of-the-
market uplift payments that make the overall payment scheme
discriminative.

Second, we generalize LMP to a nonuniform pricing
scheme, referred to as the temporal locational marginal

pricing (TLMP). TLMP prices the production of a generator
7 based on its contribution to meeting the demand in interval
t. In doing so, TLMP encapsulates both generation and
ramping-induced opportunity costs in each interval.

As shown in Proposition 2, TLMP decomposes into energy
and ramping prices:

TLMP ___ LMP
T — Ty

+ fit — fi(e—1); (H
where ™" is the standard LMP, and the second term is the
increment of the Lagrange multipliers associated with the
ramping constraints in the economic dispatch optimization,
from pi;(;—1) in interval (t—1) to p in interval ¢. The above
decomposition is analogous to the energy-congestion price
decomposition of LMP. TLMP naturally reduces to LMP in
the absence of binding ramping constraints.

Third, we establish several key properties that make TLMP
a viable and potentially attractive alternative to standard uni-
form pricing schemes. A key property of TLMP is that, under
the dispatch and pricing models assumed in this paper, the
rolling-window implementation of TLMP (R-TLMP) elimi-
nates the need of out-of-the-market uplifts for the rolling-
window economic dispatch under arbitrary forecast errors.
Whereas all pricing schemes are necessarily discriminative,
R-TLMP stands out as one that discriminates inside rather
than outside the market clearing process. This property ties
real-time pricing closely to the actually realized ramping
conditions.

As a generalization of LMP, TLMP extends some of the
important properties of LMP to the rolling-window multi-
interval pricing setting, thanks to the property that R-TLMP
is a strong equilibrium price that decouples the profit max-
imization problem over the entire scheduling horizon into
single-interval ones. A significant property of TLMP (The-
orem 5) is that a price-taking profit-maximizing generator
has the incentive to bid truthfully with its marginal cost of
generation. In other words, there is no need for a generator
to internalize ramping-induced opportunity costs. Such a
property, however, does not hold for the rolling-window
implementation of the multi-interval LMP. See Appendix I.

Also significant (Proposition 3 of Part II) is that, under
TLMP, the operator’s merchandising surplus is the sum of
congestion and ramping surplus, which has significant impli-
cations on the revenue adequacy of ISO. We also demonstrate
that, under TLMP, the generators have incentives for truthful
revelation of ramping limits, and there are incentives for the
generators to improve their ramping capabilities.

Given that TLMP is discriminatory, one may question how
different it is from other discriminative pricing schemes such
as the pay-as-bid (PAB) pricing. The differences between
TLMP and PAB pricing are significant; TLMP is much closer
to LMP than it is to PAB. Comparing with LMP, PAB is more
vulnerable to manipulative bidding behaviors, and a market
participant has little incentive to bid truthfully. In contrast,
TLMP inherits and extends (in Theorem 5) the property of
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LMP (under the single-interval model) that a price taker
generator bids truthfully with its marginal cost.

Discriminative pricing is often criticized for its lack of
transparency, which makes it difficult for the operator to
provide public pricing signals to market participants. Because
of the decomposition of TLMP into the uniform energy
price (LMP) and a discriminative ramping price in (1), the
energy part of TLMP (LMP) is transparent to all participants.
The ramping price part of TLMP, like the out-of-the-market
uplifts, is nontransparent and discriminative. In this aspect,
TLMP has the same level of transparency as in LMP,
although the amount of the discriminative payments under
TLMP and uniform prices can be quite different. See Part II
of this paper for a numerical comparison [19].

Finally, in Part II of the paper, we generalize the theory of
dispatch-following incentives to more general models that in-
clude network constraints and discuss a broader set of incen-
tive and performance issues through numerical simulations.
When comparing different pricing schemes, our results shine
lights on practical tradeoffs along several dimensions: the
revenue adequacy of the ISO, consumer payments, generator
profits, and price volatilities.

A few words are in order on the scope and limitations
of this paper. We do not model strategic behaviors of the
generators, nor do we consider those market models that the
market operator does not price ramping costs and lets the
generators internalize their individual ramping costs. We dis-
cuss in Sec. VI some of the implications of these omissions.
We also ignore the role of unit commitment and the costs of
reserves. In Part I, we illustrate the properties of LMP and
TLMP with a toy example. Generalizations to systems with
network constraints and more elaborate numerical examples
are in Part II.

C. Notations and nomenclature

Designated symbols are listed in Table I. Otherwise, no-
tations used here are standard. We use (x1,---,zy) for a
column vector and [z1,--- ,xN] a row vector. All vectors
are denoted by lower-case boldface letters, nominally as
columns. The transpose of vector x is denoted by xT.
Matrices are boldface capital letters. Matrix X = [x;;] is
a matrix with z;; as its (4, 7)th entry. Similar to the vector
notation, matrix X = [x1,- -+ ,xy]| has x; as its ith column,

and matrix X = (x],---,x}) has x[ as its ith row.

II. MULTI-INTERVAL DISPATCH AND PRICING MODELS

We consider a bid-based real-time electricity market in-
volving one inelastic demand, N generators, and a system
(market) operator. The scheduling period of generations
involves T unit-length intervals ¢ = {1,---,T}, where
interval ¢ covers the time interval [¢,¢ + 1). Typically, T is
the number of intervals in a day.

We assume that each generator produces a generation offer
that includes a bid-in cost curve along with its generation

3
TABLE I: Major symbols (in alphabetic order).
0,1 vector of all zeros and ones.
A: a W x W lower bi-digonal matrix with 1 on
the diagonals and -1 on the off diagonals.
dt: the demand in interval ¢.
d¢: d¢ = (d¢, -+ ,di4w—1), the demand in the
look-ahead window of W intervals.
d: d = (di,--- ,dr) the overall demand vector.
de, dy: demand forecasts of d¢ and dy.
it (): the bid-in cost of generator ¢ in interval ¢.
F(): aggregated bid-in cost curve in W or 7" intervals.
F_i(4) aggregated bid-in cost curve excluding generation
from generator 4 in interval ¢.
git: generation/dispatch of generator ¢ in interval ¢
glt]: generation/dispatch vector for all generators in
interval ¢, g[t] = (g1t,- - , gN¢)-
G: generation/dispatch matrix. G = [g[1],- - , g[T]].
gi: dispatch of generator ¢ over a scheduling window,
eg, 8 = (gi1, ", giw) or g = (gi1, -, GiT)-
Ge: the look-ahead dispatch policy at time ¢.
grP: the look-ahead economic dispatch policy at time t.
gtb: one-shot economic dispatch for generator 7.
gﬁ'ED: rolling-window economic dispatch for generator 4.
G scheduling window ¢ = {¢t,--- , ¢t + W — 1}.
H: scheduling horizon .77 = {1,--- ,T}.
LOC: lost-of-opportunity cost uplift.
MW: make-whole uplift.
Pe, P multi-interval pricing policy and LMP pricing policy.
rtMP g TLMP, one-shot LMP and TLMP.
qrRAMP e RTIMP. rolling-window LMP/TLMP.
qit(+),qi(+): true cost of generation of generator 7.
T: total number of scheduling intervals.
W: scheduling window size. W < T'.

and ramping limits. The operator collects bids from all
generating firms, allocates generation levels to all generators
in the form of dispatch signals, and determines the prices
of electricity in each scheduling interval. We assume that,
in pricing multi-interval dispatch, the operator incorporates
generation and ramping constraints. Because the bid of a
generator represents its willingness to generate, the generator
expects the total payment received over 1" intervals to be no
less than that computed from its offered prices; anything less
needs to be compensated by some forms of uplift payments
outside the market clearing process.

Part I of the paper assumes a single-bus network, which is
generalized in Part II to networks with M buses subject to
network constraints. We introduce two multi-interval schedul-
ing and pricing models. One is the one-shot model that sets
generation dispatch and prices over the entire scheduling
period at once, the other the rolling-window model that
sets the dispatch levels and prices sequentially with demand
forecasts for several intervals into the future.

A. One-shot multi-interval dispatch and pricing policies

At t = 1, the operator obtains the demand forecast vector
d = (dy,---,dr) over the entire scheduling horizon .7,
where th is the demand forecast for interval ¢. Let the actual
demand be d = (dy,--- ,dr). We assume that the forecast
of the first interval is accurate, i.e., dl =d.
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A one-shot dispatch schedules generations over the T'-
interval scheduling horizon .7 based on the initial forecast
d. Let g;; be the dispatch of generator ¢ in interval ¢,
g; = (gi1, -+, gir) the dispatch for generator i over 7,
glt] = (g1t,- - ,9ne) the dispatch for all generators in
interval ¢, and the N x T matrix G = [g[1],---,g[T]] the
dispatch matrix with g as its ith row.

A one-shot dispatch policy G maps the demand forecast d
and the initial generation g[0] to a dispatch matrix G:

G(d,gl0]) = G,

where g[0] imposes the initial ramping constraints on the
generations in the first interval.

Similarly, a one-shot pricing policy P sets the prices in
all intervals at once. A one-shot uniform price is defined
by a vector w = (my,--- ,7r) with 7 being the price of
electricity in interval ¢ for all generators and the demand.
For a nonuniform pricing policy, P sets 7 the price vector
for the demand and 7; = (m;1,- - , ) for generator i, for
i1=1,---,N.

B. One-shot economic dispatch and LMP

A special case of the one-shot dispatch is the multi-interval
economic dispatch GF¥P over /. Let the aggregated bid-in
cost function be

N

F(G) =Y > fulgu),

i=1tet

)

where f;:(-) is the bid-in cost curve* of generator ¢ in interval
t, assumed to be convex and almost everywhere differentiable
for all ¢ and 4 throughout the paper. Note that f;;(-) is not
necessarily equal to the actual generation cost g;:(-).

The dispatch policy GFP is defined by

gED .

minimize F(G)
{G=lgi]}
subject to  for all ¢ and ¢t € 7
N N
At > git = dr, (3)
(s Bit) o =13 < Gier) — Git < Ti
0<t<T-1,
(p;oPit) + 0 < gi <7,

where g; the generation capacity, and (r,,7;) the down
and up ramp-limits, \; the dual variable for the equality
constraints, and (/_)i 22 Dits [, fiit) > 0 are dual variables for
the inequality constraints’.

The one-shot locational marginal price* (LMP for short)
is a uniform price ™ = (7}*") with 7" defined by the

*The derivative of the bid-in cost curve represents the supply curve of the
generator.

"Throughout the paper, all inequalities are written in the form of v(z) < 0
with a non-negative dual variable.

*We retain the LMP terminology even though the model considered here
does not involve a network.

marginal cost of generation with respect to the demand in
interval . In particular, we have, by the envelope theorem,

3]
= o F(G™®) =X, t=1,---
t

7T7

where G™ and A} are part of a solution to (3).

C. Rolling-window look-ahead dispatch model

A rolling-window dispatch policy G = (G1,---,Gr) is
defined by a sequence of W-interval look-ahead policies
that generate dispatch signals g[1],---,g[T] sequentially,
as illustrated in Fig. 1. At time t, the policy G; has a
look-ahead scheduling window of W intervals, denoted by
A ={t, - ,t+W —1}. The interval ¢ is called the binding
interval and the rest of .77 the advisory intervals. As time t
increases, 77 slides across the entire scheduling period 7.

At time ¢, a W-interval one-shot policy G; maps demand
forecast d; = (dp,- -+ ,CZHW,l) and previously realized
generation g[t—1] to an N x W generation scheduling matrix
Gt over J4:

gt(&t,g[t - 1]) = [g[t], e ag[t+ W — 1]] = Gt-

The rolling window policy G sets generation in interval ¢ by
g[t] := g[t]. The rest of columns of G are not implemented.

1 2 3 4 5 T

CEREP
s

Fig. 1: Rolling-window dispatch with window size W = 4
generated from one-shot dispatch policy G;. The
same applies also to the rolling-window pricing.

| Time

t=2

. Binding interval

t=3

D Advisory interval

Similarly, a rolling-window pricing policy ‘P is defined by
a sequence one-shot pricing policies (Py, -, Pr). At time
t, P sets the prices over 7, and the price in the binding
interval ¢ is implemented by P.

As an example, the rolling-window economic dispatch
policy g% = (G{°,---,G??) where G, is the TW-window
one-shot economic dispatch defined in (3) with 7" =W and
d = d;. The rolling-window LMP policy P*"* is defined
by a sequence of W-interval LMP policies (P}, - -, PA").

III. DISPATCH-FOLLOWING INCENTIVES AND UPLIFTS

We say that a pricing mechanism provides dispatch-
following incentives if, given the realized prices, profit-
maximizing generators, by themselves, would have produced
generations that match the operator’s dispatch. Applying
market equilibrium models for dispatch-following incentives,
we consider two types of incentives: (i) the ex-post incentive
that applies to the entire scheduling period .7 after all
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generations have been realized; (ii) the ex-ante incentive
that applies to only the current (binding) scheduling interval.
The former guarantees dispatch-following incentives when a
generator considers the total profit over the entire scheduling
period. The latter guarantees dispatch-following incentives
only for the binding interval.

A. Ex-post incentives and general equilibrium

For a multi-interval dispatch and pricing problem, gen-
erations and consumptions in each interval are part of a
market separate from those in other intervals; we thus have
a set of T inter-dependent markets over .77. For purposes
of analyzing dispatch-following incentives, we borrow the
notion of general equilibrium [20, p. 547] for the multi-
interval pricing problem.

Definition 1 (General equilibrium). Let d be the actual
demand, g; the dispatch for generator ¢ and 7r the vector
of electricity prices over the entire scheduling period 7.
Let the N x T matrix G = (g],---,gL) be the realized
generation matrix for all generators. We say (G, ) forms
a general equilibrium if the following market clearing and
individual rationality conditions are satisfied:

1) Market clearing condition:

N
Zgitzdt forall t € .

i=1
2) Individual rationality condition: for all 7, the dispatch

g = (gi1, -+ ,gir) is the solution to the individual
profit maximization:

maximize
(g1, ,97)

subject to

S (mege — fiegr))

forallt=0,---,T—1, 4)
—r; < g1 — g < T,

We call 7 an equilibrium price supporting generation G.

In the context of analyzing dispatch-following incentives,
we are interested in whether price signal 7v and dispatch G
satisfy the general equilibrium condition. It turns out that, in
the absence of forecasting error, the one-shot LMP supports
the one-shot economic dispatch as stated in Theorem 1. This
result is analogous to the well-known property of LMP [21].

Theorem 1 (LMP as a General Equilibrium Price). When
there is no forecast error, d = d, the one-shot economic
dispatch matrix G* and the one-shot LMP 7w form a
general equilibrium.

As a general equilibrium price, 7" does not guarantee
that 752" g;r > fit(gie) for all (i,t). In other words, a
generator may be underpaid in some intervals despite that
the generator is maximally compensated under """ over the
entire scheduling period. See Example 1 in Sec. V.

B. Ex-ante incentives and partial equilibrium

When the rolling-window dispatch is used, the forecasts in
the look-ahead window (hence the dispatch over the window)
change, which creates the missing payment problem even
when the forecast over the look-ahead window is perfect.

Consider the example of rolling-window economic dis-
patch G**® and LMP P*™" policies. Suppose that a generator
i is underpaid in interval ¢, i.e., fir(g5™") > 7w Mg, Be-
cause g5;™° is generated by the W-window economic dispatch
based on forecast dy, generator ¢ expects the underpayment
in interval ¢ be compensated later in ¢ € . At time t/,
however, a different forecast d, is used to generate dispatch
g5, There is no guarantee that 75" is high enough to
compensate for the loss incurred in the interval ¢, hence the
missing payment problem.

To provide dispatch-following incentives under forecasting
uncertainty, we need stronger equilibrium conditions.

Definition 2 (Partial equilibrium and strong equilibrium).
Consider price vector w = (7q,- -+ ,77) and generation ma-
trix G over the entire scheduling horizon 7. The dispatch-
price pair (g[t],7) in interval ¢ is a partial equilibrium
if it satisfies the market clearing and individual rationality
conditions in interval ¢:
1) Market clearing condition: sz\il it = dy;
2) Individual rationality condition: for all 7, the dispatch
of signal g;; is the solution to the individual profit

maximization:
max%]mize (meg — fit(9))
subject to 0<g<g; )

-1 < 9= Git—1) = Ti-
The dispatch-price pair (G, ) is a strong equilibrium if
(G,m) is a general equilibrium and (g[t],7;) a partial
equilibrium for all .

The notion of partial equilibrium used here is slightly
different from the standard because of the sequential nature
of multi-interval dispatch and pricing problems. At time ¢, the
dispatch in the interval ¢ is necessarily constrained by the past
dispatch. The dispatch in the future intervals is advisory and
subject to change, which is the reason that only the ramping
constraints from the previous interval are imposed.

The strong equilibrium conditions impose stricter con-
straints than that required by the general or partial equilib-
rium definitions; strong equilibrium implies general equilib-
rium. Unlike the case of a general equilibrium price that only
needs to satisfy the rationality condition at the end of the
scheduling horizon, a strong equilibrium price must provide
a dispatch-following incentive in every interval independent
of future realized dispatches. Consequently, even if schedules
and prices may change, for the binding interval, there is no
incentive for the generator to deviate from the dispatch signal.

An immediate corollary of Theorem 1 is that, in the
absence of ramping constraints, (G™, 7'™") forms a strong
equilibrium. However, we also know from Example 1
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in Sec. V that, when ramping constraints are binding,
(G™, ) may not be a strong equilibrium. It turns out that
no uniform pricing schemes can satisfy the strong equilibrium
condition in general [22].

C. Out-of-the-market settlements

The out-of-the-market settlement, also known as uplift, is a
process for the operator to compensate market participants for
inadequate payments due to inaccurate, incomplete, or non-
convex models. Out-of-the-market settlements are in general
discriminative and determined in ex-post over the entire
scheduling horizon .77 [9], [11], [23]. Two popular schemes
are the make-whole (MW) settlement used in most operators
in the U.S. and the lost-of-opportunity-cost (LOC) settlement
implemented in ISO-NE.

Let 7 be the price vector over ¢ and g; = (i1, - , i)
the generation of generator ¢. The make-whole (MW) pay-
ment MW (7, g;) and the lost-of-opportunity cost (LOC)
payment LOC(mr, g;) for generator ¢ are defined by, respec-
tively,

T

MW(m,g;) = max{0,> (fu(gi) = mega)}, (6)
t=1
T

LOC(m,gi) = Qi(m) =Y (mgi — fi(gn)), (7)
t=1

where Q);(7r) is the maximum profit the generator would have
received if the generator self-schedules for the given price 7r:

Qi(m) = maximize Y, (mpe — fu(pr))
p=(p1,,pr 3
subject to  0<p; <g; (@)

—1; < Pe+1) — Pr ST
It turns out that, when Q;(w) > 0, we always have
LOC(m,g;) > MW (m,g;). See [22].
The following proposition, an immediate consequence of
the general equilibrium conditions, shows that the LOC uplift
is a measure of the dispatch-following disincentives.

Proposition 1 (LOC and general equilibrium). A dispatch
matrix-price pair (G = [g1,--- ,gN|T, ) satisfies the gen-
eral equilibrium condition if and only if the LOC uplifts for
all generators are zero.

The following theorem shows that uniform pricing in
general will lead to non-zero LOC. Therefore, price discrim-
ination is unavoidable in practice.

Theorem 2 (Uniform pricing and out-of-the-market uplifts).

Let {g%™} be the rolling-window economic dispatch over the

entire scheduling horizon H. There does not exist a uniform

pricing scheme under which all generators have zero LOC if

there exist generators i and j and interval t* € H such that

1) generators i and j have different bid-in marginal costs
of generation

d d
ag i 0a) # o T (950);

2) both generators are “marginal” in t*, ie.,

gfﬁD € (ngi)v g_I;tE’? € (ngj);
3) and both generators have no binding ramping con-
straints from intervals t* —1 to t* and from t* to t* +1.

Note that the conditions Theorem 2 are stated for the
rolling-window dispatch under arbitrary forecast errors. Note
also that condition (2) on the existence of simultaneously
marginal generators can happen because of the rolling-
window economic dispatch model. Empirical evaluations
under practical demand models show that conditions (2) and
(3) hold in high percentage when the ramping constraints are
tight. See Appendix H.

IV. TEMPORAL LOCATIONAL MARGINAL PRICE

Because uniform pricing cannot provide dispatch-
following incentives in general, we now consider nonuniform
pricing mechanisms. To this end, we extend LMP to the
temporal locational marginal price (TLMP) and establish that
TLMP is a strong equilibrium price, thus eliminating out-of-
the-market uplifts.

A. TLMP: a generalization of LMP

We first consider the one-shot TLMP defined over .7Z; the
rolling-window TLMP follows the same way as the rolling-
window LMP.

As in LMP, TLMP prices a load by the marginal cost
of satisfying its demand. Unlike LMP, TLMP prices the
generation from generator ¢ by its contribution to meeting the
system load. In particular, we treat generator ¢ as an inelastic
negative demand and pay generator ¢ at the marginal benefit
of its generation. Roughly speaking, generator ¢ is paid at
the marginal cost to the system when generator ¢ reduces
one MW of its generation.

Define a parameterized economic dispatch by treating g;;
as a parameter rather than a decision variable in (3). Let the
partial cost be

F_i{(G) = F(G) — fi(git),

which excludes the cost of generator ¢ in interval ¢. The
parameterized economic dispatch is defined by (3) with
F_;:(G) as the cost function and {g;v, (¢',t") # (i,t)} as
its decision variables.

Definition 3 (TLMP). The TLMP for the demand in interval
t is defined by the marginal cost of meeting the demand.:

0
o = —F(G?).
ddy
The TLMP for generator i in interval t is defined by the

marginal benefit of generator i at gy = gi;:

0
VP L F_;:(G™).
Tt 89“5 t( )

Proposition 2 gives an explicit expression for TLMP.
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Proposition 2. Let G be the solution to the multi-interval
economic dispatch in (3) and ()\Z‘,E:,ﬂf,/_):,ﬁf) the dual
variables associated with the constraints. The TLMP for the
demand in interval t is given by

TLMP ___ *
Tor = Ap-

The TLMP for the generator i in interval t is given by

TLMP

T = A+ A, )
where AY, = Apgy — Apgy ), and Apgy = iy, — pf,.
The intuition behind the TLMP expression is evident from
a dual perspective of the economic dispatch. Specifically, the
Lagrangian of the one-shot economic dispatch (3) with the
optimal multipliers can be written as

L= Z (fit(gz't)—(/\I+Aft)git+(Pft—£;)git> +--- (10)
it

where the rest of the terms above are independent of g;;. It is
evident that, with TLMP 7], := Ay + A7, the multi-interval
dispatch decouples into single-interval dispatch problems.
This property has significant ramifications in the equilibrium
properties of TLMP.

Proposition 2 reveals the structure of TLMP as a natural
extension of LMP; it adds to the uniform pricing of LMP
with a discriminative ramping price AY,. The LMP portion
of TLMP is public as it represents the system-wide energy
price whereas the private ramping price accounts for the
individual ramping capabilities. Note also that TLMP incurs
no additional computation costs beyond that in LMP.

Two interpretations of the ramping price A, in TLMP
are in order. First, note that the TLMP expression above is
consistent with that in (1); both expressions give the inter-
pretation that the ramping price in TLMP is the increment of
the shadow prices associated with the ramping constraints.

Second, the ramping price A7, can be positive or negative.
When the ramping price A, > 0, it can be interpreted as an
upfront payment for the ramping-induced lost-of-opportunity
cost, which ensures that the generator under TLMP is never
under-paid below its generation cost. When it is negative, it
has the interpretation of a penalty for the generator’s inability
to ramp for greater welfare. See discussions of Example I in
Sec. V and Proposition 4 and related discussions in Part II
[19].

B. Dispatch-following incentives of TLMP and R-TLMP

We now consider the equilibrium and dispatch-following
incentives. Because TLMP is a nonuniform pricing, the gen-
eral and partial equilibrium definitions given in the previous
section need to be generalized slightly.

« Instead of having a single price vector for all generator,
we now have an individualized price vector 7r; for each
generator 4.

o The individual rationality conditions extend naturally by
replacing m; in (4-5) by ;.

Theorem 3 establishes the strong equilibrium property for
the one-shot TLMP.

Theorem 3 (One-shot TLMP as a strong equilibrium price).
When there is no forecasting error, i.e., d = d, the one-
shot multi-interval economic dispatch policy QED and the
TLMP policy v form a strong equilibrium, thus there is
no incentive for any generator to deviate from the economic
dispatch signal.

In addition, the one-shot TLMP guarantees revenue ad-
equacy for the operator with total merchandising surplus
equal to the ramping charge:

MS = Y d - 3w
t i>0,t
= > (Enri+pr) > 0.

it

(1)

The intuition behind the above theorem is evident from the
Lagrangian of the one-shot economic dispatch (10). Because
TLMP decouples the temporal dependencies of the multi-
interval dispatch, the optimal dispatch g, should always
satisfy the individual rationality condition for all ¢ and t.

The non-negative merchandising surplus and (11) are,
perhaps, not surprising; they are analogous to the same
property for LMP when network congestions occur.

What happens when the load forecasts are not accurate?
More importantly, is the rolling-window TLMP a strong
equilibrium price for the rolling-window dispatch?

Theorem 4 (R-TLMP as a strong equilibrium price). Let
gkt be the rolling-window dispatch for genmerator i and
7 its rolling-window TLMP. Then, for all i and under
arbitrary demand forecast error;, (g¥™, w*™") forms a strong
equilibrium, and

LOC(mi ™" gt™) = 0.

3 I’ 7

12)

Note that, when a generator has zero LOC uplift, then the
make-whole payment for the generator is also zero [22].

The above theorem highlights the most significant property
of TLMP for practical situations when the load forecasts used
in the rolling-window dispatch are not perfect. There is no
uniform pricing policy that can achieve the same.

C. Truthful-bidding Incentives under R-TLMP and R-LMP

For the single-interval dispatch and pricing problem, it
is known that a price-taking generator under LMP has the
incentive to bid truthfully based on its marginal cost of
generation. Here we show that a price-taker’s truthful-bidding
behavior generalizes to the multi-interval pricing model under
R-TLMP, but not under R-LMP.

At the outset, we note that the price-taking assumption is
restrictive; it typically applies to an ideal competitive market
and rarely holds strictly in practice. Under LMP, for instance,
a generator with the perfect foresight of an oracle can bid
in such a way to make itself a marginal generator so that
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its bid sets the clearing price. Note also that, depending on
realized demands, a generator can be a price-taker in some
intervals and price-setter in others under LMP or TLMP. In
practice, a generator without market power may reasonably
assume that its bid cannot influence the clearing price and
derive its bidding strategy ex ante based on the price-taking
assumption. It is under such a setting that we consider how a
price-taking profit-maximizing generator bid under R-TLMP.

Let q() = (qi1(-), - ,qr(-)) be the true marginal cost
of generation over 7T intervals of a specific generator®. Let
£(-|0) = (f:(|0+)) be the generator’s bid-in cost (supply)
curve parameterized by 8 = (6;). Assume that f(-|0") =
qa(’).

With demands and bid-in costs from other generators
fixed, let g**(0) be the vector of cleared generation over
T intervals by the ISO under R-TLMP. The profit of the
generator is given by

T
I1(8) = (w*™")'g"™(6) = > ar(gi™(6)),  (13)

where, under the price-taker assumption, the clearing price
7™ is not a function of 6.

The following theorem establishes that 8 = 6" is a
maximum of II(@) defined in (13), i.e., bidding at the true

cost is optimal.

Theorem 5 (Truthful-bidding incentive of R-TLMP). Con-
sider a price-taking generator with convex generation cost
q(+). Under the rolling-window economic dispatch and R-
TLMP with arbitrary forcasting error, it is optimal that the
generator bids truthfully with its marginal cost of generation.

In contrast to R-TLMP, as shown in Appendix I, R-LMP
fails to provide truthful-bidding incentives for price-taking
generators because out-of-the-market uplifts are unavoidable
under R-LMP and other uniform pricing schemes. It is such
out-of-the-market uplifts that incentivize strategic behaviors.

V. ILLUSTRATIVE EXAMPLES

We consider two examples involving 7' = 3 intervals, one
for the one-shot dispatch and pricing policies with perfect
load forecasts, the other for the rolling-window policies with
inaccurate forecasts. The toy examples considered in this
section are designed to gain insights into the behavior of
these pricing mechanisms. The observations drawn from the
examples may not hold in general. In all our simulations,
we have quantities in MW and prices in $/MWh, of which
the units are dropped hereafter for simplicity. See Part II for
more elaborate Monte Carlo simulations [19].

A. Example I: one-shot dispatch and pricing

The economic dispatch, LMP, and TLMP over three inter-
vals are given in the right part of Table II. We make four
observations.

$For brevity, we drop the generator index.

TABLE II: One-shot economic dispatch, LMP, and TLMP
under linear costs. Initial generation
g[0] = (380, 40). The price for demand d; is
LMP

Tt
Capacity Mirogsi‘nal F:ianr:;tp ( gf{’, w%MP, thLMp)
Ji ¢ =T t=1 t=2 t=3
G1/| 500 25 500 | (380, 25, 25)| (500, 35, 35)| (500, 30, 30)
G2| 500 30 50 | (40, 25,30)| (90, 35,30)| (90, 30, 30)
de | — | — | — 420 590 590

First, G1’s ramping limits are not binding over the three
intervals. The LMP and TLMP are the same for G1.

Second, the ramping constraint for G2 is binding between
the first and second intervals, making the price of generation
under TLMP different from its LMP. Note that in interval
t =1, G2 is scheduled to generate at the LMP of $25/MWh,
$5/MWh below its marginal cost of $30/MWh. As a result,
G2 incurs an opportunity cost of $200 so that it can ramp up
to the maximum to the next interval and be paid at $5/MWh
above its marginal cost. Despite the loss in the first interval,
the total surplus over the three intervals is maximized. By the
general equilibrium property of LMP, there is no incentive
for G2 to deviate from the dispatch.

Third, in contrast to LMP, TLMP pays G2 up-front the
opportunity cost by adding $5/MWh to the energy price of
$25/MWh. The up-front payment removes the incentive for
G2 to deviate not knowing future demands. For this reason,
the discriminative part of TLMP in (9) has an interpretation
as the premium for the ramping-induced opportunity cost.
Note also that, the opportunity cost premium paid to G2 in
interval 1 is removed in interval 2.

Fourth, consider the case when the true ramping limit of
G2 is 100 MW. Had G2 reported the ramping limit truthfully,
G2 would have been dispatched to generate 0 MW in interval
1 and 90 in interval 2 at $30 MW/h with total profit of zero
dollar. But if G2 falsely declares that it has ramp limit of 50
MW as shown in Table II, we see that G2 under LMP would
have made $250 profit. This shows that under LMP, there is
an incentive for G2 to under-declare its ramp limit. Under
TLMP, on the other hand, there is no incentive for G2 to lie
about its ramp limit. See more examples in Part IT [19].

B. Example II: rolling-window dispatch and pricing

Table IIT shows the rolling-window economic dispatch and
rolling-window prices with window size W = 2. The load
forecasts d; = (dt,dm) are listed and d;, = d, being the
actual load. Note that &t contains forecast errors.

We again make four observations. First, the missing money
scenario happens in this example. G2 is underpaid by w§™"
in the interval ¢ = 1. Unlike the one-shot LMP case,
the underpayment is never compensated under R-LMP. The
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underpayment is compensated out of the market. The LOC
and MW uplifts to G2 are both $250.

Second, from Table III, the dispatch of G2 satisfies the
conditions in Theorem 2. There is no uniform price can
remove LOC uplifts. For this example, the argument becomes
trivial. Consider interval ¢ = 1, for any price greater than
$25/MWh, G1 self-scheduling would have generated more
than 370 (MW). If the price is $25/MWh, G2 self-scheduling
would have generated zero (MW).

Third, for G2 in interval ¢ = 1, given the inaccurate
load forecast of 600 for interval ¢ = 2, the rolling-window
dispatch for interval ¢ = 2 is 100, which makes the ramping
constraints from ¢ = 1 to ¢t = 2 binding. The Lagrange
multiplier associated with this binding constraint is five. The
TLMP for G2 is $5/MWh above the LMP, which compen-
sates the underpayment of LMP to the level of marginal
cost. In intervals of ¢ = 2,3, there are no binding ramping
constraints for G2. G2 is paid at the LMP. No missing money
for TLMP.

Fourth, there is again no incentive for G2 to declare its
ramp limit untruthfully under TLMP; it will be paid at its
marginal costs. Under LMP, however, there is an incentive
for G2 to declare that it has high ramping limits, say 100
MW, and avoid the opportunity cost in the first interval.

TABLE III: Rolling-window economic dispatch, LMP, and
TLMP. Initial generation g[0] = (370, 50).
Load is settled at the LMP ;™" for all ¢.

Capacity Mirogsilt'lal Fliiar:;tp (G52, i M)
gi ¢ =T t=1 t=2 t=3
G1| 500 25 | 500 |(370, 25, 25) (500, 30, 30)| (500, 30, 30)
G2| 500 30 50 | (50,25,30)| (90,30, 30)| (90, 30, 30)
d:| — | — | — | (420,600) (590,600) | (590,590)

VI. DISCUSSIONS

We discuss in this section aspects of pricing multi-interval
dispatch that are not covered in this two-part paper. The
purpose is to provide a broader perspective and contexts
beyond the scope of this paper.

We assume a bid-based market model where the market
operator collects bids (generation offers) and makes two
decisions: one is the allocation of the production levels of the
goods (the dispatch over multiple intervals); the other is set-
ting the prices of generation and consumption. In analyzing
generators’ bidding characteristics, we assume that generators
are profit-maximizing competitive firms that exhibit price-
taking behaviors. Under such an assumption, we have shown
that it is optimal for the generators to bid truthfully under
R-TLMP, but not so under R-LMP.

In practice, markets are rarely competitive, and not all
generators are price takers. To this end, it is more appropriate

to model strategic behaviors of generators explicitly. An
excellent example is the work of Hobbs [24] where a Nash-
Cournot competition is formulated in analyzing decentralized
(bilateral) and centralized (poolco) power markets. Another
example is the work of Philpott, Ferris, and Wets [25] on the
equilibrium, uncertainty, and risk in hydro-thermal systems,
which is relevant to the current work for its modeling of
inter-temporal constraints and uncertainty.

In pricing multi-interval economic dispatch with ramping
constraints, there is a larger question whether private param-
eters such as ramping limits, unlike congestion limits in a
public power network, should be modeled explicitly in the
operator’s pricing decisions. In this paper, as in some of the
recent proposals of ramping products [5], [14]-[18], it is the
market operator who sets the prices that cover ramping in-
duced costs. Under LMP and other uniform pricing schemes,
the cost of ramping manifests itself in the form of out-of-the-
market uplifts. For TLMP, on the other hand, ramping costs
show up in the shadow prices of ramping limits within the
market clearing process.

An alternative to the pricing model considered here is to
have generators internalize ramping costs in its offer, which
is highly nontrivial [13], [26]. Comparing the two approaches
is outside the scope of this paper.

VII. CONCLUSION

We have developed a theory for dispatch-following incen-
tives for multi-interval dispatch problems with inter-temporal
ramping constraints and forecast uncertainties. Since there is
no uniform pricing mechanism that can guarantee dispatch-
following incentives without discriminative out-of-the-market
uplifts, a non-uniform pricing mechanism such as TLMP can
be a valid alternative. As an extension of LMP, TLMP cap-
tures both the energy and the ramping-induced opportunity
costs. As a strong equilibrium pricing mechanism, TLMP
guarantees dispatch-following incentives under arbitrary fore-
cast errors and generalizes many properties of LMP.

Evaluating pricing schemes in practice must take into
account many factors. In Part IT of this paper [19], we conduct
more careful simulation studies using relevant performance
metrics to compare several benchmark pricing schemes.
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APPENDIX
A. Preliminaries

We derive a more compact vector-matrix representation of
LMP, TLMP and associated representations. For convenience,
we focus on scheduling window 7 = {1,--- ,WW}. Let the

demand (or forecasted demand) be d = (dy, -+ ,dw) be
the demand in 27, g; = (gi1,--- ,g:w) the generation of
generator 4, and GT = [g1,--- ,gy] the generation matrix.

The W -interval economic dispatch in the vector-matrix form
is defined by

ED

G mir{liér}lize F(G) =3, fi(g)
subject to forall 1 <i <N
A: GT1=d (14)
(/_)ivpi): Oéglgg’u
(m ;)2 —r; < Agi <T;,

where fi(g;) = >, fit(git) is the total cost for generator
i, A = (A, -+, Aw), the vector of dual variables for
the equality constraints and (pi, Pis b, ;) vectors of dual
variables for the inequalities associated generator 4, and A is
a W x W lower bi-digonal matrix with 1 on the diagonals
and -1 on the off diagonals.

Let the Lagrangian of G"" be

L = Zfi(gi) +AT(d - GT1)

. S (#iths ) - (as o x)
+zi: (p}(gi —8i) - /_’Z'Tgi)'

Let (G, X", p¥, p;, !, ;17) be the solution to G"™". The
KKT condition gives

15)

Vii(gi) — A"+ ATAu; + Ap; =0, (16)

where Ap? = pf — p* and Ap; = pf — p*.

—1 —1

The vector form of the multi-interval LMP and TLMP of
generator ¢ are given by, respectively,

TLMP

M =N, ™M =X — ATAp;. (17)
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For the individual rationality condition, for generator ¢,
we have the following profit maximization problem for given
price r:

G;: minimize f;(g) —gTw
g
subject to  (n, ﬁ) o o—r, <Ag<r,, (18)

By the KKT condition, the solution to the above must
satisfy

Vfi(g) —m+ATAn+ A( =0,
where Ap =79 —mn and A =({ —¢.

19)

B. Proof of Theorem 1

Let G* be the one-shot economic dispatch and ©"* the
LMP. The market clearing condition is already satisfied by
G". The individual rationality condition (19) holds by setting
(8 =g, An; = Apj, AG; = Apj). O

C. Proof of Theorem 2

Let w = (m;) be an arbitrary uniform price and g¥™ the
rolling-window economic dispatch of generator ¢. If generator
1 has zero LOC under 7, then gi™ must satisfy the KKT
conditions of its LOC optimization:

V/i(gh™) = m — ATAn, — A,

3

where An, and A(, are Lagrange multipliers associated with
the LOC optimization.

If condition (2) and (3) of Theorem 2 are satisfied for
generator ¢ in interval ¢*, the respective multipliers in An,
associated ramping at ¢t* and generation limits A, must be
zero, which implies

d
ag it (i) = e

Likewise, if generator j # i also satisfies the same two
conditions in the same interval ¢t*, we must have
d . d .
@fit* (i) = @fjt* (g5¢=) = To=,

which contradicts to the fact that the two generators have
different marginal bid-in costs of generation in interval t*. []

D. Proof of Proposition 2

TLMP for demand th isA same as LMP; it is defined by the
marginal cost of serving d;:

TLMP 8

Tor = o F(G™) = A}
t

To compute TLMP for generator ¢ in interval ¢, consider
the modified multi-interval economic dispatch with generator

11

7 in interval ¢ fixed at the optimal economic dispatch level,

P ED.
git = Gt -

" minimize F_4(G)
{G=lg;k,(7.k)#(E,8)]}
subject to for all j # ¢ and t' € 57 ~ {t}
N
)\’it’ . Z gjt’ e dt’
B J#i B
(ljtm%'t/) - 0 S gjt S 9>
(ﬂjt”ﬁﬁ’) Py S g4 — gir ST
N
it © Y gie = di — 9§
B J#i )
(M, Mit) © =14 < Gierr) — Gt < T

(ﬂi(tfl)’ﬁi(tfl)) D= S Gy~ Gie-1) S T
(20)
By the envelope theorem, at the optimal solution G* =

[97,] and (ljt,i’:t,l’:t, n';;) of G, , we have

0

—@F_it(G )

Ai + Ang — Anf@_l)

/\: + A:tv

where, for the last equality, we have A}, = A}, ), = puj, at
the optimal dispatch defined in (3). 0

E. Proof of Theorem 3

We first show that (G™, (w]"")) satisfies the general
equilibrium conditions. Again, we only need to check the
individual rationality condition since the economic dispatch
G"™ already satisfies the market clearing condition as well as
all the ramping constraints.

For the individual rationality condition, we consider the
optimization G; (18) with 7w = 7w™"_ Setting n = i = 0 and
A¢ = Apj, by the KKT condition, g} is a solution to G,.
Thus (7}, g'*) satisfies the individual rationality condition
for all 7.

To show that (G™, (7}"'*)) also satisfies the strong equi-
librium condition, we note that (G*,n; = n. = 0,p;, p7)
is a solution to (18). Because the dual variables for ramping
constraints are all zero, the multi-interval optimization de-
couples in time under 7;"*". We have ¢};"” as a solution to
(5) for individual rationality.

To show the revenue adequacy for the operator, we com-
pute the merchandising surplus under TLMP. From (17),

MS = dTA™ =3 (AN - ATAu)Tg®
> (App)TAgP

2

= Y rlpi+rlpl >0,
7

where the last equality comes from the complementary
slackness condition. 0
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FE. Proof of Theorem 4

Within this proof, we will focus on a particular generator,
say generator ¢. For brevity, we drop the subscript ¢ of all
variables associated with generator <.

Let g™ = (¢f™, -, ¢g%™) be the rolling-window eco-
nomic dispatch over . and 7*"™" = (g{™M L. M)
the rolling-window TLMP vector.

Let gi” be the WW-window economic dispatch at time ¢
over .7 from (14) based on d; = (ds,--- ,dww). Note
that d;; = d;, the actual demand for interval ¢, and the rest
of entries of d; are forecasts with errors. Let w}"" be the
corresponding TLMP vector given in (9).

From the proof of Theorem 3 (with 7' = W), the profit
maximization,

Gt : minimize  (fy(g) — gTm™")

g=(g1,,9w)
subject to  (n,m): —r, < Ag <y,
(€;¢): 0<g<g,

has a solution gi> with n = f = 0, where f;(g) is the
generation cost over .7¢. This means that g;° is a solution
to the ramp-unconstrained optimization

21

TLMP)

g, =arg min (f(g)—g'm,

0<g<g:

By the rolling-window dispatch and pricing policies, the
first entry of gi” is gi"™—the dispatch that is implemented
in interval {—and the first entry of 7w{"*" is the the rolling-
window price i ™" in interval . We thus have

R-ED ___ . _ R-TLMP
9 —argoglglgg(ft(g) gm ™),

(22)
which implies that g™ is the solution to the ramp-
unconstrained optimization

g’ =arg min (f(g) —g™n

R—TLMP)
0<g<g

Let g* be the solution to the (ramp-constrained) LOC
optimization (18) with 7 = "™ we must have

f(gR-ED) _ (gR-ED)Tﬂ_R-TLMP S f(g*) _ (g*)TTrR-TLMP.

Note, however, that g®*®
(18), the above inequality holds with equality, and g
a solution to (18). Therefore, LOC(g"™, 7*™¥") = (.

By Proposition 1, (G** TI*™) is a general equilibrium.
From (22), we conclude that (G*™, TI*™™") also satisfies the
strong equilibrium conditions. (]

satisfies all the constraints in
R-ED IS

G. Proof of Theorem 5

We focus on a specific generator, henceforth dropping the
generator index in the notation within this proof. Under the
price-taker assumption, from (13), we have

T
I1(87) = (w"™")'g"(0") = > ar(9i™(67)).

12

From Theorem 4, we know that, when bidding truthfully,
there will be no LOC, which implies that

T
1(6") = (="™")'g — > ai(g),
t=1

for every g in the profit maximization problem. Because a

price-taker’s bid can only influence dispatch g**(6), we have
I(6*) > 11(0). O
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Fig. 2: Top left: generator parameters. The ramp limit for
Gl is fixed at 25 (MW/h). Top right: a path of
ramping events. Bottom left: average demand.
Bottom right: demand traces.

H. Simulations on the conditions in Theorem 2

We present empirical test results on how frequently as-
sumptions in Theorem 2 of Part I hold. Fig. 2 shows the
parameters of the generators and load scenarios in this three-
generator-single-bus case. We evaluated assumptions under
different ramping limits along the path from scenarios A to H,
where scenarios A had the most stringent ramping constraints
and H the most relaxed. Moreover, we evaluated assumptions
under different load forecast errors with a standard forecast-
ing error modell, where the demand forecast d(¢ ) of dy4
at time ¢ had error variance ko? increasing linearly with k.
And o varied from 0 = 0% to ¢ = 6%.This simulation
setting was the same with cases in [19], and 400 realizations
with a standard deviation of 4% were tested with rolling-
window optimization over the 24-hour scheduling period,
represented by 24 time intervals. And the window size is
four intervals in each rolling window optimization.

It can be observed in the left panel of Fig. 3 that 80% -
90% realizations satisfied the conditions given in Theorem 2
under ramping scenarios A, B, C, where the system had most
binding ramping constraints. From ramping scenarios D to
H, binding ramping constraints were gradually relaxed until

IThe forecast ci(tJrk)‘t at ¢ of demand d; is CZ(H,C)“ = diyp +
Zle €x Where €y, is i.i.d. Gaussian with zero mean and variance 2.
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no binding ramping constraints existed at H, thus less cases
satisfied assumptions. The right panel of Fig. 3 shows that
with larger load forecast error, there were more realizations
satisfying the conditions of Theorem 2.

©
S

D>
5]
3

N ) ®
S o

N
S

Percentage of realizations
satisfying assumptions (%)
Percentage of realizations
satisfying assumptions (%)

0 =
0=6.0% =0.6% 0=0.1% 0=0.0%

Left: Percentage of realizations satisfied
assumptions vs. ramping scenarios from A to H at
o = 6%. Right: Percentage of realizations satisfied
assumptions vs. load forecast error at ramping
scenario A.

We also conducted empirical tests on the larger ISO-
NE case with more practical simulation settings, including
network constraints. We observed a higher percentage of the
cases satisfying the conditions in Theorem 2. Specifically,
with the parameters and load scenarios in the companion
paper (Part II) [19], 99% - 100% realizations satisfied the
conditions given in Theorem 2 under ramping scenarios A,
B, C, D and E.

TABLE IV: Rolling-window economic dispatch, R-LMP,
and R-TLMP consider price taker G3. Initial
generation g[0] = (370, 50, 0).

Marginal

o | cost | | (98" mE T, T
9 G =7 t=1 t=2 t=3
G1|/500| 25 500 |(370.5, 25, 25) | (500, 30, 30) (500, 30, 30)
G2|500| 30 50 | (49,25,30) |(99,30,30) |(99, 30, 30)
G3| 1 28 0.5 | (0.5,25,28) | (1,30,30) | (1,30,30)
d| — — — 420 600 600

1. Truthful-bidding incentives under R-LMP and R-TLMP

Under the similar parameter settings as in Example II in
Sec V, we added generator G3 with small generation capacity
to mimic a price taking generator and considered the bidding
decision process of G3 at ¢ = 1 as a price taker under the
assumption that the true cost of generation is $28/MWh. Un-
der the forecasted demand d;_; = (420, 600, 600), Table IV
shows the forecasted W = 2 window sized rolling-window
dispatch of the three generators gi;"", the forecasted rolling-
window LMP 75" and the forecasted rolling-window
TLMP 7™, Only the dispatch and pricing decisions at
t =1 is realized.

Table V shows the expected surplus, LOC, and total profits
of the price-taker G3 under the rolling-window dispatch and

13

pricing with different bids. The results showed that, under R-
LMP, G3 had higher expected profit when it bid at $29/MWh
when true cost is $28/MWh. Thus there was incentive for
the profit-maximizing price-taker G3 to deviate its bid from
the true cost. Note that the expected generation surpluses
were the same under different bids. Therefore, the gain in
profit came entirely from LOC due to untruthful bidding. In
contrast, under R-TLMP, there is no incentive for G3 to bid
untruthfully.

TABLE V: Ex-ante computation of generation surplus,
LOC, and profit of price taker G3.

Bids |[Expected Surplus| Expected LOC | Expected profit
of G3| LMP TLMP LMP | TLMP LMP | TLMP
28 2.5 4 0.5 0 3 4
285| 25 4 1 0 3.5 4
29 2.5 4 1.5 0 4 4
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