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Abstract—Pricing multi-interval economic dispatch of electric
power under operational uncertainty is considered in this two-
part paper. Part I investigates dispatch-following incentives
for generators under the locational marginal pricing (LMP)
and temporal locational marginal pricing (TLMP) policies.
Extending the theoretical results developed in Part I, Part
II evaluates a broader set of performance measures under
a general network model. For networks with power flow
constraints, TLMP is shown to have an energy-congestion-
ramping price decomposition. Under the one-shot dispatch
and pricing model, this decomposition leads to a nonnegative
merchandising surplus equal to the sum of congestion and
ramping surpluses. It is also shown that, comparing with LMP,
TLMP imposes a penalty on generators with limited ramping
capabilities, thus giving incentives for generators to reveal their
ramping limits truthfully and improve their ramping capacities.
Several benchmark pricing mechanisms are evaluated under the
rolling-window dispatch and pricing models. The performance
measures considered are the level of out-of-the-market uplifts,
the revenue adequacy of the system operator, consumer pay-
ment, generator profit, level of discriminative payment, and
price volatility.

Index Terms—Multi-interval economic dispatch, look-ahead
dispatch, locational marginal pricing, general and partial equi-
librium, and dispatch-following incentives.

I. INTRODUCTION

This two-part paper addresses some of the open prob-

lems in pricing multi-interval dispatch subject to ramping

constraints and forecasting uncertainty. Part I focuses on

theoretical issues surrounding dispatch-following incentives

with three major conclusions. One is that, under the rolling-

window dispatch model, uniform-pricing schemes cannot

provide dispatch-following incentives that avoid out-of-the-

market uplifts. Because such uplifts are discriminative, price-

discrimination is necessary.

Another conclusion is that the temporal locational marginal

pricing (TLMP)—a generalization of locational marginal

pricing (LMP)—provides full dispatch-following incentives

that eliminate the need for out-of-the-market uplifts under
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the rolling-window economic dispatch model and arbitrary

demand forecast accuracy.

The third conclusion is that it is optimal for price-taking

profit maximizing generators to bid with their true marginal

costs of generation.

Providing dispatch-following incentive is only one of the

many measures that pricing mechanisms need to be evaluated

for adoption. This paper presents a study on a broader range

of issues relating to pricing multi-interval dispatch under a

more general network model.

We focus on two categories of performance measures. The

first is on incentive compatibilities specific to multi-interval

dispatch. One type of incentive is the degree for which a par-

ticular pricing mechanism provides the necessary dispatch-

following incentives for generators. Here we measure the lack

of dispatch-following incentives by the size of the (ex-post)

lost-of-opportunity (LOC) payment. The higher the LOC

payment, the greater the incentive for a generator to deviate

from the dispatch signal. The other type is the incentive for a

generator to reveal its ramping limits truthfully. If a generator

receives higher profit under a pricing mechanism by under-

reporting ramping capability, then the pricing mechanism not

only distorts the actual ramping ability of the system but also

discourages a generator from improving its ramping capacity.

The second category of performance measures is on the

revenue adequacy and social welfare distribution. We are par-

ticularly interested in whether a pricing mechanism ensures

the revenue adequacy of the independent system operator

(ISO). For multi-interval dispatch over a network with power

flow constraints, the revenue of the operator needs to cover

the generation cost, the cost of ramping-induced out-of-the-

market uplifts, and the congestion rent. Since the operator

is regulated to be revenue-neutral, a revenue reconciliation

process typically redistributes the surplus or shortfall of the

system operator to its consumers. Thus the revenue adequacy

of the operator affects costs to consumers.

Different pricing mechanisms result in different allocations

of social welfare. A pricing scheme that yields higher gener-

ator profits may be more costly to consumers. In general, no

pricing mechanism dominates all others across a wide range

of performance measures. A regulator of public utility typi-

cally favors a pricing policy that guarantees the generators’

revenue adequacy while minimizing the cost to consumers.

Transparency and volatility are also relevant metrics for

evaluating pricing mechanisms. Uniform pricing schemes are
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transparent and effective pricing signals for market partici-

pants. The use of out-of-the-market uplifts, however, affects

the transparency of uniform pricing. Nonuniform pricing, in

general, lacks transparency.

A. Summary of results and related work

The main contribution of Part II is twofold. First, we

extend key theoretical results in Part I to a network setting in

Proposition 1-5. Whereas most theoretical results such as the

strong equilibrium property of TLMP generalize naturally to

systems with network constraints, we obtain new results that

demonstrate succinctly the spatial-temporal decomposition of

TLMP.

Proposition 2 gives an explicit decomposition of TLMP

into energy, congestion, and ramping prices, which shows

that TLMP is the sum of a public price in the form of loca-

tional marginal price (LMP) and a private ramping price; the

former is transparent to all participants, and the latter plays

the role of in-the-market discrimination among generators

with different ramping capabilities.

We show in Proposition 3 that, under the one-shot eco-

nomic dispatch model with perfect demand forecast, the

merchandising surplus under TLMP is positive and is equal

to the sum of the congestion surplus (congestion rent) and

the ramping surplus defined by the surplus due to binding

ramping constraints. In contrast, Proposition 1 shows that the

merchandising surplus of LMP covers only the congestion

rent. This result explains partially that the revenue of the

operator under LMP is often inadequate to cover the out-of-

the-market uplifts due to binding ramping constraints.
Proposition 3 also shows that the payment to a generator

under LMP is higher than that under TLMP. And the price

decomposition of TLMP in (7) implies that the ramping

price of TLMP imposes penalty on generators for their

inabilities to support the system’s ramping needs. From an

individual generator’s perspective, Proposition 4 shows that,

under TLMP, a generator with higher ramping limit receives

higher payment than an identical generator with limited

ramping capability. This result partially explains that TLMP

discourages under-reporting ramping limits and encourages

generators to improve ramping capabilities.

The second part of our contribution is the empirical

simulation studies on incentives, the revenue adequacy of

the ISO, consumer payments, generator profits, and the level

of discriminative payments. We are particularly interested

in the effects of forecasting errors and congestions on

these performance measures. We compared several bench-

mark pricing schemes in the literature under the rolling-

window dispatch model: the classical multi-interval LMP,

TLMP, price-preserving multi-interval pricing (PMP) [3], [4],

constraints-preserving multi-interval pricing (CMP) [4], and

multi-settlement LMP (MLMP) [5].

There is a fairly extensive literature on pricing multi-period

dispatch. See a summary of related work in Part I [6] and

references therein. The impact of multi-interval dispatch on

LMP was considered in [7]. The works most relevant to this

paper are recent works of Hua et al. [4] and Zhao, Zheng,

and Litvinov [5] that articulate some of the critical issues and

set forth formal statements of investigation.

Proofs, some detailed derivations, and additional simu-

lations involving network constraints can be found in the

appendix at the end of [8].

II. SYSTEM AND OPERATION MODELS

A. Generation, demand, and network models

We consider a power system with M buses under the

direct-current (DC) power flow model with line-flow con-

straints. We follow the same notations used in Part I, adding

bus indices as superscripts to relevant variables.

Without loss of generality, we assume that every bus has

N generators*. Let gmit be the dispatch of generator i at bus

m in interval t, gggm[t] = (gm1t , · · · , g
m
Nt) the dispatch vector

at bus m, and ggg[t] = (ggg1[t], · · · , gggM [t]) the dispatch vector

in interval t from all generators.

We assume that there is one aggregated inelastic demand

at each bus. For the demand at bus m, let dmt be the

actual demand in interval t, d̂mt the forecasted demand,

ddd[t] = (d1t , · · · , d
M
t ) the demand vector from all buses in

interval t, and d̂dd[t] the forecast of ddd[t].

The spatial property of the power flow is governed by the

DC power flow model where the branch power flow vector

is a linear function of the net power injection (qqq[t] − ddd[t])
where qqq[t] = (q1t , · · · , q

M
t ) is the vector of bus generations,

and qmt =
∑

i g
m
it the total generation from bus m in t.

For a network with total B branches, the 2B-dimensional

vector zzz[t] of branch power flows† satisfies

zzz[t] = SSS(qqq[t]− ddd[t]),

where SSS is the 2B × (M − 1) shift-factor matrix‡.

B. The rolling-window dispatch model

The rolling-window economic dispatch (R-ED) policy

GR-ED is defined by a sequence of W -interval look-ahead

economic dispatch policies (GR-ED

t , t = 1, · · · , T ).

At time t, GR-ED

t solves the following W -interval economic

dispatch optimization using (i) the realized dispatch gggR-ED[t−
1] in interval t− 1 and (ii) the load forecast (d̂dd[t], · · · , d̂dd[t+

*One use non-generating generators to make up total N generators by
setting the generation capacites to zero of such generators.

†Each branch has two directional power flows.
‡Matrix SSS can be made time varying without affecting the results. Note

that a slack bus should be removed in matrix S.
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W − 1]) in W intervals, assuming that the forecast in the

binding interval t is perfect, i.e., d̂dd[t] = ddd[t].

GR-ED

t : at time t,

minimize
{GGG=[gm

it
]}

Ft(GGG)

subject to: Network constraints:

λt′ :
∑M

m=1

∑N

i=1 g
m
it′ =

∑M

m=1 d̂
m
t′ ,

φφφ[t′] : SSS(qqq[t′]− d̂dd[t′]) ≤ ccc,

for all t ≤ t′ < t+W.

Generation constraints:

(μm

it′
, μ̄m

it′) : −rmi ≤ gmi(t′+1) − gmit′ ≤ r̄mi ,

(ρm
it′
, ρ̄mit′) : 0 ≤ gmit′ ≤ ḡmi ,

for all m, t ≤ t′ < t+W .

Boundary ramping constraints:

μ̄m
i(t−1) : gmit − gR-ED

mi(t−1) ≤ r̄mi ,

μm

i(t−1)
: gR-ED

mi(t−1) − gmit ≤ rmi ,

for all m.

(1)

where GGG = [ggg[t], · · · , ggg[t + W − 1]] is the matrix of all

generation variables in the W -interval look-ahead window,

and Ft(GGG) is the total bid-in costs

Ft(GGG) :=

N∑

i=1

M∑

m=1

t+W−1∑

t′=t

fm
it′(g

m
it′).

Here fm
it′(·) is the bid-in cost of generator i at bus m in

interval t′, assumed to be convex and piecewise linear (or

quadratic). Vector ccc ≥ 0 is the vector of line-flow limits.

Dual variables in (1) play a prominent role in multi-interval

pricing, where λt′ is the dual variable associated with the

power balance equation in interval t′, φφφ[t′] the dual variables

associated with line constraints, and (μm

it′
, μ̄m

it′ , ρ
m

it′
, ρ̄mit′) the

dual variables for the lower and upper limits for ramping and

generation, respectively.

Let (gm∗
it′ ) be the solution to the above optimization,

and μm∗
i(t−1)

, μ̄m∗
i(t−1) the optimal dual variables. Under R-ED

policy GR-ED

t , the dispatch in the binding interval t is set at

gR-ED

mit := gm∗
it . (2)

Also relevant are the (shadow) ramping prices

(μm∗
i(t−1)

, μ̄m∗
i(t−1)) that capture the interdependencies of

decisions across sliding windows. For later references,

define the boundary ramping prices as

μR-ED

mit
:= μm∗

i(t−1)
, μ̄R-ED

mit := μ̄m∗
i(t−1). (3)

In contrast to the rolling-window dispatch, the one-shot

economic dispatch G1-ED produces the dispatch of the entire

scheduling period at once using the solution GGG
∗ of (1) at

t = 1 and window size W = T .

III. ROLLING-WINDOW LMP AND TLMP

A rolling-window pricing policy P = (P1, · · · ,PT ) fol-

lows the same structure as the rolling-window economic dis-

patch. At time t, Pt sets prices at all M buses for the binding

interval t. It may also provide advisory prices for the future

intervals within the pricing window Ht = {t, · · · , t+W−1}.
Here we generalize the standard rolling-window LMP (R-

LMP) policy PR-LMP

t and the rolling-window TLMP PR-TLMP

t de-

rived in Part I for systems with power flow constraints. Both

R-LMP and R-TLMP are marginal cost pricing mechanisms

derived from the R-ED optimization (1); they are by-products

of the R-ED policy.

A. Rolling-window LMP (R-LMP) and Properties

Let the realized price vector in the binding interval t set

by R-LMP be π
R-LMP[t] = (πR-LMP

1t , · · · , πR-LMP

Mt ) where πR-LMP

mt is

the uniform price for all generators and demand at bus m.

The R-LMP πR-LMP

mt is defined by the marginal cost of

meeting demand dmt at bus m in interval t. From (1) and

by the envelope theorem, we have

π
R-LMP[t] = ∇

d̂dd[t]Ft(GGG) = λR-LMP

t 1− SSSᵀφφφR-LMP[t], (4)

where 1 is a vector of 1’s, λR-LMP

t and φφφR-LMP[t] the shadow

prices§ from (1) for the power balance and congestion

constraints in interval t, respectively.

We summarize next main properties of R-LMP. Even

though R-LMP is computed based on the current and future

demand forecasts subject to ramping constraints, many prop-

erties of the single-period LMP hold for the multi-interval

R-LMP.

1) Energy-congestion price decomposition: The R-LMP

expression (4) shows an explicit energy-congestion price

decomposition, where the first term λR-LMP

t is the system-

wide uniform-price of energy for all generators and demands.

The second term SSSᵀφφφR-LMP[t] is the congestion-induced price

discrimination at different locations. Note that there are no

ramping prices explicitly shown in R-LMP; the R-LMP

expression is identical to that in the standard single-interval

LMP. The inter-temporal effects of ramping on R-LMP are

hidden in the sequence of R-LMP prices π
R-LMP[t].

2) Equilibrium properties: We have shown in Part I that,

for the single-bus network and under the perfect load forecast

assumption, the one-shot economic dispatch GGG
ED and LMP

π
LMP form a general equilibrium. This property holds for

systems with network constraints. Unfortunately, the rolling-

window version of economic dispatch and LMP (gggR-ED,πR-LMP)
do not satisfy the general equilibrium condition in general,

even when the load forecasts are accurate; thus, out-of-the-

market uplifts are necessary.

3) ISO’s revenue adequacy: The classical LMP theory for

the single-interval LMP policy [9] states that the ISO has

a non-negative merchandising surplus that covers and only

covers the system congestion rent. This result extends to R-

LMP under arbitrary forecast errors when there are ramping

constraints.

§When defining prices with Lagrange multipliers, we implicitly assume
that the solutions to the dual optimization are unique.
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Proposition 1 (ISO revenue adequacy under R-LMP). For all

(gggR-ED[t],πR-LMP[t]) generated by the R-ED and R-LMP policies

under arbitrary forecasting errors, the ISO has non-negative

merchandising surplus

MSR-LMP =

T∑

t=1

cccᵀφφφR-LMP[t] ≥ 0.

Proposition 1 shows that the merchandising surplus from

R-LMP covers and only covers the congestion rent designated

to pay transmission-line owners and financial transmission

right (FTR) holders. There is no extra surplus within the

market settlement to cover the out-of-the-market uplifts de-

signed to ensure dispatch-following incentives. Thus the ISO

is likely to be revenue inadequate under R-LMP when the

ISO has to pay out-of-the-market uplifts.

B. Rolling-window TLMP (R-TLMP) and Properties

As a generalization of R-LMP to a nonuniform marginal-

cost pricing, R-TLMP allows individualized prices for gen-

erators and demands. Specifically, the R-TLMP at bus m in

interval t is a set of prices

π
R-TLMP

m [t] = (πR-TLMP

m0t , πR-TLMP

m1t , · · · , πR-TLMP

mNt ),

where πR-TLMP

m0t is the price for the demand and πR-TLMP

mit the price

for generator i at bus m.

For the demand at bus m in interval t, its R-TLMP πR-TLMP

m0t

is defined as the marginal cost to the system to satisfy the

demand dmt —the same definition used in LMP:

πR-TLMP

m0t :=
∂

∂d̂mt
Ft(GGG) = πR-LMP

mt .

The R-TLMP for generator i at bus m, on the other hand, is

defined by the marginal benefit of generator producing power

gm∗
it . In other words, generator i is treated as an inelastic

negative-demand set at the R-ED solution to (1), i.e., gmit =
gm∗
it . As defined in Part I,

πR-TLMP

mit := −
∂

∂gmit
Fm
−it(GGG

∗),

where Fm
−it(GGG) = Ft(GGG) − fm

it (g
m
it ) is the total generation

cost excluding that from generator i at bus m in interval t.

The following proposition generalizes the TLMP expres-

sion in Part I.

Proposition 2 (Price decomposition of R-TLMP). Let

(λ∗
t ,φφφ

∗[t], μm∗
i(t−1)

, μ̄m∗
i(t−1), μ

m∗
it

, μ̄m∗
it ) be the optimal values

of the dual variables associated with the constraints in (1).

The R-TLMP for the demand d̂mt at bus m in interval t is

given by

πR-TLMP

m0t = λ∗
t − sssᵀmφφφ∗[t] = πR-LMP

mt , (5)

where where sssm is the m-th column of the shift-factor matrix

SSS corresponding to bus m.

The R-TLMP for generator i at bus m in interval t is given

by

πR-TLMP

mit = λ∗
t − sssᵀmφφφ

∗[t] + Δm∗
it (6)

= πR-LMP

mt +Δm∗
it , (7)

where Δm∗
it = Δμm∗

it −Δμm∗
i(t−1), and Δμm∗

it := μ̄m∗
it −μm∗

it
.

Properties of R-TLMP for power systems with network

constraints are summarized next.

1) Energy-congestion-ramping decomposition: The spe-

cific form of R-TLMP in (6) reveals an explicit space-

time decomposition of payment to generators: a system-wide

uniform energy price in λ∗
t applies to all generators and de-

mands everywhere, a spatial discriminative price in the form

of location-specific congestion prices in sssᵀmφφφ∗[t] applying

to all generators and demands at bus m, and a generator-

specific temporal ramping prices in Δm∗
it that serves as a

“penalty” to the generator for its limited ramping capability.

The penalty interpretation of Δm∗
it is especially important for

the incentives of the truthful revelation of ramping limits, as

discussed next.

2) Public-private price decomposition and transparency:

The structure of R-TLMP shown in (7) shows a public

and private price decomposition: the R-LMP part of R-

TLMP captures the standard uniform pricing for the en-

ergy and congestion costs that are transparent to all market

participants. By revealing the R-LMP part of the TLMP,

the system operator can provide the necessary system-wide

pricing signal effectively for market participants.

On the other hand, the ramping price Δm∗
it of R-TLMP

is private; it pertains to the ramping conditions of individual

generators. It is neither necessary nor practical to make this

part of the price transparent. Another interpretation of Δm∗
it

is that it plays the role of uplift payments for uniform prices

that ensures dispatch following incentives for the generator,

except that it is computed within the real-time market. It

is in this interpretation that R-TLMP has the same level of

transparency of all uniform pricing schemes that require out-

of-the-market uplifts.

3) ISO’s revenue adequacy: The space-time decomposi-

tion of R-TLMP provides insights into sources of ISO’s

surplus. To this end, we consider the ideal case of one-shot

TLMP with a perfect load forecast.

Proposition 3 (ISO revenue adequacy under TLMP). Con-

sider the one-shot economic dispatch G1-ED defined in (1) with

t = 1, W = T and perfect demand forecast. Let the solution

of the dual variables associated with the constraints be

(λ∗
t ,φφφ

∗[t], μm∗
it

, μ̄m∗
it ). The total ISO merchandising surplus

decomposes into ramping and congestion surpluses:

MSTLMP = MSramp + MScon, (8)
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where

MSramp =
∑

m,i,t

(μ̄m∗
it r̄mi + μm∗

it
rmi ) ≥ 0, (9)

MScon =
∑

t

cccᵀφφφ∗[t] ≥ 0. (10)

The above proposition does not generalize to the rolling-

window TLMP policy, unfortunately. There are indeed cases

when TLMP does not guarantee revenue adequacy (after

the congestion surplus is removed). Nonetheless, simulations

show that the shortfall in TLMP is considerably smaller than

those of its alternatives.

4) Ramping price as a penalty for inadequate ramping:

Note that the TLMP and LMP have the same demand price

(thus the same revenue) and the same congestion surplus.

From (8) and the fact that MSLMP = MScon, the total generator

payment under TLMP must be less than that under LMP. The

following proposition suggests that the ramping price Δm∗
it

of TLMP plays the role of penalty for inadequate ramping.

Proposition 4 (Revenue gap under LMP and TLMP). Con-

sider the one-shot economic dispatch G1-ED defined in (1),

and let (gm∗
it , μm∗

it
, μ̄m∗

it ) be the solution of the primal and

dual variables associated with generator i at bus m and

interval t. If¶ μm∗
i0 = μm∗

iT = 0, then the revenue difference

for delivering (gm∗
it , t = 1, · · · , T ) under LMP and TLMP is

nonnegative and

RLMP

mi −RTLMP

mi = r̄mi

∑

t

μ̄m∗
it + rmi

∑

t

μm∗
it
≥ 0.

For an interpretation, consider two generators at the same

bus with the same generation level. One generator has

high ramping limits so that there are no binding ramping

constraints; the other has binding ramping constraints. Under

LMP, the two generators receive the same payment. Propo-

sition 4 shows that, under TLMP, however, the one with

high ramping limits receives a higher payment than the one

having binding ramping constraints. This suggests that it is

to the generator’s benefit not to under-report its ramping

limit, and the generator is incentivized to improve its ramping

capability. This insight is validated in simulations in Sec V.

5) Equilibrium properties: The strong equilibrium prop-

erty of R-TLMP shown in Part I holds when network con-

straints are imposed. Under TLMP, there is no incentive for

any generator to deviate from the dispatch signal regardless

of the accuracy of demand forecast and no need for out-of-

the-market uplifts.

Proposition 5 (Strong equilibrium property of TLMP). For

every load forecast, let GGG
R-ED

and π
R-TLMP be the rolling-

window economic dispatch and the rolling-window TLMP,

respectively. Then (GGGR-ED
,πR-TLMP) satisfies the strong equilib-

rium conditions that result in zero LOC uplifts.

¶The assumption μm∗
i0 = μm∗

iT
= 0 has minimum impact for large T

and becomes innocuous if the initial and final ramping constraints can be
relaxed.

IV. RELATED BENCHMARK PRICING POLICIES

We present here several benchmark pricing policies that

also use the same rolling-window dispatch model. Missing

in the discussion is the flexible ramping product (FRP)

that has been implemented in CAISO because FRP uses

a different optimization procedure that produces different

dispatch signals. The development here follows [4], [5], [10].

A. Price-Preserving Multi-interval Pricing (PMP)

Unlike LMP and TLMP that derive prices from R-ED,

PMP [3], [4] employs a separate pricing optimization aimed

at minimizing the uplift payment.

The rolling-window PMP policy GR-PMP

t at time t sets

uniform prices πR-PMP[t] in the binding interval t using (i) the

past rolling-window PMP prices|| (πR-PMP[t−1], · · · ,πR-PMP[1])
and (ii) the demand forecasts (d̂dd[t], · · · , d̂dd[t+W − 1]) in the

look-ahead window.

At time t, let GGG =
[
ggg[1], · · · , ggg[t + W − 1]

]
be all the

generation variables involved in the past, current, and look-

ahead intervals. The rolling-window PMP policy GR-PMP

t solves

the following optimization:

GR-PMP

t : at time t,

minimize
GGG∈G R-PMP

F (GGG)−
∑t−1

t′=1 qqq
ᵀ[t′]πR-PMP[t′]

subject to: for all t ≤ t′ < t+W

qqq[t′] = (
∑

i g
1
it′ , · · · ,

∑
i g

M
it′ ),

λt′ : 1
ᵀqqq[t′] = 1

ᵀd̂dd[t′]

φφφ[t′] : SSS(qqq[t′]− d̂dd[t′]) ≤ ccc,

(11)

where G R-PMP represents the set of individual generation

constraints such as ramp and generation limits. See Appendix

F of [8].

The rolling-window PMP sets the price for generation in

interval t by

π
R-PMP[t] = λR-PMP

t 1− SSS
ᵀ
φφφR-PMP[t], (12)

where λR-PMP

t and φφφR-PMP[t] are the multipliers associated with

power balance and line-flow constraints in (11).

Note that the objective function can be written as

t+W−t∑

t′=1

∑

m,i

fm
it′(g

m
it′)−

t−1∑

t′=1

∑

m,i

(πR-PMP

mit′g
m
it′ − fm

it′(git′))

where the first term is the (bid-in) generation cost in the

look-ahead window. Ignoring the first term, the second term

(without the negative sign) represent the estimate of the total

surplus (including the LOC uplifts) up to time t− 1.

||In practical implementation, one may include only a few past decision
intervals.
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B. Constraint-Preserving Multi-interval Pricing (CMP)

CMP [4] is another policy that generates uniform prices

in a separate optimization different from the rolling-window

economic dispatch. Instead of involving past settled prices

in PMP, CMP enforces the ramping constraints between the

rolling-window economic dispatch and the dispatch variables

used in the pricing models.

The rolling-window CMP policy GR-CMP

t at time t sets prices

π
R-CMP[t] in the binding interval t using (i) the past rolling-

window economic dispatch gggR-ED[t − 1], (ii) shadow prices

from (1) (μR-ED

mit
, μ̄R-ED

mit) that tie generation between intervals

t− 1 and t, and (iii) load forecasts (d̂dd[t], · · · , d̂dd[t+W − 1])
in the look-ahead window.

Let GGG =
[
ggg[t], · · · , ggg[t +W − 1]

]
be the generation vari-

ables within the W -interval lookahead window, and Ft(GGG)
the total cost of generation. The rolling-window CMP policy

GR-CMP

t solves the following optimization:

GR-CMP

t : at time t,

minimize
GGG∈G R-CMP

Ft(GGG) +
∑

m,i(μ̄
R-ED

mit − μR-ED

mit
)gmit

subject to: for all t ≤ t′ < t+W

qqq[t′] = (
∑

i g
1
it′ , · · · ,

∑
i g

M
it′ ),

λt′ : 1
ᵀqqq[t′] = 1

ᵀd̂dd[t′]

φφφ[t′] : SSS(qqq[t′]− d̂dd[t′]) ≤ ccc,

(13)

where G R-CMP represents the set of individual generation

constraints. See Appendix F of [8].

Let λR-CMP

t ,φφφR-CMP[t] be the dual variable solution to the

above optimization associated with the power balance equa-

tion and line flow constraints, respectively. The rolling-

window CMP set the price at bus m and interval t by

π
R-CMP[t] = λR-CMP

t 1−SSSᵀφφφR-CMP[t]. (14)

C. Multi-settlement LMP (MLMP)

The multi-settlement LMP extends the two-settlement

LMP used in the day-ahead and real-time markets to the

rolling-window dispatch setting.

Time

Settlement 1
Ht∗−2

Settlement 2

Ht∗−1

Settlement W
Ht∗

t∗t∗ − 1t∗ − 2

ĝ
m,1
it∗

π̂
m,1
t∗

ĝ
m,2
it

π̂
m,2
t∗

ĝ
m,W

it∗

π̂
m,W

t∗

Fig. 1: Rolling-window dispatch with window size
W = 3. The final generation and payments are
determined in W = 3 settlements, each produces
the generation quantities and prices for deviation
from the quantity in the previous settlement.

We use Fig. 1 to illustrate the settlement process for

generation and demand in interval t∗. When pricing the W -

interval rolling-window dispatch gR-ED

mit∗ for generator i at bus

m, we consider W settlements from W sequential “markets”,

one for each sliding window that includes interval t∗ as

shown in Fig. 1.

The first settlement occurs at time t = t∗ −W + 1 with

scheduling window Ht∗−W+1 = {t∗ −W + 1, · · · , t∗}. Let

ĝ
m,1
it∗ be the advisory dispatch for generator i at bus m in

interval t∗ computed by the W -interval economic dispatch

(1) and π̂
m,1
t∗ its LMP. Here the superscript “1” indicates

that this is the first market that the dispatch in interval t∗

is settled financially. The first financially binding settlement

for generator i at bus m is π̂
m,1
t∗ × ĝ

m,1
it∗ ($) for the advisory

dispatch ĝ
m,1
it∗ in interval t∗. (This settlement is analogous to

the day-ahead settlement in the two-settlement process.)

The second settlement for generator i at bus m occurs

at time t∗ − W + 2 using the rolling-window dispatch

over scheduling window Ht∗−W+2. Let (ĝm,2
it∗ , π̂

m,2
it∗ ) be the

dispatch-LMP pair computed by the economic dispatch over

Ht∗−W+2. The second financially binding settlement for

generator i at bus m is π̂
m,2
t∗ × (ĝm,2

it∗ − ĝ
m,1
it∗ ) ($) for the

advisory dispatch of ĝ
m,2
it∗ in interval t∗.

As the window slides forward one interval at a time,

the process generates a sequence of W dispatch-LMP pairs

(ĝm,1
it∗ , π̂

m,1
t∗ ), · · · , (ĝm,W

it∗ , π̂
m,W
t∗ ) for generator i at bus m.

In the last settlement occurs at time t = t∗ when generator

i at bus m physically delivers ĝ
m,W
it∗ = gR-ED

mit∗ and receives

the final settlement π̂
m,W
t∗ ×(ĝm,W

it∗ − ĝ
m,W−1
it∗ ) ($). Note that

π̂
m,W
t∗ = πR-LMP

m,t .
Under the multi-settlement LMP, the total revenue RM-LMP

mit∗

for generator i at bus m for delivering power gR-ED

mit∗ is

RM-LMP

mit∗ = π̂
m,1
t∗ (ĝm,1

it∗ ) +

W∑

k=2

π̂
m,k
t∗ (ĝm,k

it∗ − ĝ
m,k−1
it∗ ). (15)

Note that, although RM-LMP

mit∗ is a linear function with respect to

(ĝm,1
it∗ , · · · , ĝm,W

it∗ ), it is not linear with respect to the power

delivered gR-ED

mit∗ in interval t∗.

V. PERFORMANCE

We present here simulation results involving three genera-

tors at a single bus. Simulations for larger networks including

one involving an ISO-NE 8-zone case can be found in the

appendix of [8]. As concept demonstrations, these small

setups, although not realistic in practice, are sufficiently

complex to reveal non-trivial characteristics of multi-interval

dispatch and pricing.

A. Simulation settings

The top part of Fig 2 shows the parameters of the genera-

tors and a ramping path used in the simulations. Specifically,

we evaluated the performance of benchmark schemes by

varying ramping limits of G2 and G3 along the path from

scenario A to H while fixing the ramping limit of generator
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G1 to 25 MW/h. Scenario A had the most stringent ramping

constraints and H the most relaxed.

G1

G2

Capacity Marginal
cost 

G3

g c

100 MW 

100 MW

28 $/MW

30 $/MW

100 MW 40 $/MW G2 ramp limit

G
3

 r
a

m
p

 l
im

it

5 10 30 50 60

30

40

50

60

A B C D E

F

G

H

Fig. 2: Top left: generator parameters. The ramp limit for
G1 is fixed at 25 (MW/h). Top right: a path of
ramping events. Bottom left: average demand.
Bottom right: demand traces.

The bottom part of Fig 2 shows the 300 realizations

and average demand over 24 hour period generated from a

CAISO load profile and a standard deviation of 4% of the

mean value. We used a standard forecasting error model**

where the demand forecast d̂(t+k)|t of dt+k at time t had

error variance kσ2 increasing linearly with k.
All simulations were conducted with rolling-window opti-

mization over the 24-hour scheduling period, represented by

24 time intervals. And the window size is four intervals in

each rolling window optimization.

B. Dispatch-following and ramping-revelation incentives

1) LOC and dispatch-following incentives: We first con-

sidered dispatch-following incentives measured by the LOC

payment; the greater the LOC payment, the higher the

incentive to deviate the dispatch signal (in the absence of

LOC payment). The computation of LOC for the pricing

models followed that defined in Part I of the paper and given

in detail in the appendix of [8].
Fig. 3 shows the total LOC payment from the ISO to

generators at different ramping rates along the ramping

trajectory in Fig. 2. Notice the general trend that all schemes

converged to zero as scenarios of binding ramping constraints

diminished at scenario H.
As predicted by the equilibrium property, the LOC for

TLMP was strictly zero, and all other pricing schemes had

positive LOC payments. PMP designed to minimize the LOC

appeared to have the least LOC among the rest of the uniform

pricing schemes. The same conclusion held for the larger

scale simulations considered in the appendix of [8]. Shown

**The forecast d̂(t+k)|t at t of demand dt+k is d̂(t+k)|t = dt+k +
∑k

i=1 εk where εk is i.i.d. Gaussian with zero mean and variance σ2.

Fig. 3: Left panel: LOC vs. ramping scenarios from A to H at σ = 6%.
Right panel: LOC for ramping scenario A under forecast error
standard deviation σ = 0%, 0.1%, 0.6%, 6%.

also in Fig. 3 is that LOC increased with the forecasting error

variance, as expected.

2) Truthful revelation of ramping limits: This simulation

aimed at illustrating incentives of the truthful revelation of

ramping limits under various pricing schemes. We varied the

revealed ramping limit of one generator and kept the others

fixed at the true ramp limits.

Fig. 4: Generator profit vs. revealed ramp limit at σ = 6% for ramp
scenario H. Left: ramp limits of G2 and G3 are fixed at 60
MW/h. Middle: ramp limit of G1 is fixed at 25 MW/h and G3 at
60 MW/h. Right: ramp limits of G1 is fixed 25 MW/h and G2 at
60 MW/h.

Fig. 4 shows the generator profit as a function of its

revealed ramping limits for the ramping scenario H with true

ramp limits as 25 MW/h for G1, 60 MW/h for G2 and G3.

Under TLMP, profits of all generators grew as the revealed

ramping limits grew to their true values. The implication was

that the generators had incentives to reveal their ramp limits

truthfully and to improve their ramping capabilities. For the

rest of uniform pricing schemes, the profits of generators G2

and G3 increased as the revealed ramp limits deviate from

their true values, implying that generators had incentives to

under-report their ramp limits.

Fig. 5: Discriminative payment vs. ramping scenarios from A to H at
σ = 6%. Left: Discriminative payment of G1. Middle:
Discriminative payment of G2. Right: Discriminative payment of
G3.
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C. In-market and out-of-market discriminative payment

Fig. 5 shows the comparison of discriminative payments to

different generators under different pricing schemes. The dis-

criminative payments to each generator under uniform prices

(LMP, PMP, MLMP and CMP) equaled to the corresponding

LOC, which were also called out-of-market discriminative

payments. And the discriminative payment under TLMP was

in-market discrimination, which was calculated by the pay-

ment to generator under TLMP minus that under LMP. Note

that the discriminative payment of TLMP is mostly negative,

indicating that generators with binding ramping constraints

tend to be paid lower than LMP. Comparing to other uniform

pricing schemes, the generator with more consecutive binding

ramping constraints, i.e. G3 in Fig. 5, had smaller discrim-

inative payment under TLMP. While generators with more

nonconsecutive binding ramping constraints, i.e. G1 and G2,

had more discriminative payments under TLMP. Shown also

in Fig. 5 is that there’s no certain order for the absolute values

of discriminative payments under different pricing schemes.

D. Revenue adequacy of ISO

Fig. 6 shows the ISO’s merchandising surplus that included

the LOC payments. The results validated the fact that uniform

pricing schemes, in general, have positive LOC, resulting

in a deficit for the ISO. As a regulated utility, any deficit

(and surplus) was redistributed to the consumers in a revenue

reconciliation process [11].

For TLMP, the ramping charge on generators led to a

positive merchandising surplus, as shown in Proposition 3.

The simulations involving a larger network in the appendix

of [8] also showed that the rolling-window TLMP had a

merchandising surplus from both ramping and congestion.

Coupled with the fact that TLMP always had zero LOC,

TLMP showed a positive merchandising surplus.

Fig. 6: ISO surplus vs. ramp limits. Left panel: ISO surplus evaluated at
σ = 6%. Right panel: Ramping scenario A.

The ISO surpluses for all pricing schemes converged to the

congestion rent (which was zero in the single-node case) as

ramping events diminished with increasing ramping limits.

For TLMP, the ISO surplus decreased from the positive

because ISO collected less penalty charges from generators.

The ISO surpluses for all other pricing schemes increased

from the negative because of the decreasing LOC payments.

E. Consumer payments and generator profits

We assumed that ISO was financially neutral; when the

ISO had a positive surplus (after excluding the congestion

surplus), the consumers received a price reduction as a rebate.

When the ISO had a deficit, the consumers paid additionally

to cover the deficit.

Fig. 7 shows the consumer payments under the assump-

tion that the demand is credited (or charged) for any ISO

surplus (or deficit). TLMP was the least expensive for the

consumer and PMP the least expensive among uniform

pricing schemes. The decreasing trend of consumer payments

with less ramping constraints under uniform pricing schemes

was due to the decreasing costs of LOC payments to the

generators. The initial increasing trend of consumer payment

under TLMP was due to the less surplus of ISO passed to the

consumers for collecting penalties from generators. Again,

the consumer payments increased with the forecasting error.

The total generator profit figures have identical trends as

those of consumer payments because the operator has zero

surplus. TLMP had the least generator profits, and PMP had

the least generator profits among uniformly priced schemes.

Note that the forecasting errors resulted in higher generator

profits for LMP, CMP, and MLMP because of high LOC

payments to generators.

Fig. 7: Consumer payment vs. ramp. Left panel: consumer payment
evaluated at σ = 6%. Right panel: Ramping scenario A.

F. Price volatility

The volatility of a random price in an hour can be

measured by the standard deviation of the price normalized

by the average of the price in the hour. A highly volatile

price makes LMP forecasting difficult.

Fig. 8 includes a table of price volatility averaged over all

hours. Among the compared pricing mechanisms, TLMP††

showed consistently lower volatility. We also noticed that

price volatility increased with stricter ramping limits and

increasing demand forecasting errors. The same trend was

also observed in simulations involving larger networks in the

appendix of [8].

††The normalized standard deviation of TLMP is averaged over for all
the demand and generators.
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Ramp scenario

Forecast error

A E H

σ=0% σ=6% σ=6% σ=6%σ=0% σ=0%

TLMP

LMP/MLMP

PMP

CMP

0.0652

0.1074

0.0992

0.1142

0.0795 0.0286 0.0311 0.0202 0.0202

0.0202

0.0202

0.0202

0.0202

0.0202

0.0202

0.0364

0.0419

0.0440

0.0335

0.0383

0.0383

0.1362

0.1453

0.1638

Fig. 8: Average ratio of normalized standard deviation of hourly prices.
Top: normalized standard deviation under different ramping
scenarios and standard deviation of forecasting errors. Bottom:
normalized standard deviation at different hours with σ = 0%
(left) and σ = 6% (right).

VI. CONCLUSION

This two-part paper considers the pricing of multi-interval

dispatch under demand forecast uncertainty. We establish

that, to provide dispatch-following incentives, discrimination

in the form of uniform pricing with out-of-the-market uplifts

or nonuniform pricing becomes necessary. In particular, we

show that, as a generalization of LMP, the nonuniform TLMP

eliminates the need for the out-of-the-market uplifts under

arbitrary forecasting uncertainty. We also consider incentives

of the truthful revelation of ramping limits. We show that,

by penalizing the ramping limits, TLMP provides incentives

for generators to improve its ramping capability and reveal

the actual ramping limits. Unfortunately, such incentives are

lacking in the existing pricing schemes.

Under the rolling-window dispatch, different pricing

schemes differ in the distribution of the overall social wel-

fare among generators and consumers. Among the pricing

mechanisms considered in this paper, TLMP leads to the

least consumer payment but also the lowest generator profit.

Likewise, among uniform pricing schemes, PMP leads to the

least consumer payment and the lowest generator profits.
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