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Abstract—We study the deadline scheduling problem for
multiple deferrable jobs that arrive in a random manner and
are to be processed before individual deadlines. The processing
of the jobs is subject to a time-varying limit on the total
processing rate at each stage. We formulate the scheduling
problem as a restless multi-armed bandit (RMAB) problem.
Relaxing the scheduling problem into multiple independent
single-arm scheduling problems, we define the Lagrangian priority
value as the greatest tax under which it is optimal to activate the
arm. We propose a Lagrangian priority policy which processes
jobs in the order of their Lagrangian priority values, and
establish its asymptotic optimality as the system scales. Numerical
results show that the proposed Lagrangian priority policy
achieves 22%-49% higher average reward than the classical
Whittle index policy (that does not take into account the
processing rate limits).

Index Terms—Electric vehicle charging, Deadline scheduling,
Restless multi-armed bandit (RMAB), Dynamic programming,
Index policy.

I. INTRODUCTION

We study the deadline scheduling of multiple deferrable jobs
by a service provider with multiple processors, in the presence
of stochastic processing costs, random job arrivals, and time-
varying processing rate limits. A newly arrived job requests
a certain amount of service (e.g., energy or data processing)
to be fulfilled by a user-prescribed deadline. The amount of
resource available for processing these deferrable demands
is constrained by a time-varying limit. The objective is to
minimize the long-term (expected) total cost, consisting of job
processing costs and the non-completion penalty when a job
is not completed by its deadline.

The deadline scheduling problem is motivated by appli-
cations such as the charging of a large number of electric
vehicles (EV) in a charging service center where the number
of EVs that can be charged simultaneously is limited by the
capacity of the transformer and the available local renewable
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generations [2]–[5]. Another example is the scheduling of
processors in cloud services where the submitted jobs have
different priorities and deadlines and the number of processors
(available for processing on-demand jobs) varies in time
[6], [7]. In these applications, the varying constraints on
the available processing rate pose significant theoretical and
algorithmic challenges.

The deadline scheduling problem is a sequential decision
process that can be formulated as a stochastic dynamic
program (DP). However, the formulated DP is intractable due
to the well-known curse of dimensionality [8]: the system state
space grows exponentially with the number of jobs, making
it intractable to solve the deadline scheduling problem as a
general DP.

In this paper, we consider an important class of scheduling
algorithms, which are based on some ranking mechanism
using priority values that can be computed with polynomial
complexity. The classic index policies derive priority values,
referred to as indices, from the individual decision processes
(rather than the joint decision process in DP), thus reducing
the computation complexity to be linear with the number
of processors. By prioritizing jobs based on their individual
properties, index policies are in general suboptimal with a few
exceptions. Most celebrated are the Gittins index policy for the
multi-armed bandit problem [9] and the Whittle index policy
for the restless multi-armed bandit (RMAB) problem [10].

A. Related works
There exists an extensive literature on the deadline schedul-

ing for multiple processors (for a survey, see [11]). Some
relevant applications include scheduling of EV charging in
power system [4], task scheduling in multi-core processors,
[12], [13], transmission of packets in communication systems
[14], [15], and inventory allocation in retail revenue man-
agement [16]. Similar to the present work, index policies
have been adopted to explore deadline scheduling problems
through a RMAB formulation [5], [16]. The indexability of a
RMAB with bi-dimensional state (perishable product lifetime
and inventory level) is established in [16] for a setting with
constant processing cost. The authors of [5] established the
asymptotic optimality of the Whittle index policy in the light
traffic regime. In the aforementioned literature, the processing
rate limit is assumed to be constant or hold on average over
the entire scheduling horizon, whereas this work incorporates
time-varying hard constraints on the total processing rate in
each period.
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The literature on deadline scheduling with time-varying
processing capacity is less extensive, and none leads to any
form of optimality. A combined EDF (Earliest Deadline
First) and LLF (Least Laxity First) policy is proposed in
[17] for online deadline scheduling with constant rewards. In
[18], based on the primal-dual paradigm, an approximation
algorithm is proposed for scheduling of non-preemptive jobs
under time-varying processing rate constraints. In this paper,
we consider a different setting with preemptive jobs, stochastic
job arrivals and processing costs.

We formulate the stochastic deadline scheduling problem
as a RMAB, which is a weakly coupled dynamic program
(WCDP) consisting of multiple subproblems that are indepen-
dent of each other except for a set of linking constraints on
the controls [19]–[22]. The Lagrangian relaxation technique
has been widely adopted to relax the linking constraints and to
decouple the WCDP into multiple independent subproblems,
which yield the dual bound for the original WCDP [21], [23]–
[26].

Bandit [27], [28] and restless bandit [29], [30] approaches
have been widely adopted to compute efficient control policies
for resource sharing in wireless communications and demand
response. The authors of [31] established the asymptotic
optimality of the Whittle index policy for Markov-modulated
restless bandits. In the restless bandit model of aforementioned
works, the total number of activated arms (in each period) is
either constant or below a time-average limit, whereas our
model incorporates a time-varying hard constraint on the total
number of activated arms in each period.

In a more closely related work, the authors of [32] develop
an asymptotically optimal policy for the general RMAB
problem that builds on the notion of WCDP introduced in
[21]. A major contribution of [32] is a Lagrange based index
policy with tie-breaking rule that is shown to be asymptotically
optimal in the regime originally considered by Whittle, even
when the RMAB is not indexable. The work in [32] assumes a
constant rate constraint and i.i.d. reward process among arms.
In this work, we consider a different setting with deferrable
jobs, time-varying processing rate constraints, and coupled
processing costs.

B. Summary of results

The main contribution of this work is three-fold. First, we
construct a RMAB model to explore a general stochastic
deadline scheduling problem with random job arrivals and
time-varying hard constraints on the total processing rate at
each stage. At each stage, a binary decision is made on
whether to process each job. At each stage, the processing
of a job achieves a time-varying reward that is uniform
among all jobs. At the deadline of each job, a non-completion
penalty incurs if the job is not fully processed. The objective
is to properly schedule the processing of each job (before
its deadline) to maximize the expected difference between
processing reward and non-completion penalty. We establish
closed form expressions of the Lagrangian priority value,
and present an efficient algorithm to compute the Lagrangian

priority values (with linear complexity with respect to the
number of arms).

Second, we propose a Lagrangian priority policy (that
processes jobs in the order of their Lagrangian priority values)
with a new randomized tie-breaking rule. As the Lagrangian
priority values of multiple jobs (at different states) may be the
same, an arbitrary tie-breaking destroys asymptotic optimality.
The proposed tie-breaking rule marks a main difference
between the Lagrangian priority policy proposed here and that
in [32].1 Even under the conditions that the processing rate
constraint is constant and the reward processes are i.i.d., the
proposed Lagrangian priority policy does not reduce to that in
[32].

Third, we establish the asymptotic optimality for the pro-
posed Lagrangian priority policy (under deterministic, time-
varying processing cost), as the number of processors, job
arrival rate, and the processing rate limit simultaneously in-
crease to infinity. In particular, we show that the proposed tie-
breaking rule enables the Lagrangian priority policy to imitate
the optimal randomized policy (for the Lagrangian relaxation).
Consequently, the gap between the expected reward per arm
of the proposed policy and its upper bound (achievable by the
optimal randomized policy) converges to zero as the system
scales large. Note that the asymptotic optimality applies to
both the light and heavy traffic regimes. We provide a simple
example demonstrating that the proposed tie-breaking rule is
crucial for the established asymptotic optimality result, as the
Lagrangian priority policy with uniform tie-breaking rule may
lead to suboptimal decisions.

Numerical results show that the Lagrangian priority policy
with the proposed tie-breaking rule achieves 22%-49% higher
average reward than the Whittle index policy that does not
take into account the time-varying processing rate limit con-
straints. Compared with uniform tie-breaking, simulation re-
sults demonstrate that the proposed tie-breaking rule improves
the average reward by 6%-12%. The proposed Lagrangian
priority policy (with randomized tie-breaking) is shown to
improve the expected reward achieved by the index based
policy proposed in [32] by 1.9%-5.9% when the number of
processors is in the range of 50 to 200.

The rest of the paper is organized as follows. In Section
II, we formulate the EV charging scheduling problem as a
dynamic program. In Section III, we discuss the Lagrangian
relaxation that enables the decomposition of the formulated
dynamic program. In Section IV, we define the Lagrangian
priority value, establish the close form of the Lagrangian
priority value, and derive a recursive expression for the
Lagrangian priority value under deterministic processing cost.
We propose a new tie-breaking rule for the Lagrangian priority
policy which is shown to be asymptotic optimal in Section V.
In Section VI we present some numerical results to compare
the proposed Lagrangian priority policy against state-of-the-
art algorithms, e.g., the Whittle index policy. Finally, we make
some brief concluding remarks in Section VII.

1For detailed discussion on the key differences between these two tie-
breaking approaches, please refer to Remark 3.
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II. PROBLEM FORMULATION

In Section II-A, we introduce the problem settings and
assumptions. In Section II-B, we formulate the stochastic
deadline scheduling problem with time-varying processing rate
constraints as a Markov decision process.

A. The deadline scheduling problem

We study the stochastic deadline scheduling of multiple
electric vehicles with time-varying processing rate limits,
random job arrivals and processing cost. In presenting the
problem formulation of stochastic deadline scheduling, we use
EV charging as a concrete example.

1) Scheduling horizon: We consider a discrete-time model,
where stage is indexed by t ∈ {1, . . . , T}.

2) Processors: The system has I processors (e.g., EV
chargers) labelled by i ∈ {1, . . . , I}. The processing rate
of all processors is constant and normalized to 1.

3) Action: We let ait denote the action of the ith processor
at stage t. It equals 1 if the job i is processed2, and 0 if
not.

4) Time-varying processing rate limits: At stage t, at most
mt ∈ Z+ processors can be simultaneously activated, i.e.,

I∑
i=1

ait ≤ mt, ∀ t. (1)

{mt} is an exogenous deterministic process. In the
context of EV charging, the processing rate limit can
reflect the (time-varying) power capacity available for
electric vehicle charging in a power distribution system.

5) Job arrival and departure: At the beginning of period
t, the probability that a new job (with a deadline d and
energy demand e) arrives at processor i is Qi(d, e). We
use Qi(t, 0) to denote the probability that no job arrives
at processor i at the beginning of period t. Each processor
can process only one job at each time, and an occupied
processor ignores any newly arrived jobs.
Once a job arrives at an unoccupied processor i, its
(integer) energy demand eit and deadline di are revealed
to the operator, with 0 ≤ eit ≤ Ei and di ≤ T + 1. Job i
leaves processor i at the beginning of stage di. The job
arrivals to different processors are mutually independent.
At stage t, job i’s state is a two-dimensional vector
(eit, d

i). The job can be served during periods {t, t +
1, . . . , d − 1}. We assume that it is possible to finish a
new job before its departure, i.e., t+ e ≤ d.

6) Processing reward: A processor receives a reward of 1−
ct if it processes the job, where ct ∈ R is the processing
cost at stage t. We assume that the evolution of ct is an
exogenous Markov process and is independent of the job
arrivals as well as the operator’s charging decisions. At
stage t, the transition probability of the processing cost
is given by Pct(ct+1|ct).
A non-completion penalty g(eidi) incurs if a job i’s
demand is not fulfilled by its deadline, where g is

2With slight abuse of notation, we refer to the job (e.g., an EV) processed
by the ith processor (e.g., an EV charger) as job i.

a quadratic, increasing function, and eidi denotes the
remaining energy demand at job i’s deadline.

B. Dynamic programming formulation

We are now ready to formulate the problem as a dynamic
program (DP) by introducing its states, action sets, state
transitions, and reward.

1) System state: As illustrated in Fig. 1, the state of job
i (e.g., an EV) at stage t consists of its deadline di and its
remaining demand eit at stage t:

xit
.
= (di, eit) ∈ X i, ∀ i, ∀ t, (2)

where X i = {1, 2, . . . , T + 1} × {0, 1, . . . , Ei}. We let (t, 0)
denote the state of an unoccupied processor at stage t.

Fig. 1. State of job i at stage t: eit is the remaining demand, and di is the
deadline (departure time).

The system state consists of the states of all the I processors,
and the current processing cost:

st
.
= [x1

t , . . . , x
I
t , ct] ∈ S, ∀ t, (3)

where S = X 1×· · ·×X I ×X c is the system state space, X c
represents the state space of the processing cost.

2) Actions: Let

at
.
= [a1

t , . . . , a
I
t ] ∈ {0, 1}I , ∀ t, (4)

denote the action vector at stage t. For the sake of notational
convenience, a positive action is allowed for an unoccupied
processor (without any job), causing no reward or penalty.
The feasible action set under system state st is

At(st)
.
= {at : Eqs. (1), (4)}, ∀ t. (5)

A policy π = {π1, π2, . . . , πT } is a sequence of Markovian
decision rules such that πt(st) ∈ At(st), for all st ∈ S.

3) System dynamics: The state evolution of job i depends
on its current state xit and the action ait:

xit+1 =

{
(di, (eit − ait)+), if di > t+ 1,
(d′, e′) with Prob. Qi(d′, e′), if di = t+ 1,

(6)

where (x)+ = max(0, x). When job i with di = t+1 reaches
its deadline, at the beginning of period t+ 1 job i is removed
and a new job (d′, e′) arrives with probability Qi(d′, e′).

4) Reward: The immediate reward rit of the ith processor
is determined by the current state xit, action ait, and processing
cost ct:

rit(x
i
t, ct, a

i
t) =


ait(1− ct), if di > t+ 1, eit > 0,

ait(1− ct)− g
(
(eit − ait)+

)
,

if di = t+ 1, eit > 0,
0, otherwise.

(7)
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For a job that has not reached its deadline and has remaining
demand at stage t+1, a reward of 1−ct is obtained if job i is
processed. When di = t+1, the job will leave at the beginning
of t+ 1, and a non-completion penalty g

(
(eit − ait)+

)
incurs

if job i is not fulfilled by its deadline di. For an unoccupied
processor (with state (t, 0)), the reward it achieves at stage t
is always 0. The immediate reward at stage t is given by

Rt(st,at) =
I∑
i=1

rit(x
i
t, a

i
t, ct),

where the system state st is defined in (3).
We assume that rit is bounded, i.e.,

|rit(xit, ait, ct)| ≤ Cr, ∀ xit ∈ X i, ct ∈ X c, (8)

and as a result, Rt must be bounded too.
5) Dynamic programming formulation: We formulate the

scheduling problem as a T -stage DP. We use Jπt (st) to denote
the reward-to-go function achieved by policy π:

Jπt (st) = Rt(st, πt(st)) + E[Jπt+1(st+1) | st, πt(st)].

We use Jt(st) to denote the optimal reward-to-go function
under system state st, and the Bellman’s equation yields

Jt(st) = max
at∈At(st)

{
Rt(st,at) + E[Jt+1(st+1) | st,at]

}
.

(9)

Since di ≤ T+1 for all i, all jobs leave before stage T+1, the
terminal cost JT+1(sT+1) = 0. We say a policy π∗ is optimal
if and only if Jπ

∗

1 (s1) = J1(s1) for all initial states s1.
Remark 1: Similar to the deadline scheduling problem con-

sidered in [5], the formulated problem can be viewed as
a special case of the restless multi-armed bandit (RMAB)
problem. Each processor (which is able to process at most one
job at a time) can be regarded as an arm, the state of which
(xit) may change under both the active and passive actions.
The reward achieved by arm i at stage t is given in (7). We
note that the reward achieved at different arms are coupled
through the processing cost ct.

The key difference between the formulated problem and the
model adopted in [5] lies in constraint (1), which restricts the
total processing power to be less than or equal to the available
power capacity in the power distribution system mt [33]. Note
also that, unlike in [5], we consider a finite horizon RMAB,
which requires significantly different treatment. �

III. LAGRANGIAN RELAXATION AND DECOMPOSITION

In Section III-A, we decouple the DP formulated in (9) us-
ing Lagrangian relaxation and decomposition [21]. In Section
III-B, we adopt a linear programming (LP) approach [34] to
solve the relaxed problem and obtain an upper bound (for all
feasible policies satisfying (5)).

A. Lagrangian relaxation
Let λt,T = [λt, . . . , λT ] represent the vector of Lagrange

multipliers from stage t to T with λt ≥ 0. The Lagrangian
relaxation considers

Lt(st,λt,T ) = max
at∈{0,1}I

{
E[Lt+1(st+1,λt+1,T ) | st,at]

+
I∑
i=1

rit(x
i
t, ct, a

i
t) + λt(mt −

I∑
i=1

ait)
}
, ∀ 1 ≤ t ≤ T,

(10)
where the constraint on maximum processing rate (1) is
relaxed and LT+1(sT+1) = 0 at the terminal stage T + 1.

In view of the separable structure of Lt(st,λt,T ), we
reformulate (10) based on the following proposition.

Proposition 1 ( [21]): The Lagrangian DP (10) can be
decomposed as the sum of I independent single-arms’ reward-
to-go plus an offset term with respect to λt,T , i.e.,

Lt(st,λt,T ) =
I∑
i=1

V it (xit, ct,λt,T ) +
T∑
τ=t

λτmτ ,

where

V it (xit, ct,λt,T ) = max
ait∈{0,1}

{
rit(x

i
t, ct, a

i
t)− λtait

+ E[V it+1(xit+1, ct+1,λt+1,T ) | xit, ct, ait]
}

(11)
and V iT+1(xiT+1, cT+1) = 0.

Since all arms have independent job arrivals, it follows from
Proposition 1 that the Lagrangian dual problem can be written
by

L∗1(s1,λ
∗
1,T ) = min

λ1,T≥0

I∑
i=1

V i1 (xi1, c1,λ1,T )+

T∑
t=1

λtmt, (12)

where λ∗1,T = [λ∗1, . . . , λ
∗
T ] is the optimal solution and

L∗1(s1,λ
∗
1,T ) is the optimal objective value under the initial

state s1. Problem (12) is easier to solve, and can provide an
upper bound on the total expected reward, i.e,

L∗1(s1,λ
∗
1,T ) ≥ J1(s1).

Therefore, to establish the asymptotic optimality of a policy,
it is sufficient to show that its expected total reward converges
to L∗1(s1,λ

∗
1,T ).

Problem (12) is equivalent to the following PLP (primal
linear program), which enables us to solve the problem through
the LP approach.

PLP : min
{λt,xi

t,ct,λt,T }

I∑
i=1

V i1 (xi1, c1,λ1,T ) +
T∑
t=1

λtmt

s.t. λt ≥ 0, ∀ t,∑
xi
t+1

∑
ct+1

P
i
t(x

i
t+1|xit, 1)Pct(ct+1|ct)V it+1(xit+1, ct+1,λt+1,T )

≤ V it (xit, ct,λt,T )− rit(xit, ct, 1) + λt, ∀ t, i, xit, ct,∑
xi
t+1

∑
ct+1

P
i
t(x

i
t+1|xit, 0)Pct(ct+1|ct)V it+1(xit+1, ct+1,λt+1,T )

≤ V it (xit, ct,λt,T )− rit(xit, ct, 0), ∀ t, i, xit, ct,
(13)
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where Pit(x
i
t+1 | xit, ait) denotes the transition probability from

xit to xit+1 under action ait. The optimal decision variables
V (·) of the PLP are equal to the reward-to-go functions at
stage t = 1 expressed in (11), and the linear program in (13)
is equivalent to the dynamic problem in (12) [35].

B. Optimal randomized policy for the dual linear problem

We adopt the linear programming approach (cf. Chapter 3 of
[34]) to solve Problem (12). We define the occupation measure
ρit(x

i
t, ct, a

i
t) as the probability of visiting the state pair (xit,

ct) and taking the action ait at stage t [34]:∑
ait+1

ρit+1(xit+1, ct+1, a
i
t+1) =∑

xi
t

∑
ct

∑
ait
P
i
t(x

i
t+1|xit, ait)Pct(ct+1|ct)ρit(xit, ct, ait).

(14)
The dual of the PLP is the following dual linear program

(DLP):

DLP : max
ρit(x

i
t,ct,a

i
t)

T∑
t=1

I∑
i=1

∑
ait

∑
xi
t

∑
ct

ρit(x
i
t, ct, a

i
t)r

i
t(x

i
t, ct, a

i
t)

s.t. (14),
∑
ai1

ρi1(xi1, c1, a
i
1) = 1, ∀ i, (15a)

I∑
i=1

∑
xi
t

∑
ct

ρit(x
i
t, ct, 1) ≤ mt, ∀ t, (15b)

ρit(x
i
t, ct, a

i
t) ≥ 0, ∀ i, t, xit ∈ X i, ct ∈ X c, ait. (15c)

The constraint in (15a) requires that the probability of
visiting the initial state pair (xi1, c1) equals 1. For t > 1,
multiple state pairs can be possibly visited, and the visiting
probability

∑
ait
ρit(x

i
t, ct, a

i
t) for any single state pair (xit, ct)

can be less than 1. Constraints (14) and (15a) ensure that the
sum of occupation measures must equal 1 for each arm, i.e.,∑

xi
t

∑
ct

∑
ait

ρit(x
i
t, ct, a

i
t) = 1, ∀ t.

The Lagrangian dual problem (12) is equivalent to the PLP,
and the DLP is the dual of PLP. The Lagrangian relaxation
in Section III-A essentially replaces constraint (1) with the
constraint in (15b) that requires the processing rate limit
constraint to hold in expectation over a randomized policy.

The optimal objective value of DLP equals L∗1(st,λ
∗
1,T ),

where λ∗1,T is the optimal dual variable associated with the
constraint (15b). Based on the optimal solution of the DLP,
we define an optimal randomized (Markovian) policy φ∗ =
{φi∗t }

I, T
i=1,t=1, with

φi∗t (1 | xit, ct) =
ρi
∗

t (xit, ct, 1)

ρi
∗
t (xit, ct, 0) + ρi

∗
t (xit, ct, 1)

(16)

being the probability of taking an active action when the state
(of arm i) xit and the processing cost state ct are visited by
policy φ∗. Here, ρi

∗

t (xit, ct, a
i
t) is the optimal solution of the

DLP. A state pair (xit, ct) with ρi
∗

t (xit, ct, 0) +ρi
∗

t (xit, ct, 1) =
0 is visited by policy φ∗ with zero probability. The randomized
policy φ∗ will be useful for the tie-breaking of the proposed
Lagrangian priority policy (cf. Section IV-B).

IV. LAGRANGIAN PRIORITY POLICY

In Section IV-A, we introduce the Lagrangian priority value,
establish its close form, and derive a recursive formula for the
computation of Lagrangian priority values (in the case with
deterministic processing cost). In Section IV-B, we propose a
new tie-breaking rule for the Lagrangian priority policy, which
is crucial for the asymptotic optimality of the Lagrangian
priority policy (to be established in the next section).3

A. Lagrangian priority value
To develop the priority value of arm i, we regard the current

Lagrange multiplier λt in (11) as a tax on activation. In the
following λt-tax reward maximization problem, we fix the
future Lagrange multipliers λ∗t+1,T (the tail part of optimal
solution of (12) ranging from t + 1 to T ) to approximate a
single arm i’s optimal reward-to-go:

V it (xit, ct, λt,λ
∗
t+1,T )

= max
ait∈{0,1}

{
E[V it+1(xit+1, ct+1,λ

∗
t+1,T ) | xit, ct, ait]

+ rit(x
i
t, ct, a

i
t)− aitλt

}
,

(17)

where the objective is to maximize the total accumulative
reward over the remaining time horizon.

Fixing the multiplier vector λ∗t+1,T , we let
∆i
t(x

i
t, ct, λt,λ

∗
t+1,T ) denote the difference in the rewards

achieved by the active action and the deactivated action on
the right-hand-side of (17). The Lagrangian priority value
at state (xit, ct) is defined as the maximum tax under which
makes the two actions in (17) equally attractive at period t,
i.e.,

vit(x
i
t, ct)

.
= supλt

{λt : ∆i
t(x

i
t, ct, λt,λ

∗
t+1,T ) = 0}. (18)

Different from the classic Whittle index, the computation
of an arm’s Lagrangian priority value involves the states
of other arms, through the Lagrange multipliers λ∗t+1,T that
are optimal for the relaxed dual problem (12). However, the
Lagrange multiplier vector λ∗1,T is predetermined by solving
Problem (13) and is the same for all arms. Since all arms
are decoupled due to the Lagrangian relaxation, fixing λ∗t+1,T

in (17), an arm’s Lagrangian priority value depends only on
its own state. We note that the interpretation of the defined
Lagrangian priority value is analogous to that of the Whittle
index (proposed in [10]), which is the (minimum) subsidy on
deactivation that makes the two actions equally attractive at a
certain state.

Based on (18), the following theorem establishes the closed-
form expressions of the Lagrangian priority value for the
formulated RMAB.

Theorem 1: The Lagrangian priority value is given by (for
arm i at stage t):

vit(x
i
t, ct)

= rit(x
i
t, ct, 1) + E[V it+1(xit+1, ct+1,λ

∗
t+1,T ) | xit, ct, 1]

− rit(xit, ct, 0)− E[V it+1(xit+1, ct+1,λ
∗
t+1,T ) | xit, ct, 0].

(19)

3The importance of tie-breaking to establish asymptotic results for the
Whittle index policy has been observed in existing literature [29], [36].
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The expression of the Lagrangian priority values in (19)
follows from the fact that the right-hand-side of (17) is linear
in λt. Please refer to Appendix A for detailed proof.

Theorem 1 shows that given the Lagrange multiplier vector
λ∗1,T (predetermined by Problem (13)), each arm i has a
unique Lagrangian priority value vit(x

i
t, ct) that depends only

on its current state (xit, ct). Similar to [5], the Lagrangian
priority value vit(x

i
t, ct) is a scalar reflecting the relative

attractiveness of activating job i under state xit and processing
cost ct at stage t. To compute the Lagrangian priority value for
arm i according to (19), we need to solve Problem (17) using
backward induction. We propose Algorithm 1 to calculate the
Lagrangian priority value.

Algorithm 1 Computation of arm i’s Lagrangian priority value
INPUT: λ∗1,T by solving (13).
OUTPUT: {vit(xit, ct)}, ∀ i, t, xit, ct.

1: for i = 1, . . . , I do
2: Preassign V iT+1(xiT+1, cT+1) = 0
3: for t = T, . . . , 1 do
4: for xit ∈ X i, ct ∈ X c do
5: Compute E[V it+1(xit+1, ct+1,λ

∗
t+1,T ) |

xit, ct, a
i
t]

6: Compute vit(x
i
t, ct) according to (19)

7: Compute and store V it (xit, ct,λ
∗
t,T ) by (11)

8: end for
9: end for

10: end for

Algorithm 1 requires a backward induction process from
stage T to stage 1. In (19), the value of current tax λt only
influences current action ait and state transitions of arm i
from xit to xit+1. As future Lagrange multipliers are fixed as
λ∗t+1,T , the reward-to-go function V it+1(xit+1, ct+1,λ

∗
t+1,T ) is

independent of λt, and the Lagrangian priority value can be
obtained using the results of backward induction at prior stage
t+ 1 (directly through (19)).

The Lagrangian relaxation introduced in Section III-A
decouples all arms in the PLP (13). Hence, the size of the DLP
grows linearly with the number of arms I . Further, the com-
putational complexity of backward inductions in Algorithm 1
increases linearly with the number of arms I . In contrast, the
complexity of solving the original RMAB problem without
relaxation increases exponentially with the number of arms
[37].

Remark 2: Different from the Lagrangian index (defined
under any feasible Lagrange multiplier associated with the
coupling constraint (1)) proposed in [38], our Lagrangian
priority value in (18) is defined under a set of special Lagrange
multipliers that are optimal solutions of the relaxed dual
problem (12). We note that similar Lagrangian priority values
are defined in [32] for a RMAB problem with a time-invariant
limit on the total processing rate at each stage.

When the processing cost is deterministic, the Lagrangian
priority values are given in closed-form recursive formula in
the following theorem.

Theorem 2: Suppose that the processing cost is determin-
istic. We have the following recursive expressions for the
Lagrangian priority values:

vit(d, e, ct) =


0, if d = t or e = 0,
1− ct + g(e)− g(e− 1),

if d = t+ 1, e ≥ 1.
(20)

Otherwise, we have

vit(d, e, ct) =


A− ct + ct+1, if A > λ∗t+1,
B − ct + ct+1, if B < λ∗t+1,
λ∗t+1 − ct + ct+1, if A ≤ λ∗t+1 ≤ B,

(21)

where A = vit+1(d, e− 1, ct+1), B = vit+1(d, e, ct+1).
The proof of Theorem 2 is given in Appendix B.

B. Tie-breaking rule for the Lagrangian priority policy

The Lagrangian priority policy sorts the arms in descending
order based on their Lagrangian priority values (uniquely
defined in (18)), and activates up to mt arms with non-negative
priority values. There is a positive probability that the some of
the Lagrangian priority values are equal. It turns out that that
the tie-breaking rule can affect the asymptotic optimality of
the Lagrangian priority policy. In what follows, we propose
a tie-breaking rule that is based on the optimal randomized
policy φ∗ introduced in (16) [32], [38].

Definition 1: The Lagrangian priority policy π̄ with ran-
dom tie-breaking: First sort all arms in descending order based
on the following modified (random) Lagrangian priority values

v̄it(x
i
t, ct) =

{
vit(x

i
t, ct) + δ, with probability ηit(x

i
t, ct),

vit(x
i
t, ct)− δ, with probability 1− ηit(xit, ct),

(22)
where ηit(x

i
t, ct) = φi∗t (1 | xit, ct) (defined in Eq. (16)) if

(xit, ct) is visited by φ∗, otherwise ηit(x
i
t, ct) = 0.5. Here, δ

is a small positive constant such that (22) does not change
the order of arms with different Lagrangian priority values.
Second, activate up to mt arms with non-negative modified
priority values, and uniformly breaks the ties among modified
priority values. �

The key idea of the proposed Lagrangian priority policy is
to randomize Lagrangian priority values to mimic the solution
of the dual linear program in Section III-B. As we will show
in the next section, the proposed tie-breaking rule is crucial
for the asymptotic optimality of the proposed policy π̄.

Remark 3: The authors of [32] develop a similar tie-
breaking approach that allocates resource among tied arms
(with the same Lagrangian priority value) in proportion to their
occupation measures {ρi∗t (xit, ct, 1)} (i.e., optimal solutions
to the DLP in Eq. (15)). Different from the proportional
allocation adopted in [32], the proposed approach applies
randomized priority values to determine the priority among
tied arms, and therefore avoids the rounding of fractional
actions into binary actions. Further, the randomized priority
values defined in (22) are determined by the conditional
probability that each state is activated by the optimal
randomized policy φ∗, under the condition that the state is
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visited by φ∗ (cf. Eq. (16)), whereas the tie-breaking rule
proposed in [32] depends on the unconditional probability
that each state is visited and activated by φ∗, ρi

∗

t (xit, ct, 1).

V. ASYMPTOTIC OPTIMALITY

For the case with deterministic processing costs, we now
establish the asymptotic optimality of the proposed Lagrangian
priority policy, as the total number of processors I , the
maximum processing rates {mt}, and the average number of
job arrivals (per period) increase simultaneously to infinity.
The asymptotic regime is consistent with that considered by
Whittle [10].

Let β ∈ Z+ denote the scaling parameter for the original
system defined in Section II. In the augmented system with
parameter β, the system states are given by

st(β) = [x1
t (β), . . . , xjt (β), . . . , xβIt (β), ct],

where xjt (β) is the state of arm j in the augmented system. In
the augmented system with parameter β, let Gi(β) denote the
set of arms in group i, in which all the β arms share the same
initial state at stage t = 1, as well as the same (probabilistic)
distributions on job arrivals and job initial states, with the ith
arm of the original system. The original system has I arms,
and therefore an augmented system has I such groups of arms.

At each stage, the action vector must respect the following
time-varying processing rate constraint:

βI∑
j=1

ajt ≤ βmt, ∀ t.

Let J π̄1 [s1(β)] denote the total reward collected by the
proposed policy π̄ (cf. Definition 1). We have

βL∗1(s1,λ
∗
1,T ) ≥ J π̄1 [s1(β)],

where L∗1(s1,λ
∗
1,T ) is the total expected reward resulting from

the Lagrangian dual problem (cf. Eq. (12)). The main result of
this section will establish the convergence of J π̄1 [s1(β)] to the
corresponding upper bound achieved in the Lagrangian dual
problem as β →∞ (cf. Theorem 3).

Due to the stochasticity of job arrivals and job initial states,
different arms in Gi(β) can visit different states at stage t >
1 under any given policy. Under the proposed policy π̄, let
Ōit(x, β) ⊆ Gi(β) denote the set of arms at system state x at
stage t, i.e.,

Ōit(x, β)
.
= {j ∈ Gi(β) | xjt (β) = x}, ∀ x ∈ X i, 1 ≤ i ≤ I.

Note that ∪x∈X iŌit(x, β) = Gi(β). We further define

N̄ i
t (x, 1, β)
.
=
{
j ∈ Ōit(x, β) | the jth element of π̄t(st(β)) is 1

}
as the set of arms in Ōit(x, β) activated by policy π̄, and
N̄ i
t (xit, 0, β) as its complementary set in Ōit(xit, β).
For the original system with deterministic costs {ct}Tt=1, the

optimal occupation measure ρi
∗

t (x, ct, a) of the DLP (defined
in (15)) reduces to ρi

∗

t (x, a), the probability of visiting state x
and taking an optimal action a. In the augmented system with

parameter β, we let ρi
∗

t (x, a) denote the optimal occupation
measures of all arms in the set Ōit(x, β).

In the following lemma, we establish an important link
between the proposed policy π̄ and the optimal randomized
policy φ∗.

Lemma 1: Suppose that the processing costs are determin-
istic. The ratios of activated and deactivated arms in any Gi(β)
under the proposed policy π̄ converge to the probabilities that
the optimal randomized policy φ∗ takes active and passive
actions, respectively, i.e.,

lim
β→∞

Eπ̄
[
|N̄ i

t (x, 1, β)|
]

β
= ρi

∗

t (x, 1), ∀ x ∈ X i, i, t, (23a)

lim
β→∞

Eπ̄
[
|N̄ i

t (x, 0, β)|
]

β
= ρi

∗

t (x, 0), ∀ x ∈ X i, i, t, (23b)

where the expectation is over the stochasticity in job arrivals,
job initial states, and the random priority values (defined in
(22)) adopted by the policy π̄.

The proof of Lemma 1 is given in Appendix C. The result in
(23) suggests that the proposed policy π̄ mimics the optimal
randomized policy for the DLP (15). It enables us to prove
the asymptotic optimality for the proposed policy π̄ in the
following theorem.

Theorem 3: Suppose that the processing costs are deter-
ministic. The Lagrangian priority policy π̄ with random tie-
breaking (proposed in Definition 1) is asymptotically optimal
as β grows large, i.e.,

lim
β→∞

βL∗1(s1,λ
∗
1,T )− J π̄1 [s1(β)]

β
= 0,

where L∗1(s1,λ
∗
1,T ) is an upper bound on the total expected

reward (resulting from the Lagrange relaxation in Eq. (12)).

The proof is given in Appendix D. Theorem 3 shows that
the expected reward per arm achieved by the proposed policy
π̄ converges to its corresponding upper bound.
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Fig. 2. Transitions of the optimal occupation measures under policy φ∗.
Each node represents a state x = (d, e), and the weight on a solid (dash)
edge starting from node x represents ρit

∗
(x, 0) (ρit

∗
(x, 1), respectively).

In the following example, we present a simple case study
with T = 4 to demonstrate that the tie-breaking rule in (22)
is crucial for the asymptotic optimality results established in
Lemma 1 and Theorem 3.

Example 1: Consider a heavy traffic scenario with mt/I =
0.25, i.e., at most 1/4 of arms can be simultaneously activated
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TABLE I
STATE EVOLUTION AND ACTIONS TAKEN UNDER THE PROPOSED POLICY π̄.

t=2 t=3 t=4
xit (5,1) (4,1) (3,1) (5,1) (4,1) (5,1)

Lagrangian priority value v 0.6 0.6 0.6 1 1 0.6
φi∗t (1 | xit, ct) 0 0 3/4 1/4 1/2 1

Random Lagrangian priority value v̄ 0.6-δ 0.6-δ 0.6+δ with Prob. 3/4 1+δ with Prob. 1/4 1+δ with Prob. 1/2 0.6+δ
0.6-δ with Prob. 1/4 1-δ with Prob. 3/4 1-δ with Prob. 1/2

at each stage. The deterministic costs at the four stages are
c1,4 = [0.3, 0.7, 0.3, 0.7], and the penalty function is g(x) =
0.3x2. All processors are unoccupied at t = 1. Jobs arrive at
t = 2 with three equally possible initial states, {(5,1), (4,1),
(3,1)}. Fig. 2 shows the transitions of the optimal occupation
measures (solution to the DLP in (15)). Through Eq. (16),
these optimal occupation measures lead to the probability of
taking active actions under the optimal randomized policy φ∗

(as listed in the third row of Table I). With the Lagrangian
priority values (computed by Theorem 2) and the actions taken
by policy φ∗, via Eq. (22), we obtain the random Lagrangian
priority values for the proposed policy π̄ (on the fourth row
of Table I).

We take the state (5, 1) at t = 3 as an example to
demonstrate that Lemma 1 holds. When β is sufficiently large,
according to the law of large numbers, approximately 1/4 of
the βI arms with a priority value 1+δ are activated by policy
π̄, in which approximately 1/6 are at state (4, 1) and the other
approximately 1/12 are at state (5, 1). Since the probability
of visiting state (5, 1) is 1/3 and the activation ratio under
policy π̄ (the left hand of (23a)) approximately equals 1/12,
the deactivation ratio (the left hand of (23b)) is approximately
1/4. From Fig. 2, ρi3

∗
(5, 1, 1) = 1/12 and ρi3

∗
(5, 1, 0) = 1/4.

That is, Lemma 1 holds for the state (5, 1) at t = 3. Indeed,
as β grows large, the (random) actions taken by policy π̄
converges to the optimal randomized actions (listed in the third
row of Table I), which establishes the asymptotic optimality
result in Theorem 3.

It is interesting to note that the tie-breaking rule (specified
in (22)) is crucial for the asymptotic optimality of policy π̄,
as the two states share the same Lagrangian priority value at
t = 3 (cf. the second row in Table I). �

VI. NUMERICAL RESULTS

In this section, we numerically compare the performance
of the Lagrangian priority policy π̄ with the proposed tie-
breaking rule (based on the randomized Lagrangian priority
values proposed in (22)), a Lagrangian priority policy with
uniform tie-breaking, the Whittle index policy, and an upper
bound resulting from the Lagrange relaxation (12).

The Whittle index is defined as [10]:

wit(x
i
t, ct)

.
=

inf
v

{
rit(x

i
t, ct, 1) + E[V it+1(xit+1, ct+1, v1t+1,T )|xit, ct, 1]

= rit(x
i
t, ct, 0) + E[V it+1(xit+1, ct+1, v1t+1,T )|xit, ct, 0] + v

}
,

(24)
where 1t+1,T is a T − t dimensional unit vector consisting
of all one elements. The authors of [5] have established the

indexability for the Whittle indices {wit(xit, ct)}, which are
computed through the binary search. The Whittle index policy
charges up to mt EVs with the highest (non-negative) Whittle
index. The upper bound (on per arm reward) is obtained by
solving the relaxed Problem (12).

We obtained 27 days’ real-time hourly electricity
prices from PJM (https://www.pjm.com/markets-and-
operations/energy.aspx) in February, 2019. Following [39],
we train the price data as a Markov chain to represent the
real-time processing cost, where the transition probability
is estimated using the frequency of price changes over
states. We also obtain the daily power supply surplus
data from the California Independent System Operator
(http://www.caiso.com/Pages/default.aspx). The data of
surplus supply are normalized and rounded into integers to
represent the time-varying charging capacity mt.

In our simulation, each stage lasts for 4 hours. The entire
scheduling horizon is 4 days, i.e., T = 24. The arrivals of
EVs among I chargers follow a binomial distribution with
a constant arrival rate γ. We assume that all chargers are
unoccupied at the beginning of t = 1, and consider the case
with time-varying, deterministic processing costs. This setting
is practical as in some deregulated electricity markets, the EV
charging stations can pay day-ahead hourly prices which are
settled one day before the real time.

For each scenario in Figs. 3-4, we simulate the 24-period
decision horizon for 5000 times and compute the average
reward per arm. In Figs. 3-4, the vertical error bar associated
with each scenario denotes the 95% confidence interval of the
(realized) per arm reward.

A. Simulation in heavily overload regime

We consider a heavy traffic regime. We increase the number
of chargers I from 50 to 4000 while keeping γ = 0.3
and E(mt)/I = 0.205 constant. The non-completion penalty
function is given by g(x) = 0.3x2.

We observe from Fig. 3 that the Lagrangian priority policy
with the proposed tie-breaking rule is asymptotically optimal
as I grows large, when the ratio E(mt)/I is fixed. The
proposed Lagrangian priority policy (with randomized tie-
breaking) improves the expected reward achieved by the
Lagrangian priority policy (with uniform tie-breaking) and the
Whittle index policy by 6−8% and 22−24%, respectively. The
performance gap between the proposed Lagrangian priority
policy and the index policy in [32] decreases from 5.9% to
2.2% when I increases from 50 to 200. This gap is mainly due
to the rounding loss resulting from the proportional allocation
proposed in [32]. We note that the performance gap between
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these two policies shrinks to zero as the system scale grows
to infinity.

B. Simulation in slightly overload regime

Fig. 4 shows the simulation result in a slight overloaded
scenario, where the charging facilities occasionally fail to meet
all the charging demands before their deadlines. The operator
suffers tougher non-completion penalties with g(x) = 0.5x2.

In Fig. 4, the two Lagrangian priority value based policies
significantly outperform the Whittle index policy, by 45−49%
(with the proposed tie-breaking rule) and 33 − 36% (with
uniform tie-breaking) in per arm reward, respectively. The
performance gap between the proposed Lagrangian priority
policy and the index policy in [32] is 4.9% when I = 50, and
the gap gradually decreases to 1.9% as I increases to 200.

Different from the Whittle index which does not take
into account future charging capacity constraints {mτ}Tτ=t+1,
the proposed Lagrangian priority values are computed with
future Lagrange multipliers fixed as λ∗t+1,T , which are the
optimal solutions of the Lagrange relaxation (12), and are
associated with the processing rate limit constraint (1) through
complementary slackness.

0 1000 2000 3000 4000
1.7

1.8

1.9

2

2.1

2.2

2.3
 

Fig. 3. Performance comparison under (deterministic) time-varying
processing cost with Ē = 3, g(x) = 0.3x2, γ = 0.3, E(mt)/I = 0.205,
σ(mt)/I = 0.057.

VII. CONCLUSION

We consider the stochastic deadline scheduling for mul-
tiple (randomly arrival) deferrable jobs under time-varying
processing rate limits. We formulate the scheduling problem
as a restless multi-armed bandit (RMAB) problem. We relax
the formulated RMAB problem to decompose it into multi-
ple independent single-arm scheduling problems. We define
the Lagrangian priority value (associated with an arm at a
stage) as the maximum price the operator would like to pay
for consuming one unit of energy to activate the arm. We
develop closed-form expressions and efficient computational
approaches for the Lagrangian priority values.

We propose an priority policy that processes unfinished jobs
in the order of their (randomized) Lagrangian priority values.
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2.2
 

Fig. 4. Performance comparison under deterministic processing costs with
Ē = 4, g(x) = 0.5x2, γ = 0.18, E(mt)/I = 0.195, σ(mt)/I = 0.057.

For multiple arms with equal Lagrangian priority values, we
propose a new tie-breaking rule that adjusts the Lagrangian
priority value of an arm (by adding a small amount) with
the probability that the optimal randomized policy (for the
Lagrange relaxation of the original problem) takes the active
action at the state of the arm. The proposed tie-breaking rule
ensures the asymptotic optimality of the proposed Lagrangian
priority policy, for the case with (time-varying) deterministic
processing costs and stochastic job arrivals. Numerical results
show that the proposed Lagrangian priority policy achieves
22%-49% higher average reward than the Whittle index policy.

APPENDIX A
PROOF OF THEOREM 1

We let

∆i
t(x

i
t, ct, λt,λ

∗
t+1,T )

.
=hit(x

i
t, ct, λt) +Hi

t+1(xit+1, ct+1,λ
∗
t+1,T ),

where

ht(x
i
t, ct, λt)

.
= rit(x

i
t, ct, 1)− λt − rit(xit, ct, 0)

is the immediate reward difference at period t, and
Hi
t+1(xit+1, ct+1,λ

∗
t+1,T ) is the difference in the reward-to-

go functions on the right-hand-side of (17).
We next show that ∆i

t(x
i
t, ct, λt,λ

∗
t+1,T ) is continuous

and linearly decreasing in λt, for all given xit and ct.
It is straightforward to check that the immediate reward
difference hit(x

i
t, ct, λt) is linear and decreasing in λt. S-

ince future Lagrangian multipliers are fixed as λ∗t+1,T in
(17), Hi

t+1(xit+1, ct+1,λ
∗
t+1,T ) is independent from λt, i.e.,

∂Hi
t+1(·)/∂λt = 0. Hence, ∆i

t(x
i
t, ct, λt,λ

∗
t+1,T ) is continu-

ous and linearly decreasing in λt,∀xit, ct.
By (8), hit(x

i
t, ct, λt) and H(·) are bounded. The continuity

and linearity of ∆i
t(x

i
t, ct, λt,λ

∗
t+1,T ) implies that there exists

a unique threshold λ̄t such that ∆i
t(x

i
t, ct, λt,λ

∗
t+1,T ) =

0. Under state (xit, ct), it is optimal to activate the arm
under tax λt < λ̄t, and to deactivate the arm under tax
λt > λ̄t. By definition in (18), λ̄t(xit, ct) is the Lagrangian
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priority value, which is the greatest tax under which it is
optimal to activate the arm (cf. (17)). By the monotonicity
of ∆i

t(x
i
t, ct, λt,λ

∗
t+1,T ) in λt, the Lagrangian priority value

is the reward difference under two actions in (17), which yields
the result in (19).

APPENDIX B
PROOF OF THEOREM 2

We first prove (20). When there is no job for processor i
(xit = (t, 0)), or processor i has completed a job (xit = (d, 0)),
the two actions lead to no difference in terms of reward. Thus,
vit(d, e, ct) = 0.

If xit = (t+ 1, e) with e ≥ 1, i.e., the job will leave at the
beginning of the next period, the current reward difference
resulting from the two different actions is 1 − ct + g(e) −
g(e − 1), and the expected reward-to-go resulting from the
two actions are the same in (19). Hence, vit(t + 1, e, ct) =
1− ct + g(e)− g(e− 1).

In the rest of this proof, we establish the recursive expres-
sion (21) for the case with d ≥ t+ 2.

Step 1. When d = t + 2, with e = 1 and deterministic
processing costs, the Lagrangian priority value is

vit(t+ 2, 1, ct) = 1− ct + V it+1(t+ 2, 0, ct+1,λ
∗
t+1,T )

− V it+1(t+ 2, 1, ct+1,λ
∗
t+1,T )

= 1− ct
−max{1− ct+1 − λ∗t+1,−g(1)},

(25)

where the first equality follows from (19) and Pct(ct+1 | ct) =
1, and the second equality follows from (11). It follows from
(20) that A = 0, and B = 1− ct+1 + g(1).

Since A = 0 and λ∗t+1 ≥ 0, we only need to consider the
last two cases in (21). If B < λ∗t+1, the second term inside the
maximization operator in (25) is greater, and vit(t+2, 1, ct) =
B−ct+ct+1. Otherwise, vit(t+2, 1, ct) = −ct+ct+1 +λ∗t+1.
The recursion expression (21) holds.

When e ≥ 2, according to (11) and (19), the Lagrangian
priority value is

vit(t+ 2, 1, ct)

= 1− ct −max
{

1− ct+1 − λ∗t+1 − g(e− 1),−g(e)
}

+ max
{

1− ct+1 − λ∗t+1 − g(e− 2),−g(e− 1)
}
.
(26)

We have A = 1 − ct+1 + g(e − 1) − g(e − 2), and B =
1−ct+1 +g(e)−g(e−1), directly from (20). By the convexity
of the penalty function g(·) we have B ≥ A. If A > λ∗t+1, the
first terms inside the two maximization operators in (26) are
greater, and vit(t+ 2, 1, ct) = A− ct + ct+1. If B < λ∗t+1, the
second terms inside the two maximization operators in (26)
are greater, and vit(t + 2, 1, ct) = B − ct + ct+1. Otherwise,
vit(t+ 2, 1, ct) = −ct + ct+1 +λ∗t+1. The result in (21) holds.

Step 2. When D > t+2, with e = 1, according to (11) and
(19), the Lagrangian priority value is

vit(d, 1, ct)

= 1− ct + V it+1(d, 0, ct+1,λ
∗
t+1,T )

−max
{

1− ct+1 − λ∗t+1 + V it+2(d, 0, ct+2,λ
∗
t+2,T ),

V it+2(d, 1, ct+2,λ
∗
t+2,T )

}
.

(27)

By (20), A = 0. According to (19),

B = 1− ct+1 + V it+2(d, 0, ct+2,λ
∗
t+2,T )

− V it+2(d, 1, ct+2,λ
∗
t+2,T ).

By analogy to the analysis for (25), if B < λ∗t+1, the second
term inside the maximization operator of (27) is greater, and
vit(d, 1, ct) = B−ct+ct+1. Otherwise, we have vit(d, 1, ct) =
−ct + ct+1 + λ∗t+1. The induction in (21) holds.

The proof for the case with e ≥ 2 is more complicated, and
requires the following lemma.

Lemma 2: The Lagrangian priority value vit(d, e, ct) is in-
creasing in e, and the reward-to-go function V it (d, e, ct,λ

∗
t,T )

in (11) is concave in e for any t < d.
Proof: We prove Lemma 2 by backward induction.

Step 1. We first show that Lemma 2 holds at the terminal
stage of a job when t = d− 1.

According to (20), vit(d, e, ct) = 1 − ct + g(e) − g(e −
1), for any e > 0. It follows immediately that vit(d, e

′, ct) ≥
vit(d, e, ct) for any e′ ≥ e > 0 by the convexity of the penalty
function.

According to (19), vit(d, e, ct) ≥ λ∗t implies that the optimal
action in (11) (with optimal Lagrange multipliers λ∗t,T ) is to
activate. We have

V it (d, e+ 2, ct,λ
∗
t,T ) + V it (d, e, ct,λ

∗
t,T )

−2V it (d, e+ 1, ct,λ
∗
t,T )

=



2g(e)− g(e+ 1)− g(e− 1),

if vit(d, e, ct) ≥ λ∗t ,
g(e)− g(e+ 1)− 1 + ct + λ∗t ,

if vit(d, e+ 2, ct) ≥ vit(d, e+ 1, ct)

≥ λ∗t ≥ vit(d, e, ct),
g(e+ 1)− g(e) + 1− ct − λ∗t ,

if vit(d, e+ 2, ct) ≥ λ∗t
≥ vit(d, e+ 1, ct) ≥ vit(d, e, ct),

2g(e+ 1)− g(e+ 2)− g(e),

if λ∗t ≥ vit(d, e+ 2, ct),

where the first and last cases are non-positive due to the
convexity of the penalty function, the second and third cases
are non-positive following the definition of vit(d, e + 1, ct).
Thus, V it (d, e, ct,λ

∗
t,T ) is concave in e.

Step 2. Suppose that

vit+1(d, e+ 1, ct+1) ≥ vit+1(d, e, ct+1), ∀e > 0,

and that V it+1(d, e, ct+1,λ
∗
t+1,T ) is concave in e. We will show

that these properties also hold at stage t.
The Lagrangian priority value is increasing with e ≥ 1 at

stage t, i.e.,

vit(d, e+ 1, ct)− vit(d, e, ct)
= 2V it+1(d, e, ct+1,λ

∗
t+1,T )− V it+1(d, e+ 1, ct+1,λ

∗
t+1,T )

−V it+1(d, e− 1, ct+1,λ
∗
t+1,T )

≥ 0,

where the equality follows from (19), and the inequality
follows from the condition that V it+1(d, e, ct+1,λ

∗
t+1,T ) is

concave in e.
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By analogy to the analysis in Step 1, we have

V it (d, e+ 2, ct,λ
∗
t,T ) + V it (d, e, ct,λ

∗
t,T )

− 2V it (d, e+ 1, ct,λ
∗
t,T )

=



V it+1(d, e+ 1, ct+1,λ
∗
t+1,T )

+V it+1(d, e− 1, ct+1,λ
∗
t+1,T )

−2V it+1(d, e, ct+1,λ
∗
t+1,T ),

if vit(d, e, ct) ≥ λ∗t ,
V it+1(d, e+ 1, ct+1,λ

∗
t+1,T )

−V it+1(d, e, ct+1,λ
∗
t+1,T )− 1 + ct + λ∗t

if vit(d, e+ 2, ct) ≥ vit(d, e+ 1, ct)

≥ λ∗t ≥ vit(d, e, ct),
V it+1(d, e+ 1, ct+1,λ

∗
t+1,T )

−V it+1(d, e, ct+1,λ
∗
t+1,T ) + 1− ct − λ∗t ,
if vit(d, e+ 2, ct) ≥ λ∗t

≥ vit(d, e+ 1, ct) ≥ vit(d, e, ct),
V it+1(d, e+ 2, ct+1,λ

∗
t+1,T )

−2V it+1(d, e+ 1, ct+1,λ
∗
t+1,T )

+V it+1(d, e, ct+1,λ
∗
t+1,T )

if λ∗t ≥ vit(d, e+ 2, ct),

where the first and last cases are non-positive due to the
concavity of the reward-to-go function at t+1, and the second
and third cases are non-positive because of the definition of
vit(d, e, ct). Thus, V it (d, e, ct,λ

∗
t,T ) is concave in e.

We have proved Lemma 2 by backward induction.
We now apply Lemma 2 to obtain the recursion expression

(21). By Lemma 2, B ≥ A. It is therefore sufficient to
consider the three cases in (21). According to (11) and (19),
the Lagrangian priority value is

vit(d, e, ct) =1− ct + max
{
V it+2(d, e− 1, ct+2,λ

∗
t+2,T ),

1− ct+1 − λ∗t+1 + V it+2(d, e− 2, ct+2,λ
∗
t+2,T )

}
−max

{
V it+2(d, e, ct+2,λ

∗
t+2,T ), 1− ct+1

− λ∗t+1 + V it+2(d, e− 1, ct+2,λ
∗
t+2,T )

}
.

(28)
According to (19),

A = 1− ct+1 + V it+2(d, e− 2, ct+2,λ
∗
t+2,T )

− V it+2(d, e− 1, ct+2,λ
∗
t+2,T ),

and
B = 1− ct+1 + V it+2(d, e− 1, ct+2,λ

∗
t+2,T )

− V it+2(d, e, ct+2,λ
∗
t+2,T ).

By analogy to the analysis for (26), A > λ∗t+1 implies that
the second terms inside the maximization operators in (28) are
greater, and (28) can be simplified as vit(d, e, ct) = A− ct +
ct+1. When B < λ∗t+1, the first terms inside the maximization
operators in (28) are greater, and thus the Lagrangian priority
value is vit(d, e, ct) = B−ct+ct+1. In the last case with A ≤
λ∗t+1 ≤ B, in (28) the first term inside the first maximization
operator and the second term inside the second maximization
operator are greater. We then have vit(d, e, ct) = −ct+ ct+1 +
λ∗t+1. Hence, the induction expression (21) of the Lagrangian
priority value holds for the case with d > t+ 2.

We have proved Theorem 2.

APPENDIX C
PROOF OF LEMMA 1

Before proving Lemma 1 through mathematical induction,
we first establish the following lemma that will be useful
throughout the proof.

Recall that Gi(β) is the set of arms in group i and Ōit(x, β)
is the set of arms in Gi(β) at system state x at stage t, resulting
from policy π̄. We let φi∗t (1 | x) denote the optimal probability
of activating an arm in the set Ōit(x, β) (cf. Eq. (16)).

Lemma 3: For any set Gi(β), if x ∈ X i is visited by policy
φ∗ with positive probability, for any j ∈ Ōit(x, β) we have

φi∗t (1 | x) =

{
1, if vjt [x

j
t (β), ct] > λ∗t ,

0, if vit[x
j
t (β), ct] < λ∗t ,

and φi∗t (1 | x) ∈ [0, 1] if vit[x
j
t (β), ct] = λ∗t .

Proof: Consider arm i in the original system. We first
write the dual constraint (cf. Eq. (13)) associated with ρi∗t (x, 1)
for any x ∈ X i under deterministic costs,

V it (x, ct,λt,T ) + λ∗t

≥ rit(x, ct, 1) +
∑
x′∈X i

P
i
t(x
′|x, 1)V it+1(x′, ct+1,λt+1,T ),

(29a)
and the dual constraint associated with ρi∗t (xit, 0),

V it (x, ct,λt,T )

≥ rit(x, ct, 0) +
∑
x′∈X i

P
i
t(x
′|x, 0)V it+1(x′, ct+1,λt+1,T ).

(29b)

It follows from the definition of the Lagrangian priority
value in (19) that for any x ∈ X i, if vit(x, ct) > λ∗t , then the
constraint (29b) is non-binding, and thus ρi∗t (x, 0) = 0 due to
the complementary slackness. By (16), we have φi∗t (1 | x) =
1. Similar argument applies to the case with vit(x, ct) < λ∗t .
When vit(x, ct) = λ∗t , we have φi∗t (1 | x) ∈ [0, 1] by
definition.

Since vjt [x
j
t (β), ct] = vit(x, ct) for any j ∈ Ōit(x, β) and

x ∈ X i, Lemma 3 holds for any arm j ∈ Gi(β). The above
argument applies to Gi(β) for any 1 ≤ i ≤ I .

We start the proof of Lemma 1 by showing that Eqs. (23a)
and (23b) in Lemma 1 hold at t = 1.

A. t = 1.

Note that all arms in the set Gi(β) have the same initial
state xi1 at t = 1. We have

|Ōi1(xi1, β)| = β, ∀ i, (30a)

ρi∗1 (xi1, 1) + ρi∗1 (xi1, 0) = 1, ∀ i. (30b)

We only need to establish (23a) for the initial state xi1 of the
set Gi(β), which implies (23b) according to (30a) and (30b).
We will prove this result in two steps.

Step 1. We first show that (23a) holds for any set Gi(β) with
φi∗1 (1 | xi1) > 0. By Eqs. (16) and (30b), we have ρi∗1 (xi1, 1) =
φi∗1 (1 | xi1). According to Lemma 3, if ρi∗1 (xi1, 1) = 1, then

vj1[xj1(β), c1] ≥ λ∗1, ∀ j ∈ Gi(β),
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and if ρi∗1 (xi1, 1) ∈ (0, 1), then

vj1[xj1(β), c1] = λ∗1, ∀ j ∈ Gi(β).

Due to the law of large numbers, when β → ∞, the ratio of
arms (with the randomized Lagrangian priority values greater
than λ∗1 according to (22)) in Gi(β) converges to ρi∗1 (xi1, 1),
and the ratio of arms (with the randomized Lagrangian priority
values less than λ∗1) converges to 1− ρi∗1 (xi1, 1).

We consider two cases on the value of λ∗1.
• If λ∗1 = 0, due to the feasibility of ρi∗1 (xi1, 1), i.e.,

m1 −
∑

i
ρi∗1 (xi1, 1) ≥ 0,

the ratio of activated arms (with the randomized La-
grangian priority values greater than 0) in Gi(β) under
policy π̄ converges to ρi∗1 (xi1, 1), as β increases to infinity.
Hence, (23a) holds for any set Gi(β) with λ∗1 = 0.

• If λ∗1 > 0, due to the complementary slackness, i.e.,
λ∗1[m1 −

∑
i ρ
i∗
1 (xi1, 1)] = 0, we have

m1 =
∑
i

ρi∗1 (xi1, 1). (31)

The ratio of activated arms (with the randomized La-
grangian priority values greater than λ∗1) in Gi(β) con-
verges to ρi∗1 (xi1, 1). This establishes (23a) for any set
Gi(β) with λ∗1 > 0.

Step 2. We show that (23a) holds for any set Gi(β) with
φi∗1 (1 | xi1) = 0. By (16), we have ρi∗1 (xi1, 1) = 0. According
to Lemma 3, vj1[xj1(β), c1] ≤ λ∗1 for any j ∈ Gi(β). Due to
(22), the random Lagrangian priority values of all arms in
Gi(β) are less than λ∗1.

We consider the following two cases on the value of λ∗1.
• If λ∗1 = 0, all arms are deactivated by the policy π̄. As a

result, (23a) holds for any set Gi(β) with λ∗1 = 0.
• If λ∗1 > 0, when β → ∞, the ratio of activated arms in
Gi(β) converges to 0. This establishes (23a) for any set
Gi(β) with λ∗1 > 0.

Combining the results established in the above two steps,
we conclude that Lemma 1 holds for the initial state xi1 of
any set Gi(β).

B. t > 1.

Suppose that Lemma 1 holds at stage t, we will establish
Lemma 1 at stage t+ 1 in the following four steps.

Step 1. We show that for any set Gi(β), the probability
of visiting any state x′ ∈ X i at stage t + 1 under policy π̄
converges to the corresponding visiting probability under the
optimal randomized policy φ∗ (cf. (16)), i.e., for any i and
x′ ∈ X i,

lim
β→∞

Eπ̄[|Ōit+1(x′, β)|]
β

= ρi∗t+1(x′, 1) + ρi∗t+1(x′, 0).

(32)

For a given set Gi(β), we let Pit(x
′ | x, a) denote the

transition probability from state x at stage t to state x′ at

stage t+ 1 under action a (cf. Section III-B). We have

lim
β→∞

Eπ̄[|Ōit+1(x′, β)|]
β

= lim
β→∞

∑
x∈X i

P
i
t(x
′ | x, 1)Eπ̄[|N̄ i

t (x, 1, β)|]

β

+ lim
β→∞

∑
x∈X i

P
i
t(x
′ | x, 0)Eπ̄[|N̄ i

t (x, 0, β)|]

β

=
∑
x∈X i

P
i
t(x
′ | x, 1)ρit

∗
(x, 1) +

∑
x∈X i

P
i
t(x
′ | x, 0)ρit

∗
(x, 0)

=ρi∗t+1(x′, 1) + ρi∗t+1(x′, 0), ∀ x′ ∈ X i, i,

where the first equality is from enumerating all paths of
visiting x′ at t+1 under policy π̄, the second equality follows
from the assumption that Lemma 1 holds at stage t, and the
last equality is from (14) and Pct(ct+1 | ct) = 1 (deterministic
processing costs). We have established (32) for any set Gi(β)
and x′ ∈ X i.

Before proceeding to the second step, we introduce some
useful notations. According to the randomized tie-breaking
rule in (22), different arms in the set Ōit(x, β) can have
different Lagrangian priority values, though they are at the
same state x. Let

Ȳit(x, 1, β)
.
= {j ∈ Ōit(x, β) | v̄jt [x

j
t (β), ct] ≥ λ∗t }, (33)

be the set of arms with the randomized Lagrangian priority
values (cf. (22)) greater or equal to the current optimal
Lagrange multiplier, and Ȳit(x, 0, β) as its complementary in
Ōit(x, β). We have

Ȳit(x, 1, β) ∪ Ȳit(x, 0, β) = Ōit(x, β)

= N̄ i
t (x, 1, β) ∪ N̄ i

t (x, 0, β), ∀ x ∈ X i, i.
(34)

Step 2. We prove that for any set Gi(β) the ratios of arms in
the sets Ȳit+1(x, 1, β) and Ȳit+1(x, 0, β) converge to ρi∗t+1(x, 1)
and ρi∗t+1(x, 0), respectively. That is,

lim
β→∞

Eπ̄[|Ȳit+1(x, 1, β)|]
β

= ρi∗t+1(x, 1), ∀ x ∈ X i, i, (35a)

lim
β→∞

Eπ̄[|Ȳit+1(x, 0, β)|]
β

= ρi∗t+1(x, 0), ∀ x ∈ X i, i. (35b)

We only need to prove (35a), which implies (35b) due to
Eqs. (32) and (34).

For any state x ∈ X i that is visited by policy φ∗ with zero
probability, we have ρi∗t+1(x, 1) = ρi∗t+1(x, 0) = 0. Therefore,
both sides of (35a) equal 0.

We now show that (35a) holds when φi∗t+1(1 | x) = 1. For
any j ∈ Ōit+1(x, β), we have

v̄jt+1[xjt+1(β), ct+1] > vjt+1[xjt+1(β), ct+1] ≥ λ∗t+1, (36)

where the first inequality follows from (22) and the second
inequality follows from Lemma 3. Eq. (36) implies that
Ȳit+1(x, 1, β) = Ōit+1(x, β). When φi∗t+1(1 | x) = 1, we have
ρi∗t+1(x, 0) = 0 by (16). Therefore, (35a) follows from (32).
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We next establish (35a) when φi∗t+1(1 | x) = 0. Following
a similar argument for (36), we have

v̄jt+1[xjt+1(β), ct+1] < vjt+1[xjt+1(β), ct+1] ≤ λ∗t+1, (37)

for any j ∈ Ōit+1(x, β). (37) implies that Ȳit+1(x, 1, β) = ∅.
We have ρi∗t+1(x, 1) = 0 by (16). Hence, (35a) holds due to
(32).

Finally, we show that (35a) holds when φi∗t+1(1 | x) ∈ (0, 1).
By Lemma 3, the Lagrangian priority value
vjt+1[xjt+1(β), ct+1] = λ∗t+1 for any j ∈ Ōit+1(x, β).
Since the randomized Lagrangian priority values defined
in (22) are i.i.d for all arms in the set Ȳit+1(x, 1, β),
|Ȳit+1(x, 1, β)| is the sum of i.i.d Bernoulli random variables,
which follows the binomial distribution, i.e.,

|Ȳit+1(x, 1, β)| ∼ B
(
|Ōit+1(x, β)|, ps

)
, ∀ x ∈ X i, i. (38)

According to the tie-breaking rule (22), ps = φi∗t+1(1 | x)
when φi∗t+1(1 | x) ∈ (0, 1). We have

lim
β→∞

Eπ̄[|Ȳit+1(x, 1, β)|]
β

= lim
β→∞

Eπ̄[|Ōit+1(x, β)|]φi∗t+1(1 | x)

β

= ρi∗t+1(x, 1), ∀ x ∈ X i,

where the second equality follows from (16) and (32).
We conclude that (35a) and (35b) hold for any x ∈ X i and

any set Gi(β).
Step 3. In this step, we show that∑

i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − |N̄ i
t+1(x, 1, β)|

∣∣
≤
∑
i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − βρi∗t+1(x, 1)
∣∣. (39)

Step 3.1. We first establish (39) for the case with λ∗t+1 = 0.
According to Definition 1, arms in the set N̄ i

t+1(x, 1, β)
must also be in the set Ȳit+1(x, 1, β), i.e.,

N̄ i
t+1(x, 1, β) ⊆ Ȳit+1(x, 1, β), ∀ i, x ∈ X i. (40)

As a result, we have∑
i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − |N̄ i
t+1(x, 1, β)|

∣∣
=


0, if

∑
i

∑
x∈X i

|Ȳit+1(x, 1, β)| ≤ βmt+1,∑
i

∑
x∈X i

|Ȳit+1(x, 1, β)| − βmt+1, otherwise,

(41)
where the first case follows from (40) and the fact that every
arm in the set Ȳit+1(x, 1, β) will be activated by policy π̄,
the second case follows from (40) and the fact that policy π̄
activates βmt+1 arms. According to (41), we have∑

i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − |N̄ i
t+1(x, 1, β)|

∣∣
≤
∣∣∑

i

∑
x∈X i

|Ȳit+1(x, 1, β)| − β
∑
i

∑
x∈X i

ρi∗t+1(x, 1)
∣∣

≤
∑
i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − βρi∗t+1(x, 1)
∣∣,

(42)

where the first inequality holds due to the feasibility of
ρi∗t+1(x, 1), i.e., β

∑
i

∑
x∈X iρi∗t+1(x, 1) ≤ βmt+1, and the

second inequality follows from the triangle inequality. We have
established the result in (39) for the case with λ∗t+1 = 0.

Step 3.2. We now show that (39) holds when λ∗t+1 > 0.
If
∑
i

∑
x∈X i |Ȳit+1(x, 1, β)| ≤ βmt+1, then for any Gi(β),

every arm in Ȳit+1(x, 1, β) is activated by policy π̄, i.e.,
Ȳit+1(x, 1, β) ⊆ N̄ i

t+1(x, 1, β) for any x ∈ X i and any set
Gi(β). Since policy π̄ activates no more than βmt+1 arms,
we have∑

i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − |N̄ i
t+1(x, 1, β)|

∣∣
=
∑
i

∑
x∈X i

|N̄ i
t+1(x, 1, β)| −

∑
i

∑
x∈X i

|Ȳit+1(x, 1, β)|

≤βmt+1 −
∑
i

∑
x∈X i

|Ȳit+1(x, 1, β)|.

(43)

If
∑
i

∑
x∈X i |Ȳit+1(x, 1, β)| > βmt+1, (40) still holds and

we obtain same result with the second case of (41).
For the case with λ∗t+1 > 0, we therefore have∑

i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − |N̄ i
t+1(x, 1, β)|

∣∣
≤
∣∣∑

i

∑
x∈X i

|Ȳit+1(x, 1, β)| − βmt+1

∣∣
=
∣∣∑

i

∑
x∈X i

|Ȳit+1(x, 1, β)| − β
∑
i

∑
x∈X i

ρi∗t+1(x, 1)
∣∣

≤
∑
i

∑
x∈X i

∣∣|Ȳit+1(x, 1, β)| − βρi∗t+1(x, 1)
∣∣,

where the first inequality follows from (43) and the second
case of (41), and the equality follows from the complementary
slackness when λ∗t+1 > 0, i.e., β

∑
i

∑
x∈X iρi∗t+1(x, 1) =

βmt+1. We have obtained the result in (39) when λ∗t+1 > 0.
We conclude that (39) holds.
Step 4. In the final step, we establish the desired results of

Lemma 1 at t + 1. By (38), for any Gi(β) and x ∈ X i, the
variance of |Ȳit+1(x, 1, β)| is no more than its mean [40], i.e.,

σ2
[
|Ȳit+1(x, 1, β)|

]
≤ E

[
|Ȳit+1(x, 1, β)|

]
, ∀x ∈ X i, i. (44)

We then have∑
i

∑
x∈X i

Eπ̄
[∣∣|Ȳit+1(x, 1, β)| − |N̄ i

t+1(x, 1, β)|
∣∣]

≤
∑
i

∑
x∈X i

Eπ̄
[∣∣|Ȳit+1(x, 1, β)| − βρi∗t+1(x, 1)

∣∣]
≤
∑
i

∑
x∈X i

√
Eπ̄
[(
|Ȳit+1(x, 1, β)| − βρi∗t+1(x, 1)

)2]
≤
∑
i

∑
x∈X i

√
Eπ̄[|Ȳit+1(x, 1, β)|]

+
∑
i

∑
x∈X i

∣∣∣Eπ̄[|Ȳit+1(x, 1, β)|]− βρi∗t+1(x, 1)
∣∣∣,

(45)

where the first inequality follows from (39), the second
inequality follows from the Cauchy-Schwarz inequality
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(E
[
|X|
]
≤
√

E[X2]), and the last inequality follows from
(44) and the concavity of the square root function.

We then have

lim
β→∞

∑
i

∑
x∈X i

Eπ̄
[∣∣|Ȳit+1(x, 1, β)| − |N̄ i

t+1(x, 1, β)|
∣∣]

β

≤ lim
β→∞

∑
i

∑
x∈X i

√
Eπ̄[|Ȳit+1(x, 1, β)|]

β

+ lim
β→∞

∑
i

∑
x∈X i

∣∣∣Eπ̄[|Ȳit+1(x, 1, β)|
]
− βρi∗t+1(x, 1)

∣∣∣
β

= 0,
(46)

where the inequality follows from (45), and the equality
follows from (35a).

By the dominant convergence theorem, Eq. (46) implies that

lim
β→∞

Eπ̄
[∣∣|Ȳit+1(x, 1, β)| − |N̄ i

t+1(x, 1, β)|
∣∣]

β
= 0,∀x ∈ X i, i.

(47)
Combining (47) and (35a), we obtain

lim
β→∞

Eπ̄
[
|N̄ i

t+1(x, 1, β)|
]

β
= ρi∗t+1(x, 1), ∀ x ∈ X i, i, (48)

which is the desired result in (23a). It is straightforward to
check that (23b) holds by (32) and (48).

We have proved that Lemma 1 holds at stage t + 1. By
induction, Lemma 1 holds for any stage t.

APPENDIX D
PROOF OF THEOREM 3

Given a scaling parameter β, the gap between the expected
total rewards achieved in the Lagrangian dual problem and by
the proposed policy π̄ is

βL∗1(s1,λ
∗
1,T )− J π̄1 [s1(β), β]

=
∑
t

∑
i

∑
x∈X i

β
[
ρi∗t (x, 1)rit(x, 1) + ρi∗t (x, 0)rit(x, 0)

]
− Eπ̄

{∑
t

∑
i

∑
x∈X i

(
|N̄ i

t (x, 1, β)|rit(x, 1)

+ |N̄ i
t (x, 0, β)|rit(x, 0)

)}
≤
∑
t

∑
i

∑
x∈X i

Cr

∣∣∣βρi∗t (x, 1)− Eπ̄
[
|N̄ i

t (x, 1, β)|
]∣∣∣

+
∑
t

∑
i

∑
x∈X i

Cr

∣∣∣βρi∗t (x, 0)− Eπ̄
[
|N̄ i

t (x, 0, β)|
]∣∣∣,
(49)

where the equality is from (15) and the re-enumeration of the
rewards collected by policy π̄, and Cr is the upper bound on
the reward (cf. (8)).

It is straightforward to check that Theorem 3 follows from
Lemma 1 and (49).
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