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Abstract. In this paper we construct examples of Weil-Petersson geodesics
with nonminimal ending laminations which have 1–dimensional limit
sets in the Thurston compactification of Teichmüller space.

1. Introduction

A number of authors have studied the limiting behavior of Teichmüller
geodesics in relation to the Thurston compactification of Teichmüller space,
[Mas82, Ker80] [Len08, LM10],[LLR13, CMW14],[BLMR16a, LMR16]. This
work has highlighted the delicate relationship between the vertical foliation
of the quadratic di↵erential defining the geodesic and the limit set in the
Thurston boundary.

The ending lamination of a Weil-Petersson (WP) geodesic ray was intro-
duced by Brock, Masur and Minsky in [BMM10] and in some sense serves as
a rough analogue of the vertical foliation of the quadratic di↵erential defining
a Teichmüller geodesic ray. Ending laminations have been used to study the
behavior of WP geodesics [BMM10, BMM11, Mod15, Mod16, BLMR16b]
and dynamics of the WP geodesic flow on moduli spaces [BMM11, BM15,
Ham15]. In this paper, complementing our work in [BLMR16b], we provide
examples of WP geodesic rays with non minimal, and hence nonuniquely er-
godic, ending laminations whose limit sets in the Thurston compactification
of Teichmüller space is larger than a single point.

Theorem 3.1. There exist Weil-Petersson geodesic rays with nonminimal,
nonuniquely ergodic ending laminations whose limit set in the Thurston com-
pactification of Teichmüller space is 1–dimensional.

See also Theorem 3.17 for a more precise statement. Our construction
closely follows that of Lenzhen [Len08] who gave the first examples of Te-
ichmüller geodesics having 1–dimensional limit sets in the Thurston com-
pactification.
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2. Preliminaries

Notation 2.1. Let K � 1, C � 0, and let X be any set. For two functions
f, g : X ! [0,1) we write f ⇣K,C g if 1

K g(x) � C  f(x)  Kg(x) + C

for all x 2 X. Similarly, we write f
⇤⇣K g if 1

K g(x)  f(x)  Kg(x) for all

x 2 X, and f
+⇣C g if g(x)�C  f(x)  g(x) +C for all x 2 X. Moreover,

f
⇤�K g means that f(x)  Kg(x) for all x 2 X and f

+
�C g means that

f(x)  g(x) + C for all x 2 X. We drop K,C from the notation when the
constants are understood from the context.

Teichmüller space. Given a finite type surface S, we denote its Te-
ichmüller space by Teich(S). The points in Teich(S) are isotopy classes
of (finite type) Riemann surface structures on S. When the Euler charac-
teristic �(S) < 0, we also view X 2 Teich(S) as an isotopy class of complete,
finite area, hyperbolic metric on S. In this case, given a homotopy class of
closed curve ↵ and X 2 Teich(S), we write `↵(X) for the length of the X–
geodesic representative of ↵. If ↵ is simple, we let w↵(X) denote the width
of ↵ in X, defined by

(2.1) w↵(X) = 2 sinh�1(1/ sinh(`↵(X)/2)).

The term ‘width’ is justified by the following, see e.g. [Bus10, §4].

Lemma 2.2 (Collar Lemma). Given any X 2 Teich(S) and distinct ho-
motopy classes of disjoint simple closed curves ↵1, ↵2, let wi = w↵i(X), for
i = 1, 2. Then Nw1/2(↵1) and Nw2/2(↵2), the wi/2–neighborhoods of the
X–geodesic representative of the ↵i, are pairwise disjoint, embedded annuli.

For w = w↵(X), we call Nw/2(↵), the standard collar, and note that
the distance inside Nw/2(↵) between the boundary components is w. An
important consequence is that for any other homotopy class of curve �,
we have `�(X) � i(↵, �)w↵(X), where i(↵, �) is the geometric intersection
number of ↵ and � (c.f. Theorem 2.3 below).

Weil-Petersson metric. When �(S) < 0, the Weil-Petersson (WP) metric
is a negatively curved, incomplete, geodesically convex, Riemannian metric
on Teich(S). Its completion, Teich(S), is a stratified CAT(0) space, with a
stratum S(�) for each (possibly empty isotopy class of) multicurve �, con-
sisting of appropriately marked Riemann surfaces pinched precisely along �.
The stratum S(�) is totally geodesic and isometric to the product of the Te-
ichmüller spaces of the connected components of S\� with their WP metric.
The completion of S(�) is the union of all strata S(�0) for which � ⇢ �0;
see [Mas76]. The stratification has the so called non-refraction property: the
interior of a geodesic segment with end points in two strata S(�1) and S(�2)
lies in the stratum S(�1 \ �2); see [DW03, Wol08].
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Curve complexes, markings, and projections. We refer the reader to
[MM99, MM00] for definitions of the objects described in this subsection—
our objective here is to fix notation and terminology. In this paper we
denote the curve complex of a subsurface Y by C(Y ). The set of vertices of
C(Y ), denoted by C0(Y ), is the set of curves on Y (more precisely, the set of
isotopy classes of essential simple closed curves on Y ). A partial marking µ
on S consists of a pants decomposition, base(µ), and a transversal for some
curves in base(µ). A marking is a partial marking such that every curve in
base(µ) has a transversal. For a curve or partial marking µ, we denote the
subsurface projection of µ to the subsurface Y by ⇡Y (µ) (see [MM00, §2]),
and for two µ, µ0 define

(2.2) dY (µ, µ
0) := diamC(Y )

⇣
⇡Y (µ) [ ⇡Y (µ

0)
⌘
.

An important property of dY is that it satisfies the triangle inequality when
the associated projections are nonempty. If Y is an annulus with core curve
↵, we also write C(↵) for C(Y ), ⇡↵ for ⇡Y , and d↵(µ, µ0) for dY (µ, µ0); see
again [MM00, §2].

There exists a constant LS > 0, called the Bers constant, depending on
S, such that for any X 2 Teich(S) there is a pants decomposition such that
every curve in the pants decomposition has hyperbolic length at most LS

with respect to X; see e.g. [Bus10]. Such a pants decomposition is called
a Bers pants decomposition for X. A Bers curve for X is a curve ↵ for
which `↵(X)  LS . A Bers marking for X is a marking µ such that base(µ)
is a Bers pants decomposition for X and transversal curves have minimal
lengths.

Given a point X 2 Teich(S) and a curve ↵, the subsurface projection of
X to ↵, ⇡↵(X), is the collection of all geodesic arcs in the annular cover
corresponding to ↵ which are orthogonal to the geodesic representative of
↵ (all with respect to the pull-back of the X–metric on S to the cover).
Distance in ↵ between points of Teich(S) and curves/markings is defined as
the diameter of the union of their projections (as with the case of two curves
or markings). This is often called the relative twisting, and for ↵, � 2 C0(S)
and X 2 Teich(S), we write

tw↵(�,X) = d↵(�,X) := d↵(�, ⇡↵(X)).

If ↵ has bounded length and µ is a bounded length marking for X, then

(2.3) tw↵(�,X)
+⇣ d↵(�, µ),

where the additive error depends on the bounds on the length of ↵ and the
lengths of those curves in µ (including those defining transversals of µ) which
intersect ↵, but not on the length of �. To see this, note that the bounds on
all the lengths of curves mentioned implies a lower bound on the length of ↵
by Lemma 2.2 and a lower bound on the angle of intersection between the
geodesic representatives of any curve from µ and the geodesic representative
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of ↵, and these easily imply an upper bound d↵(µ,X). Coarse Equation
(2.3) then follows from the triangle inequality.

The next theorem is a consequence of [LRT15, Lemma 3.1] (see also
[CRS08, Lemmas 7.2 and 7.3]), and provides an estimate on length of a
curve � with respect to X 2 Teich(S) in terms of contributions from certain
other curves which � intersects. To describe it, suppose X 2 Teich(S) and
�, � are two curves on S, and define

(2.4) `�(�,X) = i(�, �)
⇣
w�(X) + `�(X) tw�(�,X)

⌘
.

Also, for a pants decomposition P , define

i(�, P ) =
X

�2P
i(�, �).

Theorem 2.3. For any L > 0 there exists K > 0 so that the following holds.
Let X 2 Teich(S) and P is a pants decomposition of S with `�(X)  L for
all � 2 P . Then for any curve � 2 C0(S), � 62 P , we have

���`�(X)�
X

�2P
`�(�,X)

���
⇤�K i(�, P )

Proof. For every � 2 P , let N(�) = Nw�(X)/2(�) be the standard collar
around �, where w�(X) is the width as in (2.1). By Lemma 2.2, these collars
are embedded and pairwise disjoint. Every complementary component Q of
this set of standard collars is topologically a pair of pants but does not have
a geodesic boundary. The decomposition of X into standard collars and
complementary components decomposes � into segments. Then [LRT15,
Lemma 3.1, part (b)] implies that for any segment u that is associated to a
standard collar N(�) we have,

`u(X)
+⇣C w�(X) + `�(X) tw�(�,X)

for some constant C depending on L. (The language in [LRT15, Lemma 3.1]
is slightly di↵erent because it also applies to segments in possibly infinite
geodesics.) That is, for some constant K1, we have

���
X

u

`u(X)�
X

�2P
`�(�,X)

���
⇤�K1 i(�, P ).

But the di↵erence between `�(X) and
P

u `u(X) is the sum of the lengths of
segments in complementary pieces. Now we note that [LRT15, Lemma 3.1,
part (a)] states that the length of each such segment is uniformly bounded.
Also, the number of such segments is i(�, P ). Thus, for some K2,

���`�(X)�
X

u

`u(X)
���

⇤�K2 i(�, P ).

Now, setting K = K1+K2, the theorem follows from above two inequalities
and the triangle inequality. ⇤
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The Thurston compactification. The Thurston boundary of the Te-
ichmüller space is the space of projective classes of measured laminations
PML(S); see [FLP79]. A sequence of points {Xk} ⇢ Teich(S) exiting every
compact set of Teich(S) converges to [�̄], the projective class of a measured
lamination �̄ 2 ML(S), if there exists a sequence of positive real numbers
{uk}k so that

(2.5) lim
k!1

uk`�(Xk) = i(�, �̄),

for every � 2 C0(S). We call {uk}k a scaling sequence for {Xk}k, and note
that uk ! 0. In fact, a finite set of curves �1, . . . , �n can be chosen so that
for any sequence {Xk} exiting every compact subset of Teich(S), we have
Xk ! [�̄] if and only if (2.5) holds for some scaling sequence {uk}k and the
curves � = �i, for each i = 1, . . . , n. To see this, we let �1, . . . , �n consist
of a pants decomposition together with a pair of transverse curves for each
pants curve. Then any measured foliation/lamination is determined by these
intersection numbers (indeed, the intersection numbers with the transverse
curves su�ce to determine the twisting parameters with for the foliation,
and hence the foliation; see [FLP79, Exposé 6]). Therefore, if (2.5) holds for
some �̄, some {uk}, and � = �i, for all i = 1, . . . , n, then all accumulation
points of {Xk} agree (as they are determined by these intersection numbers),
and hence {Xk} converges to [�̄]. In particular, for any curve ↵, we can
choose the curves �1, . . . , �n to all have nonzero intersection number with ↵.

Ending lamination. Suppose r : [0,1) ! Teich(S) is an infinite WP
geodesic ray. A pinching curve for r is a curve � with limt!1 `�(r(t)) = 0.
The (forward) ending lamination of r, denoted by ⌫+ = ⌫+(r), is the union
of the pinching curves together with the supports of any accumulation points
in PML(S) of an infinite sequence of distinct Bers curves for hyperbolic
metrics along r([0,1); see [BMM10, Definition 2.7] for more details.

2.1. Bounded length WP geodesic segments. Because of the non-
completeness of the Weil-Petersson metric and the non-local-compactness
of its completion, the usual compactness theorems for geodesic segments
of fixed length based at a point is more subtle than in the complete case.
Wolpert carried out an initial analysis [Wol03, Proposition 23] that cap-
tured how such segments can limit at the completion, but further analysis
in [Mod15, Theorem 4.2] captures a stronger non-refraction condition.

Given a curve � 2 C(S) we denote the positive Dehn twist about � by
D� . For a multicurve � on a surface S we denote the subgroup of Mod(S)
generated by positive Dehn twists about the curves in � by tw(�).

Theorem 2.4. (Geodesic limit) Given T > 0, let ⇣n : [0, T ] ! Teich(S) be
a sequence of Weil-Petersson geodesic segments parametrized by arclength
with ⇣n(0) = X 2 Teich(S). Then after passing to a subsequence, we may
extract a partition of the interval [0, T ] by 0 = t0 < t1 < . . . < tk+1 = T ,



6 JEFF BROCK, CHRIS LEININGER, BABAK MODAMI, AND KASRA RAFI

multicurves �l, l = 1, . . . , k + 1, with �l \ �l+1 = ; for l = 1, . . . , k and a
piecewise geodesic segment

⇣̂ : [0, T ] ! Teich(S)

with ⇣̂(tl) 2 S(�l) for l = 1, . . . , k + 1, and ⇣̂((tl, tl+1)) ⇢ Teich(S) for
l = 0, . . . , k, such that the following hold:

(1) limn!1 ⇣n(t) = ⇣̂(t) for all t 2 [t0, t1],
(2) there exist elements Tl,n 2 tw(�l) for each l = 1, . . . , k and n 2 N,

so that letting 'l,n = Tl,n � . . . � T1,n we have

lim
n!1

'l,n(⇣n(t)) = ⇣̂(t)

for all t 2 [tl, tl+1].

Remark 2.5. In this theorem, �k+1 may be empty (in which case we have
⇣̂(tk+1) 2 Teich(S)). A key feature of this theorem is that �l \ �l+1 = ;,
meaning that these two multicurves have no common components. This
is responsible for the non-refraction behavior ensuring that ⇣̂((tl, tl+1)) is
contained in Teich(S) as opposed to Teich(S).

We also need the following, which is [Mod15, Corollary 4.10]. Denote a
Bers marking at a point X 2 Teich(S) by µ(X).

Theorem 2.6. Given ✏0, T positive and ✏ 2 (0, ✏0], there is an N 2 N

with the following property. Suppose that ⇣ : [a, b] ! Teich(S) is a WP
geodesic segment of length at most T such that supt2[a,b] `↵(⇣(t)) � ✏0 and
d↵(µ(⇣(a)), µ(⇣(b))) > N . Then, we have

inf
t2[a,b]

`↵(⇣(t))  ✏.

3. Geodesics with nonminimal ending laminations

In this section we prove the main result of the paper (see also Theo-
rem 3.17 for a more precise statement).

Theorem 3.1. There exist Weil-Petersson geodesic rays with nonminimal,
nonuniquely ergodic ending laminations whose limit set in the Thurston com-
pactification of Teichmüller space is 1–dimensional.

First, let us briefly sketch our construction of such geodesic rays. The
basic idea is similar to Lenzhen’s construction for Teichmüller geodesics in
[Len08]. Let S be the closed, genus 2 surface and let ↵ ⇢ S be a separating
simple closed curve cutting S into two one-holed tori that we denote by S0

and S1. The stratum S(↵) is isometric to a product of Teichmüller spaces
of once-punctured tori, i.e., S(↵) ⇠= Teich(S0)⇥ Teich(S1).

We carefully choose sequences of curves {�hi }i ⇢ C(Sh), h = 0, 1 which
form quasi-geodesics and limit to minimal filling laminations �h, h = 0, 1.
Using the fact that Teich(Sh) with the WP metric is quasi-isometric to
C(Sh), and that it has negative curvature bounded away from 0 we construct
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Figure 1. A piece of the curve graph C(Sh), visualized as
the Farey graph.

geodesic rays r̂h in Teich(Sh) which have forward ending laminations �h,
h = 0, 1.

Next, we consider the geodesic r̂ = (r̂0, r̂1) in Teich(S), and construct a
geodesic ray r which fellow travels r̂. We estimate the length of an arbitrary
curve along r using estimates from Theorem 2.3. From the conditions we
imposed on our sequences of curves, we will see that most of the length of
the curve comes from its intersection with curves �0i and �1i , and so lengths
are eventually well–approximated by intersection numbers with linear com-
binations of measure �̄0 and �̄1 on �0 and �1, respectively. Consequently,
this geodesic ray accumulates on a 1–simplex with vertices [�̄0] and [�̄1] in
the Thurston boundary. Analyzing a pair of particular sequences of times,
we see that the endpoints of the simplex are in the limit set, and so by
connectivity, the limit set consists of the entire 1–simplex.

3.1. Continued fraction expansions and geodesics in Teich(S1,1). Let
�h be a minimal, irrational lamination on Sh. This lamination is the straight-
ening of a foliation of the flat square torus, and we assume for convenience
that the slope of the leaves of this foliation is greater than 1. The reciprocal
of this slope is an irrational number less than 1 which we denote by xh, and
we write its continued fraction expansion as

xh = [0; eh0 , e
h
1 , . . .],(3.1)

(the first coe�cient is zero since xh < 1). We assume in all that follows that
ehi � 4 for all i and for h = 0, 1.
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Next, let
phi
qhi

= [0; eh0 , e
h
1 , . . . , e

h
i�1] be the ith convergent with finite con-

tinued fraction expansion as shown, obtained by truncating that of xh. Let
�hi be the simple closed curve on the torus whose slope is the reciprocal,
qhi
phi
. Note that �h0 is the curve whose reciprocal slope is 0 (that is, �h0 is the

vertical curve) and we let �h�1 denote the horizontal curve, by convention.
The Farey graph is the graph with vertices corresponding to Q[{1} and

edges between p
q and r

s whenever |ps � rq| = 1 [Ser85]; see Figure 1. Iden-

tifying a simple closed curve on the (flat, square) torus with the reciprocal
of its slope identifies the curve graph C(Sh) with Farey graph [Min96], and
we use these two graphs interchangeably depending on our purposes. Our
assumption that ehi � 4 ensures that the sequence of curves {�hi }i (or equiv-
alently, the sequence of convergents {phi

qhi
}i) is a geodesic; see e.g. [Min96,

Section 3]. Our index convention leads to

(3.2) �hi+1 = D
±ehi
�h
i

(�hi�1),

with the sign determined by the parity of i; see Figure 2.
The curve graph C(Sh)—or equivalently the Farey graph—naturally em-

beds into the Weil-Petersson completion of Teich(Sh) in such a way that
the vertex corresponding to the curve � is sent to the point in which � has
been pinched, and so that edges between adjacent vertices are sent to WP
geodesics. Furthermore, the pants graph and the curve graph of a once punc-
tured torus coincide, and according to [Bro03, Theorem 3.2] this embedding
is a quasi-isometry. The usual identification of Teich(Sh) with a subset of
the compactified upper half-plane provides the standard embedding of the
Farey graph into H2, with vertex set Q[{1} ⇢ R[{1} = S1

1. We further
note that all maps and identificiitons are equivariant with respect to the
actions of Mod(Sh) ⇠= SL2(Z) on the various graphs/spaces.

For each i � 0, let Xh
i 2 Teich(Sh) denote the point at which �hi is

pinched and [Xh
i , X

h+1
i ] the geodesic in Teich(S) between points Xh

i and
Xh

i+1. These geodesic segments are the images of the geodesics [�hi , �
h
i+1] in

C(Sh) we described above, and since the concatenation of the latter set of
segments is a geodesic in C(Sh), the image is a quasi-geodesic in Teich(Sh).
Then since the action of Mod(Sh) on �hi is transitive, it is clearly transitive
on the geodesics segments [Xh

i , X
h
i+1]. Moreover, Mod(Sh) acts isometrically

on Teich(Sh), so all geodesics [Xh
i , X

h
i+1] have the same lengths, we denote

the length by

(3.3) D = dWP(X
h
i , X

h
i+1) > 0.

Note that �00 = �10 is the curve corresponding to the rational number 0, and
for convenience we let Xh

�1 denote the midpoint of the geodesic segment

between (the image of) �h0 and �h�1 which has distance D
2 to Xh

0 (note that
Xh

�1 =
p
�1 in the upper half plane).
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Figure 2. A picture of the initial segment of the geodesic in
the curve graph C(Sh) (again visualized as the Farey graph)
defined by the continued fraction [0; 4, 4, 4, . . .]. The edges
of the geodesic are drawn as thicker lines, and the first few
vertices, �h�1 =

1
0 , �

h
0 = 0

1 , �
h
1 = 1

4 , �
h
2 = 4

17 , . . ., are indicated.
As one can see from the first few segments of the geodesic, it
“pivots” on opposite sides (c.f. [Min96]), reflecting the fact
that the sign in front of ehi = 4 > 0 in the Dehn twisting
alternates. It follows that the segment [�hi , �

h
i+1] is separated

from the segment [�h0 , �
h
1 ] by the segment [�hi�1, �

h
i ] in C(Sh).

Let r̂hc be the unit speed parameterization of the concatenation of seg-
ments [Xh

i , X
h
i+1], i 2 N, for h = 0, 1. The set of (not necessarily infinite)

geodesic rays starting at Xh
�1 and passing through a point on the geodesic

segment [Xh
i , X

h
i+1] forms a nested sequence, indexed by i. To see this, note

that by the change of the sign of the power of D�h
i
in (3.2), the geodesic

[�hi , �
h
i+1] is separated from �h�1 by the geodesic [�hi�1, �

h
i ] in C(Sh); see Fig-

ure 2. This implies that the geodesic [Xh
i , X

h
i+1] is separated from Xh

�1 by
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the geodesic [Xh
i�1, X

h
i ] in Teich(Sh), and hence any geodesic starting from

Xh
�1 that passes through [Xh

i , X
h
i+1] must also pass through [Xh

i�1, X
h
i ].

Now note that r̂hc is an infinite quasi-geodesic in Teich(Sh), so the distance
between the segments [Xh

i , X
h
i+1] and Xh

�1 go to infinity. Then the negative
curvature of the WP metric on Teich(Sh) [Wol10, Corollary 7.6] implies that
the maximum of the smaller angles at Xh

�1 between any two geodesics in the
nested sequence of geodesic segments tends to 0 as i ! 1. This guarantees
the existence of a unique ray in the intersection of all these sets. We denote
the ray by r̂h and note that it fellow travels r̂hc .

Lemma 3.2. There exists a sequence {Ki}1i=1 so that if ehi > Ki for all
i � 0, and if {thi } is the sequence of times for which dWP(r̂h(thi ), X

h
i ) is

minimized, then for D from (3.3) we have

(1) dWP(r̂hc (s), r̂
h(s))  D

4 for all s > 0,

(2) dWP(r̂h(thi ), X
h
i )  D

2i+6 (which tends to 0 as i ! 1), and

(3)
��thi �

�
D
2 + iD

��� < D
8 (in particular, {thi }i is increasing).

Proof. First we will show that for all i � 0, we can choose Ki > 0 such that
if ehi > Ki, then we have

dWP(r̂
h(thi ), X

h
i ) <

D
2i+6 .

To prove this, first let �hi denote the segment of r̂h with one endpoint on
[Xh

i�2, X
h
i�1] and and the other on [Xh

i+1, X
h
i+2] (recall that r̂

h pass through
these geodesics). Since the piecewise geodesic segment r̂hc contains a segment
of length 4D containing [Xh

i�2, X
h
i�1] and [Xh

i+1, X
h
i+2], the length of �hi is

at most 4D. Given any ⌘ > 0, we claim that there exists C(⌘) > 0 so that
if r̂h stays outside of the ⌘–neighborhood of Xh

i , then the length of �hi is
at least C(⌘)ehi . If we prove this claim, then taking ⌘i =

D
2i+6 , we can set

Ki >
4D

C(⌘i)
and observe that if ehi > Ki, then �hi (and hence r̂h) must enter

the ⌘i–neighborhood, as required.
To prove the claim, recall that distance from a point X 2 Teich(Sh) to

Xh
i is (2⇡`�h

i
)
1
2 + O(`2

�h
i
) (see [Wol08, Corollary 4.10]). In particular, there

exists L(⌘) > 0 so that the sublevel set `�1
�h
i
((0, L(⌘)]) is contained in the

the ball of radius ⌘ about Xh
i . By convexity of length functions, [Wol10,

§3.3], the set `�1
�h
i
((0, L(⌘)]) is convex and hence the closest point projection

of �hi to it is no longer than �hi . The length of each arc of the boundary
of `�1

�h
i
((0, L(⌘)]) intersected with a triangle of the Farey tessellation is some

constant C(⌘) > 0, and since the projection of �hi to the sublevel set has to
cross at least ehi of these arcs, its length is at least C(⌘)ehi , as required; see
Figure 3.
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· · · · · ·

Xh
i�2

Xh
i�1 Xh

i+1

Xh
i+2

ehi

`�1
�h
i
(L(⌘))

Xh
i

Figure 3. Applying an element of Mod(Sh) we can assume
Xh

i is the point at infinity in the upper half-plane model of
Teich(Sh), as shown. Then for L(⌘) > 0 small, `�1

�h
i
((0, L(⌘)])

is approximately a horoball, since a horoball is the sub-
level set of the extremal length function and since hyper-
bolic lengths and extremal lengths are nearly proportional
for small values (see [Mas85]).

We now assume (as we will for the remainder of the proof) that ehi > Ki

for all i � 0, and observe that part (2) of the lemma holds.
By the triangle inequality, it follows that for all i � 0

(3.4)

���|thi � thi+1| �D
��� =

���dWP(r̂
h(thi ), r̂

h(thi+1))� dWP(X
h
i , X

h
i+1)

���
 D

2i+6 + D
2i+7 < D

2i+5 .

A similar (simpler) argument proves |th0 � D
2 | <

D
26 .

We claim that for all i � 1, thi+1 must lie between thi and thi+2. If not, and
for example thi+1 > max{thi , thi+2}, then thi+1 � thi > 0 and thi+1 � thi+2 > 0,
and applying inequality (3.4) to i and i+ 1, we see that

|thi � thi+2| = |thi+1 � thi+2 �D + (D � (thi+1 � thi ))|  D
2i+5 + D

2i+6 .

Hence by the triangle inequality (as above)

dWP(X
h
i , X

h
i+2)  dWP(r̂

h(thi ), r̂
h(thi+2)) +

D
2i+6 + D

2i+8

 |thi � thi+2|+ D
2i+6 + D

2i+8 < D
4 .

On the other hand, [BM07, Lemma 3.2] implies that since �hi and �hi+2

are not adjacent in C(Sh), we must have dWP(Xh
i , X

h
i+2) > D, which is

a contradiction. A similar argument produces a contradiction if thi+1 <
min{thi , thi+2}, hence as we claimed thi+1 is between thi and thi+2, and thus
{thi }i is an increasing sequence.
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From (3.4) (and the inequality |th0 � D
2 | <

D
26 ), we have

���thi �
�
D
2 + iD

� ��� =
���th0 +

iX

j=1

thj � thj�1 � D
2 � iD

���


���th0 � D

2

���+
iX

j=1

���thj � thj�1 �D
���  D

26 +
iX

j=1

D
2j+4 < D

8 .

This proves part (3).
Finally, we note that part (1) follows from (3.4), parts (2) and (3), and

convexity of distance between two geodesics in a CAT(0) space. To see this,
first note that for all i � 0

dWP(r̂
h(D2 + iD), r̂hc (

D
2 + iD))  dWP(r̂

h(D2 + iD), r̂h(thi ))+dWP(r̂
h(thi ), X

h
i )

 |thi � (D2 + iD)|+ D
2i+6 <

D

8
+

D

2i+6
< D

4 .

Thus, for all i � 0, convexity of the distance between geodesics implies

dWP(r̂
h(s), r̂hc (s)) <

D
4 , for all s 2

⇥
D
2 + iD, D2 + (i+ 1)D

⇤

(and for s 2 [0, D2 ]). This proves (1) for all s � 0, completing the proof. ⇤
3.2. Sequences of times. Throughout the following, we will always as-
sume that for each h = 0, 1, the sequence {ehi }i is chosen so that ehi > Ki

from Lemma 3.2, and we write r̂h, r̂hc to denote the associated geodesics/quasi-
geodesics. We keep the same parameterization for r̂0 and r̂0c as above, but
adjust the parameterization of r̂1 and r̂1c by precomposing with the maps
t 7! t� D

2 . This does not make sense for t 2 [0, D2 ), so we define r̂1 and r̂1c
to be constant on this interval.

With this new parameterization, the sequences {t1i } must be shifted by
D
2 , so that parts (1) and (2) of Lemma 3.2 remain valid. The conclusion in
part (3) of the lemma then becomes

(3.5) |t0i �
�
D
2 + iD

�
| < D

8 and |t1i � (i+ 1)D| < D
8 .

Identifying S(↵) = Teich(S0)⇥ Teich(S1), we set

r̂ = (r̂0, r̂1) : [0,1) ! S(↵) ⇢ Teich(S).

Notation 3.3. (Relabeling sequences) To simplify some statements and
avoid duplication in some of the arguments that follow, we make the follow-
ing notational convention. For h = 0, 1 and i � 0, set

e2i+h = ehi
�2i+h = �hi
t2i+h = thi
X2i+h = Xh

i .

We will use the index k for these sequences, and write {ek}, {�k}, {tk}, and
{Xk}. We also let k̄ 2 {0, 1} denote the residue of k modulo 2, and i = i(k)
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for the floor of k/2. Thus, when we need it, can write ek = ek̄i , etc. As an
abuse of notation, we say things like “r̂(tk) is close to Xk”, though what
we really mean is that r̂k̄(tk) is close to Xk. We also view �k as a curve on
both S and S \ ↵, rather than just a curve on Sk̄ ⇢ S \ ↵ ⇢ S. Finally, the
following sequence of times will also be useful for us

t0k =
tk + tk+1

2
.

Proposition 3.4. For all k � 0, tk+1 � tk > D
4 . In particular, {tk}k is

increasing. Consequently, t0k � tk > D
8 and tk+1 � t0k > D

8 .

Proof. For k = 2i (even), (3.5) implies

tk+1 � tk = t1i � t0i >
�
(i+ 1)D � D

8

�
�

�
D
2 + iD + D

8

�
= D

2 � D
4 = D

4 .

A similar computation verifies the claim for k odd.
The last sentence follows from the first, and the fact that t0k is the average

of tk and tk+1. ⇤
Figure 4 provides a useful illustration of the relationship between {tk},

{t0k}, {�k}, and {Xk}.

X0

X1

X2

X3

X4

X5

X6

X7

r̂0

r̂1

�0

�1

�2

�3

�4

�5

�6

�7

t0 t00 t1 t01 t2 t02 t3 t03 t4 t04 t5 t05 t6 t06 t7

Figure 4. The times tk and t0k are “spaced out” by at least
D
8 . The former are the times when r̂ = (r̂0, r̂1) is closest to
the points {Xk}: the curve �k is very short at time tk.

Lemma 3.5. There exists C > 0, so that for all k � 2, we have

`�k(r̂(t
0
k�2))  C and `�k(r̂(t

0
k+1))  C.

Consequently, `�k(r̂(t))  C for all t 2 [t0k�2, t
0
k+1]

Proof. We prove the bound on `�k(r̂(t
0
k�2)). The proof of the other bound

is similar.
According to part (2) of Lemma 3.2, for k � 2

dWP(r̂
k̄(tk�2), Xk�2)  D

26 and dWP(r̂
k̄(tk), Xk)  D

26 .

By convexity of distance between geodesics, it follows that there is a point
Yk 2 [Xk�2, Xk] such that

dWP(r̂
k̄(t0k�2), Yk)  D

26 .
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On the other hand, by Proposition 3.4 we have

tk�2 +
D
8 < t0k�2 = (t0k�2 � tk�1) + (tk�1 � t0k�1) + (t0k�1 � tk) + tk

< tk � 3D
8 .

Therefore, by the triangle inequality, we see that

dWP(Yk, Xk�2) � (t0k�2 � tk�2)�dWP(r̂
k̄(t0k�2), Yk)�dWP(Xk�2, r̂

k̄(tk�2))

> D
8 � D

26 � D
26 > D

16

Similar computations show that

dWP(Yk, Xk) � D
4 .

So, Yk is further than D
16 from the endpoints of [Xk�2, Xk], and so less

than 7D
16 from the midpoint. In particular, the closed ball of radius D

32 in

Teich(Sk̄) about Yk is contained in the closed ball Bk ⇢ Teich(Sk̄) of radius
15D
32 centered at the midpoint Mk of [Xk�2, Xk].
We claim that Bk ⇢ Teich(Sk̄) (that is, Bk contains no completion points),

and hence Bk is compact. To prove the claim, it su�ces to show that the
closest point to Mk in Teich(Sk̄) \Teich(Sk̄) is one of the endpoints Xk�2 or
Xk. For this, let

X 2 Teich(Sk̄) \ (Teich(Sk̄) [ {Xk�2, Xk})

be any completion point. According to [BM07, Lemma 3.2], we have that
D = dWP(Xk�2, Xk)  dWP(Xk, X). Since triangles in Teich(Sk̄) are nonde-
generate (meaning that edges meet only in a vertex), Mk is not contained in
the geodesic segment [Xk, X]. Thus, the (strict) triangle inequality implies

2dWP(Mk, Xk) = D  dWP(Xk, X) < dWP(Xk,Mk) + dWP(Mk, X).

Therefore dWP(Mk, Xk) < dWP(Mk, X).
We now see that the closed ball of radius D

32 about Yk is contained in
the Mod(Sk̄)–orbit of a single compact set in Teich(Sk̄), namely the closed
ball of radius 15D

32 about the midpoint of a single Farey edge. Therefore,
the length of �k (the curve pinched at Xk) is uniformly bounded in the
D
32–neighborhood of Yk, independent of k (and independent of the sequence

{ek}). Since r̂k̄(t0k�2) lies in this neighborhood, `�k(r̂
k̄(t0k�2)) is uniformly

bounded, as required.
The proof of the bound on `�k(r̂

k̄(t0k+1)) is entirely analogous, using the
geodesic segment [Xk, Xk+2] in place of [Xk�2, Xk]. The very last statement
follows from convexity of length-functions along WP geodesics [Wol10, §3.3].

⇤

Corollary 3.6. For all k � 2 and j = k � 1, k, k + 1, k + 2, we have

`�j (r̂(t
0
k))  C.
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Proof. According to Lemma 3.5, the curve �j has length at most C on the
interval [t0j�2, t

0
j+1]. The corollary thus follows from the fact that

{t0k} =
k+2\

j=k�1

[t0j�2, t
0
j+1].

⇤

3.3. Intersection number estimates. We will require the following esti-
mate for the intersection number of a curve � and the curves �hi in terms of
the numbers ehi , i � 0.

Lemma 3.7. Given � 2 C0(S) with i(�, ↵) 6= 0, there exists  = (�) � 1 so
that for h = 0, 1 and all i su�ciently large we have

1


ehi�1  i(�, �hi )  Ih(i),

for Ih(i) =
P

J

Q
j2J e

h
j where J runs over all subsets of {0, . . . , i�1} exactly

once.

Proof. Suppose that � \ Sh, h = 0, 1, consists of nh geometric arcs with
end points on ↵ = @Sh (geometric arcs are proper arcs on the surface and
homotopic geometric arcs are not identified). Let [0; eh1 , e

h
2 , . . . , e

h
i�1, . . .] be

a continued fraction expansion as in §3.1 and recall that the curve �hi has

slope reciprocal to
phi
qhi

the ith convergent of the continued fraction expansion.

Let ⌧h be a geometric arc in �\Sh with the largest intersection number with
�hi and let ah

bh
be the reciprocal of the slope of ⌧h. Then, since �hi ⇢ Sh, we

have that i(⌧h, �hi ) = |ahqhi � bhphi |: to see this, observe that orienting �hi
and ⌧h, these represent the (relative) homology classes (ah, bh) and (phi , q

h
i ),

respectively, inH1(Sh, @Sh;Z) ⇠= Z2, and i(⌧h, �hi ) is the absolute value of the
algebraic intersection number, which is the geometric intersection number
on a punctured torus.

The standard recursive formula for convergents of continued fraction ex-
pansions gives us qhi = ehi�1q

h
i�1 + qhi�2 (see e.g. [Khi64, Theorem 1]; recall

our index convention in §3.1), we also have that qh0 = 1 and qh1 = eh0 . Then
we can easily verify by induction on i that

(3.6) qhi =
X

J✓{0,...,i�1}

Y

j2J
ehj

where each subset J appears at most once in the sum. Now since limi!1
phi
qhi

=

xh, where the irrational number xh is the reciprocal of the slope of �h, we
have

lim
i!1

|ahqhi � bhphi |
qhi

= lim
i!1

|ah �
✓
phi
qhi

◆
bh| = |ah � xhbh|.
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Thus, for i su�ciently large

|ahqhi � bhp
h
i |  2|ah � xhbh|qhi  2|ah � xhbh|Ih(i).

Then since ⌧h is a geometric arc with the largest intersection number with
�hi and since there are nh geometric arcs in � \ Sh we have

(3.7) i(�, �hi )  2nh|ah � xhbh|Ih(i).

Furthermore, by (3.6), qhi �
Qi�1

j=0 e
h
j � ehi�1. From this inequality and the

above limit we deduce that the inequality

(3.8) |ahqhi � bhp
h
i | �

1

2
|ah � xhbh|qhi � 1

2
|ah � xhbh|ehi�1

holds for all i su�ciently large.
Now from inequalities (3.7) and (3.8) we see that the inequalities of the

lemma hold for  = max{2nh|ah � xhbh|, 2
|ah�xhbh| : h = 0, 1}. ⇤

For any k 2 N, appealing to the Notation 3.3, let I(k) = Ik̄(i) where
k = 2i+ k̄. The conclusion of Lemma 3.7 then becomes

(3.9)
1


ek�2  i(�, �k)  I(k).

For the remainder of the paper, we assume that the sequence {ek}k satisfies
the additional growth condition

(3.10) lim
k!1

I(k)

ek
= 0, and lim

k!1

I(k + 1)

ek
= 0.

This is possible since I(k) depends only on {ej}k�2
j=0 .

With this convention, we have the following corollary of Lemma 3.7.

Corollary 3.8. For any curve � 2 C0(S) with i(�, ↵) 6= 0 we have

lim
k!1

i(�, �k)

ek
= 0, and lim

k!1

i(�, �k+1)

ek
= 0.

3.4. Geodesics in Teich(S) and bounded length curves. We begin by
recalling [Mod15, Corollary 3.5] and the inequality inside its proof, which
we will use in some of the estimates in this section.

Lemma 3.9. Given c > 0 let l, a 2 [0, c] with l > a. Suppose that for a
curve � 2 C0(S) and points X,X 0 2 Teich(S) we have `�(X)  l � a and
`�(X 0) � l, then

dWP(X,X 0) � aq
2
⇡ l +O(l4)

,

where the constant of the O–notation depends only on c.

Lemma 3.10. There is an ✏1 > 0 and a C 0 > 0 so that for all points Y in
the ✏1–neighborhood of r̂k̄(t0k) and all j = k � 1, k, k + 1, k + 2, we have

`�j (Y ) < C 0.
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Proof. Let C be the constant from Corollary 3.6 so that `�j (r̂
k̄(t0k))  C for

j = k � 1, . . . , k + 2. Let a > 0, C 0 = a+ C and c = C 0 + a+ 1. Then

0 < a < C 0 < c and `�j (r̂
k̄(t0k))  C = C 0 � a,

for each j = k � 1, k, k + 1, k + 2. Define

✏1 =
aq

2
⇡C

0 +O(C 04)

to be as in Lemma 3.9 where the constant of the O–notation only depends
on c. Now, if `�j (Y ) � C 0 for a point Y in the ✏1–neighborhood of r̂k̄(t0k)
and a curve �j with j = k � 1, k, k + 1, k + 2, then applying Lemma 3.9

we have dWP(Y, r̂k̄(t0k)) � ✏1 which contradicts the fact that Y is in the ✏1–

neighborhood of r̂k̄(t0k). Therefore, `�j (Y ) < C 0, for j = k�1, k, k+1, k+2,
proving the lemma. ⇤

Decreasing ✏1 if necessary, we may further assume that for any point
X 2 Teich(S) in the 2✏1–neighborhood of S(↵) and any curve � essentially
intersecting ↵, we have `�(X) is uniformly bounded below. This follows

from Lemma 2.2 and the fact that the distance to S(↵) is (2⇡`↵)
1
2 +O(`2↵)

(see [Wol08, Corollary 4.10]). In particular, any point in Teich(S) in the
2✏1–neighborhood may only lie on a stratum corresponding to a (possibly
empty) multicurve having zero intersection number with ↵.

Now let Z 2 Teich(S) be a point in the ✏1–neighborhood of r̂(0). Let then
[Z, r̂(t0k)] be the geodesic segment connecting Z to r̂(t0k). By Corollary 3.6
the curves �k, �k+1 have bounded lengths at r̂(t0k) and the sequence of curves

{�k̄i }i, k̄ = 0, 1, is a quasi-geodesic in C(Sk̄) that converges to a point in the
Gromov boundary of C(Sk̄). Moreover, S\↵ is the union of S0 and S1. Then
as in [Mod15, Lemma 8.1] we can show that after possibly passing to a
subsequence [Z, r̂(t0k)] converges uniformly on compact subsets to an infinite
ray

r : [0,1) ! Teich(S).

Also, note that the construction of r and the CAT(0) property of the WP
metric imply the rays r and r̂, ✏1–fellow travel.

The following are straightforward consequences of the results of this sec-
tion.

Corollary 3.11. For all k � 2 and j = k � 1, k, k + 1, k + 2, we have

`�j (r(t
0
k))  C 0,

where C 0 > 0 is the constant from Lemma 3.10.

Proof. As noted above, the two geodesics rays r and r̂, ✏1–fellow travel, and
hence dWP(r̂(t0k), r(t

0
k)) < ✏1. Thus, by Lemma 3.10, for j = k � 1, k, k +

1, k + 2, we have
`�j (r(t

0
k))  C 0,
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as desired. ⇤

This, in turn, implies the following:

Corollary 3.12. For all k � 2, t 2 [t0k, t
0
k+1], and j = k, k + 1, k + 2,

`�j (r(t))  C 0

where C 0 > 0 is the constant from Lemma 3.10.

Proof. By Corollary 3.11, we have `�k(r(t
0
k�2))  C 0 and `�k(r(t

0
k+1))  C 0.

By convexity of length-functions [Wol10, §3.3], for all t 2 [t0k�2, t
0
k+1] we

have

`�k(r(t))  C 0.

Since [t0k, t
0
k+1] ⇢ [t0k�2, t

0
k+1] \ [t0k�1, t

0
k+2] \ [t0k, t

0
k+3], the result follows. ⇤

Proposition 3.13. The length of ↵ is bounded by `↵(Z) along r. Further-
more, the ending lamination of r is the lamination �0 [ �1 or �0 [ ↵ [ �1.

Proof. First note that by convexity of `↵, [Wol10, §3.3], and the fact that
`↵(r̂(t0k)) = 0, it follows that `↵ is bounded by `↵(Z) on [Z, r̂(t0k)]. Since r
is a limit of a subsequence of the geodesics [Z, r̂(t0k)], the first claim of the
proposition holds.

By Corollary 3.11 the curves �k, �k+1 have bounded length at r(t0k) for
all k, hence by the definition of ending lamination, �0 and �1 are contained
in the ending lamination of r. Note that the only measurable lamination
properly containing �0 [ �1 is �0 [ ↵ [ �1, and so ⌫+(r) must be one of
these two laminations (and it is the latter one if and only if `↵(r(t)) ! 0 as
t ! 1, i.e. if ↵ is a pinching curve). ⇤

We now turn to estimates for twists about bounded length curves at r(t0k).

Lemma 3.14. For any � 2 C0(S) with i(�, ↵) 6= 0, there exists c = c(�) > 0
such that for all t 2 [t0k, t

0
k+1], we have

tw�k(�, r(t))
+⇣c ek,

and

tw�k+1(�, r(t
0
k))

+⇣c 1

for all but finitely many k (namely, whenever i(�k, �) 6= 0 and i(�k+1, �) 6= 0,
respectively).

Proof. By Corollary 3.12 we may choose a bounded length marking µ at
r(t) so that �k is in the base and �k+2 projects to the transversal to �k.
Recall that k̄ 2 {0, 1} is the residue of k modulo 2. Avoiding finitely many
k, i(�, �k) 6= 0, and we may apply the triangle inequality. Doing so we have

(3.11)
���d�k(�, �k+2)� d�k(�k̄, �k+2)

���  d�k(�, �k̄).



LIMIT SETS OF WP GEODESICS 19

Since µ|Sk̄
is a uniformly bounded length marking at r(t), we have uniform

errors (independent of k) in the following coarse equations. First, by (2.3)
we have

(3.12) tw�k(�, r(t))
+⇣ d�k(�, µ) = d�k(�, �k+2).

Since �k+2 = D±ek
�k (�k�2), it follows from [MM00, Equation (2.6)]) that

d�k(�k�2, �k+2)
+⇣ ek.

Furthermore, because {�k̄+2i}i are the vertices of a geodesic in C(Sk̄), by
[MM00, Theorem 3.1], we have

(3.13) d�k(�k̄, �k+2)
+⇣ d�k(�k�2, �k+2) = ek.

Moreover, since we are allowing our error c = c(�) to depend on �, we can
combine the coarse equations (3.12) and (3.13) with inequality (3.11) and
deduce

tw�k(�, r(t))
+⇣ ek.

This proves the first coarse equation of the lemma.
To prove the second coarse equation, we note that by Corollary 3.11,

we may choose our bounded length marking µ at r(t0k) so that �k+1 is a
base curve and �k�1 projects to a transversal for �k+1. Thus, similar to

Equation (3.12), we see that (2.3) implies tw�k+1(�, r(t
0
k))

+⇣ d�k+1(�, �k�1).
Furthermore, similar to (3.11), for k su�ciently large we have

���d�k+1(�, �k�1)� d�k+1(�k+1, �k�1)
���  d�k+1(�, �k+1),

Since �k+1 and �k�1 preceed �k+1 in the C(Sk+1)–geodesic, appealing to
[MM00, Theorem 3.1] again we have

d�k+1(�k+1, �k�1)
+⇣ 1.

Combining these facts just as in the previous paragraph and increasing c =
c(�) if necessary, we have

tw�k+1(�, r(t
0
k))

+⇣c 1,

which completes the proof of the lemma. ⇤

3.5. Estimates for the separating curve. We will eventually impose
additional growth conditions on our sequence {ek} to control the length and
twisting about the separating curve ↵. The next two lemmas are used to
determine those conditions.

Lemma 3.15. There exists a function f1 : [0,1) ! R
+, so that for any ge-

odesic ray r constructed as above (from sequences {ehi }i, h = 0, 1, beginning
at Z) we have `↵(r(T )) � f1(T ) for all T 2 [0,1). Moreover, there exists
such a function f1 which is continuous.
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Proof. The proof is by contradiction. If there is no such function f1 (not
necessarily continuous), then there would be a sequence of geodesics {rn}
starting at Z, coming from sequences {ehi (n)}i, as above, and some T > 0
so that `↵(rn(T )) ! 0 as n ! 1. Now the idea of the proof is as follows.
Appealing to convexity of `↵ on rn, we can deduce that `↵(rn(t)) ! 0 as
n ! 1 for all t � T . In particular, choosing any T 0 > T , we can apply
Theorem 2.4 to rn|[0,T 0]. We will see that the curve ↵ is (eventually) present
in all the multicurves from the theorem, producing a contradiction to the
non-refraction behavior ensured by the Theorem 2.4. We now proceed to
the details.

Recall that we have chosen Z 2 Teich(S) and ✏1 > 0 from Lemma 3.10
(and the paragraph following its proof) so that the distance to any stra-
tum S(�) is at least ✏1 whenever � has nonzero intersection number with
↵. By Proposition 3.13, `↵(rn(t))  `↵(Z) for all n and t � 0, so since
limn!1 `↵(rn(T )) = 0, convexity of `↵ implies `↵(rn(t))  `↵(rn(T )) for all
n su�ciently large and all t � T . In particular, limn!1 `↵(rn(t)) = 0 for all
t � T , while `↵(rn(0)) = `↵(Z) > 0.

Now fix any T 0 > T and apply Theorem 2.4 to the sequence of geodesic
segments rn|[0,T 0]. Let the partition 0 = t0 < t1 < . . . < tk+1 = T 0, the

piecewise geodesic path ⇣̂ : [0, T 0] ! Teich(S), the multicurves {�l}k+1
l=1 , the

multitwists {Tl,n}kl=1, and the mapping classes {'l,n}kl=1 obtained by com-
posing the multitwists be from the theorem.

For each 1  l  k and n � 1, Tl,n is the composition of powers of
Dehn twists about curves in �l, but since rn has distance at least ✏1 from
all completion strata except strata of multicurves having zero intersection
number with ↵, �l consists of possibly the curve ↵ and a number of curves
disjoint from ↵. Therefore, 'l,n(↵) = ↵, and `↵('l,n(rn(t))) = `↵(rn(t)) for

all t 2 [tl, tl+1] and all l. According to Theorem 2.4, we have ⇣̂(t) 2 Teich(S)
for all t 2 [T, T 0] except possibly the points {tl}k+1

l=0 \ [T, T 0]. Therefore,

`↵(⇣̂(t)) > 0 for all these values of t. Applying part (2) of the theorem to
any such value of t, we have

lim
n!1

`↵(rn(t)) = lim
n!1

`↵('l,n(rn(t))) = `↵(⇣̂(t)) > 0.

This contradicts the fact that limn!1 `↵(rn(t)) = 0 for t 2 [T, T 0]. There-
fore, `↵(r(T )) is bounded below by a positive number, depending on T ,
but independent of the ray r. Thus, we have a function f1, not necessarily
continuous, so that `↵(r(T )) � f1(T ) for all T � 0. Since `↵(r(t)) is de-
creasing it is easy to construct a continuous function f1 which also has this
property. ⇤

Lemma 3.16. There exists a function f2 : [0,1) ! R
+ such that for any

geodesic ray r as above d↵(r(0), r(t))  f2(t) for all t 2 [0,1). Moreover,
there exists such a function f2 which is continuous.
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Proof. Suppose that such a function does not exist (not necessarily contin-
uous). Then there is a sequence of geodesic rays rn constructed as above
and a T > 0, so that limn!1 d↵(rn(0), rn(T )) = 1. Then, since rn(0) = Z
for all n � 1 we have that supt `↵(rn(t)) � inj(Z) > 0. Then, by Theorem
2.6 we have that inft2[0,T ] `↵(rn(t)) ! 0 as n ! 1. But this contradicts the
fact that inft2[0,T ] `↵(rn(t)) � inft2[0,T ] f1(t) > 0 for all n � 1 by Lemma
3.16. Existence of f2 now follows from this contradiction. Restricting the
argument to a subinterval [0, T 0] ⇢ [0, T ] we see that we can replace f2 by
an increasing function, and then by a continuous function, retaining the
required property. ⇤

With these two lemmas in place, we now impose our final growth condi-
tions on {ek}k. Let f1, f2 be the functions from Lemmas 3.15 and 3.16, and
for k 2 N let

F1,k = min{f1(s) | s 2 [tk, tk+2]}(3.14)

F2,k = max{f2(s) | s 2 [tk, tk+2]}.(3.15)

As our last growth requirement for {ek}k, we assume ek grows fast enough
that

(3.16) lim
k!1

F2,k � 2 logF1,k

ek
= 0.

3.6. Limit sets. For the remainder of the paper, we let {ehi }1i=0 be a se-
quence such that ehi � Ki, for h = 0, 1 and all i 2 N, where Ki is from
Lemma 3.2. Let {ek}k, {�k}k, {tk}k, {t0k}k, {Xk}k be as in Notation 3.3,
and assume that {ek}k satisfies (3.10) and (3.16). The following immediately
implies Theorem 3.1.

Theorem 3.17. The limit set of r in the Thurston compactification of
Teich(S) is the 1–simplex [[�̄0], [�̄1]] of projective classes of measures sup-
ported on �0 [ �1.

For curves �, � 2 C0(S) and any time s 2 [0,1), as in (2.4), let

(3.17) `�(�, s) = `�(�, r(s)) = i(�, �)
⇣
w�(r(s)) + `�(r(s)) tw�(�, r(s))

⌘
.

Now suppose that {sk}k is a sequence such that sk 2 [t0k, t
0
k+1]. Pass to a

subsequence {sk}k2K so that r(sk) ! [⌫̄] in the Thurston compactification
(to avoid cluttering the notation with additional subscripts, we have chosen
to index a subsequence using a subset K ⇢ N). Let {uk}k2K be a scaling
sequence, so that

lim
k!1

uk`�(r(sk)) = i(�, ⌫̄),

for all curves �.
By Corollary 3.12 and Proposition 3.13, the curves �k, �k+1, ↵ form a

uniformly bounded length pants decomposition on r(sk). Consequently, by
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Theorem 2.3 we obtain the following expansion for the length of the curve
� 2 C0(S) at r(sk),

`�(r(sk)) = `�(�k, sk) + `�(�k+1, sk) + `�(↵, sk)

+O (i(�, �k)) +O (i(�, �k+1)) +O (i(�, ↵))(3.18)

where the constant of the O notation depends only on the uniform upper
bounds for the lengths of �k, �k+1, and ↵.

The next proposition shows that only two of the terms in (3.18) are ac-
tually relevant.

Proposition 3.18. With notation as above, and � 2 C0(S) with i(�, ↵) 6= 0,
we have

i(�, ⌫̄) = lim
k!1

uk`�(r(sk)) = lim
k!1

uk(`�(�k, sk) + `�(�k+1, sk)).

For this, we will need the following lemma.

Lemma 3.19. With notation as above,

w�k(r(sk)) + `�k(r(sk)) tw�k(�, r(sk))
+⇣ `�k(r(sk))ek,

where the constant in the coarse equation depends on �, but not on k.

Proof. By Corollary 3.12,

`�k(r(sk))  C 0 and `�k+2(r(sk))  C 0.

Then since i(�k, �k+2) = 1, `�k(r(sk)) is also uniformly bounded below, for
otherwise, by Lemma 2.2, `�k+2(r(sk)) would be unbounded. So we have

`�k(r(sk))
⇤⇣ 1 and hence again by Lemma 2.2 we have w�k(r(sk))

⇤⇣ 1.

Moreover, by Lemma 3.14 we have tw�k(�, r(sk))
+⇣ ek, and so the lemma

follows. ⇤
Proof of Proposition 3.18. First, observe that by Corollary 3.8 (and since ↵
is a fixed curve and ek ! 1), we have

(3.19) lim
k!1

i(�, �k)

ek
= 0, lim

k!1

i(�, �k+1)

ek
= 0, and lim

k!1

i(�, ↵)

ek
= 0.

As in the proof of Lemma 3.19, `�k(r(sk))
⇤⇣ 1, and so `�k(r(sk))ek ! 1

and i(�, �k) ! 1. From Lemma 3.19 and (3.17), we have `�(�k, sk)
⇤� ek.

Moreover, uk`�(r(sk)) ! i(�, ⌫̄) > 0, then by (3.18), uk
⇤� 1

ek
. Combining

this with (3.19) and appealing to (3.18) again, we see that

i(�, ⌫̄) = lim
k!1

uk`�(r(sk)) = lim
k!1

uk(`�(�k, sk) + `�(�k+1, sk) + `�(↵, sk)).

By similar reasoning, to eliminate the last term (and thus prove the propo-
sition), it su�ces to prove

(3.20) lim
k!1

`�(↵, sk)

ek
= 0.
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To do this, first note that by Lemma 3.15, `↵(r(sk)) � f1(sk) � F1,k, and
so by Lemma 2.2 we have

w↵(r(sk))
+⇣ �2 log(`↵(r(sk)))  �2 log(F1,k).

By Lemma 3.16, we also have

tw↵(�, r(sk))
+⇣ d↵(r(0), r(sk))  f2(sk)  F2,k,

where the additive constant depends on �. Therefore, since F1,k
+
� 1, and

since `↵(r(sk)) is uniformly bounded by Proposition 3.13, we have

`�(↵, sk)
+
� i(�, ↵)

⇣
� 2 log(F1,k) + F2,k

⌘
,

with additive error that again depends on �. By our growth condition (3.16),
since i(�, ↵) does not depend on k, there is a constant c0 > 0 so that

lim
k!1

`�(↵, sk)

ek
 lim

k!1

i(�, ↵)
⇣
� 2 log(F1,k) + F2,k

⌘
+ c0

ek
= 0.

This proves (3.20), and hence the proposition. ⇤

Continue to let {sk}k2K be a sequence with sk 2 [t0k, t
0
k+1] as above, and

suppose that r(sk) ! [⌫̄] as k ! 1 in the Thurston compactification and
that {uk}k is a scaling sequence. We set

x(sk) = w�k(r(sk)) + `�k(r(sk)) tw�k(�k̄, r(sk)),

and

y(sk) = w�k+1(r(sk)) + `�k+1(r(sk)) tw�k+1(�k+1, r(sk)).

Lemma 3.20. For any � 2 C0(S) with i(�, ↵) 6= 0, we have

lim
k!1

x(sk)i(�, �k) + y(sk)i(�, �k+1)

`�k(�, sk) + `�k+1(�, sk)
= 1.

For sk = t0k, we have

lim
k!1

x(t0k)i(�, �k)

`�k(�, t
0
k) + `�k+1(�, t

0
k)

= 1.

Proof. As in the proof of Lemma 3.14

tw�k(�, r(sk))
+⇣ tw�k(�k̄, r(sk))

and

tw�k+1(�, r(sk))
+⇣ tw�k(�k+1, r(sk))

where the implicit constant in these coarse equations depends on �.
According to Corollary 3.12, `�k(r(sk))  C 0. From the preceding coarse

equations and Lemma 3.19, we have

(3.21) x(sk)
+⇣ w�k(r(sk)) + `�k(r(sk)) tw�k(�, r(sk))

+⇣ `�k(r(sk))ek.



24 JEFF BROCK, CHRIS LEININGER, BABAK MODAMI, AND KASRA RAFI

Since ek ! 1 as k ! 1, the following is immediate:
(3.22)

lim
k!1

x(sk)i(�, �k)

`�(�k, sk)
= lim

k!1

x(sk)

w�k(r(sk)) + `�k(r(sk)) tw�k(�, r(sk))
= 1.

Similar to (3.21) we have

(3.23) y(sk)
+⇣ w�k+1(r(sk)) + `�k+1(r(sk)) tw�k+1(�, r(sk)) =

`�k+1 (�,sk)

i(�,�k+1)
.

By (3.9) and the growth condition (3.10) we have

lim
k!1

i(�, �k+1)

ek
= 0.

After passing to a subsequence, there are two cases to consider:

Case 1. There exists R > 0 so that y(sk)  R for all k.

In this case, appealing to (3.19) and (3.23) we have

0 = lim
k!1

y(sk)i(�, �k+1)

ek
= lim

k!1

`�k+1(�, sk)

ek
,

and thus

lim
k!1

x(sk)i(�, �k) + y(sk)i(�, �k+1)

`�k(�, sk) + `�k+1(�, sk)
= lim

k!1

x(sk)i(�,�k)
ek

+ y(sk)i(�,�k+1)
ek

`�k (�,sk)
ek

+
`�k+1 (�,sk)

ek

= lim
k!1

x(sk)i(�, �k)

`�k(�, sk)
= 1.

Case 2. lim
k!1

y(sk) = 1.

Here, we can argue as for x(sk), appealing to (3.23) to deduce that

lim
k!1

y(sk)i(�, �k+1)

`�k+1(�, sk)
= 1.

Combined with (3.22) we have

lim
k!1

x(sk)i(�, �k) + y(sk)i(�, �k+1)

`�k(�, sk) + `�k+1(�, sk)
= 1.

These two cases prove the first claim of the lemma. For the second claim,
when sk = t0k, we note that by Corollary 3.11 we have

`�k�1(r(t
0
k)), `�k+1(r(t

0
k))  C 0,

and so by Lemma 2.2 (as in the proof of Lemma 3.19) we have

w�k+1(r(t
0
k))

⇤⇣ 1 and `�k+1(r(t
0
k))

⇤⇣ 1
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so since tw�k+1(�, r(t
0
k))

+⇣ 1 by Lemma 3.14, it follows that y(t0k) is uniformly
bounded, and thus as in Case 1, we deduce

lim
k!1

x(t0k)i(�, �k)

`�k(�, t
0
k) + `�k+1(�, t

0
k)

= 1,

completing the proof. ⇤

We are now ready for the

Proof of Theorem 3.17. First, we show that [�̄0] and [�̄1] are in the limit set
⇤ of r. Consider the sequence of times {t02k} and pass to a subsequence so
that r(t02k) ! [⌫̄] in the Thurston compactification and let {uk} be a scaling
sequence for r(t02k). Let � be any curve with i(�, ⌫̄) 6= 0 and i(�, ↵) 6= 0. By
the second part of Lemma 3.20, together with Proposition 3.18 we have

1 = lim
k!1

x(t02k)i(�, �2k)

`�2k(�, t
0
2k) + `�2k+1(�, t

0
2k)

= lim
k!1

ukx(t02k)i(�, �2k)

uk(`�2k(�, t
0
2k) + `�2k+1(�, t

0
2k))

=
lim
k!1

i(�, ukx(t
0
2k)�2k)

i(�, ⌫̄)
.

Therefore lim
k!1

i(�, ukx(t
0
2k)�2k) = i(�, ⌫̄). We apply this to a set of curves

�1, . . . , �N su�cient for determining a measured lamination (see §2), and so
deduce that lim

k!1
ukx(t

0
2k)�2k = ⌫̄.

On the other hand, [�2k] ! [�̄0], hence [⌫̄] = [�̄0], and so [�̄0] is in ⇤. A
similar argument using the sequence {t02k+1} shows that [�̄1] 2 ⇤.

Now suppose that {sk}k is an arbitrary sequence so that r(sk) ! [⌫̄]
and let {uk}k be a scaling sequence. Adjusting indices and passing to a
subsequence we can assume that sk 2 [t0k, t

0
k+1] for all k 2 K (some subset

K ✓ N). Passing to a further subsequence, if necessary, we may assume that
K is either a subsequence of even integers or odd integers. Arguing as above,
appealing to the first part of Lemma 3.20 and Proposition 3.18 we have

1 = lim
k!1

x(sk)i(�, �k) + y(sk)i(�, �k+1)

`�k(�, sk) + `�k+1(�, sk)

= lim
k!1

ukx(sk)i(�, �k) + uky(sk)i(�, �k+1)

uk(`�k(�, sk) + `�k+1(�, sk))

=
lim
k!1

i
�
�, uk(x(sk)�k + y(sk)�k+1)

�

i(�, ⌫̄)
.

So, lim
k!1

uk(x(sk)�k + y(sk)�k+1) = i(�, ⌫̄), and as above

⌫̄ = lim
k!1

uk(x(sk)�k + y(sk)�k+1) = lim
k!1

ukx(sk)�k + lim
k!1

uky(sk)�k+1.
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Now, if K is a subset of even integers, then since the projective classes of
the curves with even indices converge to [�̄0], the first limit on the right
hand-side above is a multiple of �̄0, and since the projective classes of the
curves with odd indices converge to [�̄1] the second limit above is a multiple
of �̄1, and hence [⌫̄] 2 [[�̄0], [�̄1]]. When K is a subset of odd integers we
have a similar conclusion. This implies that ⇤ is contained in [[�̄0], [�̄1]].
Since ⇤ contains the endpoints and is connected, it is the entire 1–simplex,
as was desired. ⇤
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