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ABSTRACT. In this paper we construct examples of Weil-Petersson geodesics
with nonminimal ending laminations which have 1-dimensional limit
sets in the Thurston compactification of Teichmiiller space.

1. INTRODUCTION

A number of authors have studied the limiting behavior of Teichmiiller
geodesics in relation to the Thurston compactification of Teichmiiller space,
|[Mas82| |[Ker80| [Len08| LM10|,[LLR13}|/CMW14|,[ BLMR16a, LMR16|. This
work has highlighted the delicate relationship between the vertical foliation
of the quadratic differential defining the geodesic and the limit set in the
Thurston boundary.

The ending lamination of a Weil-Petersson (WP) geodesic ray was intro-
duced by Brock, Masur and Minsky in [BMMI10] and in some sense serves as
a rough analogue of the vertical foliation of the quadratic differential defining
a Teichmiiller geodesic ray. Ending laminations have been used to study the
behavior of WP geodesics |BMM10} [BMM11} [Mod15 [Mod16} [ BLMR16b]
and dynamics of the WP geodesic flow on moduli spaces [BMM11| [BM15|
Ham15|. In this paper, complementing our work in [BLMRI16b|, we provide
examples of WP geodesic rays with non minimal, and hence nonuniquely er-
godic, ending laminations whose limit sets in the Thurston compactification
of Teichmiiller space is larger than a single point.

Theorem There exist Weil-Petersson geodesic rays with nonminimal,
nonuniquely ergodic ending laminations whose limit set in the Thurston com-
pactification of Teichmiiller space is 1-dimensional.

See also Theorem for a more precise statement. Our construction
closely follows that of Lenzhen |Len08 who gave the first examples of Te-
ichmiiller geodesics having 1-dimensional limit sets in the Thurston com-
pactification.
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2. PRELIMINARIES

Notation 2.1. Let K > 1, C' > 0, and let X be any set. For two functions
fog: X —[0,00) we write f <k o g if %g(x) —C < f(zr) < Kg(x) + C
for all z € X. Similarly, we write f <k g if +g(z) < f(z) < Kg(z) for all
ze X, and f j\(g gif g(z) —C < f(z) < g(z)+ C for all x € X. Moreover,

f <k g means that f(z) < Kg(z) for all z € X and f ‘+<C g means that
f(z) < g(z)+ C for all z € X. We drop K, C from the notation when the
constants are understood from the context.

Teichmiiller space. Given a finite type surface S, we denote its Te-
ichmiiller space by Teich(S). The points in Teich(S) are isotopy classes
of (finite type) Riemann surface structures on S. When the Euler charac-
teristic x(5) < 0, we also view X € Teich(S) as an isotopy class of complete,
finite area, hyperbolic metric on S. In this case, given a homotopy class of
closed curve av and X € Teich(S), we write ¢, (X) for the length of the X—
geodesic representative of «. If « is simple, we let w,(X) denote the width
of o in X, defined by

(2.1) we(X) = 2sinh ™1 (1/sinh (£ (X)/2)).
The term ‘width’ is justified by the following, see e.g. [Busl0} §4].

Lemma 2.2 (Collar Lemma). Given any X € Teich(S) and distinct ho-
motopy classes of disjoint simple closed curves ay,aq, let w; = wq, (X), for
i = 1,2. Then Ny, 5(c1) and Ny, a(ag), the w;/2-neighborhoods of the
X —geodesic representative of the oy, are pairwise disjoint, embedded annuli.

For w = wa(X), we call Ny (a), the standard collar, and note that
the distance inside NV,,/9(cr) between the boundary components is w. An
important consequence is that for any other homotopy class of curve S,
we have £3(X) > i(a, B)wa(X), where i(c, 3) is the geometric intersection
number of o and S (c.f. Theorembelow).

Weil-Petersson metric. When x(S) < 0, the Weil-Petersson (WP) metric
is a negatively curved, incomplete, geodesically convex, Riemannian metric
on Teich(S). Its completion, Teich(S), is a stratified CAT(0) space, with a
stratum S(o) for each (possibly empty isotopy class of) multicurve o, con-
sisting of appropriately marked Riemann surfaces pinched precisely along o.
The stratum S(o) is totally geodesic and isometric to the product of the Te-
ichmiiller spaces of the connected components of S\o with their WP metric.
The completion of S(o) is the union of all strata S(o’) for which o C o';
see |Mas76|. The stratification has the so called non-refraction property: the
interior of a geodesic segment with end points in two strata S(o1) and S(o2)
lies in the stratum S(o1 N o2); see [DWO3, [Wol0S).
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Curve complexes, markings, and projections. We refer the reader to
IMM99, IMMOO, for definitions of the objects described in this subsection—
our objective here is to fix notation and terminology. In this paper we
denote the curve complex of a subsurface Y by C(Y). The set of vertices of
C(Y), denoted by Cy(Y), is the set of curves on Y (more precisely, the set of
isotopy classes of essential simple closed curves on Y'). A partial marking p
on S consists of a pants decomposition, base(u), and a transversal for some
curves in base(u). A marking is a partial marking such that every curve in
base(p) has a transversal. For a curve or partial marking p, we denote the
subsurface projection of p to the subsurface Y by 7wy (u) (see [MMOO| §2]),
and for two pu, ' define

(2.2) dy (1, ') 1= diamegyy (my () Uy (1))

An important property of dy is that it satisfies the triangle inequality when
the associated projections are nonempty. If Y is an annulus with core curve
a, we also write C(a) for C(Y), my for my, and do(p, p') for dy (p, p'); see
again [MMO0O, §2].

There exists a constant Lg > 0, called the Bers constant, depending on
S, such that for any X € Teich(S) there is a pants decomposition such that
every curve in the pants decomposition has hyperbolic length at most Lg
with respect to X; see e.g. [Busl0]. Such a pants decomposition is called
a Bers pants decomposition for X. A Bers curve for X is a curve « for
which ¢,(X) < Lg. A Bers marking for X is a marking p such that base(yu)
is a Bers pants decomposition for X and transversal curves have minimal
lengths.

Given a point X € Teich(S) and a curve «, the subsurface projection of
X to «, mo(X), is the collection of all geodesic arcs in the annular cover
corresponding to « which are orthogonal to the geodesic representative of
a (all with respect to the pull-back of the X-metric on S to the cover).
Distance in « between points of Teich(.S) and curves/markings is defined as
the diameter of the union of their projections (as with the case of two curves
or markings). This is often called the relative twisting, and for «, d € Cy(S)
and X € Teich(S), we write

twao (0, X) = do(0, X) 1= do(d, 7o (X)).
If o has bounded length and p is a bounded length marking for X, then
(2.3) tWa (0, X) X da (6, 12),

where the additive error depends on the bounds on the length of o and the
lengths of those curves in u (including those defining transversals of p) which
intersect «, but not on the length of . To see this, note that the bounds on
all the lengths of curves mentioned implies a lower bound on the length of «
by Lemma and a lower bound on the angle of intersection between the
geodesic representatives of any curve from p and the geodesic representative
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of a, and these easily imply an upper bound d,(u, X). Coarse Equation
then follows from the triangle inequality.

The next theorem is a consequence of |[LRT15/ Lemma 3.1] (see also
|CRS08| Lemmas 7.2 and 7.3]), and provides an estimate on length of a
curve v with respect to X € Teich(S) in terms of contributions from certain
other curves which ~ intersects. To describe it, suppose X € Teich(S) and
v, are two curves on .S, and define

(2.4) 0503, X) = 1(6,7) (1, (X) + £,(X) tws (6, X) ).
Also, for a pants decomposition P, define

i(6,P) = _i(6,7).

yeP

Theorem 2.3. For any L > 0 there exists K > 0 so that the following holds.
Let X € Teich(S) and P is a pants decomposition of S with £(X) < L for
all v € P. Then for any curve 6 € Co(S), § € P, we have

4500 = 37 4507, X)| e (6, P)
yeP

Proof. For every v € P, let N(y) = N, (x)/2(7) be the standard collar
around v, where w,(X) is the width as in . By Lemma these collars
are embedded and pairwise disjoint. Every complementary component () of
this set of standard collars is topologically a pair of pants but does not have
a geodesic boundary. The decomposition of X into standard collars and
complementary components decomposes 0 into segments. Then [LRT15|
Lemma 3.1, part (b)] implies that for any segment u that is associated to a
standard collar N(v) we have,

C(X) =0 wy (X)) + £,(X) tw, (5, X)

for some constant C' depending on L. (The language in [LRT15L Lemma 3.1]
is slightly different because it also applies to segments in possibly infinite
geodesics.) That is, for some constant K7, we have

] S X)) -y em,X)‘ %k i(6, P).

YEP

But the difference between £5(X) and ), £,(X) is the sum of the lengths of
segments in complementary pieces. Now we note that [LRT15l Lemma 3.1,
part (a)] states that the length of each such segment is uniformly bounded.
Also, the number of such segments is i(d, P). Thus, for some Ko,

e5(X) - ZEU(X)‘ %k, (6, P).

Now, setting K = K1 + K3, the theorem follows from above two inequalities
and the triangle inequality. ([
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The Thurston compactification. The Thurston boundary of the Te-
ichmailler space is the space of projective classes of measured laminations
PML(S); see FLPTI|. A sequence of points { Xy} C Teich(S) exiting every
compact set of Teich(S) converges to [\], the projective class of a measured
lamination A € ML(S), if there exists a sequence of positive real numbers
{ug} so that

(2.5) lim upls(Xy) = i(0, \),
k—o0

for every § € Cy(S). We call {ug}r a scaling sequence for { Xy}, and note
that up — 0. In fact, a finite set of curves d1,...,d, can be chosen so that
for any sequence {X;} exiting every compact subset of Teich(S), we have
X}, — [\ if and only if holds for some scaling sequence {uy} and the
curves 6 = §;, for each i = 1,...,n. To see this, we let d1,...,d, consist
of a pants decomposition together with a pair of transverse curves for each
pants curve. Then any measured foliation/lamination is determined by these
intersection numbers (indeed, the intersection numbers with the transverse
curves suffice to determine the twisting parameters with for the foliation,
and hence the foliation; see [FLP79| Exposé 6]). Therefore, if holds for
some \, some {uy}, and § = ¢;, for all i = 1,...,n, then all accumulation
points of { X} agree (as they are determined by these intersection numbers),
and hence {X}} converges to [A]. In particular, for any curve a, we can
choose the curves d1,...,d, to all have nonzero intersection number with a.

Ending lamination. Suppose r: [0,00) — Teich(S) is an infinite WP
geodesic ray. A pinching curve for r is a curve v with limy_,o £, (r(t)) = 0.
The (forward) ending lamination of v, denoted by v = v+ (r), is the union
of the pinching curves together with the supports of any accumulation points
in PML(S) of an infinite sequence of distinct Bers curves for hyperbolic
metrics along ([0, 00); see [BMM10, Definition 2.7] for more details.

2.1. Bounded length WP geodesic segments. Because of the non-
completeness of the Weil-Petersson metric and the non-local-compactness
of its completion, the usual compactness theorems for geodesic segments
of fixed length based at a point is more subtle than in the complete case.
Wolpert carried out an initial analysis [Wol03] Proposition 23] that cap-
tured how such segments can limit at the completion, but further analysis
in [Mod15) Theorem 4.2] captures a stronger non-refraction condition.
Given a curve 7 € C(S) we denote the positive Dehn twist about 7 by
D.,. For a multicurve o on a surface S we denote the subgroup of Mod(S5)
generated by positive Dehn twists about the curves in o by tw(o).

Theorem 2.4. (Geodesic limit) Given T > 0, let ¢, : [0,T] — Teich(S) be
a sequence of Weil-Petersson geodesic segments parametrized by arclength
with (,(0) = X € Teich(S). Then after passing to a subsequence, we may
extract a partition of the interval [0,T] by 0 = tg < t1 < ... < tgy1 =T,
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multicurves o, 1 =1,....k+1, withoyNogg =0 forl =1,...,k and a
piecewise geodesic segment

¢ : [0,T] — Teich(S)
with () € S(oy) for 1 = 1,...,k + 1, and (((t;,t141)) C Teich(S) for
1=0,...,k, such that the following hold:

~

(1) limy, o0 G (t) = C(t) for all t € [to,t1],
(2) there exist elements T;,, € tw(oy) for each | =1,...,k and n € N,
so that letting p1n = Tino...0 T, we have

Tim @10 (Ga(1) = (1)
for all t € [t;, t;41].

Remark 2.5. In this theorem, o1 may be empty (in which case we have
C(tpt1) € Teich(S)). A key feature of this theorem is that o3 Moy = 0,
meaning that these two multicurves have no common components. This
is responsible for the non-refraction behavior ensuring that C((t;,¢41)) is

contained in Teich(S) as opposed to Teich(S).

We also need the following, which is [Mod15| Corollary 4.10]. Denote a
Bers marking at a point X € Teich(S) by u(X).

Theorem 2.6. Given €y, T positive and € € (0,¢ep], there is an N € N
with the following property. Suppose that (: [a,b] — Teich(S) is a WP
geodesic segment of length at most T such that sup;c(q ) €a(C(t)) > €0 and
do(p(¢(a)), u(¢(b))) > N. Then, we have

inf £,(¢(t)) <e.
tela,b]

3. GEODESICS WITH NONMINIMAL ENDING LAMINATIONS

In this section we prove the main result of the paper (see also Theo-
rem for a more precise statement).

Theorem 3.1. There exist Weil-Petersson geodesic rays with nonminimal,
nonuniquely ergodic ending laminations whose limit set in the Thurston com-
pactification of Teichmiiller space is 1-dimensional.

First, let us briefly sketch our construction of such geodesic rays. The
basic idea is similar to Lenzhen’s construction for Teichmiiller geodesics in
|[Len08|. Let S be the closed, genus 2 surface and let o C S be a separating
simple closed curve cutting S into two one-holed tori that we denote by Sy
and S;. The stratum S(«) is isometric to a product of Teichmiiller spaces
of once-punctured tori, i.e., S(a) = Teich(Sp) x Teich(S1).

We carefully choose sequences of curves {7/}; C C(Sy), h = 0,1 which
form quasi-geodesics and limit to minimal filling laminations Ay, h = 0, 1.
Using the fact that Teich(S}) with the WP metric is quasi-isometric to
C(Sh), and that it has negative curvature bounded away from 0 we construct
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FIGURE 1. A piece of the curve graph C(Sy), visualized as
the Farey graph.

geodesic rays #" in Teich(S,) which have forward ending laminations Ay,
h=0,1.

Next, we consider the geodesic # = (#,7!) in Teich(S), and construct a
geodesic ray r which fellow travels 7. We estimate the length of an arbitrary
curve along 7 using estimates from Theorem From the conditions we
imposed on our sequences of curves, we will see that most of the length of
the curve comes from its intersection with curves 7Y and +7, and so lengths
are eventually well-approximated by intersection numbers with linear com-
binations of measure Ao and \; on \g and \;, respectively. Consequently,
this geodesic ray accumulates on a 1-simplex with vertices [Ao] and [\1] in
the Thurston boundary. Analyzing a pair of particular sequences of times,
we see that the endpoints of the simplex are in the limit set, and so by
connectivity, the limit set consists of the entire 1-simplex.

3.1. Continued fraction expansions and geodesics in Teich(S1). Let
Ap be a minimal, irrational lamination on Sy. This lamination is the straight-
ening of a foliation of the flat square torus, and we assume for convenience
that the slope of the leaves of this foliation is greater than 1. The reciprocal
of this slope is an irrational number less than 1 which we denote by xj, and
we write its continued fraction expansion as

(31) Lh = [0;68,6’17',...],

(the first coefficient is zero since xp, < 1). We assume in all that follows that
e? > 4 for all 7 and for h =0, 1.
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Next, let p’ = [0;el,et,... e ;] be the i convergent with finite con-

tmued fractlon expansion as shown, obtained by truncating that of xj. Let
'yz be the simple closed curve on the torus whose slope is the reciprocal,

%. Note that 7{} is the curve whose reciprocal slope is 0 (that is, 7{} is the
vertical curve) and we let 7" 1 denote the horizontal curve, by convention.
The Farey graph is the graph with vertices corresponding to QU {oco} and
edges between % and % whenever [ps — rq| = 1 [Ser85|; see Figure 1| Iden-
tifying a simple closed curve on the (flat, square) torus with the reciprocal
of its slope identifies the curve graph C(S}) with Farey graph [Min96|, and
we use these two graphs interchangeably depending on our purposes Our

assumption that eh > 4 ensures that the sequence of curves {7 }i (or equiv-
alently, the sequence of convergents { } ) is a geodesic; see e.g. [Min96,

Section 3]. Our index convention leads to

h tel h
(3-2) Yit1 = D%_h,e (’Yz'—1>7

with the sign determined by the parity of 7; see Figure

The curve graph C(Sj,)—or equivalently the Farey graph—naturally em-
beds into the Weil-Petersson completion of Teich(S}) in such a way that
the vertex corresponding to the curve -y is sent to the point in which ~ has
been pinched, and so that edges between adjacent vertices are sent to WP
geodesics. Furthermore, the pants graph and the curve graph of a once punc-
tured torus coincide, and according to [Bro03, Theorem 3.2] this embedding
is a quasi-isometry. The usual identification of Teich(Sy) with a subset of
the compactified upper half-plane provides the standard embedding of the
Farey graph into H2, with vertex set QU {oo} C RU{oc} = SL . We further
note that all maps and identificiitons are equivariant with respect to the
actions of Mod(S) = SLa(Z) on the various graphs/spaces.

For each i > 0, let X! € Teich(S)) denote the point at which ~»
pinched and [X}, X"1] the geodesic in Teich(S) between points X! and
Xz‘h+1- These geodesic segments are the images of the geodesics [%h, 7{‘“] in
C(Sy) we described above, and since the concatenation of the latter set of
segments is a geodesic in C(S},), the image is a quasi-geodesic in Teich(S},).
Then since the action of Mod(Sh) on 4/ is transitive, it is clearly transitive
on the geodesics segments [ X", X! +1] Moreover, Mod(SSy,) acts isometrically
on Teich(Sy), so all geodesics [ X[, X[ ;] have the same lengths, we denote
the length by

(3.3) D = dwp(X]", X)) > 0.

Note that 7§ = 4§ is the curve corresponding to the rational number 0, and
for convenience we let X h denote the midpoint of the geodesic segment
between (the image of) 72 and A", which has distance D to X2 (note that
X", = /=1 in the upper half plane).
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FIGURE 2. A picture of the initial segment of the geodesic in
the curve graph C(S}) (again visualized as the Farey graph)

defined by the continued fraction [0;4,4,4,...]. The edges
of the geodesic are drawn as thicker lines, and the first few
vertices, fyﬁl = %,’yg = %,fyf’ = i,’yg = 1%, ..., are indicated.

As one can see from the first few segments of the geodesic, it
“pivots” on opposite sides (c.f. [Min96]), reflecting the fact
that the sign in front of ef-” =4 > 0 in the Dehn twisting
alternates. It follows that the segment [y, %hﬂ] is separated

from the segment [y, /7] by the segment [/ |, ] in C(Sp).

Let 7" be the unit speed parameterization of the concatenation of seg-
ments [XZh,X,LhH], i € N, for h = 0,1. The set of (not necessarily infinite)
geodesic rays starting at X", and passing through a point on the geodesic
segment [Xih, Xihﬂ] forms a nested sequence, indexed by 7. To see this, note
that by the change of the sign of the power of D%h in , the geodesic
[y, 4l ] is separated from 4" by the geodesic [y ;,~!] in C(S)); see Fig-
ure This implies that the geodesic [X/, X{‘H} is separated from X", by
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the geodesic [X! |, X! in Teich(S},), and hence any geodesic starting from
X", that passes through [X[, X[ ] must also pass through [X! ,, X!].

Now note that 7 is an infinite quasi-geodesic in Teich(S},), so the distance
between the segments [X/, X! ;] and X", go to infinity. Then the negative
curvature of the WP metric on Teich(Sy) [Woll0} Corollary 7.6] implies that
the maximum of the smaller angles at X" 1 between any two geodesics in the
nested sequence of geodesic segments tends to 0 as ¢ — oco. This guarantees
the existence of a unique ray in the intersection of all these sets. We denote
the ray by #" and note that it fellow travels 7.

Lemma 3.2. There exists a sequence {K;}3°, so that if ! > K; for all
i >0, and if {t}} is the sequence of times for which dwp(F"(t}), X}) is
minimized, then for D from we have

(1) dwp (7 (s),7"(s)) < L for all s > 0,

(2) dwp(FM(th), X)) < 236 (which tends to 0 as i — o0), and

(3) |th — (8 +iD)| < £ (in particular, {t}}; is increasing).

Proof. First we will show that for all ¢« > 0, we can choose K; > 0 such that
if ef > K;, then we have

dwp (P (), X]') < 355

To prove this, first let 6 denote the segment of 7" with one endpoint on
[X!",, X" ] and and the other on [X/,,, X[, ,] (recall that #" pass through
these geodesics). Since the piecewise geodesic segment 77 contains a segment
of length 4D containing [X[ ,, X! |] and [X!,, X[ ,], the length of &/ is
at most 4D. Given any 1 > 0, we claim that there exists C'(n) > 0 so that
if 7" stays outside of the n-neighborhood of X!, then the length of 5% is
at least C(n)el. If we prove this claim, then taking 7; = 21-%, we can set
K; > % and observe that if e > K;, then 6 (and hence #") must enter
the m;—neighborhood, as required.

To prove the claim, recall that distance from a point X € Teich(Sy) to
XPis (271'6,\/?)% + O(E?yh) (see [Wol08| Corollary 4.10]). In particular, there

exists L(n) > 0 so that the sublevel set 6;?}((0,[1(77)]) is contained in the

the ball of radius 7 about X!. By convexity of length functions, [Woll0)
§3.3], the set Q}((o, L(n)]) is convex and hence the closest point projection

of 61}-‘ to it is no longer than 6?. The length of each arc of the boundary
of ﬂ;hl( (0, L(n)]) intersected with a triangle of the Farey tessellation is some

constant C'(n) > 0, and since the projection of 6% to the sublevel set has to
cross at least e? of these arcs, its length is at least C (n)e?, as required; see

Figure
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X X
FIGURE 3. Applying an element of Mod(S}),) we can assume
Xih is the point at infinity in the upper half—plane model of

Teich(S},), as shown. Then for L(n) > 0 small, E ((0 L(n)])

is approximately a horoball, since a horoball is the sub-
level set of the extremal length function and since hyper-
bolic lengths and extremal lengths are nearly proportional
for small values (see [Mas85]).

We now assume (as we will for the remainder of the proof) that e} > K;
for all 7 > 0, and observe that part (2) of the lemma holds.
By the triangle inequality, it follows that for all ¢ > 0

[t — |~ D| = \dwp Bt 7 (¢)) — dwe(XE, XL)

D D
S 27,+6 + 22+7 < 21+5

(3.4)

A similar (simpler) argument proves [t§ — 5| < &

We claim that for all 4 > 1, tl ', 1 must lie between t;‘ and t?+2’ If not, and

for example t/,; > max z+2} then ¢, — " > 0 and t!,, —tl, >0,
and applymg inequality 1.# to ¢ and ¢ + 1, we see that

h h
|t z+2 - |t1+1 - D+ (D (terl - ti ))‘ < 235 + 2£6~
Hence by the triangle 1nequahty (as above)
h
dwp (X[, X[o) < dwe (P (1), 7 (tz+2)) +
h
< |t - z+2| + 21+6 + 21+8 <2

On the other hand, [BM07| Lemma 3.2] implies that since 7! and 4/,
are not adjacent in C(Sy), we must have dwp (X[, X[ ,) > D, which is
a contradiction. A similar argument produces a contradiction if ¢, <
min{t?, ", ,}, hence as we claimed 7, is between t! and t? ,, and thus
{th}; is an increasing sequence.
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From |i (and the inequality [t} — 2| < 226), we have

7
th — (%HD)‘ = ’tg+2t?—t?_l—§—m‘
j=1

AN
oS

7 7
h D h h D D
‘to —7‘+Z‘tj —tj—l—D‘ <@+ o <
i=1 =1

This proves part (3).

Finally, we note that part (1) follows from , parts (2) and (3), and
convexity of distance between two geodesics in a CAT(0) space. To see this,
first note that for all ¢ > 0

dwp(F"(2 +iD),#(2 +iD)) < dwp(F"(2 +iD),#"(t})) +dwp (7" (1), X[

. D D
g\t?—(§+zD)!+2i%<§+2i+6<%

Thus, for all ¢ > 0, convexity of the distance between geodesics implies
dwp("(s), 7 (s)) < 2, foralls e [£ +iD, 2 + (i +1)D]
(and for s € [0,2]). This proves (1) for all s > 0, completing the proof. [

3.2. Sequences of times. Throughout the following, we will always as-
sume that for each h = 0,1, the sequence {e?}i is chosen so that e? > K;
from Lemma and we write 7", 7 to denote the associated geodesics/quasi-
geodesics. We keep the same parameterization for 7#° and 7Y as above, but
adjust the parameterization of #! and #! by precomposing with the maps
t—=1— %. This does not make sense for ¢ € [0, %), so we define 7! and 7.
to be constant on this interval.

With this new parameterization, the sequences {tzl} must be shifted by
%, so that parts (1) and (2) of Lemma remain valid. The conclusion in
part (3) of the lemma then becomes

(3.5) ) — (2 +iD)| <2 and |t} - (i+1)D| < 2.
Identifying S(a)) = Teich(Sp) x Teich(S1), we set
7= (#°,71): [0,00) = S(a) C Teich(S).
Notation 3.3. (Relabeling sequences) To simplify some statements and

avoid duplication in some of the arguments that follow, we make the follow-
ing notational convention. For h = 0,1 and ¢ > 0, set

h

€2i+h = €
_  _h

Y2i+h = Y
h

tojrn = 1
h

Xojrn = X

We will use the index k for these sequences, and write {ex}, {vx}, {tx}, and
{Xk}. We also let k € {0,1} denote the residue of k¥ modulo 2, and i = i(k)
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for the floor of k/2. Thus, when we need it, can write e = ef, etc. As an
abuse of notation, we say things like “7(¢;) is close to X", though what

we really mean is that 7 (tx) is close to Xj. We also view 7 as a curve on
both S and S\ «, rather than just a curve on S; C S\ @ C S. Finally, the
following sequence of times will also be useful for us

oo te + Tk
Proposition 3.4. For all k > 0, tgy1 — tg > %. In particular, {ty}r is
increasing. Consequently, t% — 1 > % and tg1 — t; > %.
Proof. For k = 2i (even), (3.5)) implies
1 —th=t; =) > ((+1)D-2)— (D +iD+2) =D —
A similar computation verifies the claim for k£ odd.

The last sentence follows from the first, and the fact that ¢} is the average
of t, and tx11. O

Nlw)
=9

Figure provides a useful illustration of the relationship between {1},
{t%}a {’Yk}a and {Xk:}

79 Xo

X2

Xa

72
to tg t3

3

Y4
ty tl ts

V5

/
ts

X3

X5

FIGURE 4. The times ¢ and ¢}, are “spaced out” by at least
%. The former are the times when # = (#9,7!) is closest to
the points { X }: the curve 7 is very short at time .

Lemma 3.5. There exists C > 0, so that for all k > 2, we have

Ly, (P(th_s)) < C and £y, (7(t, ) < C.

Consequently, £, (7(t)) < C for all t € [t}_,, 1) |]

Proof. We prove the bound on ¢, (7(t;._5)). The proof of the other bound

is similar.

According to part (2) of Lemma|3.2| for k > 2
dwp (P* (tp—2), Xp—2) < & and dwp (7" (t), Xi) < 2.

By convexity of distance between geodesics, it follows that there is a point
Yy € [Xk—2, Xi] such that

dwp (P (t_5),Y3) < 2.
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On the other hand, by Proposition We have

o+ g <lg = (oo —ti-1) + (o1 = thoy) + (o — 1) + 1k
3D
<ty — 22
Therefore, by the triangle inequality, we see that

dwp (Yi, Xp—2) > (th o — thoo) —dwp(P* (o), Yi) —dwp (Xp—2, P (tx—2))

Similar computations show that
dwp (Yi, X)) > 2.

So, Y}, is further than 1% from the endpoints of [Xj_o, X], and so less

than % from the midpoint. In particular, the closed ball of radius % in

Teich(Sj) about Y} is contained in the closed ball By, C Teich(Sj) of radius
1;’—2]3 centered at the midpoint M}, of [Xj_o, Xk].

We claim that By, C Teich(Sj) (that is, By contains no completion points),
and hence By, is compact. To prove the claim, it suffices to show that the
closest point to M}, in Teich(S7) \ Teich(S%) is one of the endpoints Xj_o or
Xj.. For this, let

X € Teich(Sg) \ (Teich(Sz) U {X}_o, X1.})

be any completion point. According to [BM07, Lemma 3.2], we have that
D = dwp(Xk—2, Xi) < dwp(Xk, X). Since triangles in Teich(Sj) are nonde-
generate (meaning that edges meet only in a vertex), My, is not contained in
the geodesic segment [Xj, X]. Thus, the (strict) triangle inequality implies

2dwp (My, Xi,) = D < dwp(Xg, X) < dwp(Xk, My) + dwp (M, X).

Therefore dWP<Mk7 Xk) < dwp(Mk, X)

We now see that the closed ball of radius 3% about Y} is contained in
the Mod(S;)-orbit of a single compact set in Teich(S7), namely the closed
ball of radius 1;’—2[) about the midpoint of a single Farey edge. Therefore,
the length of 7% (the curve pinched at Xj) is uniformly bounded in the
%fneighborhood of Y, independent of k (and independent of the sequence
{ex}). Since #*(#)_,) lies in this neighborhood, £, (7¥(¢_,)) is uniformly
bounded, as required. )

The proof of the bound on £, (# (t41)) is entirely analogous, using the
geodesic segment [Xy, Xj2] in place of [Xj_o, Xi]. The very last statement
follows from convexity of length-functions along WP geodesics [Wol10} §3.3].

O

Corollary 3.6. For allk>2 and j =k —1,k,k+ 1,k + 2, we have
by (1) < C.
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Proof. According to Lemma the curve 7; has length at most C' on the

interval [t;_,,t}]. The corollary thus follows from the fact that
k+2
{tiy= () Ehatil-
j=k—1

0

3.3. Intersection number estimates. We will require the following esti-
mate for the intersection number of a curve § and the curves 'ylh in terms of
h

the numbers e, 7 > 0.

Lemma 3.7. Given ¢ € Co(S) with i(0, ) # 0, there exists k = k(d) > 1 so
that for h = 0,1 and all i sufficiently large we have

1 ) .
;€h71 < 2(57 ’Yzh) < ﬁIh(Z)a

(2
for In(t) = 325 [ ey 6;-7' where J runs over all subsets of {0, ...,i—1} exactly
once.

Proof. Suppose that § NSy, h = 0,1, consists of n; geometric arcs with
end points on a = 95}, (geometric arcs are proper arcs on the surface and
homotopic geometric arcs are not identified). Let [0; e}f, 63, el e?fl, ...] be

a continued fraction expansion as in and recall that the curve *ylh has
h
slope reciprocal to % the i*" convergent of the continued fraction expansion.

Let 7, be a geometriz(: arc in 6 N.Sy, with the largest intersection number with
'ylh and let Z—Z be the reciprocal of the slope of 7,. Then, since ’yz-h C Sy, we
have that i(7,,v?) = |ang? — bpp?|: to see this, observe that orienting
and 7y, these represent the (relative) homology classes (ay, bp,) and (p?, ¢?),
respectively, in Hy(Sy,, 0Sy;Z) = Z2, and i(1, %h) is the absolute value of the
algebraic intersection number, which is the geometric intersection number
on a punctured torus.

The standard recursive formula for convergents of continued fraction ex-
pansions gives us qzh = e?_ qzh_1 + qzh_2 (see e.g. |[Khi64] Theorem 1]; recall
our index convention in &) we also have that qg =1 and qf = eg. Then
we can easily verify by induction on i that

(35 d= Y I

JC{0,...i—1} jEJ

where each subset J appears at most once in the sum. Now since lim;_ 4, % =

xp, where the irrational number xzj, is the reciprocal of the slope of )\h,lwe
have

h_p ph h
lim M = lim |aj, — <zz> br| = |an — xpbp.

1—00 i 1—00 i
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Thus, for i sufficiently large
lang} — bapl| < 2lan — xrbilg) < 2lan — zpbu|In (7).

Then since 7, is a geometric arc with the largest intersection number with
%h and since there are ny geometric arcs in 6 N S we have

(37) 1(5, ")/Zh) S 2nh|ah — J;hbhuh(i)-

Furthermore, by li qlh > H;;B e;-l > ezhfl. From this inequality and the

above limit we deduce that the inequality
1 1
(3.8) |ang]' — buplt| > §|ah — zpbplg) > §|ah — xpbplef

holds for all 4 sufficiently large.
Now from inequalities and (3.8) we see that the inequalities of the
lemma hold for k = max{2np|an, — xxbx/, m :h=0,1}. O

For any k € N, appealing to the Notation let I(k) = I;(i) where
k = 2i + k. The conclusion of Lemma then becomes

1
(3.9) —ep—2 < i(0,7k) < wI(k).

K
For the remainder of the paper, we assume that the sequence {ey} satisfies
the additional growth condition

(3.10) lim 1(k) =0, and lim Ik+1) =0.

k—oo €f k—00 €k
This is possible since I(k) depends only on {e; }?;g.
With this convention, we have the following corollary of Lemma
Corollary 3.8. For any curve § € Co(S) with i(d, ) # 0 we have

(6 10
lim 72( /) =0, and lim 71( V1)
k—oco  eg k—ro0 €k

=0.

3.4. Geodesics in Teich(S) and bounded length curves. We begin by
recalling [Mod15, Corollary 3.5] and the inequality inside its proof, which
we will use in some of the estimates in this section.

Lemma 3.9. Given ¢ > 0 let l,a € [0,c] with | > a. Suppose that for a
curve B € Co(S) and points X, X' € Teich(S) we have {g(X) <1 —a and

03(X") > 1, then
dWP(XaX,) 2 La

2
214 0(1%)
where the constant of the O—notation depends only on c.

Lemma 3.10. There is an €; > 0 and a C' > 0 so that for all points Y in
the e1-neighborhood of Fk(t%) and all j =k — 1,k k+ 1,k + 2, we have

L, (Y) <"
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Proof. Let C' be the constant from Corollaryso that £, (f’;(t;c)) < C for
j=k—1,...,k+2. Leta>0,0'"=a+C and c=C’"+a+ 1. Then

0<a<C' <cand EA,j(f'E(tz)) <C=C —a,
foreach j =k —1,k,k+ 1,k + 2. Define
a
%C’—l—O(C"l)

to be as in Lemmawhere the constant of the O-notation only depends
on c. Now, if £,,(Y) > C’ for a point Y in the e;—neighborhood of #*(t},)
and a curve v; with j = kK — 1,k k + 1,k + 2, then applying Lemma
we have dwp(Y,7¥(t})) > €; which contradicts the fact that Y is in the ;-
neighborhood of #*(#,). Therefore, 0, (Y) < forj=k—1,kk+1,k+2,
proving the lemma. O

€1 —

Decreasing €; if necessary, we may further assume that for any point
X € Teich(S) in the 2¢;—neighborhood of S(a) and any curve  essentially
intersecting «, we have ¢,(X) is uniformly bounded below. This follows

from Lemmaand the fact that the distance to S(«) is (ZWEQ)% +O(2)
(see [Wol08| Corollary 4.10]). In particular, any point in Teich(S) in the
2¢1-neighborhood may only lie on a stratum corresponding to a (possibly

empty) multicurve having zero intersection number with a.

Now let Z € Teich(S) be a point in the ¢;—neighborhood of #(0). Let then
[Z,7(t).)] be the geodesic segment connecting Z to #(t;). By Corollary
the curves i, 7441 have bounded lengths at 7(¢} ) and the sequence of curves
{7k}, k = 0,1, is a quasi-geodesic in C(Sy) that converges to a point in the
Gromov boundary of C(S). Moreover, S\« is the union of Sy and S;. Then
as in [Mod15| Lemma 8.1] we can show that after possibly passing to a
subsequence [Z, 7(t}.)] converges uniformly on compact subsets to an infinite
ray

r:[0,00) — Teich(S).
Also, note that the construction of r and the CAT(0) property of the WP
metric imply the rays r and 7, e;—fellow travel.

The following are straightforward consequences of the results of this sec-
tion.

Corollary 3.11. Forallk>2 and j=k—1,k,k+ 1,k + 2, we have
by (r(ty) < C7,
where C' > 0 is the constant from Lemma

Proof. As noted above, the two geodesics rays r and 7, e;—fellow travel, and
hence dwp(7(t}),7(t})) < 1. Thus, by Lemma forj =k —1,kk+
1,k + 2, we have

by (r(ty) < €7,
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as desired. O
This, in turn, implies the following:
Corollary 3.12. For allk > 2, t € [t),t; ], and j =k, k+ 1,k +2,
0,(r() < '
where C' > 0 is the constant from Lemma

Proof. By Corollary(3.11} we have £, (r(t;_,)) < C" and £y, (r(t}.,)) < C'.
By convexity of length-functions [Woll0, §3.3], for all ¢ € [t} _,, 1}, ] we
have

£ (r(t) < O
Since [ty, 1] C [th_g thpy] N [th_1s thgal N [ty T3], the result follows. [

Proposition 3.13. The length of « is bounded by £ (Z) along r. Further-
more, the ending lamination of r is the lamination Ao U A1 or Ag U a U Aj.

Proof. First note that by convexity of ¢,, |Woll0} §3.3], and the fact that
Lo (7(t},)) = 0, it follows that ¢, is bounded by £,(Z) on [Z,#(t})]. Since r
is a limit of a subsequence of the geodesics [Z,7(t,)], the first claim of the
proposition holds.

By Corollarythe curves 7, Vk+1 have bounded length at r(t)) for
all k, hence by the definition of ending lamination, Ag and \; are contained
in the ending lamination of r. Note that the only measurable lamination
properly containing A\g U A1 is A\g U @ U A1, and so v (r) must be one of
these two laminations (and it is the latter one if and only if £, (r(t)) — 0 as
t — o0, i.e. if a is a pinching curve). O

We now turn to estimates for twists about bounded length curves at ().

Lemma 3.14. For any 6 € Co(S) with i(d, ) # 0, there exists ¢ = c¢(§) > 0
such that for all t € [t} t, ], we have

tw, (8,7(t)) Zc ex,

and

+
twy, (6, 7(t},)) =c 1

for all but finitely many k (namely, whenever i(yg,0) # 0 and i(yxy1,9) # 0,
respectively).

Proof. By Corollary we may choose a bounded length marking p at
r(t) so that - is in the base and 7,9 projects to the transversal to .
Recall that k € {0, 1} is the residue of k¥ modulo 2. Avoiding finitely many
k, i(d,vk) # 0, and we may apply the triangle inequality. Doing so we have

(3-11) ‘d'}/k (57 7k+2) - d% ('7127%4—2) < d%(& ’712)-
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Since pls; is a uniformly bounded length marking at r(t), we have uniform
errors (independent of k) in the following coarse equations. First, by (2.3)
we have

(3.12) 6 (8,7(1)) = doy (8, 12) = oy (3, ky2)-
Since Ygi2 = Diek (Vk—2), it follows from [MMOO| Equation (2.6)]) that

+
dy, (Vk—25 Vh+2) = €k

Furthermore, because {vz,;}: are the vertices of a geodesic in C(S;), by
[MMO00, Theorem 3.1], we have

+
(3.13) Aoy (Vr Vietr2) X Aoy, (Vi—25 Vit2) = €k

Moreover, since we are allowing our error ¢ = ¢(J) to depend on J, we can
combine the coarse equations (3.12) and (3.13) with inequality (3.11) and
deduce

+
tw,, (0,7(t)) < ey.
This proves the first coarse equation of the lemma.
To prove the second coarse equation, we note that by Corollary [3.11}

we may choose our bounded length marking p at r(¢}) so that y44; is a
base curve and 7,1 projects to a transversal for v;4;. Thus, similar to

Equation (3.12)), we see that lb implies tw., ., (0,7(t},)) < Ay (6, k1)
Furthermore, similar to (3.11), for & sufficiently large we have

‘d%ﬂ (57 ’Yk—l) - d%+1 (7@7 ’Yk—l)‘ < de-H (57 ’Ym%

Since vz77 and 7g-1 preceed g4 in the C (Sm)fgeodesic, appealing to
IMMO0O0, Theorem 3.1] again we have

+
Ay (Vg Ye—1) X L

Combining these facts just as in the previous paragraph and increasing ¢ =
¢(0) if necessary, we have

+
tw7k+1 (57 T(t?c)) =c 17

which completes the proof of the lemma. O

3.5. Estimates for the separating curve. We will eventually impose
additional growth conditions on our sequence {ex} to control the length and
twisting about the separating curve a. The next two lemmas are used to
determine those conditions.

Lemma 3.15. There exists a function fi : [0,00) — R, so that for any ge-

odesic ray r constructed as above (from sequences {e?}i, h =0,1, beginning
at Z) we have Lo (r(T)) > f1(T) for all T € [0,00). Moreover, there exists
such a function f1 which is continuous.
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Proof. The proof is by contradiction. If there is no such function f; (not
necessarily continuous), then there would be a sequence of geodesics {r,}
starting at Z, coming from sequences {ef(n)};, as above, and some T > 0
so that £, (r,(T)) — 0 as n — oo. Now the idea of the proof is as follows.
Appealing to convexity of ¢, on r,, we can deduce that £, (r,(t)) — 0 as
n — oo for all t > T. In particular, choosing any T’ > T, we can apply
Theorem [2.4(to 7[jg 7. We will see that the curve « is (eventually) present
in all the multicurves from the theorem, producing a contradiction to the
non-refraction behavior ensured by the Theorem We now proceed to
the details.

Recall that we have chosen Z € Teich(S) and €; > 0 from Lemma
(and the paragraph following its proof) so that the distance to any stra-
tum S(o) is at least € whenever ¢ has nonzero intersection number with
a. By Proposition [3.13] €4 (7, (t)) < €4(Z) for all n and ¢t > 0, so since
limy, o0 Lo (rn(T)) = 0, convexity of £, implies o (1, (1)) < Lo (rn(T)) for all
n sufficiently large and all ¢ > T'. In particular, lim, o € (7 (t)) = 0 for all
t > T, while £, (r,(0)) = €4 (Z) > 0.

Now fix any 77 > T and apply Theorem to the sequence of geodesic
segments 1,7 Let the partition 0 = to < t; < ... < tpy1 = T', the
piecewise geodesic path C: [0,7"] — Teich(S), the multicurves {al}fill, the
multitwists {7, }7_;, and the mapping classes {¢;,}_, obtained by com-
posing the multitwists be from the theorem.

For each 1 < I < k and n > 1, T, is the composition of powers of
Dehn twists about curves in o;, but since r,, has distance at least ¢; from
all completion strata except strata of multicurves having zero intersection
number with «, o; consists of possibly the curve a and a number of curves
disjoint from a. Therefore, ¢; () = @, and £o(@1n(rn(t))) = La(rn(t)) for
all t € [t;,t;,1] and all I. According to Theorem|2.4} we have ((t) € Teich(S)
for all ¢ € [T,T"] except possibly the points {t;};1} N [T,T"]. Therefore,
l6(C(t)) > 0 for all these values of . Applying part (2) of the theorem to
any such value of ¢, we have

lim Lo (ra(6)) = T La(rn(ra($))) = la(C(t) > 0.

n—oo

This contradicts the fact that lim, o o (rn(t)) = 0 for ¢ € [T,T"]. There-
fore, £, (r(T)) is bounded below by a positive number, depending on T,
but independent of the ray r. Thus, we have a function f;, not necessarily
continuous, so that £, (r(T)) > f1(T) for all T' > 0. Since £, (r(t)) is de-
creasing it is easy to construct a continuous function f; which also has this
property. U

Lemma 3.16. There exists a function fs : [0,00) — RY such that for any
geodesic ray r as above do(r(0),7(t)) < fa(t) for all t € [0,00). Moreover,
there exists such a function fo which is continuous.
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Proof. Suppose that such a function does not exist (not necessarily contin-
uous). Then there is a sequence of geodesic rays 7, constructed as above
and a T' > 0, so that lim,_,c do(7,(0),7,(T")) = co. Then, since r,(0) = Z
for all n > 1 we have that sup, £, (r,(t)) > inj(Z) > 0. Then, by Theorem
We have that infycig 7} £a (s (t)) — 0 as n — oo. But this contradicts the
act that inf,cpo 7] la(rn(t)) > inficjo ) fi(t) > 0 for all n > 1 by Lemma
3.16| Existence of fo now follows from this contradiction. Restricting the
argument to a subinterval [0, 7"] C [0,T] we see that we can replace fa by
an increasing function, and then by a continuous function, retaining the
required property. O

With these two lemmas in place, we now impose our final growth condi-
tions on {ex}r. Let f1, fo be the functions from Lemmas and and
for k € N let

(3.14) Fl,k = min{fl(s) ‘ s € [tk,tk+2]}
(3.15) F2,k = max{fg(s) | S € [tk,tk+2]}.
As our last growth requirement for {ey, }, we assume ey, grows fast enough
that
Fop — 2log F;
(3.16) lim — 2k 20871k _

k—o0 7%

h

3.6. Limit sets. For the remainder of the paper, we let {e}'}°, be a se-

quence such that e? > K;, for h = 0,1 and all i € N, where K; is from
Lemma Let {ex}r, {vetr, {tetr, {th} x, {Xk}x be as in Notation (3.3
and assume that {ey } satisfies (3.10) and (3.16). The following immediately
implies Theorem (3.1

Theorem 3.17. The limit set of r in the Thurston compactification of
Teich(S) is the 1-simplex [[Ao], [M\1]] of projective classes of measures sup-
ported on Ao U A1.

For curves 6,7 € Cy(S) and any time s € [0,00), as in (2.4), let

(B17)  ls(,5) = Lol 7(5)) = 16,7) (105 (r(5)) + £ (r(5)) w3 (6, 7(5)))

Now suppose that {sy}x is a sequence such that s; € [t}, ¢} ,]. Pass to a
subsequence {si}reic so that r(sg) — [7] in the Thurston compactification
(to avoid cluttering the notation with additional subscripts, we have chosen
to index a subsequence using a subset K C N). Let {u}rex be a scaling
sequence, so that

lim wuls(r(sg)) = i(6, ),
k—o00

for all curves 9.

By Corollary and Proposition [3.13} the curves ~, V441, form a
uniformly bounded length pants decomposition on r(s). Consequently, by
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Theorem we obtain the following expansion for the length of the curve
§ € Co(S) at r(sk),

Cs(r(sk)) = Ls(Vkssk) + Ls(Via1, sk) + L5, sg)
(3.18) +0 (i(6, %)) + O (i(8, v+1)) + O (i(6, )

where the constant of the O notation depends only on the uniform upper
bounds for the lengths of v, yx+1, and a.

The next proposition shows that only two of the terms in are ac-
tually relevant.

Proposition 3.18. With notation as above, and § € Cy(S) with i(d, ) # 0,
we have

i(6,v) = Jim upls(r(sg)) = Jim uk (€5 (Vi sk) + Ls(Ver1, Sk))-

k—o0

For this, we will need the following lemma.
Lemma 3.19. With notation as above,

Wy (1(88)) + Ly (7(58)) Wy (8,7 (5)) X Ly (r(s8) e,

where the constant in the coarse equation depends on §, but not on k.
Proof. By Corollary
Cy(r(se)) < €7 and £y, , (r(sk)) < C".

Then since i(vk, Vk+2) = 1, £, (7(sg)) is also uniformly bounded below, for
otherwise, by Lemma Ly, .5 ((s1)) would be unbounded. So we have

4, (r(sg)) =< 1 and hence again by Lemman we have w., (r(sg)) =< 1.

Moreover, by Lemma [3.14| we have tw., (J,r(sk)) < er, and so the lemma
follows. O

Proof of Proposition[3.18 First, observe that by Corollary (and since «
is a fixed curve and e — 00), we have

. . (5

(3.19) lim M =0, lim M =0, and lim 71( @) =0.
k—oo € k— o0 k—oo  eg

As in the proof of Lemma“ = 1, and so £, (r(sk))er — 00

and i(4, ;) — oco. From Lemma 3 9 and 3.17), we have Eg(fy;f,sk) = ep.
Moreover, ugls(r(sg)) — i(d,v) > O then by (3.18), ux < a. Combining

this with (3.19) and appealing to again, we see that
i(6,7) = lm upls(r(sy)) = lim uk(&s(%, s1) + L (Va1 sk) + Lo, sx)).

By similar reasoning, to eliminate the last term (and thus prove the propo-
sition), it suffices to prove

(3.20) lim (% %)

k—o00 €L

=0.
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To do this, first note that by Lemma (3.15| £o (r(sk)) > fi(sk) > Fix, and
so by Lemma We have

wa (r(sk)) = —2log(la(r(se))) < —2log(F ).
By Lemma we also have
tWa (3, 7(58)) = da(r(0),7(sk)) < falsk) < Fag,

where the additive constant depends on §. Therefore, since F -+< 1, and
since £o(7(sy)) is uniformly bounded by Proposition [3.13| we have

fo(a 1) X i(8, @) ( = 2log(Fie) + Fa )

with additive error that again depends on §. By our growth condition (3.16),
since i(d, @) does not depend on k, there is a constant ¢ > 0 so that

i(o, a)( — 2log(F1 1) + F27k) +c

l
lim 8080 gy = 0.
k—o0 €k k—o0 €k
This proves (3.20)), and hence the proposition. O

Continue to let {si}rex be a sequence with sy € [t}, %] as above, and
suppose that r(sx) — [P] as k — oo in the Thurston compactification and
that {ug}x is a scaling sequence. We set

2(sk) = Wy, (r(sk)) + £y, (7(81)) twy (975 7 (s),
and
y(sk) = Wryp gy (T(Sk)) + £'7k+1 (T(sk)) tW’Yk+1 (’Yma T(Sk)).
Lemma 3.20. For any § € Co(S) with i(0, ) # 0, we have

lim (1) 48, k) + y(sk) (S, Ve+1)

=1.
k—o00 E"/k ((5, Sk) + 67k+1 (5, Sk)

For s = t)., we have

L )i
11m 7 7
k00 Ly, (6, tk) + Z'YkJrl (6, tk)

Proof. As in the proof of Lemma

= 1.

tw, (8, 7(s1)) = two, (Ve 7 (sz))
and
.
Wiy (57 T(Sk)) = Wy, (fym7 T(Sk))

where the implicit constant in these coarse equations depends on 4.

According to Corollary [3.12] £,, (r(sx)) < C’. From the preceding coarse
equations and Lemma we have

(3:21)  w(sk) X Wy (r(sk)) + Loy (r(1)) twa, (8,7(s1)) X Loy (7 (1)) e
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Since e, — oo as k — oo, the following is immediate:

(3.22)
lim x(s)i(6, vk) — fim x(sg)

e Lo sh) R oo 1oy ( () F o (r(58)) g (0o (o))

Similar to (3.21) we have

L (6,sk)
(3'23) y(sk) \+/< W41 (T(Sk)) + E'YkJrl (T(Sk)) tW’Yk+1 (57 T(Sk)) = %

By (3.9) and the growth condition (3.10) we have

lim 1(57 7k+1)
k—o0 €L

=0.

After passing to a subsequence, there are two cases to consider:

Case 1. There exists R > 0 so that y(s;) < R for all k.

In this case, appealing to (3.19) and (3.23) we have

lim y(sk)i(6> 'Yk+1) — lim E%H((Sv Sk)
k—o0 €L k—o0 er

0=

9

and thus

. . z(sg)i(9, S
a0, ) + il ) T MR
im = lim
k—oo Ly, (6,51) + £y, ., (6, 5k) koo Ly (8,5%) L s (Bosk)
e ek
~ lim x(sk)i(d, vk)
k—o0 E’Yk ((5, Sk)

=1.
Case 2. lim y(si) = oo.
k—o0

Here, we can argue as for z(sy), appealing to (3.23) to deduce that

lim y(s1)i(0, Yr41)
k—o0 E’Yk-ﬂ ((5, Sk)

Combined with (3.22) we have

T 2(s1)i(d, %) + y(sx)i(d, Yry1)
1m
k—o0 E’ch (5, Sk) + K’Yk+1 (5, Sk)

=1.

=1.

These two cases prove the first claim of the lemma. For the second claim,
when s;, = ¢, we note that by Corollary|3.11|we have

Copa (P (1)) Ly (r (1)) < €,
and so by Lemma (as in the proof of Lemma/|3.19) we have

Wy (r(t)) <1 and - &y, (r(ty) < 1
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so since tw,_, (6,7(t},)) < 1 by Lemmal3.14| it follows that y(t},) is uniformly
bounded, and thus as in Case 1, we deduce

. x(tz)i(év Vk)
lim =1,
35 0 (8, 8) + Ly (5, 6)

completing the proof. O
We are now ready for the

Proof of Theorem[3.17} First, we show that [Ag] and [A{] are in the limit set
A of r. Consider the sequence of times {t}, } and pass to a subsequence so
that r(t},) — [7] in the Thurston compactification and let {uj} be a scaling
sequence for r(t}, ). Let ¢ be any curve with i(d,7) # 0 and i(d, &) # 0. By
the second part of Lemma together with Proposition we have
5, )i(d
1 — lim 335 5)i(0, v2k) :
k—o0 e’m (57 t2k) + £72k+1 (57 t%)
~ bm uk(tyy,)i(, yar)
k=00 Ug (EW% (6, t/2k) + £'72k+1 (6, tlzk))
lim 1(3, up (thy,)ya)
k—o00
i(9,v)

Therefore klim i(0, upz(thy)y2k) = i(0, 7). We apply this to a set of curves
—00

d1,...,0n sufficient for determining a measured lamination (see , and so
deduce that klim Rz (thy, )yor = V.
—00

On the other hand, [y2x] — [Xo], hence [7] = [Ag], and so [Ag] is in A. A
similar argument using the sequence {t},  ,} shows that [A1] € A.

Now suppose that {si}r is an arbitrary sequence so that r(sy) — [7]
and let {ug}r be a scaling sequence. Adjusting indices and passing to a
subsequence we can assume that s € [t;, 1} ] for all £ € K (some subset
K C N). Passing to a further subsequence, if necessary, we may assume that

K is either a subsequence of even integers or odd integers. Arguing as above,
appealing to the first part of Lemma and Proposition we have

T 2(s1)i(d, %) + y(sk)i(d, Yr+1)
= 11m
k—oo e’Yk ((5, Sk) + EWC-H (5, Sk)

- 1 ur(5x)i(0, Vi) + ury(sx)i(0, Yet1)
= 1m
k—o0 Uk (e"fk (57 5k> + £7k+1 (67 Sk))

kli_)rgoi((s, ug(z(sK)ve + y(Sk)’YkH))
i(d,v)

So, klirn ur(z(se)ve + y(sk)ve+1) = 1(d,7), and as above
—00

v = lim ug(x(sk)v + y(sk)ye+1) = lIm wpz(sp)ye + Um wry(sg)ve+1-
k—o0 k—o0 k—o0
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Now, if K is a subset of even integers, then since the projective classes of
the curves with even indices converge to [\o], the first limit on the right
hand-side above is a multiple of )\g, and since the projective classes of the
curves with odd indices converge to [\1] the second limit above is a multiple
of A1, and hence [7] € [[Ao],[M]]. When K is a subset of odd integers we
have a similar conclusion. This implies that A is contained in [[Ag], [A1]].
Since A contains the endpoints and is connected, it is the entire 1-simplex,
as was desired. O
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