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Equation of state (EOS) insensitive relations, so-called universal relations, between the neutron
star (NS) compactness, its multipolar tidal deformability coefficients, and between the tidal pa-
rameters for binary systems are essential to break degeneracies in gravitational wave data analysis.
Here, we validate and recalibrate these universal relations using a large set of almost 2 million phe-
nomenological EOSs that are consistent with current observations. In doing so, we extend universal
relations to a larger region of the EOS parameter space, most notably to softer EOSs and larger
compactnesses. We show that waveform models that neglect higher-than-leading-order tidal defor-
mations of the NSs accumulate as much as 3.5 radians of dephasing from 20Hz to merger. We also
perform a full Bayesian parameter estimation of the GW170817 data, and we compare the NS radius
constraints produced using universal relations from the literature and the updated fits we propose
here. We find that the new fits yield a NS radius that is smaller by about 500 meters. This difference
is less than the statistical uncertainty on the radius at the signal-to-noise-ratio of GW170817, but
it is significantly larger than the precision anticipated for next-generation detectors.

I. INTRODUCTION

There is still great uncertainty in the equation of state
(EOS) that describes the incredibly dense nuclear mat-
ter of neutron stars (NSs) in the regime above nuclear
saturation density (ρnuc ≃ 2.7 × 1014 g/cm3) due to the
highly non-perturbative nature of nuclear matter in this
regime. Consequently, there is great uncertainty in the
properties of NSs predicted by theory that are highly de-
pendent on the EOS, such as the maximum stable mass
for a non-rotating NS (Mmax), as well as the relation
between the mass of an NS and its radius (a.k.a. the
mass-radius curve). The collection of current NS mass
measurements shows that the lower bound on the value
of Mmax lies firmly within the range 1.9− 2.0 M⊙ [1, 2],
and the discovery of pulsar J0740+6620 (M ≃ 2.14M⊙)
strongly indicates that the lower bound could be con-
strained even higher [3]. Constraints on Mmax and mea-
surements of NS radii have been combined to place con-
straints the EOS using both Bayesian/weighted [4–10]
and unweighted [11–15] techniques. Upcoming preci-
sion NICER measurements of millisecond pulsar radii will
likely constrain the EOS even further through these tech-
niques [1, 11].

However, certain relations between bulk properties of
NSs exhibit universality, meaning they are largely inde-
pendent of the EOS. In the age of gravitational wave
(GW) astronomy, some particularly important relations
are those between the tidal deformability parameters (or,
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simply, tidal deformabilities) of NSs, which are related
to the tidal Love numbers. During a binary neutron star
(BNS) inspiral, the gravitational field of each star causes
a deformation on the other star through tidal forces.
These deformations, which are described by the tidal de-
formability parameters, alter the trajectory of each star,
which becomes imprinted in the resultant GW signal.
Yagi [16] has demonstrated that a robust relation be-
tween several l-th order dimensionless electric tidal de-
formabilities, Λl, of non-rotating NSs exists across a va-
riety of theoretical neutron star equations of state (EOS).
Yagi and Yunes [17, 18] have also shown that a similar
relation exists for BNSs between the symmetric and anti-
symmetric combinations of each NS’s electric quadrupo-
lar tidal deformability, Λ2.

A universal relation reduces a group of parameters to a
single parameter family; that is, the measurement of one
parameter yields all others through the relation, break-
ing the degeneracy between them. In this analysis, we are
concerned with a set of universal relations that are im-
portant for GW astronomy and LIGO/VIRGO observa-
tions (and have notably been used in the LIGO/VIRGO
analysis of GW170817 [19, 20]).

First, there are universal relations between various
multipole tidal deformabilities Λl, the so-called “multi-
pole Love relations.” Tidal deformabilities enter into
the waveform of GW signals of BNS inspirals at differ-
ent post-Newtonian (PN) orders. (The lth order electric
tidal deformability enters into the GW signal at 2l + 1
PN orders [16].) The dominant order is the quadrupole
(Λ2) term, followed by the much smaller octupole (Λ3)
and hexadecapole (Λ4) terms. The Λ3 and Λ4 terms are
difficult to measure accurately in the GW signal due to
their small magnitudes and are often dropped to com-
pute the leading order effect. However, the measurement
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of these quantities as well as the bias introduced by drop-
ping them from calculations can be avoided entirely using
universal relations. With the multipole relations, Λ3 and
Λ4 can be computed directly using the more easily mea-
sureable Λ2, leading to a manifold increase in measure-
ment accuracy of Λ2 [16, 21]. These multipole relations,
then, will be critical tools for the analysis of GW signals
with upcoming third-generation GW detectors such as
LIGO III and the Einstein Telescope [16, 22].

Next, there is a universal relation between Λ2 and the
compactness of a NS, C ≡ M/R, where M and R are
the mass and radius of the NS respectively (we take
G = c = 1). This relation essentially falls out of the
definition for Λ2. The l-th order dimensionless electric
tidal deformabiliy Λl can be defined in terms of C and
the l-th order electric tidal Love number kl as [16, 23]

Λl ≡
2

(2l − 1)!!

kl
C2l+1

. (1)

We see also that the previous multipole relations follow
from and have their physical origins in Eq. (1). It can
be shown that k2 goes roughly as C−1, independent of
the EOS, over the range of C values observed in Nature.
Thus, overall, Λ2 goes roughly as C−6 for all EOSs [14,
24]. There is a clear physical intuition for this relation.
For a given NS mass M , the less compact the NS is (that
is, the larger its radius R), the more easily it is deformed
by a tidal potential, and thus the larger the value of Λ2.
This relation, then, allows one to convert constraints on
Λ2 from GW observations to constraints on the radius
of the NS (or even to compute the radius directly from
Λ2) as has been done in the LIGO/VIRGO analysis of
GW170817 [14, 20].

Finally, there is a universal relation for BNSs between
the symmetric and antisymmetric combinations of Λ2 for
each star, the so-called “binary Love relation.” Consider
a NS binary with primary and secondary masses m1 and
m2 (m1 ≥ m2) and respective quadrupolar tidal deforma-
bilities Λ2,1 and Λ2,2. The symmetric and antisymmetric
combinations of Λ2,1 and Λ2,2 are

Λs ≡
Λ2,1 + Λ2,2

2
, Λa ≡ Λ2,2 − Λ2,1

2
. (2)

The individual tidal deformabilites, Λ2,1 and Λ2,2, are de-
generate in the GW phase information. What is actually
measured in the GW signal is really a combination of Λ2,1

and Λ2,2 [18, 21]. Just as with the multipole relations,
the relation between Λs and Λa (which also involves a
third parameter, the binary mass ratio q ≡ m2/m1) re-
duces the analysis to the estimation and measurement of
a single parameter, Λs, from which Λa (and, thus, Λ2,1

and Λ2,2) can then be computed. Currently, this is the
method by which Advanced LIGO is able to extract indi-
vidual tidal deformability information from GW signals
of BNSs [18, 20, 21]. The approximate universality of
the relation between Λa and Λs follows from the approx-
imate no-hair relations for compact objects, arising from

the approximate symmetry of isodensity self-similarity
[21].

In their original analysis, Yagi [16] and Yagi and Yunes
[17] validated these universal relations against a set of a
few very diverse theoretical EOS models, but not over the
entire space of EOSs allowed by astronomical observation
and theoretical calculations. The motivation for the work
in this paper, then, is to validate these relations over a
much broader extent of the space of all possible EOSs.

In this paper, we update and recalibrate the fits to
these universal relations using a large set of randomly
generated phenomenological EOSs that satisfy astronom-
ical observation and theoretical calculations. The struc-
ture of this paper is as follows. In Sec. II we will de-
scribe the parameterization of the four-piece polytrope
EOS model and the algorithm by which the phenomeno-
logical EOSs are generated. In Sec. III, we analyze the
universal Λ3-Λ2, Λ4-Λ2, and C-Λ2 relations from the col-
lection of phenomenological EOSs. We present the fit-
ting parameters of these relations and compare them to
previous fits. In Sec. IV, we analyze the Λa-Λs relation
and compare the fitting parameters to previous fits, in-
cluding the fit currently used by the LIGO/VIRGO col-
laboration. In Sec. V, we discuss the applications of the
updated fits to GW modelling and parameter estimation.
A concluding summary is given in Sec. VI.

II. METHODS

A. EOS Parameterization

In order to explore the space of all possible EOSs that
satisfy known observational constraints and theoretical
calculations (known as the EOS band), we employ a
Markov chain Monte Carlo (MCMC) algorithm that gen-
erates random piecewise polytropic EOSs. We use a vari-
ation of the piecewise polytropic interpolation scheme de-
veloped by Read et al. [25]. The scheme models the EOS
as a continuous piecewise function of four polyropes:

p(ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K0ρ

Γ0 ρ ≤ ρ0
K1ρ

Γ1 ρ0 < ρ ≤ ρ1
K2ρ

Γ2 ρ1 < ρ ≤ ρ2
K3ρ

Γ3 ρ > ρ2.

(3)

A four-piece model allows for a great diversity of EOSs
(ex. hard/soft EOSs, EOSs with/without phase transi-
tions, etc.) and ensures that the most extreme regions of
the EOS band will be reached by the MCMC algorithm.
The specific choice of a piecewise polytropic ansatz for
the EOS, as opposed to known alternative schemes, does
not significantly bias the resultant shape of the computed
EOS band [13].

The first polytrope piece of the model corresponds to
the presumed known EOS of the outer and inner crust
up to around nuclear density, where K0 = 3.59389 ×
1013 [cgs] and Γ0 = 1.35692 [26]. Here, nuclear density is
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taken to be ρnuc = 2.7×1014 g/cm3. This piece is fixed for
all randomly generated EOSs. The specific choice of the
low-density crust EOS does not significantly determine
the bulk physical properties of the NS [7, 25, 27]

The Ki are determined by continuity; thus, the last
three polytrope pieces of the EOS are specified by six
parameters: three transition densities (ρ0, ρ1, and ρ2)
and three adiabatic indices (Γ1, Γ2, and Γ3). The au-
thors of [25] reduce this to four parameters by fixing the
values of ρ1 and ρ2, as an EOS with a smaller number
of parameters can be reasonably constrained by a only
a few astronomical observations. However, this imposes
a prior assumption on the form of the EOS and nar-
rows the parameter space to a much smaller region of
the EOS band. Thus, to probe the entire EOS band
(including extreme EOSs not ruled out by observation)
without imposing assumptions about the true form of the
EOS, we allow ρ1 and ρ2 to be free parameters as well.
Therefore, each EOS is specified by the full set of six pa-
rameters: ρ0 ∈ [0.15ρnuc, 1.2ρnuc], ρ1 ∈ [1.5ρnuc, 8ρnuc],
ρ2 ∈ (ρ1, 8.5ρnuc], Γ1 ∈ [1.4, 5], Γ2 ∈ [0, 8], Γ3 ∈ [0.5, 8].

Though continuity is imposed on each EOS, the speed
of sound within the NS (cs) as a function of density for
each EOS is not necessarily continuous at the transition
densities, nor is it necessarily monotonic as a result of
these jump discontinuities [11]. O’Boyle et al. [28] have
recently developed a modified version of the piecewise
polytropic scheme by Read et al. [25] used in this anal-
ysis which imposes continuity on cs. We do not use this
modified scheme, as it was published after our analysis.
However, Kanakis-Pegios et al. [29] have shown that the
effects of discontinuities in cs on the bulk properties of a
NS are negligible.

B. MCMC Algorithm

To probe the EOS band in a way that is both thorough
and computationally efficient, we use a MCMC algorithm
in the form of a random walk through the parameter
space. The constraints of the EOS band define a path-
connected region of the six-dimensional parameter space.
A path between any two points in this region, then, cor-
responds to a smooth deformation of the EOS at one
point to the EOS at the second point. Therefore, a se-
ries of small, random deformations of the parameterized
EOS model would correspond to a random walk through
the parameter space. This is the basic idea behind the
algorithm.

Taking the logarithm of Eq. (3) converts the EOS
to a piecewise linear function. A deformation can
then be performed very easily by shifting the positions
of just four points: the three transition points r0 =
{log(ρ0), log(p0)}, r1 = {log(ρ1), log(p1)}, and r2 =
{log(ρ2), log(p2)}; and an endpoint r3 = {15.5, log(p3)}.
The density value of the endpoint is kept fixed at ρ =
1015.5 g/cm3, but this choice is arbitrary, as the only
purpose of the endpoint is to define the slope of the last
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FIG. 1. A single step of the MCMC algorithm. Each of the
four points used to define the current EOS (solid line) is inde-
pendently shifted by a displacement vector of random magni-
tude (shown in red), creating a trial EOS (dashed line). Trial
EOSs are repeatedly generated from the current EOS until
one is found that satisfies observational constraints. When
this occurs, the current EOS is updated to the trial EOS and
the process repeats.

linear piece, Γ3. Both r0 and r3 are restricted to move
one-dimensionally (r0 can only shift along the crust EOS
line and r3 can only shift vertically up or down), while
r1 and r2 have the full two degrees of freedom. Thus, the
whole EOS still has six degrees of freedom.

A single step of the MCMC algorithm proceeds as fol-
lows and is illustrated in Fig. 1. The current EOS is de-
fined by the four points ri and corresponds to the current
position of the algorithm in parameter space. For each
ri, a displacement vector ∆ri is independently generated
from a uniform distribution with a random direction (re-
specting the point’s degrees of freedom) and a random
magnitude (up to a maximum size ∥∆ri∥ ≤ 0.05). A trial
EOS is then defined by the four new points, r′i = ri+∆ri.
The transition densities and adiabatic indicies of this trial
EOS are then checked to see if they are within the bounds
given in Sec. II A.

The physical properties of the trial EOS are then found
by computing a sequence of solutions to the Tolman-
Oppenheimer-Volkoff (TOV) equation. We utilize the
publicly available TOVL code described in Bernuzzi and
Nagar [30] and Damour and Nagar [23] to solve the TOV
equation. The trial EOS is accepted if it satisfies three
weak physical constraints that define the EOS band:

1. causality of the maximum mass NS (i.e. the sound
speed is subluminal, cs < c, below the maximum
stable central density);
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2. Mmax > 1.97M⊙;

3. Λ2 < 800 for the 1.4M⊙ NS.

The upper limit on Λ2 is the 90%-credible upper bound
derived in the LIGO/VIRGO analysis of GW170817 [19]
and was chosen to place a minimally weak constraint on
Λ2. If the trial EOS is accepted, its parameters and phys-
ical properties are then recorded, and the current EOS is
updated to the new EOS, ri → r′i.

The initial EOS is randomly selected from a set of
EOSs that satisfy the constraints computed via a stan-
dard Monte Carlo analysis of the parameter space. The
algorithm is then allowed to proceed until a specified
number of steps have been completed.

III. MULTIPOLE AND COMPACTNESS
RELATIONS

Using the MCMC algorithm, we generate a set of
1,966,225 phenomenological EOSs. The complete set of
EOSs is plotted in Fig. 2 along with the associated mass-
radius curve for each EOS. The plot reveals the approx-
imate shape of the full EOS band defined by the three
weak constraints in Sec. II B. The edges of the band are
populated by the most extreme EOSs where cs = 1. The
upper limit for the value of Mmax correlates strongly with
Λ2 for the 1.4 M⊙ NS [11]; consequently, the constraint
that Λ2 < 800 for the 1.4 M⊙ NS effectively functions as
an upper constraint on the value of Mmax. The largest
value of Mmax in our data set is 2.9096 M⊙, below the
theoretical upper limit from GR of 3.2 M⊙ [27], which
can be seen in the mass-radius band in Fig. 2. Similarly,
and quite understandably, the upper limit for the radius
of the 1.4 M⊙ NS, R1.4, also correlates strongly with Λ2

for the 1.4 M⊙ NS [11]. The Λ2 < 800 constraint then
also functions as an upper limit for R1.4. This explains
why a kink can be seen on the right side of the mass-
radius band at M ∼ 1.4 M⊙ in Fig. 2. The largest value
of R1.4 in our data set is 13.9 km.

The universal Λ3-Λ2, Λ4-Λ2, and C-Λ2 relations are the
nearly-EOS-independent relations that reduce Λ3, Λ4,
and C to functions of the single parameter Λ2 for any
given NS. To analyze these relations across our set of
phenomenological EOSs, we solve the TOV equation for
each EOS at sixteen evenly spaced central density values
in the range 3.09× 1014 g/cm3 ≤ ρc ≤ 3.09× 1015 g/cm3

and then extract Λ2, Λ3, Λ4, and C from the NS solution
at each density. (If the central density of the maximum
mass NS for a given EOS falls below any of the density
values, then the TOV equation is not solved for those
density values.) A total of 30,133,746 NS solutions were
computed.

In Fig. 3, we plot (a) Λ3 vs. Λ2 and (b) Λ4 vs. Λ2 for
our set of NS solutions. The Λ3-Λ2 and Λ4-Λ2 relations

are fitted with the polynomial-like expression

ln Λ3,4 =

6∑︂
k=0

ak (lnΛ2)
k
. (4)

This is an updated version of the fitting function used
by Yagi [16]. The original fitting function is quartic in
ln Λ2. However, with our larger data set, a quartic fit
is insufficient to remove trends from the residual of each
relation. Thus, we employ a fit that is 6th order in ln Λ2.
The quality of the fits can be appreciated in Fig. 3, where
the residuals of log10 Λ3 and log10 Λ4 are given with 95%
prediction intervals. The outliers in the peak that can
be seen in both residual plots between Λ2 = 1 and Λ2 =
100 are associated with small values of Γ2, indicating a
softening in the EOS. The most extreme models, those
with the largest deviations from the fit, have Γ2 < 1.5.
This can be seen clearly in Fig. 14 in Appendix A. In
Figs. 4 and 5, we compare the 68%, 95%, and 99.7%
relative errors of the fits in this work to those the original
fits by Yagi [16]. At each percentage error level, our fits
demonstrate a general improvement in accuracy over the
original fits.

Over the range of tidal parameters most relevant to
LIGO observations, Λ2,Λ3,Λ4 ∈ [1, 104], our Λ3-Λ2 fit
holds to a maximum error of ∼30%, with 95% of the
errors below ∼13%. The original fit to this relation holds
to a maximum error of ∼30%, with 95% of the error below
∼14%. Our Λ4-Λ2 fit holds to a maximum error of ∼45%,
with 95% of the errors below ∼25%. The original fit to
this relation holds to a maximum error of ∼40%, with
95% of the error below ∼26%.

The fitting parameters a⃗ = {ak} of the new fits and the
original quartic fits by Yagi [16] are given in Table I. The
leading-order terms of the fits are the constant (k = 0)
and linear (k = 1) terms. (This is evident from the near-
linear shape of the distribution of points in each log-log
plot in Fig. 3.) Therefore, a direct comparison can be
made between the leading-order terms of tbe original fits
and our new fits. The coefficients a0 and a1 for our fits
are in good agreement with those of the original fits. This
demonstrates the validity of the original Λ3-Λ2 and Λ4-
Λ2 fits across the EOS band.

Just like the multipole relations, the universal rela-
tion between C and Λ2 reduces C to a function of Λ2.
This relation essentially falls out of the definition of Λ2

in Eq. (1). In Fig. 6, we plot C vs. Λ2 for our set of
NS solutions. The C-Λ2 relation is fitted with a similar
polynomial-like expression

C =

6∑︂
k=0

ak (lnΛ2,3,4)
k (5)

This fitting function is an updated version of the function
used by Maselli et al. [31] and presented in [18]. The
original fitting function is quadratic in ln Λ2. Once again,
with our larger data set, we are required to go to 6th
order in ln Λ2 to remove all trends from the residual of
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(a) (b)

FIG. 2. The collection of 1,966,225 phenomenological EOSs (a) and associated mass-radius curves (b) computed using the
MCMC algorithm. Color here is used to indicate the maximum sound speed cs reached within the maximum mass NS of each
EOS (EOSs with smaller max(c2s) are drawn on top of ones with larger max(c2s)). The collection reveals the approximate shape
of the EOS band. The most extreme EOSs that reach the edges of the band are those where cs = 1.

(a) (b)

FIG. 3. Universal (a) Λ3-Λ2 and (b) Λ4-Λ2 relations for NSs from the collection of phenomenological EOSs. Sixteen NSs with
central densities in the range 3.09×1014 g/cm3 ≤ ρc ≤ 3.09×1015 g/cm3 were computed for each EOS. The relations are fitted
with the polynomial expression in Eq. (4), with the fitting parameters for each relation given in Table I. The log residuals of
both fits are shown with 95% prediction intervals.

our fit. The fitting parameters a⃗ = {ak} are also given
in Table I. Similar to the residuals in Fig. 3, there is
a downwards-pointing peak between Λ2 = 1 and Λ2 =
100 in the residual in Fig. 6. These outliers are also
associated with small values of Γ2, with the most extreme
having Γ2 < 1.5.

In Fig. 7, we compare the 68%, 95%, and 99.7% rela-
tive errors of the fit in this work to those of the original fit
by Maselli et al. [31]. Our fit demonstrates a significant
improvement in accuracy over the original fit at larger
values of C.

As one can see from Fig. 5, the range of Λ2 values most
relevant to LIGO observations, Λ2 ∈ [1, 104], translates
into a corresponding range C ∈ [0.1, 0.35]. Over this
range, our fit holds to a maximum error of ∼10%, with
95% of the errors below ∼5%. The original fit to this
relation holds to a maximum error of ∼15%, with 95% of
the error below ∼14%. This is the largest improvement in
accuracy out of all the fits in this work. We are able then
to confirm the concerns raised by Kastaun and Ohme [32]
that existing fits to the C-Λ2 are unreliable at large C.

The fitting parameters of the quadratic fit by Maselli
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FIG. 4. 68%, 95%, and 99.7% relative error of the Λ3-Λ2 fit
as a function of Λ3. The solid lines represent the error of the
new fit in this work, and the dashed lines represent the error
of the original fit by Yagi [16].

FIG. 5. 68%, 95%, and 99.7% relative error of the Λ4-Λ2 fit
as a function of Λ4. The solid lines represent the error of the
fit in this work, and the dashed lines represent the error of
the original fit by Yagi [16].

et al. [31] are given in Table II. The leading-order terms
are once again the constant and linear terms, as can be
seen in the near-linear shape of the distribution of points
in Fig. 6. The coefficients a0 and a1 are in generally
good agreement between the original and updated fits;
however, there is a relatively large difference between the
values of a2 as compared to what is seen with the mul-
tipole fits. This is a consequence of the improvements
to the fit made by using both a higher-order polynomial
function and a larger data set over a greater extent of the
EOS band.

In addition to the our fit to the C-Λ2 relation, we also
present entirely new fits to the C-Λ3 and C-Λ4 relations,
the fitting parameters of which are also given in Table

FIG. 6. Universal C-Λ2 relation for NSs from the collection
of phenomenological EOSs. The relation is fitted with the ex-
pression in Eq. (5), with the fitting parameters given in Table
II. The residual of the fit is shown with the 95% prediction
interval. The distribution of Λ2 values roughly goes as C−6.

FIG. 7. 68%, 95%, and 99.7% relative error of the C-Λ2 fit
as a function of C. The solid lines represent the error of the
fit in this work, and the dashed lines represent the error of
the original fit by Maselli et al. [31]. Our fit has a drastically
smaller error at larger values of C than the original fit has.

II. While these two relations can be derived from the
multipole and C-Λ2 fits, these explicit fits have a smaller
error, comparable to that of the C-Λ2 fit.
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Fit Relation a0 a1 a2 a3 a4 a5 a6

Yagi [16] Λ3-Λ2 −1.15 1.18 2.51× 10−2 −1.31× 10−3 2.52× 10−5 - -
Λ4-Λ2 −2.45 1.43 3.95× 10−2 −1.81× 10−3 2.80× 10−5 - -

This work Λ3-Λ2 −1.052 1.165 6.369× 10−3 5.058× 10−3 −7.268× 10−4 3.794× 10−5 −6.803× 10−7

Λ4-Λ2 −2.262 1.383 1.662× 10−3 1.225× 10−2 −1.752× 10−3 9.667× 10−5 −1.886× 10−6

TABLE I. Fitting parameters a⃗ = {ak} for the Λ3-Λ2 and Λ4-Λ2 relations given in Eq. (5) from the original fits in [16] and
from the fits in this work to the phenomelogical EOSs.

Fit Relation a0 a1 a2 a3 a4 a5 a6

Maselli et al. [31] C-Λ2 0.371 −3.91× 10−2 1.056× 10−3 - - - -
This work C-Λ2 0.3389 −2.293× 10−2 −5.172× 10−4 −2.449× 10−4 5.161× 10−5 −3.03× 10−6 5.841× 10−8

C-Λ3 0.3180 −2.067× 10−2 −4.713× 10−4 3.779× 10−5 3.248× 10−6 −2.453× 10−7 4.253× 10−9

C-Λ4 0.3001 −1.764× 10−2 −1.518× 10−4 1.449× 10−5 2.228× 10−6 −1.487× 10−7 2.514× 10−9

TABLE II. Fitting parameters a⃗ = {ak} for the C-Λ2, C-Λ3, and C-Λ4 relations given in Eq. (5) from the original fit in [31]
and from the fits in this work to the phenomelogical EOSs.

IV. BINARY RELATION

The universal Λa-Λs relation is slightly more compli-
cated than the multipole and compactness relations, as
it reduces Λa to a function of two parameters: Λs and
the binary mass ratio q for any given NS. We analyze the
Λa-Λs relation across the set of phenomenological EOSs
by computing sequences of random BNSs using a random
sample of a quarter of the total number of EOSs. We use
the convention that the primary and secondary masses
are given by m1 and m2 respectively, so m1 ≥ m2. The
binary mass ratio is then defined as q ≡ m2/m1. For
each EOS, twenty random BNSs were generated. For
each BNS, two masses were selected uniformly from the
range [1 M⊙,Mmax], where Mmax is the maximum sta-
ble mass for the given EOS. The larger mass and smaller
mass were then set as m1 and m2 respectively. The TOV
equation was then solved for both stars in the binary.
The quadrupolar tidal deformability of each star was ex-
tracted from the solution. Here we define Λ2,1 and Λ2,2

as the tidal deformabilities of the primary and secondary
respectively. The symmetric and antisymmetric combi-
nations of Λ2,1 and Λ2,2 were then computed using the
definitions in Eq. (2). A total of 5,454,778 BNS solutions
were computed.

In Fig. 8, we plot Λa vs. Λs vs. q for our set of BNS
solutions. We employed the same fitting function used in
the original analysis by Yagi and Yunes [17, 18], which is
a Padé approximant multiplied by a controlling factor:

Λa = Fn̄(q) Λs

1 +
∑︁3

i=1

∑︁2
j=1 bijq

jΛ
i/5
s

1 +
∑︁3

i=1

∑︁2
j=1 cijq

jΛ
i/5
s

. (6)

The controlling factor Fn(q) is derived from the Newto-
nian limit of the Λa-Λs relation where the EOS is treated
as a single Newtonian polytrope with polytropic index n:

Fn(q) ≡
1− q10/(3−n)

1 + q10/(3−n)
. (7)

If one computes this limit with an EOS that is not a
single polytrope, n instead represents the effective poly-
ropic index of the EOS. When considering multiple EOSs
in the context of the universal relation, n is replaced with
n̄, which is the average effective polytropic index across
the set of EOSs. Yagi and Yunes [17] originally analyzed
the Λa-Λs relation using a set of theoretical EOSs with an
average effective polytropic index of n̄ = 0.743. Chatzi-
ioannou et al. [33] reproduced the fit using three theo-
retical EOSs with diverse physical properties while still
using n̄ = 0.743. The reproduced fit is the version that
was used in the LIGO/VIRGO analysis of GW170817
[20]. In this analysis, we also take n̄ = 0.743 to allow for
a direct comparison between our fit and the two previous
fits. The fitting parameters b⃗ = {bij , cij} for all three
fits are given in Table III. We use the parameters of the
fit by Chatziioannou et al. [33] as the initial parameter
values for our fit.

The residual of the fit is shown from two perspectives
in Fig. 9. In Fig. 10, we compare the 68%, 95%, and
99.7% relative errors of the this fit to those the original fit
by Yagi and Yunes [17, 18]. (We verify that the relative
error of the fit by Chatziioannou et al. [33] is identical
to that of the original fit.) Our fit holds to a maximum
error of ∼40%, with 95% of the error below ∼29%. The
original fit holds to a maximum error of ∼43%, with 95%
of the error below ∼31%.

We demonstrate the improvement our updated fits pro-
vide over the original fits to GW analysis by comparing
the accuracy with which the radii of NS can be recovered
from GW signals. The reduced tidal parameter

Λ̃ =
16

13

(︃
(m1 + 12m2)m

4
1Λ2,1

(m1 +m2)5
+

(m2 + 12m1)m
4
2Λ2,2

(m1 +m2)5

)︃
(8)

can be recovered the GW waveform [34–36] and is used
by LIGO to compute the radii of both NSs in a binary
merger. First, we compute the value of Λ̃ for each BNS
solution using Eq. (8). Using the definitions in Eq. (2)
and the Λa-Λs relation, we can re-express Eq. (8) in
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FIG. 8. Approximate universal Λa-Λs relation for NSs from the collection of phenomenological EOSs, shown from two different
angles. Twenty random binaries with 1M⊙ ≤ m2 ≤ m1 ≤ Mmax were computed for each EOS. The relation was fitted with
the expression in Eq. (6), with the fitting parameters given in Table III.

Fit b11 b12 b21 b22 b31 b32 c11 c12 c21 c22 c31 c32
Yagi and Yunes [17, 18]a -29.60 11.22 138.41 -43.06 -207.95 180.26 -27.13 7.915 105.18 7.494 -97.48 -17.48
Chatziioannou et al. [33] -27.74 8.42 122.69 -19.76 -175.50 133.71 -25.56 5.585 92.03 26.86 -70.25 -56.31

This work -18.32 3.875 28.06 11.08 43.56 17.3 -18.37 1.338 15.99 55.07 98.56 -135.1
a The parameter a from these papers has been factored out of these parameter values.

TABLE III. Fitting parameters b⃗ = {bij , cij} for the Λa-Λs relation given in Eq. (6) from the original fit in [17, 18], from the
updated fit in [33] used by LIGO/VIRGO, and from the fit in this work to the phenomenological EOSs. For all three fits, the
average effective polytropic index is taken to be n̄ = 0.743.

FIG. 9. Residual of the Λa-Λs relation fit for Λs < 4000 seen
from two perspectives. The fit becomes increasingly better as
Λs → 0 and as q → 1.

terms of Λs and q. Taking m1 and m2 to be known,
we then solve Eq. (8) numerically for Λs and recover a
measurement of Λs for each BNS solution. The Λa-Λs

FIG. 10. 68%, 95%, and 99.7% relative error of the Λa-Λs fit
as a function of Λa. The solid lines represent the error of the
fit in this work, and the dashed lines represent the error of
the original fit by Yagi and Yunes [17, 18].

relation then yields a measurement for Λa, allowing us to
recover Λ2,1 and Λ2,2. Finally, we use the C-Λa to com-
pute C for each NS, which when combined with m1 and
m2 gives us the radius of each NS. In Fig. 11, we com-
pare the 68%, 95%, and 99.7% relative errors of the radii
recovered using the fits in this work to those recovered us-
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FIG. 11. 68%, 95%, and 99.7% relative error of NS radii
recovered using the fits to the Λa-Λs and C-Λ2 relations as a
function of the radius. The solid lines represent the error of
the fits in this work, and the dashed lines represent the error
of the fits by Chatziioannou et al. [33] and Maselli et al. [31].

ing the fits by Chatziioannou et al. [33] and Maselli et al.
[31]. At the 68% and 95% error levels especially, our re-
covery show a definite improvement in accuracy over the
original recovery. This is primarily a result of the drastic
improvement in accuracy afforded by the updated C-Λs

fit. Our recovery has a maximum error of ∼10%, with
95% of the of the error below ∼6%. The original recov-
ery has a maximum error of ∼8%, with 95% of the error
below ∼6.5%

V. APPLICATION TO WAVEFORM
MODELING AND PE

We now discuss the impact of the new quasiuniver-
sal relations in GW modeling and PE using the state-of-
art effective-one-body model TEOBResumS, that provides
us with multipolar tidal waveforms for the full inspiral-
merger regime [39–41]. Specifically, the tidal sector of
TEOBResumS includes the ℓ = 2, 3, 4 gravitoelectric and
the ℓ = 2 gravitomagnetic tidal terms in the binary inter-
action potential at the highest known post-Newtonian or-
der, and additionally implements a resummation for the
ℓ = 2, 3 (ℓ = 2) gravitoelectric (magnetic) terms based
on gravitational-self-force results [41–43]. The quasinuni-
versal relations among the tidal polarizability parameters
with different ℓ are employed to obtain the octupolar and
hexadecapolar from the quadrupolar parameters.

The importance of including the ℓ = 3, 4 corrections
in the waveform model is highlighted in the left panel of
Fig. 12. The figure shows the contribution of the octupo-
lar and hexadecapolar gravitoelectric terms for 103 bina-
ries that are identified by different values of the symmet-
ric mass ratio and the reduced tidal parameter Λ̃. These
tidal terms accelerate the inspiral and give an overall con-

tribution of 0.5 radians to one cycle for a starting GW fre-
quency of 20Hz, Cf. [44]. The smallest phase differences
are found for smaller reduced tidal parameters and equal
masses binaries. The phase differences are accumulated
from GW frequencies ≳ 500Hz (Cf. [45]), correspond-
ing to the last orbits before merger. We remark that
current differences between TEOBResumS and numerical-
relativity waveforms are precisely of order 0.5-1 rad and
are comparable to the numerical-relativity error [39–41].
Thus, this analysis indicates that an accurate modeling
of higher multipoles in the binary interaction potential
can be relevant to capture the merger waveform.

The accuracy of the fitting formulas for the Λ3-Λ2 and
Λ4-Λ2 relations can impact significantly the GW phase.
The GW phase differences induced by the use of the new
fits of Eq. (4) and those of [37] is shown in the right panel
of Fig. 12. Differences of order 10% in the fitting formulas
result in differences up to one radian in the GW (again
we use an initial frequency of 20Hz). These differences
are relevant for GW observations at signal-to-noise ratio
≳80, at which the universal relations can, among other
modeling choices, make a difference towards obtaining
faithful waveform models [46].

Finally, we perform Bayesian parameter estimation of
GW170817 using TEOBResumS and the pbilby [38, 47] in-
frastructure with the dynesty [48] sampler. Strain data
is downloaded from the Gravitational Waves Open Sci-
ence Center (GWOSC) [49], and the noise curves used
are those provided in [50]. Our analysis is identical to
the one performed in [46], to which we refer for all the
technical details, except for the use of the quasiuniversal
relations developed here. We just recall that we use a
sampling rate of 2048Hz, that implies a cutoff maximum
frequency of 1024Hz for the analysis. This conservative
choice ensures that no high-frequency systematic effect
will affect our estimates [46], and distinguishes our anal-
ysis from that of e.g [38, 50]. In Fig. 13 we report the
marginalized one-dimensional posteriors for the reduced
tidal parameter and the NS radius for the original run
of [46] that used the Yagi relations (red inline) and for
the one performed here with the new quasiuniversal rela-
tions (black inline). The two Λ̃ distributions are largely
compatible, with the newly computed posteriors display-
ing slightly more support for low values (Λ̃ ≲ 300). This
difference is negligible with respect to statistical fluctu-
ations, but can nonetheless be understood by observing
that the new fits predict stronger tidal effects than the
ones of Yagi and Yunes. The reduced tidal parameter
distributions can then, together with the mass ratio and
component mass posteriors [51], be mapped into esti-
mates of the radii of the stars. By combining Eq. (6)
with the definition of the reduced tidal parameter and
Eq. (5) we estimate the distribution of the radius of
the lighter star R2. Using the coefficients collected in
Tab. II and III we obtain RGodzieba+

2 = 11.9+1.2
−2.1 and

RYagi+
2 = 12.4+1.2

−1.7. While the two results lie well within
the statistical uncertainty of the other, their difference
(RGodzieba,median

2 − RYagi,median
2 ∼ 0.5 km) can be fully
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(a) (b)

FIG. 12. Left: impact on the GW phase of the ℓ = 3, 4 corrections in the binary interaction potential. The plot shows the
phase contribution of these corrections for different binaries, identified by different values of the symmetric mass ratio and the
reduced tidal parameter (ν, Λ̃), evolving from a GW frequency of 20Hz to merger. Right: GW phase differences given by the
fitting relations Λ̄2(Λ̄3,4) and those given by [37]

(a) (b)

FIG. 13. Left panel: the marginalized one dimensional posterior distributions of Λ̃, recovered with the TEOBResumS approximant
and the fits of Yagi (red) or those presented in this paper (black). We additionally compare our results with those obtained
in [38] (shaded gray area). Although statistical fluctuations are larger than any systematic effect due to the choice of quasi-
universal relation, the use of the new phenomenological relations slightly increases the support at values of Λ̃ ≲ 300. Right
panel: the radius of the lighter component of the binary, estimated through quasiuniversal relations from the reduced tidal
parameter and mass distributions. The shaded distributions correspond to the values obtained when mapping the bilby catalog
Λ̃ posteriors into radii values with either the new fits (gray) or the Yagi formulae. We find that the newly fitted coefficients for
Eq. (5) lead to lower radii values than those predicted by Yagi and Yunes.

attributed to quasiuniversal relations, in particular the
C-Λ2 fit. The discrepancy found, negligible for current
events, will become very relevant when analyzing GW
data from loud BNS events detected by advanced and
third generation detectors. The source parameters recov-
ered for such systems will be affected by small statistical
fluctuations. A simple error propagation, applied to the

fit of R1.4M⊙ of [14], gives

σR1.4M⊙
= (11.2± 0.2)

M
4800

(︂ Λ̃

800

)︂−5/6

σΛ̃ (9)

where we assumed that the error on the chirp mass
M is negligible. Therefore, σΛ̃ ∼ 20 (value expected
for SNRs ∼ 300) translates into σR1.4M⊙

∼ 50m for a
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(M, Λ̃ = 1.18, 800) BNS system. This value amounts to
approximately one tenth of the difference found above
due to universal relations.

VI. CONCLUSION

We present updated fits to several universal relations
between bulk properties of NSs relevant to current and
future GW astronomy. The original fits can be found
in [16–18, 31]. The updated fits are produced by sam-
pling from a larger volume of the space of all possible NS
EOSs not yet excluded by astronomical observation than
had been done in the original fits. We sample the space
of possible EOSs using an MCMC algorithm, which has
a transition rate determined by three general physical
constraints. Our results confirm and extends previously
identified universal relations to a much larger set of EOSs.

First, we update fits to relations among three of the
l-th order electric tidal deformabilities, Λ2, Λ3, and Λ4.
On the whole, the update decreases the relative errors of
the fits by ∼1% compared to those of the original fits.

Next, we update the fit to the relation between the
compactness C and Λ2. For small C (C < 0.25), our fit
has a relative error comparable to that of the original fit.
However, for large C (C > 0.25), the error of our fit is as
much as ∼10% smaller than that of the original fit. We
can attribute this increase in accuracy at least in part to
better sampling of EOSs that admit NSs with C > 0.3.
This is the largest improvement in accuracy among our
updated fits.

Finally, we update the fit to the relation between the
symmetric (Λs) and antisymmetric (Λ2) combinations of
Λ2 for each star in a BNS. On the whole, the update
decreases the relative error of the fit by ∼1% compared to
that of the original fit. To demonstrate the improvements
updating these fits make to GW analysis, we use the
use the C-Λ2 and Λa-Λs relations to recover the radii
of BNSs. We get ∼0.5% decreased relative error in the
recovered radii using our updated fits versus using the
original fits. This is due almost entirely to the drastic
improvement in the accuracy of the C-Λ2 fit.

We also discuss the implications of universal relations
and the updated fits for GW waveform modelling and
parameter estimation. Higher-order (l > 2) multipole
corrections in the waveform model are important for de-
termining the GW phase of a merger. The l = 3, 4 cor-
rections in particular contribute as much as 3.5 radians

of accumulated dephasing at merger for a starting GW
frequency of 20Hz. Thus, accurate modelling of l > 2
multipoles is relevant for capturing the merger waveform
faithfully. When using the original and updated multi-
pole fits to recover Λ3 and Λ4 in waveform modelling, we
find that the phase difference between the merger wave-
forms computed from each fit is of about 0.5 radians from
20Hz to merger.

We perform a Bayesian parameter estimation of
GW170817 using both the original and updated C-Λ2

and Λa-Λs fits, and we compare the distributions for the
radius of the secondary in the merger yielded by each set
of fits. The results from the updated fits are consistent
with those of the original fits; however, the updated fits
slightly favor a smaller radius, with the difference in the
medians of the two distributions being ∼0.5 km. This
is due almost entirely to the increased accuracy of the
updated C-Λ2 fit. Advanced and third generation GW
detectors will be sensitive enough to measure NS radii
to comparable accuracy. Thus, with increased sensitiv-
ity, the accuracy of fitting formulas for universal relations
will become very relevant.
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Appendix A

FIG. 14. The log residual of the fit to the universal Λ3-Λ2

relation, with each point colored according to the value of
the third adiabatic index Γ2 of the associated EOS model.
The NSs that deviate the farthest from the relation are those
whose associated EOS model are soft, having Γ2 < 1.5.
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