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1. Introduction

Let S = Sg be a closed, orientable surface of genus g. A pseudo-Anosov
homeomorphism f : S ! S is a virtual lift if there exists a branched cover
p : S ! ⌃ with degree deg(p) > 1 over a (possibly nonorientable) surface ⌃,
and a pseudo-Anosov � : ⌃ ! ⌃ so that � lifts to a power of f by p; that
is, there exists n > 0 so that pfn = �p. We say that fn is a lift of � via p.

Franks-Rykken [6] showed that if f : S ! S is a pseudo-Anosov (with
orientable stable/unstable foliations), g � 2, and if the stretch factor �(f)
is a quadratic irrational, then f is a virtual lift—in fact, the branched cover
is over a torus p : S ! ⌃ (cf. Gutkin-Judge [7] and Kenyon-Smillie [8]). In
2004, Farb asked (see [19]) if a version of this is true when the degree of
the stretch factor was greater than 2. Specifically, he asked if there exists
a function h : N ! N so that a pseudo-Anosov homeomorphism f : Sg ! Sg

is a virtual lift if the degree of �(f) over Q is at most d and g � h(d). Here
we prove that the answer is ‘no’.

Main Theorem. For any even d � 4 and all g � d
2 + 2, there exist pseudo-

Anosov homeomorphisms fg,d : Sg ! Sg with orientable stable/unstable folia-
tions and �(fg,d) of degree d over Q, so that fg,d is not a virtual lift.

1 CL was partially supported by NSF grant DMS-1510034, and
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We note that simultaneously and independently, M. Yazdi [23] has also
answered Farb’s question in the negative. In [23] he shows that for all g � 3,
there are pseudo-Anosov maps fg : Sg ! Sg so that �(fg) has degree 6 and
at most finitely many of them can be virtual lifts. The method of proof is
di↵erent from that given here.

We also mention the related results [2, Lemma 6.2] and [19, Corollary
1.4] that both describe conditions which guarantee that a pseudo-Anosov
is not a virtual lift. In the former case no control on the stretch factor is
given, and in the latter the stretch factors have degree 6g�6 (the maximal
possible degree).

We complete the Introduction by briefly describing the idea of the
proof of the Main Theorem. The pseudo-Anosov homeomorphisms are
constructed as products of high powers of Dehn twists. The twisting curves
and powers are chosen in such a way that we can apply Strenner’s results
from [19] to ensure that the stretch factor has the appropriate degree. To
prove that the homeomorphisms are not virtual lifts, we analyze the flat
metrics defining the associated Teichmüller axes. Appealing to work of Rafi
[18], Minsky [16], and Brock-Canary-Minsky [5], we prove that for carefully
chosen twisting curves, there is a biinfinite collection of simple closed curves
that are “characteristic” for the pseudo-Anosov. These characteristic curves
are described in terms of Euclidean cylinder neighborhoods with respect to
the flat metrics, and if a pseudo-Anosov homeomorphism is a virtual lift,
we prove that they must project to the quotient surface in a very specific
way. The proof is completed by choosing the twisting curves so that the
associated biinfinite sequence of curves cannot project to any nontrivial
quotient surface in that way.

Remark 1.1. In fact, no pseudo-Anosov element of the Veech group
containing the pseudo-Anosov mapping class from the Main Theorem will
be a virtual lift; see §5.1. However, we do not know whether there are other
elements in the Veech group, so we have not made it a point to emphasize
this fact. There is a simpler proof for the special case of d = 4, where we
can find more elements of the Veech group that are not virtual lifts, and
this is Theorem 5.3, whose proof also appears in §5.1. We have made this
last section mostly independent from the rest of the paper, so one can find
a negative answer to Farb’s question in these few pages, at least in the
special case of d = 4.

Acknowledgement: The authors wish to thank the organizers of the Ober-
wolfach Workshop “Surface Bundles” in December 2016 for their invitation
to attend the workshop and where this work started. We also wish to thank the
organizers of the third GEAR Network Retreat, Stanford August 2017 where
this work was largely completed. The authors would also like to thank Balázs
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2. Surfaces, curves, and annular projections

Suppose S is any orientable hyperbolic surface of finite topological type.
When convenient, we view S as a Riemann surface in which punctures are
filled in and treated as marked points. Here we collect a few facts about
curve complexes and subsurface projections. See [13] and [14] for more
details.

The curve graph of S, C(S), is the simplicial complex whose vertex set
C(0)(S) is the set of isotopy classes of essential simple closed curves on S. A
pair of isotopy classes determine an edge if and only if they can be realized
disjointly on S—equivalently, the geodesic representatives with respect to
the hyperbolic metric are disjoint. We make C(S) into a geodesic metric
space by declaring each edge to have length 1. According to [13], C(S) is
�–hyperbolic.

If Y is an annulus, we define the curve graph of Y , C(Y ), in a similar
fashion: the vertex set consists of isotopy classes of essential arcs in Y ,
where isotopies are required to fix the boundary pointwise. Edges connect
isotopy classes when there are representatives with disjoint interiors, and
we similarly make C(Y ) into a geodesic metric space.

The curve graphs of annuli arise from annular subsurfaces of S as follows.
Given an essential annulus Y ⇢ S, there is a corresponding covering space
eY ! S. The ideal boundary of the universal covering H

2 ! S determines
an ideal boundary of eY , and we let Y denote eY together with its ideal
boundary, making Y into a compact surface with boundary. Given a vertex
↵ of C(S), representing ↵ by its hyperbolic geodesic representative, we let e↵
denote the union of the arcs in the preimage of ↵ in Y . We define ⇡Y (↵) to
be the union of the components of e↵ which are essential in Y (together with
their ideal endpoints); that is, the components with an endpoint on each
boundary component of Y . We view ⇡Y (↵) as a subset of C(Y ). If µ is a
measured foliation on S, we can similarly define ⇡Y (µ) to be the set of lifts
of non-singular leaves with endpoints on distinct boundary components.
Note that if ↵ is either a curve or a measured foliation, ⇡Y (↵) ⇢ C(Y )
has diameter 1 (any two components are disjoint). Given two curves or
measured foliations ↵, �, if ⇡Y (↵) and ⇡Y (�) are both nonempty, we define
the projection distance

dY (↵, �) = diam(⇡Y(↵) [ ⇡Y(�)).

One also has dY (↵, �) = max i(↵0, �0)+1, where the maximum is taken over
↵0 2 ⇡Y (↵), �0 2 ⇡Y (�), and i denotes the geometric intersection number
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of the isotopy classes of arcs ↵0, �0 (the number of intersection points of the
interiors, minimized over representative of the relative isotopy classes, also
equal to the absolute value of the algebraic intersection number). With
these definition, dY satisfies a triangle inequality whenever the projections
involved are nonempty. See [14], especially §2.4, for more on these (and
other) subsurface projections.

The core curve of Y is an essential simple closed curve � in S and every
essential simple closed curve is the core curve of an essential annulus. We
sometimes write C(�), ⇡� , and d� instead of C(Y ), ⇡Y , and dY , respectively.
We have ⇡�(↵) 6= ; if and only if the geometric intersection number,
i(↵, �) 6= 0.

One of the key features of subsurface projections is the following Bounded
Geodesic Image Theorem (see [14]) in the case of annuli.

Proposition 2.1. There exists a constant M > 0 with the following property.
If ↵, � are two curves in C(S) and d�(↵, �) > M , then the geodesic from ↵
to � contains a vertex � so that i(�, �) = 0, and hence � is adjacent to � in
C(S).

The following is a special case of the Behrstock Inequality [4] for annuli
that we will need.

Proposition 2.2. Suppose ↵, �, � are three simple closed curves on S that
pairwise intersect. If d�(↵, �) � 10 then d↵(�, �)  3.

This version with explicit constants is proved by Mangahas in [11, 12].

3. Teichmuller geodesics and Euclidean cone metrics

A pseudo-Anosov homeomorphism f : S ! S preserves a Teichmüller
geodesic axis defined by a unit area Euclidean cone metric q0 with cone
angles greater than 2⇡ at non-marked points, for which the stable and
unstable foliations µ± are orthogonal, geodesic foliations. Furthermore,
in preferred coordinates µ± are horizontal and vertical, respectively, and
the transverse measures are given by horizontal and vertical variation,
respectively. The di↵erent points along the axis are conformal structures of
Euclidean cone metrics qt in which the stable and unstable foliations have
their transverse measures scaled as etµ+, e�tµ� (maintaining unit area for
the Euclidean cone metrics). We call the family of Euclidean cone metrics
Q = {qt}t2R the associated flat metics. Note that any two metrics in the
family di↵er by an a�ne di↵eomorphism (away from the cone points). We
write `qt(�) for the qt–length of a curve �.
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If fn is a lift of � : ⌃ ! ⌃ via a branched cover p : S ! ⌃, then
the associated flat metrics ⌅ = {⇠t} for � can be chosen so that qt =p
deg(p) p⇤(⇠t) (this scaling is necessary since qt and ⇠t have unit area). In

this case, we say that Q = {qt} and ⌅ = {⇠t} are compatible.
If Q = {qt} are the flat metrics associated to a pseudo-Anosov on S

as above, a Q–cylinder or flat cylinder for Q (or just flat cylinder, if Q is
understood) is an annulus Y ⇢ S so that the path metric on Y coming
from some qt 2 Q makes Y into a Euclidean product I ⇥ S1, where I
is an interval (we allow the possibility that Y is only embedded on its
interior, but still write Y ⇢ S). Note that if the metric on Y is a Euclidean
product for some qt 2 Q, then it is for all qt 2 Q (and any two such
metrics di↵er by a�ne di↵eomorphism). The qt–modulus of a flat cylinder
Y ⇢ S, denoted M(Y, qt), is the ratio of the height to circumference, and
M(Y,Q) = max{M(Y, qt) | t 2 R} is the maximum modulus. If � ⇢ S is
a two-sided simple closed curve, there is a maximal flat cylinder Y� ⇢ S
whose core curves are isotopic to �, and we set M(�, qt) = M(Y� , qt) and
M(�,Q) = M(Y� , Q). We are allowing the possibility of a degenerate
cylinder, that is, one with width zero. In this case, the cylinder consists
of the unique geodesic representative (which is a concatenation of saddle
connections), and we have M(�, qt) = 0 for all t.

We say that � is a Q–cylinder curve if M(�,Q) > 0. There is a unique
t� 2 R, called the balance time of �, so that the vertical and horizontal
variations of � agree (see e.g. [13, 18]), and hence also the time when the
core geodesics of the cylinder make angle ±⇡

4 with these foliations. Since
the qt–length `qt(�) is the square root of the sum of the squares of these
variations, this length is also minimized at t� , and we can write

`qt(�) = `qt� (�) cosh
1
2 (2(t� t�)).

Because the modulus is the ratio of the area of the cylinder (which is
constant in t) and the square of the length, it follows that M(�, qt� ) =
M(�,Q).

The following is an easy consequence of work of Rafi (see Lemma 3.8,
Corollary 5.3, and Theorem 5.6 of [18]). Since this exact statement doesn’t
appear in [18], we give a proof here for completeness.

Proposition 3.1. Suppose f : S ! S is a pseudo-Anosov homeomorphism,
Q is the associated family of flat metrics, and µ± are the stable and unstable
foliations. If d�(µ+, µ�) � 4, then � is a Q–cylinder curve. In general, if �
is a Q–cylinder curve, then

����M(�,Q)� d�(µ+, µ�)
2

����  2
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Proof. Suppose t = t� , the balance time of � and suppose S is endowed
with the metric qt. Choose lifts of nonsingular leaves �+ of µ+ and �� of
µ� to the annular cover eY� of S so that

d�(µ
+, µ�) = i(�+, ��) + 1.

Since �+, �� are qt–geodesics, these realize the minimal intersection number
in their relative isotopy classes, and so intersect in at least 3 points.

Now observe that any three consecutive points of intersection along �+

determines two consecutive, compact arcs in �+, as well as three consecutive
points of intersection along �� and two compact arcs of ��. These four
arcs determine a quadrilateral in eY� . Since the geodesics intersect in right
angles, the Gauss-Bonnet formula implies that there are no singular points
inside the quadrilateral, and hence this is the image of an isometrically
immersed rectangle, which is an embedding except at one pair of vertices.
Furthermore, the diagonal of the rectangle connecting the identified vertices
is a geodesic representative of �, and since t = t� the balance time, the
rectangle is actually a Euclidean square; see Figure 1. In fact, since the
diagonal of square has length `qt(�), the sides have length `qt(�)/

p
2.

�+

��

Figure 1. Nonsingular lifts �+ and �� in the annulus eY� , with five intersection points
shown; three in “front” and two in “back”. Squares are formed from arcs along any
three consecutive intersection points. One such square is highlighted by thicker lines.

Next, observe that the geodesic which is a diagonal of a square from three
consecutive intersection points contains no cone points, and hence there is a
nondegenerate flat cylinder containing for �. Consequently, � is a cylinder
curve. For any four consecutive intersection points there are two squares
in eY� that have two sides in common. The geodesics from the diagonals of
these two “consecutive” squares form a flat cylinder of circumference `qt(�)
and height `qt(�)/2 (half a diagonal). There are i(�+, ��)�3 such cylinders
in eY glued end-to-end, and so

M(�,Q) = M(�, qt) �
1
2
(i(�+, ��)�3) =

1
2
(d�(µ

+, µ�)�4) =
d�(µ+, µ�)

2
�2.

On the other hand, consider the maximal flat cylinder in eY� , and
choose �+0 , �

�
0 to be a pair of lifts of leaves of µ+, µ�, respectively, with an
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intersection point on one boundary component of this cylinder. Considering
the squares in the cylinders from triples of consecutive intersection points
as above we find that there are at least b2M(�,Q)c+1 intersection points of
�+0 , �

�
0 inside the flat cylinder. From the Gauss-Bonnet argument, it follows

that there can be at most one more intersection point of �+0 , �
�
0 outside the

maximal cylinder, and hence

i(�+0 , �
�
0 ) � b2M(�,Q)c+ 2 � 2M(�,Q) + 1.

Since �+0 , �
�
0 are arbitrary leaves, we have d�(µ+, µ�) � i(�+0 , �

�
0 ) � 1 and

hence

M(�,Q)  d�(µ+, µ�)
2

.

Combining this with the inequality above completes the proof. ⇤

The proof of our main theorem will rely on understanding how Q–
cylinders in S are mapped down to ⌃. The images need not be cylinders,
but with some additional mild assumptions, they are very well behaved. A
Euclidean half-pillowcase is the quotient of a Euclidean cylinder S1⇥ [�T, T ]
by the group generated by the involution ⌧(ei✓, t) = (e�i✓,�t). Considering
a fundamental domain for this action, we can equivalently describe this as
the Euclidean orbifold obtained by gluing a component of the boundary
of a Euclidean cylinder S1 ⇥ [0, T ] to itself by the map (ei✓, 0) ⇠ (e�i✓, 0).
Topologically, a half-pillow case is a disk with two marked points. The two
marked points are cone points with cone angle ⇡ and there is a geodesic
segment, the core segment, connecting those points whose complement is
itself a half-open Euclidean cylinder. We will refer to the modulus of the
complementary Euclid ean cylinder as the modulus of the half-pillowcase.

Lemma 3.2. Suppose ⌃ is an orientable surface and � : ⌃ ! ⌃ a pseudo-
Anosov homeomorphism with associated flat metrics ⌅ = {⇠t}. Assume that
the only marked points of ⌃ are cone points of ⇠t with cone angle ⇡ and that
⌃ is not a torus or a sphere with four marked points. Let h : Y ! ⌃ denote
a map of an open Euclidean cylinder into ⌃ which for some ⇠t 2 ⌅, is a local
isometry away from a finite number of branched points. Then either h(Y ) is a
Euclidean cylinder in ⌃ and h is a covering map onto its image or else h(Y )
is a Euclidean half-pillowcase. In either case, M(h(Y ), ⇠t) � M(Y )

2 .

Proof. First suppose that there are no branch points in Y . In this case,
each core geodesic of Y maps to a geodesic. Since the holonomy of ⇠t is
{±I}, it follows that these geodesics are simple. We wish to show that no
two core geodesics map to the same geodesic. Suppose on the contrary that
↵, � are two distinct core geodesics in Y that map to the same geodesic.
Since ⌃ is orientable, the sub-cylinder between ↵ and � provides an isotopy
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from one to the other. Orient both ↵ and � in the same direction coming
from the annulus (so the isotopy between them is orientation preserving).
Again, because ⌃ is orientable, ↵ and � must map to the same oriented
curve. Since the sub-cylinder between ↵ and � lies on di↵erent sides of
these two curves (each are two-sided curves), it follows that image of the
cylinder lies on both sides of the image. Thus, we can identify ↵ and �
in the sub-cylinder producing a torus which maps locally isometrically to
⌃. Therefore ⌃ is a flat torus, which is a contradiction. Thus, no two core
geodesics of Y are sent to the same curve, and it follows that h(Y ) is a
cylinder, foliated by the images of the core geodesics. Since h restricts to
a covering map from each core geodesic onto its image, it follows that h
restricts to a covering map from Y onto its image.

Now suppose h is nontrivially branched at some point ⇣ 2 Y . Note that
h(⇣) must be a cone point of angle ⇡. Let ↵ be a core geodesic through
⇣. We first want to show that h can only be branched at points on ↵. For
this, observe that ↵ must project to a geodesic segment between a pair of
cone points with angle ⇡. In particular, there is an antipodal point ⇣ 0 on
↵ that projects to the other cone point (there may be several points that
project to ⇣ 0, but one must be antipodal). Geodesics su�ciently close to ↵
project to geodesics surrounding h(↵), and hence a cylinder neighborhood
of ↵ maps down to a Euclidean half-pillowcase. We need to show that
no other core geodesic contains a point where h is branched. So, suppose
there were another such geodesic � 6= ↵ of Y that also contains a branch
point, and choose one that is closest to ↵. Observe that the Euclidean
cylinder between ↵ and � contains no points where h branches, and so the
boundary components can be glued together (“folded” at antipodal points
one each boundary component where h branches) to produce a sphere with
four cone points that maps locally isometrically (away from the preimage
of the cone points) onto ⌃ (this is similar to the case of no branch points
where we showed that ⌃ was the image of a flat torus). The only orientable
Euclidean cone surfaces with holonomy {±I} which is the image of a locally
isometric map of the sphere with four cone points is the sphere with four
cone points, and so ⌃ is a sphere with four cone points, a contradiction.
Thus, there is only one geodesic ↵ which contains branch points.

The sub-cylinders on either side of ↵ map to ⌃ without branched
points, so by the previous paragraph, these cover cylinder. Thus h(Y )
is a Euclidean half-pillowcase, namely the union of the half-pillowcase
neighborhood of the image of ↵, together with these two cylinders (which
share some core geodesics).

If h : Y ! h(Y ) is a covering map, then the modulus of h(Y ) is the
modulus of Y times the degree of this covering. In the two-fold quotient
from a Euclidean cylinder to a half-pillowcase, the modulus is reduced
by half. The lower bound on modulus now follows. This completes the
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proof. ⇤

Remark 3.3. We note that when h(Y ) is a Euclidean half-pillowcase, the
map h is not necessarily a (branched) covering map from Y to h(Y ): the
two distances from the core geodesic ↵ to the two boundary components
might be di↵erent.

Lemma 3.4. Suppose ⌃ is a nonorientable surface and � : ⌃ ! ⌃ a pseudo-
Anosov homeomorphism with associated flat metrics ⌅ = {⇠t}. Let h : Y ! ⌃
denote a map of an open Euclidean cylinder into ⌃ which for some ⇠t 2 ⌅,
is a local isometry away from a finite number of branched points. Further
assume that the modulus of Y is strictly greater than 2. Then h(Y ) is either

a Euclidean cylinder or a Euclidean half-pillowcase and M(h(Y ), ⇠t) � M(Y )
2 .

Proof. Letting g : ⌃0 ! ⌃ denote the orientation double cover, we claim
that h lifts to h0 : Y ! ⌃0. To see this, let ⌃0 ⇢ ⌃ and Y0 ⇢ Y denote the
complements of the branched points and their preimages, respectively, so
that h|Y0 is a local di↵eomorphism. Since the orientation double cover of
⌃0 is the orientation bundle (that is, it is the bundle P⇤2T (⌃0)), a choice of
orientation on Y0 defines a lift of h|Y0 to the orientation double cover. Since
⌃ is orientable in a disk neighborhood of the cone points, this lift extends
to all of Y . A pseudo-Anosov homeomorphism on a torus or sphere with
four marked points cannot be a lift of a pseudo-Anosov homeomorphism
of a nonorientable surface: this follows from [20, Proposition 2.3], for
example, where it is shown that lifts of pseudo-Anosov homeomorphisms
from a nonorientable surface have stretch factors that are not Galois
conjugates, while stretch factors of pseudo-Anosov homeomorphisms of the
torus and sphere with four marked points are quadratic irrational algebraic
integers, and hence their inverses are their Galois conjugates. Therefore,
by Lemma 3.2, h0(Y ) ⇢ ⌃0 is either a Euclidean cylinder or half-pillowcase
with the required lower bound on modulus.

Since g is a two-fold covering, there is another lift h00 : Y ! ⌃0. We claim
that h0(Y ) and h00(Y ) are disjoint, and hence the restriction of g to h0(Y )
is a homeomorphism onto h(Y ), which by Lemma 3.2 will complete the
proof. Therefore we suppose h0(Y )\h00(Y ) 6= ; and obtain a contradiction.
The map h00 di↵ers from h0 by composing with the order two covering
transformation ⌧ : ⌃0 ! ⌃0, which is orientation reversing. Thus, there is a
point z of h0(Y ) for which ⌧(z) 2 h0(Y ).

If h0(Y ) is a cylinder, we denote it A = h0(Y ). If h0(Y ) is a half-
pillowcase, then since h0(Y )\h00(Y ) is an open set, we can assume that z and
⌧(z) lie in the Euclidean cylinder surrounding the core segment between the
cone points. By our assumption, this cylinder has modulus strictly greater
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than 1, and we denote it A. In either case, A is a Euclidean cylinder of
modulus greater than 1 containing z and ⌧(z).

Choose an oriented orthonormal basis e1, e2 on A so that e1 is tangent
to the core curves of A. The derivative d⌧z : Tz(A) ! T⌧(z)(A) is orientation
reversing, hence a reflection. Since the stable/unstable foliations are
preserved by ⌧ , the line of reflection must be tangent to one of these
foliations. Since these foliations are orthogonal, and neither has closed
leaves, we see that the lines of reflection are not spanned by either e1 or
e2. It follows that ⌧ must send the core geodesic of A through z transverse
to the core geodesic through ⌧(z). Since the modulus of A is greater than
1, the core geodesic is shorter than the distance between the boundary
components, which is a contradiction. Therefore, h0(Y ) and h00(Y ) are
disjoint, completing the proof. ⇤

We also need to understand what the preimage of cylinders look like
under a branched cover p : S ! ⌃.

Lemma 3.5. Given S and d > 0 there exists B = B(S, d) > 0 with the
following property. Suppose that p : S ! ⌃ is a branched covering of degree
at most d, f : S ! S a lift of the pseudo-Anosov � : ⌃ ! ⌃, Q = {qt}
and ⌅ = {⇠t} are the associated, compatible flat metrics, and Y ⇢ ⌃ is a
maximal open Q–cylinder with maximal modulus M(Y,⌅). Then there is a
sub-cylinder Y0 ⇢ Y so that p�1(Y0) is a union of Euclidean cylinders in S,
each with maximal modulus at least BM(Y,⌅).

Proof. Fix the metrics ⇠t and qt at the balance time t of the core curve of Y .
By the Riemann-Hurwitz Theorem, there is a bound b > 0 on the number
of branched points of p, in terms of d and �(S), and we set B = 1

d(b+1) .
Since Y contains at most b branch points, there are at least b + 1 open
Euclidean sub-cylinders in Y disjoint from the branch points so that the
boundaries of the closures in ⌃ are either in the boundary of the closure
of Y or else contain a branched point. The sum of the moduli of these is
precisely the modulus of Y , and consequently one of them, call it Y0, has
modulus at least M(Y,⌅)

b+1 = M(Y,⇠t)
b+1 . The preimage p�1(Y0) is a Euclidean

cylinder and for any component eY0 ⇢ p�1(Y0) the restriction of p,

p|eY0
: eY0 ! Y0,

is a covering map of degree at most d. Therefore, M(eY0, Q) � M(Y,⌅)
d(b+1) =

BM(Y,⌅), as required. ⇤
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4. Pseudo-Anosovs from Dehn twists.

Suppose c1, c2, . . . , cn are curves that fill a surface S = Sg with g � 2 so
that i(ci, ci+1) 6= 0 for all 1  i  n and with 1  i+ 1  n taken modulo
n. Let k1, k2, . . . , kn 2 Z. Our construction involves analyzing the mapping
class

f = T k1
c1 T

k2
c2 · · ·T kn

cn .

We first extend the finite sets of curves and integers to infinite sequences
{cj}1j=1 and {kj}1j=1 by setting

cj = cj0 and kj = kj0

where 1  j0  n and j ⌘ j0 modulo n. Then for all j � 1 set

fj = T k1
c1 T

k2
c2 · · ·T kj

cj .

Observe that for all m � 0, and j � 0 we have

fnm+j = fmfj . (1)

Now construct a new infinite sequence of curves {�j}1j=1 by �j = fj(cj).
For all j � 1, since cj = cj+n, (1) implies

f(�j) = ffj(cj) = fj+n(cj+n) = �j+n. (2)

Thus, f acts as the nth power of the shift on the sequence {�j}1j=1.
Therefore, we can extend the infinite sequence of curves to a biinfinite
sequence {�j}j2Z so that (2) holds for all j 2 Z.

Lemma 4.1. Given curves c1, . . . , cn as above, there exists R > 0 and K > 0
so that if |kj | � K for all j � 1, then

(i) i(�i, �j) 6= 0 for all i, j 2 Z, i 6= j,

(ii) |d�`(�i, �j)� |k`||  R for all i, j, ` 2 Z with i < ` < j.

(iii) {�i} is an f–invariant, uniform quasi-geodesic in the curve complex.

From (iii), it follows that f is pseudo-Anosov, and {�j}j2Z is a quasi-geodesic
axis. Moreover, if we let µ± denote the stable/unstable foliations of f , then

(iv) |d�j (µ
+, µ�)� |kj ||  R+ 2

for all j 2 Z.

The meaning of (iii) is that there exists constants A,B > 0, depending
only on c1, . . . , cn, so that

1
A
|i� j| �B  d(�i, �j)  A|i� j|+B.

We have avoided cluttering the already lengthy statement by excluding
explicit mention of these constants.
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Proof. We have already established the f–invariance of {�j}. In particular,
it su�ces to prove the statements (i)–(iii) for positive indices.

First consider a triple of any three consecutive curves (�j�1, �j , �j+1).
We want to describe this triple of curves up to homeomorphism. By
applying a su�ciently high positive power of f , we can assume that j > 1.
Then applying f�1

j�1 to this triple we get

f�1
j�1(�j�1, �j , �j+1) = f�1

j�1(fj�1(cj�1), fj(cj), fj+1(cj+1))
= (cj�1, T

kj
cj (cj), T

kj
cj T

kj+1
cj+1

(cj+1)) = (cj�1, cj , T
kj
cj (cj+1))

Since the sequences {cj} and {kj} are n–periodic, we see that up to
homeomorphism, any consecutive triple looks like

cj�1, cj , T
kj
cj (cj+1),

for 1  j  n and the other two indices 1  j � 1, j + 1  n taken modulo
n. Since consecutive curves intersect nontrivially, we can apply the triangle
inequality for projection distances to obtain

|dcj (cj�1, T
kj
cj (cj+1))� dcj (cj+1, T

kj
cj (cj+1))|  dcj (cj�1, cj+1).

The right hand side is uniformly bounded by n–periodicity, and we claim
that

|dcj (cj+1, T
kj
cj (cj+1))� |kj ||  3.

This follows from the triangle inequality, the fact that ⇡cj (cj+1) and

⇡cj (T
kj
cj (cj+1)) each have diameter at most 1, and the fact that the kth power

of a Dehn twist translates any arc by at most k + 1 on the curve graph of
the annulus (note that some arcs are translated more than k because there
is more than one lift of the twisting curve). Therefore, taking R0 > 0 to be
at least three more than that uniform bound implies

|dcj (cj�1, T
kj
cj (cj+1))� |kj ||  R0.

Applying the homeomorphism fj�1 to all curves in this inequality, we obtain

|d�j (�j�1, �j+1)� |kj ||  R0. (3)

For now, assume K � R0 + 16 (later we will increase the lower bound on
K). If |kj | � K, it then follows that we also have

d�j (�j�1, �j+1) � 16.

Consequently, i(�j�1, �j+1) 6= 0 (and hence, �j�1, �j , �j+1 pairwise inter-
sect).

Claim. If i < j, then i(�i, �j) 6= 0 and for all i < ` < j, we have
d�i(�`, �j)  3 and d�j (�i, �`)  3.
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Proof. We prove the claim by induction on j � i. For j � i = 1 there is no
such `, and the nonzero intersection number statement is a consequence of
the description of triples. If j � i = 2, then the triples description implies
i(�i, �j) 6= 0, and by Proposition 2.2, it follows that d�i(�`, �j)  3 and
d�j (�i, �`)  3. These serve as the base cases.

Now suppose the statement is true whenever the di↵erence in indices is
at most m, and suppose j � i = m+ 1. Without loss of generality, we may
assume that m+ 1 � 3. Let i < ` < j be any index. Suppose first that

i < `� 1 < ` < `+ 1 < j.

Then by induction �`, �`+1, �j pairwise intersect, �i, �`�1, �` pairwise inter-
sect, and

d�`(�`+1, �j)  3 and d�`(�i, �`�1)  3.

By the triangle inequality, we have

d�`(�i, �j) � d�`(�`�1, �`+1)� d�`(�`�1, �i)� d�`(�`+1, �j) � 16� 3� 3 = 10.

In particular, �i and �j nontrivially intersect. Furthermore, by Proposi-
tion 2.2, we have

d�i(�`, �j)  3 and d�j (�i, �`)  3,

as required.
If we do not have i < `� 1 < ` < `+ 1 < j, then it must be that either

`+1 = j or `� 1 = i, and we can argue similarly. For example, if i = `� 1,
then `+ 1 < j and by induction

d�`(�`+1, �j)  3 and d�`(�i, �`+1) � 16.

So d�`(�i, �j) � 13, thus i(�i, �j) 6= 0, and applying Proposition 2.2 we have

d�i(�`, �j)  3 and d�j (�i, �`)  3

as required. The case ` + 1 = j is similar. This completes the induction,
and hence proves the claim. 4

Observe that part (i) follows from the first part of the claim. For part
(ii), let i < ` < j. Then by the claim and the triangle inequality we have

|d�`(�i, �j)� d�`(�`�1, �`+1)|  d�`(�`�1, �i) + d�`(�`+1, �j)  6.

So, setting R = R0 + 6, part (ii) of the lemma follows from Inequality (3).
To prove part (iii), we first prove

Claim. For any j 2 Z, the curves �j+1, �j+2, . . . , �j+n fill S.



14 C. Leininger and A. Reid

Proof. By applying an appropriate power of f , and cyclically permuting
the original indices 1, 2, . . . , n, it su�ces to prove that �1, . . . , �n fill S. For
this, we show that for any 1  j  n, the subsurface Xj filled by �1, . . . , �j
is the same as the subsurface Zj filled by c1, . . . , cj . We do this by induction
on j.

The base case is j = 1, and then �1 = c1, so X1 = Z1 is the annular
neighborhood. Now suppose that Xj�1 = Zj�1 for some j � 2 and we prove
Xj = Zj . First observe that

fj�1 = T k1
c1 · · ·T kj�1

cj�1

is supported on Zj�1 = Xj�1 since c1, . . . , cj�1 are contained in Zj�1. If
cj ⇢ Zj�1, then Zj = Zj�1, while on the other hand

�j = fj�1T
kj
cj (cj) = fj�1(cj) ⇢ Zj�1 = Xj�1

and hence Xj = Xj�1 = Zj�1 = Zj . Thus if cj ⇢ Zj�1, we are done.
So, suppose cj 6⇢ Zj�1. Then Zj is determined by Zj�1 and the isotopy
classes of arcs of cj � Zj�1 in S � Zj�1. We will be done if we can show
that these isotopy classes of arcs are the same as those of �j � Xj�1 in
S � Xj�1 = S � Zj�1. For this, observe that as above �j = fj�1(cj), and
since fj�1 is supported on Xj�1 = Zj�1, fj�1 cannot change the isotopy
classes of arcs of cj � Zj�1. Hence �j � Xj�1 = �j � Zj�1 is isotopic to
cj � Zj�1, as required. This proves the claim. 4

Now observe that by f–invariance, if |j � i|  n, then d(�i, �j)  A0 for
some constant A0. In particular, d(�i, �j)  A0|j � i| for 0 < |j � i|  n. By
the triangle inequality, d(�i, �j)  A0|j � i| for all i, j.

At this point we further assume that K � R0 + 16 + M , where M is
the constant from Proposition 2.1. Consider any geodesic � in C(S) from
�i to �j and list the vertices consecutively as �i = ↵0, ↵1, . . . , ↵r = �j from
�i to �j . The bound on K implies d�`(�i, �j) > M , for all i < ` < j. So by
Proposition 2.1 there is a vertex ↵s of � which is disjoint from �`. There
may be more than one, but there can be at most 3 since � is a geodesic (if
there were more than three, two would be distance at least 3 apart, which
is impossible since they are distance 1 from �`). For each such `, let ↵s(`)

be the vertex closest to �j which is disjoint from �`. As in [3, Lemma 4.4],
s(`)  s(`0) if `  `0. On the other hand, since every n consecutive curves
fill, we have s(`) < s(` + n). Consequently, the number of vertices in �
between �i and �j is at least j�1

n and hence the distance is at least

d(�i, �j) �
j � i

n
� 1.

This provides the desired lower bound, and hence {�j} is a uniform quasi-
geodesic.
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Finally, for part (iv), we note that since {�j}j2Z is a quasi-geodesic, and
is f–invariant, f must be pseudo-Anosov, and we have

lim
j!±1

�j = µ±,

in the Hausdor↵ topology on S, after throwing away any isolated leaves of
the limit. Therefore, for every ` 2 Z, every arc of ⇡�`(µ

+) [ ⇡�`(µ
�) is a

limit of arcs in ⇡�`(�j)[⇡�`(��j), as j tends to infinity. Since some limits of
arcs in the latter set can disappear (since isolated leaves of the Hausdor↵f
limits are discarded), the di↵erence in diameters between the former and
latter sets (for j su�ciently large) is at most 2. Part (iv) now follows from
part (ii). ⇤

Now suppose c1, . . . , cn are as above, 1, . . . , n 2 {±1}, and m � K,
with K as in Lemma 4.1. Let kj(m) = jm for 1  j  n, and extend
this to {kj(m)}j2Z as above. Construct a sequence of homeomorphisms
{fm : S ! S}1m=1 by

fm = T k1(m)
c1 T k2(m)

c2 · · ·T kn(m)
cn . (4)

Proposition 4.2. Let {fm : S ! S}1m=K be a sequence of pseudo-Anosov
homeomorphisms defined as in Equation ( 4), Q(m) = {qt(m)} the associated
flat metrics, and {�j(m)}j2Z the associated fm–invariant collection of curves,
for each m. Then for all j,

M(�j(m), Q(m)) � m�R� 6
2

,

where R is the constant from Lemma 4.1. Furthermore, there is a constant
D > 0 so that for any m and curve � 62 {�j(m)}j2Z,

M(�,Q(m))  D.

Proof. Let µ±(m) denote the stable/unstable foliations of fm. Since
|kj(m)| = m � K, {�j(m)}j2Z satisfies the conclusion of the Lemma 4.1.
Combining this with Proposition 3.1 we have

M(�j(m), Q(m)) �
d�j(m)(µ+(m), µ�(m))

2
� 3 � m�R� 6

2
.

This proves the first statement.
Let Xfm denote the mapping torus of fm equipped with its hyperbolic

metric, and eXfm the cover of Xfm corresponding to the fiber subgroup
⇡1(S). Appealing to the Short Curve Theorem of Minsky [16] (see also the
Length Bound Theorem from Brock-Canary-Minsky’s [5]), the curves �j(m)
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all have length in eXfm tending to zero as m tends to infinity. Being fm–
invariant, they push down to n closed geodesics in Xfm .

The geometric limit of the sequence of hyperbolic 3–manifolds Xfm is
the cusped hyperbolic 3–manifold X1 obtained by drilling out the n curves,
realized on n di↵erent fibers of Xfm (see [21]) and Xfm is obtained from X1
by (1, kj(m))–Dehn filling on X1 for all m > 0 as in [10]. The geometric
convergence ensures that there is a uniform lower bound to the length of
any curve in Xfm which is not one of the n curves, and hence there is a
uniform lower bound (independent of m) to the length of any curve � in
eXfm which is not in {�j(m)}j2Z. By the Short Curve Theorem again, it
follows that d�(µ+(m), µ�(m)) is uniformly bounded, independent of m and
�. By Propostion 3.1, the modulus Mt(�) of any qt(m)–Euclidean cylinder
with core curve isotopic to � is uniformly bounded, independent of m and
�, as required. ⇤

The following provides a useful mechanism for deciding when a pseudo-
Anosov f : S ! S constructed as above is not a virtual lift.

Theorem 4.3. Suppose {fm : S ! S}m is a sequence of pseudo-Anosov
homeomorphisms as in Equation ( 4), {{�j(m)}j2Z}m are the associated
sequences of curves, and that the stretch factors �(fm) have degree greater
than 2 over Q. Then there exists a positive integer N � K, so that if m � N
and fm is a virtual lift of some �m : ⌃m ! ⌃m via a branched covering
pm : S ! ⌃m, then there are representatives of the curves �j(m) so that
p�1
m (pm(�j(m))) = �j(m) for all j.

The choice of representative �j(m) is a convenience for the statement:
for an arbitrary representative, all components of the preimage of the image
will be seen to be isotopic.

Proof. To begin, assume N is large enough so that if m � N , then
Proposition 4.2 ensures that for all j, M(�j(m), Q(m)) > 0 and hence �j(m)
is a cylinder curve.

Suppose that pm : S ! ⌃m is a branched covering and �m a map that
lifts to a power of fm. Since �(fm) is not quadratic irrational, ⌃m is not
a sphere with four marked points or a torus. Let ⌅(m) = {⇠t(m)} and
Q(m) = {qt(m)} be the associated compatible family of flat metrics. By
Lemmas 3.2 and 3.4, for each j, we can choose a representative of �j(m) so
that pm(�j(m)) is a cylinder curve with

M(pm(�j(m)),⌅(m)) � M(�j(m), Q(m))
2

.

On the other hand, by the Riemann–Hurwitz Theorem, there is a bound
d on the degree of pm. Let B = B(S, d) be the constant from Lemma 3.5.
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Then there is a sub-cylinder Yj(m) of the cylinder about pm(�j(m)) so that
each component of eYj(m) = p�1

m (Yj(m)) is a Euclidean cylinder and has
maximal modulus at least

BM(pm(�j(m)),⌅(m)) � BM(�j(m), Q(m))
2

.

One component of eYj(m) is contained in the original cylinder with core
curve �j(m). Without loss of generality, we may choose �j(m) so that
pm(�j(m)) ⇢ Yj(m), and hence �j(m) ⇢ p�1

m (pm(�j(m))) ⇢ eYj(m).
Let D > 0 be the constant from Proposition 4.2. We choose N > K so

that if m � N , then for all j

B(m�R� 6)
4

> D.

Then if �j(m)0 is any component of p�1
m (pm(�j(m))), and eY 0

j (m) ⇢ eYj(m)
is the component containing it, then the bound above on the maximal
modulus of eY 0

j (m) combined with Proposition 4.2 implies

M(�j(m)0, Q(m)) � BM(�j(m), Q(m))
2

� B(m�R� 6)
4

> D.

Consequently, �j(m)0 must be one of the curves �j0(m). However, the
direction of �j(m) and �j(m)0 in the Euclidean cone metric are the same,
while if j0 6= j, the curves �j0(m) and �j(m) intersect nontrivially by
Lemma 4.1. Therefore, �j(m)0 and �j(m) must either be equal or isotopic.

Thus, all the components of p�1
m (pm(�j(m))) are isotopic to �j(m), and

are hence contained in a single cylinder. By Lemma 3.2, either pm restricted
to this cylinder is a covering map—in which case, p�1

m (pm(�j(m))) = �j(m),
and we are done—or the image of the cylinder is a half-pillowcase. If the
latter happens, then we take �j(m) to be the unique core curve in the
cylinder that projects to the core geodesic segment of the half-pillowcase,
we get p�1

m (pm(�j(m))) = �j(m), as required. ⇤

Corollary 4.4. In addition to the assumptions from Theorem 4.3, suppose
that i(cj , cj+1) = 1 for some j. If m � N , and fm is a virtual lift of
some �m : ⌃m ! ⌃m via a branched covering pm : S ! ⌃m, then ⌃m is
the quotient by an orientation preserving involution preserving the isotopy
classes of c1, . . . , cm.

Proof. Choose representatives �i(m) for the isotopy classes, for all i, as
in Theorem 4.3. Note that i(�j(m), �j+1(m)) = i(cj , cj+1) = 1. Since
p�1
m (pm(�i(m))) = �i(m) for all i, it follows that if x = �j(m) \ �j+1(m),
then p�1

m (pm(x)) = {x}. Since the image of the cylinders about �j(m) are
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either cylinders or half-pillowcases, the local degree of pm near x must be
1 or 2. The degree cannot be 1 since the definition of virtual lift requires
a branched cover of degree greater than 1. Therefore, the degree is 2 and
hence the branched covering is regular (since index 2 subgroups are always
normal). The covering group is thus generated by an orientation preserving
involution ⌧ .

Since p�1
m (pm(�i(m))) = �i(m) for all i, it follows that ⌧(�i(m)) = �i(m).

We now show that ⌧(ci) = ci for each i = 1, . . . , n. For i = 1, note that
c1 = �1(m). We use this as the base case for induction. Assuming ⌧(ci) = ci
for all 1  i  ` < n, we prove that ⌧(c`+1) = c`+1. For this, observe that

�`+1(m) = T k1(m)
c1 · · ·T k`(m)

c` T k`+1(m)
c`+1

(c`+1) = T k1(m)
c1 · · ·T k`(m)

c` (c`+1)

since Tc`+1 fixes c`+1. Therefore, we have

T�k`(m)
c` · · ·T�k1(m)

c1 (�`+1(m)) = c`+1.

Since ⌧ preserves each of c1, . . . , c`, it commutes with T = T�k`(m)
c` · · ·T�k1(m)

c1 ,
thus the equations T (�`+1(m)) = c`+1 and ⌧(�`+1(m)) = �`+1(m) imply

⌧(c`+1) = ⌧T (�`+1(m)) = ⌧T⌧�1⌧(�`+1(m)) = T (�`+1(m)) = c`+1.

This completes the proof. ⇤

4.1. Strenner’s construction. The key to obtaining the required degree
for the dilatation is the following special case of a result of Strenner [19,
Theorem 5.3], building on a theorem of Penner [17].

Theorem 4.5 (Strenner). Suppose A = a1[ . . .[an and B = b1[· · ·[bn are
multicurves that fill the surface S, and let N = (i(ai, bj))ij be the matrix of
intersection numbers and G the associated (bipartite) adjacency graph (with a
vertex for every ai and every bj and an edge between ai and bj if i(ai, bj) 6= 0).
Suppose

(1) rk(N) = r > 0,

(2) ai1bi1ai2bi2 · · · aidbidai1 are the vertices of a closed, contractible loop in
G visiting every vertex.

Then for all m > 0 su�ciently large, the mapping classes

fm = Tm
ai1

T�m
bi1

· · ·Tm
aid

T�m
bid

are pseudo-Anosov and �(fm) has degree 2r.



Pseudo-Anosov homeomorphisms not arising from branched covers. 19

5. Proof of the main theorem

We will apply the results of the preceding section to a particular pair of
multicurves. For this, we start with a particular pair of simple closed curves
a, b that fill a genus 3 surface X with one boundary component and intersect
in exactly 5 points with the same sign (after orienting them appropriately).
This pair is described in Figure 2.

�2 �4 �1 �5 �3

�1 �2 �3 �4 �5

↵1 ↵2 ↵3 ↵4 ↵5 ↵1

x

Figure 2. The curves a and b are cut into arcs a = ↵1[· · ·[↵5 and b = �1[· · ·[�5 at
the points of intersection a\b. The surfaceX of genus 3 with one boundary component
is shown, cut open along essential arcs meeting each of the arcs �1, . . . , �5 and ↵1 as
labelled. The point x is the fixed point of an involution ⌧ of X leaving each of a and
b invariant. The thick line represents an essential arc � meeting b in the arc �1.

Lemma 5.1. Up to isotopy, the surface X admits exactly one orientation
preserving involution ⌧ leaving both a and b invariant.

Proof. Let ⌧ : X ! X denote the “obvious” involution of X, evident
in Figure 2, given by rotation about the point x—it is straightforward
to check that the rotation extends over the gluing of the arcs in the
reconstruction of X. To see that ⌧ is the only orientation preserving
involution preserving a and b, we note that such an involution would define
a graph automorphism of a[b, viewed as a four-valent graph with 5 vertices,
and would preserve the cyclic ordering around each vertex. Any such
nontrivial graph automorphism would necessarily fix one of the vertices,
and would be determined by which vertex it fixed. It is now easy to show
that the only such nontrivial graph automorphism is ⌧ . ⇤

We now prove the following theorem, which implies the Main Theorem
in the introduction.

Theorem 5.2. For each integer r > 1 and closed orientable surface S = Sg

with g � r+ 2, there exists a pseudo-Anosov homeomorphism f : S ! S with
stretch factor �(f) of degree 2r and orientable foliations that is not a virtual
lift.
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Proof. Embed the surface X of genus 3 with one boundary component as
an essential subsurface of Sg. The complement Z is a surface of genus
g� 3 with one boundary component. Let a1 = a and b1 = b as constructed
above. The arc � from Figure 2 can be connected to a nonseparating arc
�0 in Z to construct an essential simple closed curve we denote a2, that has
intersection number 1 with b1 and 0 with a1.

If r = 2, then we choose any essential simple closed curve b2 in Z which
fills with �0 so that all k intersection points have the same sign, which is
possible since �0 is a nonseparating arc in Z. The intersection matrix is

(i(ai, bj)) =

✓
5 1
0 k

◆
.

This has rank 2. Now consider the sequence of mapping classes defined by:

fm = Tm
a1
T�m
b1

Tm
a2
T�m
b2

Tm
a2
T�m
b1

.

On the one hand, the sequence {fm}1m=1 satisfies the hypothesis of The-
orem 4.5, and so for m su�ciently large, the fm are pseudo-Anosov, and
have stretch factors �(fm) having degree 4 over Q. On the other hand,
consecutive curves in the sequence a1, b1, a2, b2, a2, b1 intersect nontrivially
(cyclically), and i(b1, a2) = 1. Consequently, the sequence {fm} also sat-
isfies Corollary 4.4, and so by taking m larger if necessary, it follows that
if fm is a virtual lift via a branched covering pm : S ! ⌃m, then pm has
degree two, and ⌃m is the quotient by an orientation preserving involution
⌧ preserving a1, b1, a2, b2. The involution ⌧ must restrict to ⌧ on X (up to
isotopy) by Lemma 5.1. However, ⌧ does not preserve the isotopy class of
� in X, and so ⌧ cannot preserve b1, a contradiction. Therefore, there is no
such involution ⌧ , and hence f is not a virtual lift.

From Penner’s construction, the invariant foliations are carried by bigon
tracks obtained by smoothing the points of intersection. In our construction
the curves can be oriented so the intersection points have all the same sign,
and so these tracks are orientable. Therefore, the invariant foliations are
orientable.

If r > 2, we proceed in a similar fashion, choosing a curve b2 that
intersects a2 once and is disjoint from all other curves. Note that this is
possible since �0 was a nonseparating arc in Z. We continue, choosing a3
intersecting b2 once and disjoint from all other curves, b3 intersecting a3
once and disjoint from all other curves, etc., until we obtain a set of curves

a1, b1, a2, b2, . . . , ar�1, br�1, ar.

That this is possible follows from an Euler characteristic computation, and
the classification of surfaces. We finally choose br so that the union of all
the curves fills S and so that br is disjoint from all curves except ar, which
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it intersects in k points, for some k > 0, all with the same sign. The r ⇥ r
intersection matrix now has the form

(i(ai, bj)) =

0

BBBBBBBBBBB@

5 1 0 0 · · · 0 0 0
0 1 1 0 · · · 0 0 0
0 0 1 1 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 1 0
0 0 0 0 · · · 0 1 1
0 0 0 0 · · · 0 0 k

1

CCCCCCCCCCCA

This has determinant 5k, and so has rank r. As above, we can now use
Theorem 4.5 and Corollary 4.4 to construct a sequence of pseudo-Anosov
homeomorphisms

fm = Tm
a1
T�m
b1

· · ·Tm
ar
T�m
br

Tm
ar

· · ·Tm
a2
T�m
b1

,

and arguing exactly as in the case r = 2 to deduce that for m su�ciently
large �(fm) has degree 2r over Q, and that fm is not a virtual lift. ⇤

5.1. Veech groups and degree 4. Recall that the Veech group of a flat
metric q defined by a quadratic di↵erential is the group of all mapping
classes represented by a�ne homeomorphisms with respect to q; see e.g. [8].
Since the proof of the Main Theorem involves showing that there is no
branched covering S ! ⌃ so that the flat metric on S pulls back from
one on ⌃, it actually shows that no pseudo-Anosov in the Veech group for
that flat metric is a virtual lift. We do not know, however, if there are any
elements in the Veech group other than the pseudo-Anosov homeomorphism
(and its powers) which we constructed.

It turns out that to prove the theorem in the special case of d =
2r = 4, one may bypass much of the technical machinery from Section 4
by appealing to the Thurston construction; see [22, 9]. This has the
added benefit that the Veech group is nonelementary (and hence contains
a nonabelian free, purely pseudo-Anosov subgroup), no pseudo-Anosov
element of which is a virtual lift.

Theorem 5.3. For any genus g � 4, there exists a nonelementary Veech
group G in Mod(Sg) so that no pseudo-Anosov element of G is a virtual lift.

Proof. To begin, for every g � 4, we will construct a pair of multicurves
A = a1 [ a2 and B = b1 [ b2 with i(a1, b1) = 5, i(a1, b2) = 1 = i(a2, b1), and
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i(a2, b2) = k, where

k =

8
<

:

0 for g = 4
3 for g = 5
2g � 8 for g � 6

To do this, we again embed the genus 3 surface with one boundary
component X in Sg, and take a1 = a and b1 = b, so that i(a1, b1) = 5. Next,
we describe how to construct the curves a2 and b2. The intersection of these
curves with X will be the thick horizontal arc and the dashed vertical arc
from Figure 2, respectively. In particular, i(a1, b2) = 1 = i(a2, b1). From
the figure we see that the endpoints of these two arcs alternate around the
boundary of X (i.e. the endpoints of one arc link with the endpoints of
the other). In the complement, Sg \X, we construct a pair of arcs whose
endpoints also alternate around the common boundary @X and fill Sg \X
as follows. First, on a closed surface of genus g � 3, take a minimally
intersecting, filling pair of curves; see e.g. [1]. If g � 3 = 1, then this is
a pair of curves intersecting once; when g � 3 = 2 this is a pair of curves
intersecting 4 times; and on a genus g � 3 � 3 surface, this is a pair of
curves intersecting 2(g� 3)� 1 = 2g� 7 times. Now at one of the points of
intersection removing a small disk produces a pair of arcs on a surface of
genus g�3 that intersect k times, with k as above. We identify this surface
with Sg \X so that the arcs glue up and produce the curves a2, b2. Thus
i(a2, b2) = k, as required.

Next, we recall that from A and B, the Thurston construction produces
a flat metric q from a quadratic di↵erential so that the multitwists TA =
Ta1Ta2 and TB = Tb1Tb2 have a�ne representatives with respect to q. The
derivatives in preferred local coordinates for q, which are well-defined up
to sign, are given by

DTA =

✓
1 µ
0 1

◆
and DTB =

✓
1 0
�µ 1

◆
,

where µ2 is the spectral radius of the matrix NNT , and N is the intersection
matrix

N =

✓
5 1
1 k

◆
.

Since N is symmetric, µ is the spectral radius of N , and so computing we

find µ = 1
2

⇣
5 + k +

p
(5� k)2 + 4

⌘
.

Letting G denote the Veech group of q, hTA, TBi is a nonelementary
subgroup of G. By the chain rule the derivative of elements in G in
preferred local coordinates defines a homomorphism D : G ! PSL(2,R),
and an element f 2 G is pseudo-Anosov if and only |Trace(Df)| > 2. In
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this case, �(f) is equal to the spectral radius of Df , and the associated 1–
parameter family of flat metrics associated to f are all a�ne deformations of
q. For example, for the element f0 = TAT

�1
B , we can compute Trace(Df0) =

2 + µ2 > 2. Thus f0 is pseudo-Anosov, and �(f0) is the largest root of
x2 � (2 + µ2)x+ 1.

Next we claim that the number µ (and hence µ2) is quadratic irrational.
For this, it su�ces to prove that (5 � k)2 + 4 is not a perfect square, z2,
for an integer z. If it were, then z2 � (5 � k)2 = 4. But the only pair of
squares that di↵er by 4 are 0 and 4. However, from the description of k
above (depending on g), we see that k is never equal to 5, so (k� 5)2 +4 is
never a square. Therefore, µ and µ2 are quadratic irrational numbers, and
hence so is Trace(Df0) = 2 + µ2.

According to [8, Theorem 28] (see also [15, Corollary 9.6]) for any other
pseudo-Anosov element f 2 G, Trace(Df) will also be a quadratic irrational
and generate the same extension Q(µ2) = Q(µ) over Q. Since (up to sign)
the stretch factor � = �(f) and its inverse ��1 are roots of the polynomial
x2�Trace(Df)x+1, it follows that either � and ��1 are Galois conjugates
and have degree 2 over Q(µ) and degree 4 over Q, or else they are not Galois
conjugates, they lie in Q(µ) and so have degree 2 over Q. We claim that
the latter case cannot happen. To see this, note that � is a unit in the ring
of integers, and hence its minimal polynomial has the form x2 � kx± 1 for
some k 2 Z. Since � and ��1 are not Galois conjugates, it follows that �
and ���1 are Galois conjugates, and hence so are ��1 and ��. However,
considering the branched cover orienting the foliations, the lifted pseudo-
Anosov is orientation preserving and hence both � and ��1 or both ��
and ���1 are roots of the characteristic polynomial of the action of the
lift on homology. Since the minimal polynomial divides this polynomial,
we see that all four numbers ±� and ±��1 are roots of this polynomial.
On the other hand exactly one of � or �� is the unique root of maximal
modulus for this polynomial [15]. Since |�| = | � �|, this is a contradiction.
Therefore, � and ��1 have degree 4 and are Galois conjugates. According
to [20, Proposition 2.3] no pseudo-Anosov f 2 G can be a lift of a pseudo-
Anosov homeomorphism on a nonorientable surface. Therefore, we need
only consider branched covers of S over orientable surfaces.

Claim 5.4. There is no nontrivial branched covering p : S ! ⌃ where ⌃ is
orientable and admits a flat metric ⇠ from a quadratic di↵erential ⇠ so that
p⇤⇠ = q.

Note that if we prove this, then no pseudo-Anosov element in G can be
a virtual lift since the associated 1–parameter of flat metrics on S are a�ne
deformations of q, and so those on ⌃ would have to be a�ne deformations
of a metric ⇠ with p⇤⇠ = q.
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Before we get to the proof of the claim, we first recall that the Thurston
construction produces the metric q so as to have horizontal and vertical
foliations defining complete cylinder decompositions with core curves rep-
resenting the isotopy classes of a1, a2 and b1, b2, respectively. Furthermore,
by symmetry, the heights of the cylinders can be chosen to be V1 for both
a1 and b1 and V2 for a2 and b2, where (V1, V2) is an eigenvector for the
eigenvalue µ of N . Since µ is quadratic irrational, one can see that V2/V1

is irrational. Every time ai crosses bj , it picks up length Vj (and bj picks
up length Vi), and hence the q–length of a1 and b1 is 5V1 + V2, while the
q–lengths of a2 and b2 are V1 + kV2. So, the moduli of a1 and b1 is V1

5V1+V2

and the moduli of a2 and b2 is V2
V1+kV2

. From Thurston’s construction, the

ratio of these moduli is rational, but since V1
V2

is irrational. Therefore, the

ratio r = 5V1+V2
V1+kV2

of the q–lengths of a1 and a2 is irrational (as is the ratio
of the q–lengths of b1 and b2).

Now, to prove the claim, suppose on the contrary that we have a
nontrivial branched covering p : S ! ⌃ as in the claim with metric ⇠
on ⌃. Since the horizontal and vertical foliations of q define a complete
cylinder decomposition, so must the horizontal and vertical foliations of
⇠. In fact, away from the finite set of branch points, the core curves
of the q–cylinders must push down to core curves for the ⇠–cylinders.
Furthermore, because the ratio of the lengths of the a1 and a2 curves is
irrational, the a1 and a2 cylinders must each (branched) cover a cylinder
or half-pillow case whose interiors are disjoint (and likewise for the b1 and
b2). Thus, for all four q–cylinders C (the two vertical and two horizontal),
we have p�1(p(int(C))) = int(C) (c.f. §3). Since i(a1, b2) = 1, arguing
as in Corollary 4.4, the degree of p must be 2, and there must be an
orientation preserving involution of S leaving each of a1, a2, b1, and b2
invariant. We now complete the argument as in the proof of the Main
Theorem: up to isotopy the involution must send X to itself and the arc of
a2 intersecting X to itself. Since there is a unique involution of X leaving a
and b invariant by Lemma 5.1, and since this involution does not preserve
the arc of intersection of a2 with X, we have a contradiction.

Therefore, no pseudo-Anosov element of G is a virtual lift. ⇤

Remark 5.5. The referee has pointed out that the pseudo-Anosov mapping
classes f from Theorem 4.5 have the property that � = �(f) and ��1

are Galois conjugates. Therefore, such f cannot be a virtual lift from
a non-orientable surface, as was argued in this last proof, appealing to
[20, Proposition 2.3]. This means that one could avoid Lemma 3.4 in the
proof of the Main Theorem, shortening the argument. Since that lemma is
elementary and may be of independent interest, we have opted to keep the
original proof.
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