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ABSTRACT. Given a sequence of curves on a surface, we provide con-
ditions which ensure that (1) the sequence is an infinite quasi-geodesic
in the curve complex, (2) the limit in the Gromov boundary is repre-
sented by a nonuniquely ergodic ending lamination, and (3) the sequence
divides into a finite set of subsequences, each of which projectively con-
verges to one of the ergodic measures on the ending lamination. The
conditions are sufficiently robust, allowing us to construct sequences on
a closed surface of genus g for which the space of measures has the
maximal dimension 3g — 3, for example.

We also study the limit sets in the Thurston boundary of Teichmiiller
geodesic rays defined by quadratic differentials whose vertical foliations
are obtained from the constructions mentioned above. We prove that
such examples exist for which the limit is a cycle in the 1-skeleton of
the simplex of projective classes of measures visiting every vertex.
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1. INTRODUCTION

This paper builds on the work of the second and fourth author with Anna
Lenzhen, LLRJ, in which the authors construct a sequence of curves in the
five-punctured sphere S with the following properties (see for definitions).
First, the sequence is a quasi-geodesic ray in the curve complex of S, and
hence converges to some ending lamination v. Second, v is nonuniquely
ergodic, and the sequence naturally splits into two subsequences, each of
which converges to one of the ergodic measures on v in the space of pro-
jective measured laminations. Third, for any choice of measure v on v and
base point X in Teichmiiller space, the Teichmiiller ray based at X and
defined by the quadratic differential with vertical foliation r, accumulates
on the entire simplex of measures on v in the Thurston compactification.
The construction in [LLR] was actually a family of sequences depending on
certain parameters.

In this paper we extract the key features of the sequences produced in
the above construction as a set of local properties for any sequence of curves
{122 on any surface, which we denote P; see §3|and Definition as
well as for examples. Here, “local” is more precisely m—local for some
2 <m < &(S) (where £(S) = dime(Teich(S))), and means that the condi-
tions in P involve relations between curves contained subsets of the form
{Vks -+ sVkram} for k > 0. We refer to the number m as the subsequence
counter. Most of the conditions in P are stated in terms of intersection num-
bers, though they also include information about twisting which is recorded
in an auxiliary sequence {e;}2°, C N.

Theorem 1.1. For appropriate choices of parameters in P, any sequence
{32y € C(S) satisfying P will be the vertices of a quasi-geodesic in C(S)
and hence will limit to an ending lamination v in OC(S) = EL(S).

If u=vU...Uyn_1, then for any k > m, the subsequence counter, we
have

+
d'Yk (//Jz V) = €k
On the other hand, there is a constant R > 0 with the property that for any
proper subsurface W # ~, for any k € N we have

dW(,U, V) < R.

See Propositions [4.4] and for precise statements. Here dyy is the pro-
jection coefficient for W and d., the projection coefficient for (the annular
neighborhood of) ~; see

Although the conditions in P only provide local information about inter-
section numbers, we can deduce estimates on intersection numbers between
any two curves in the sequence from this; see Theorem|5.1} From these esti-
mates, we are able to promote the convergence vy, — v in C(.S) into precise
information about convergence in PML(S). To state this, we note that
the local condition depends on the subsequence counter m. There are m
subsequences {'yf‘}g’io, for h =0,...,m — 1, defined by 'yih = Yim+h-
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Theorem 1.2. For appropriate choices of parameters in P, and any Sse-
quence {V}32, C C(S) satisfying P, the ending lamination v € EL(S) from
Theorem is nonuniquely ergodic. Moreover, if m is the subsequence
counter, then the dimension of the space of measures on v is precisely m,
and the m subsequences {’ylh}fio converge to m ergodic measures v on v,
for h=0,...,m — 1, spanning the space of measures.

For precise statements, see Theorems [5.10] and

We note that for any nonuniquely ergodic lamination v, the space of
measures is always the cone on the simplex of measures on v, denoted A(v),
which is projectively well-defined. The vertices of A(v) are the ergodic mea-
sures, and the dimension of the space of measures is at most £(5): This
follows from the fact that the Thurston symplectic form on the 2£(S)—
dimensional space ML(S) must restrict to zero on the cone on A(v) since
it is bounded above by the geometric intersection number, |[PH92| Ch. 3.2],
and consequently must be at most half-dimensional (see also [Mas82al §1]
and the reference to [Vee78| Kat73|). We note that the subsequence counter
m can also be at most £(5), and the explicit constructions in §7|are quite
flexible and provide examples with this maximal dimension, as well as ex-
amples with smaller dimensions.

As an application of these theorems, together with the main result of the
first and third author in [BM15| and Theorem we have.

Corollary 1.3. Suppose v is as in Theorem[1.1] Any Weil-Petersson geo-
desic ray with forward ending lamination v is recurrent to a compact subset
of the moduli space.

Here, the ending lamination of a Weil-Petersson geodesic ray is given as
in [BMM10, BMMT11]. The Corollary, which follows directly from [BMI5]
Theorem 4.1] after observing that v satisfies the condition of nonannular
bounded combinatorics (see Proposition, provides greater insight into the
class of Weil-Petersson ending laminations that violate Masur’s criterion. In
particular, these nonuniquely ergodic laminations determine recurrent Weil-
Petersson geodesic rays, by contrast to the setting of Teichmiiller geodesics
where Masur’s criterion [Mas92| guarantees a Teichmiiller geodesic with such
a vertical foliation diverges.

For any lamination v coming from a sequence {7}, satisfying P, as
well as some additional conditions (see in 48| and condition P(iv) in
, we analyze the limit set of a Teichmiiller geodesic ray defined by a
quadratic differential with vertical foliation  supported on v. To describe
our result about the limiting behavior of this geodesic ray, we denote the
simplex of the projective classes of measures supported on the lamination by
A(v) in the space of projective measured foliations, viewed as the Thurston
boundary of Teichmiiller space.

Theorem 1.4. Suppose that v is the limiting lamination of a sequence
{132, satisfying the conditions P, P(iv), and . Let v = ZZ”;OI "
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where xp, > 0 for h = 0,....m — 1, and r : [0,00) — Teich(S) be a Te-
ichmiiller geodesic ray with vertical measured lamination v. Then the limit
set of r in the Thurston boundary is the simple closed curve in the simplex
A(v) of measures on v that is the concatenation of edges

(7%, P u [Pt 7] u...u ™1, 7).

When m > 3, the theorem shows that there are Teichmiiller geodesics
whose limit set does not contain any point in the interior of A(v). In addi-
tion, it answers the following question raised by Jonathan Chaika:

Question 1.5. Is the limit set of each Teichmiiller geodesic ray simply
connected?

For m > 3, the theorem shows that answer to this question is no. Namely,
Teichmiiller geodesic rays with vertical measured lamination as above pro-
vide examples of geodesics with limit set being a topological circle, and
hence not simply connected.

The results of this paper (as well as those of |[LLR|) were inspired by work
of Masur in [Mas82b|, Lenzhen [Len08|, and Gabai |[Gab09]. In |[Mas82b|
Masur showed that if v is a uniquely ergodic foliation, then any Teichmiiller
ray defined by a quadratic differential with vertical foliation supported on
v limits to [v] in the Thurston compactification. Lenzhen |Len08| gave the
first examples of Teichmiiller rays which do not converge in the Thurston
compactification. Lenzhen’s rays were defined by quadratic differentials with
non-minimal vertical foliations, and in both |[LLR| and [CMW]|, nonconver-
gent rays defined by quadratic differentials with minimal vertical foliations
were constructed. The methods in these two papers are quite different,
and as mentioned above, the approach taken in this paper is more closely
related to that of [LLR]. We also note the results of this paper, as well
as [LenO8l [LLR) [CMW], are in sharp contrast to the work of Hackobyan
and Saric in [HS| where it is shown that Teichmiiller rays in the universal
Teichmailler space always converge in the corresponding Thurston compact-
ification.

Our example of nonuniquely ergodic laminations obtained from a sequence
of curves are similar to those produced by Gabai’s in |Gab09|. On the other
hand, our construction provides additional information, especially impor-
tant are the estimates on intersection numbers and subsurface projections,
that allow us to study the limiting behavior of the associated Teichmiiller
rays. For more on the history and results about the existence and con-
structions of nonuniquely ergodic laminations and the study of limit sets of
Teichmiiller geodesics with such vertical laminations we refer the reader to
the introduction of [LLR].

Acknowledgement: We would like to thank Howard Masur for illuminat-
ing conversations and communications as well as the anonymous referee for
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helpful suggestions. We also would like to thank Anna Lenzhen; her col-
laboration in the first paper was crucial for the development of the current
paper. Finally we would like to thank MSRI at Berkeley for hosting the
program Dynamics on moduli spaces in April 2015; where the authors had
the chance to form some of the techniques of this paper.

2. BACKGROUND
We use the following notation throughout this paper.

Notation 2.1. Suppose K > 1 and C' > 0 and f,g : X — R are two
functions. We write f ;r(c gif f(x) = C < g(z) < flx)+C, f Sk g if
xf(@) < g(z) < Kf(2), and f =k gif £ (f(z) ~C) < g(z) < Kf(x)+C.

We also write f 2K g if f(x) < Kg(x), f :C g if f(z) < g(x) + C, and
f <kc gif f(z) < Kg(z) + C. When the constants are known from the
text we drop them from the notations. Finally, we also write f = O(g) if

f=g

Let S = S, be an orientable surface of finite type with genus g and b
holes (a hole can be either a puncture or a boundary component). Define
the complexity of S by £(S) = 3g —3+b. The main surface we will consider
will have £ > 1 and all holes will be punctures. However, we will also be
interested in subsurfaces and covers of the main surface, which can also
have £ < 1. For surfaces S with £(S) > 1, we will equip it with a reference
metric, which is any complete, hyperbolic metric of finite area with geodesic
boundary (if any).

2.1. Curve complexes. For any surface Y, £(Y) > 1, the curve complex of
Y, denoted by C(Y'), is a flag complex whose vertices are the isotopy classes
of simple closed curves on Y that are essential, meaning non-null homotopic
and non-peripheral. For £(Y) > 1, a set of k + 1 distinct isotopy classes of
curves defines a k—simplex if any pair can be represented by disjoint curves.
For £(Y) =1 (Y is Spa or Si1), the definition is modified as follows: a
set of k 4 1 distinct isotopy classes defines a k—simplex if the curves can be
represented intersecting twice (for Y = Sp2) or once (for Y = 51 1).

The only surface Y with £(Y') < 1 of interest for us is a compact annulus
with two boundary components. These arise as follows. For any essential
simple closed curve o on our main surface S, let Y, denote the annular cover
of S to which « lifts. The reference hyperbolic metric on S lifts and provides
a compactification of this cover by a compact annulus with boundary (which
is independent of the metric). The curve complex of a, denoted C(Yy), or
simply C(«), has vertex set being the properly embedded, essential arcs in
Y., up to isotopy fixing the boundary pointwise. A set of isotopy classes of
arcs spans a simplex if any pair can be realized with disjoint interiors.

Distances between vertices in C(Y') (for any Y) will be measured in the
1-skeleton, so the higher dimensional simplices are mostly irrelevant. Masur
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and Minsky [MM99| proved that for any Y, there is a 6 > 0 so that C(Y) is
d—hyperbolic.

For surfaces Y with £(Y) > 1, we also consider the arc and curve com-
plex AC(Y), defined in a similar way to C(Y'). Here vertices are isotopy
classes of essential simple closed curves and essential, properly embedded
arcs (isotopies need not fix the boundary pointwise), with simplices defined
again in terms of disjoint representatives. Arc and curve complexes are
quasi-isometric to curve complexes, and so are also d—hyperbolic.

Multicurves (respectively, multiarcs) are disjoint unions of pairwise non-
isotopic essential simple closed curves (respectively, simple closed curves
and properly embedded arcs). Up to isotopy a multicurve (respectively,
multiarc) determines, and is determined by, a simplex in C(.S) (respectively,
AC(S)). A marking p is a pants decomposition base(y), called the base of p,
together with a transversal curve f3,, for each o € base(y), which is a curve
minimally intersecting o and disjoint from base(u) —a. A partial marking p
is similarly defined, but not every curve in the pants decomposition base(s)
is required to have a transversal curve.

For more details on curve complexes, arc and curve complexes, and mark-
ings, we refer the reader to [MM99].

Remark 2.2. When the number £(5) is at least 1, it is equal to the number
of curves in a pants decomposition. When all the holes of S are punctures,
€(9) is also the complex dimension of Teichmiiller space of S.

2.2. Laminations and foliations. A lamination will mean a geodesic lam-
ination (with respect to the reference metric if no other metric is specified),
and a measured lamination is a geodesic lamination v, called the support,
with an invariant transverse measure 7. We will often refer to a measured
lamination just by the measure o (as this determines the support v). The
space of all measured laminations will be denoted ML(S), and for any
two metrics, the resulting spaces of measured laminations are canonically
identified. By taking geodesic representatives, simple closed curves and
multicurves determine geodesic laminations. Weighted simple closed curves
and multicurves determine measured laminations are dense in ML(S), and
the geometric intersection number extends to a continuous, bi-homogeneous
function
it ML(S) x ML(S) — R.

By a measured foliation on S we will mean a singular measured foliation
with prong singularities of negative index (and at punctures, filling in the
puncture produces a k—prong singularity with & > 1). When convenient, a
measured foliation may be considered only defined up to measure equiva-
lence, and the space of measure equivalence classes of measured foliations
is denoted MF(S). The spaces MF(S) and ML(S) are canonically iden-
tified, and we will frequently not distinguish between measured laminations
and measured foliations. A foliation or lamination is uniquely ergodic if
it supports a unique (up to scaling) transverse measure, or equivalently, if
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the first return map to (the double of) any transversal is uniquely ergodic.
Otherwise it is nonuniquely ergodic. We write PML(S) and PMF(S) for
the quotient spaces, identifying measured laminations or foliations that dif-
fer by scaling the measure. See [PH92| |CEGS87, [FLP79! [Thu86, [Lev8&3| for
complete definitions, detailed discussion, and equivalence of MF(S) and

ML(S).

2.3. Gromov boundary of the curve complex. A lamination v on S is
called an ending lamination if it is minimal (every leaf is dense) and filling
(every simple closed geodesic on the surface nontrivially, transversely inter-
sect v). Every ending lamination admits a transverse measure, and we let
EL(S) denote the space of all ending laminations. This is the quotient space
of the subspace of ML(S) consisting of measured laminations supported on
ending laminations, by the map which forgets the measures. The follow-
ing theorem of Klarreich [Kla] identifies the Gromov boundary of C(.S) with
EL(S).

Theorem 2.3. (Boundary of the curve complex) There is a homeomorphism
& from the Gromov boundary of C(S) equipped with its standard topology to
EL(Y).

Let {v}72 be a sequence of curves in Co(S) that converges to a point x in
the Gromov boundary of C(S). Regarding each 7 as a projective measured
lamination, any accumulation point of the sequence {yi}32, in PML(S) is
supported on D(x).

We will use this theorem throughout to identify points in 9C(S) with
ending laminations in £L£(5).

2.4. Subsurface coefficients. An essential subsurface Y of a surface Z
with £(Y) > 1 is a closed, connected, embedded subsurface whose boundary
components are either essential curves in Z or boundary component of Z,
and whose punctures are punctures of Z. All such subsurfaces are consid-
ered up to isotopy, and we often choose representatives that are components
of complements of small neighborhoods of simple closed geodesics, which
therefore have minimal, transverse intersection with any lamination. The
only essential subsurfaces Y of Z with £(Y) < 1 are not actually subsur-
faces at all, but rather such a Y is the compactified annular covers Y, of
Z associated to a simple closed curve « in Z. We sometimes confuse an
annular neighborhood of o with the cover Y, (hence the reference to it as
a subsurface) when convenient. We will always write ¥ C Z to denote an
essential subsurface, even when it is not, strictly speaking, a subset of Z.
Let Y C Z be an essential non-annular subsurface and A\ a lamination
(possibly a multicurve) and we define the subsurface projection of A to Y.
Represent Y as a component of the complement of a very small neighborhood
of geodesic multicurve. If A\NY = 0, then define 7y () = (. Otherwise,
7y (A) is the union of all curves which are (i) simple closed curve components
of Y N X or (ii) essential components of dN(a U dY'), where a C ANY is
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any arc, and N(a U 9dY) is a regular neighborhood of the union. If Y, is
an essential annular subsurface, then 7y, (\), or simply 7 ()), is defined
as follows. For any component of the preimage of A\ in the annular cover
corresponding to «, the closure is an arc in Y,, and we take the union of all
such arcs that are essential (that is, the arcs that connect the two boundary
components).

For a marking p (or partial marking), if Y = Y}, is an annulus with core
curve o € base(pu), then my (1) = 74(Ba), where S, is the transverse curve
for @ in p. Otherwise, my () = my (base(u)). For any lamination or partial
marking A\ and any essential subsurface Y, my () is a subset of diameter at
most 2.

Let p, 1/ be laminations, multiarcs, or partial markings on Z and Y C Z
an essential subsurface. The Y —subsurface coefficient of p and u' is defined
by

(2.1) dy (p, p') := diameyy(my () Uy (1))

Remark 2.4. The subsurface coefficient is sometimes alternatively defined
as the (minimal) distance between 7y (u) and 7y (u'). Since the diameter of
the projection of any marking or lamination is bounded by 2, these defini-
tions differ by at most 4. The definition we have chosen satisfies a triangle
inequality (when the projections involved are nonempty), which is particular
useful for our purposes.

The following lemma provides an upper bound for a subsurface coeflicient
in terms of intersection numbers.

Lemma 2.5. [MMO00| §2] Given curves o, B € C(S), for any essential sub-
surface Y C S we have

dy (o, 8) < 2i(e, B) + 1.

When Y is an annular subsurface the above bound holds with multiplicative
factor 1.

Remark 2.6. The bound in the above lemma can be improved to < log i(a, 3)
for £(Y) > 1, but the bound given is sufficient for our purposes.

The following result equivalent to [CR07] Corollary D] provides for a
comparison between the logarithm of intersection number and sum of sub-
surfaces coefficients. For a pair of markings u, ¢/, the intersection number
i(p, i) is defined to be the sum of the intersection numbers of the curves in
w with those in p'.

Theorem 2.7. Given A > 0 sufficiently large, there are constants so that
for any two multi-curves, multi-arcs or markings u and p' we have

logi(u, )= Y {dw(u)ya+ D log{dw(p,u)}a-

WY, WCY,
non-annular annular

Where W is so that u, ' h W.
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In this theorem, {-} 4 is a cut-off function defined by {z}4 =z if z > A,
and {x}4 =0if x < A.

Notation 2.8. Given a lamination or a partial marking x4 and subsurface Y
we say that p and Y overlap, writing p MY if 7y (u) # 0. For any marking
w1 and any subsurface Y, we have u M Y. Given two subsurfaces Y and Z, if
Y M Z and 0Z MY then we say that Y and Z overlap, and write Y rh Z.

The inequality first proved by J. Behrstock Beh06| relates subsurface
coefficients for overlapping subsurfaces.

Theorem 2.9 (Behrstock inequality). There is a constant By > 0 so that
gien a partial marking or lamination p and subsurfaces Y and Z satisfying
Y h Z we have

min{dy (0Z, p1),dz(9Y, p)} < Bo.

whenever u MY and ph Z.

Remark 2.10. As shown in |[Manl3|, the constant By can be taken to be
10. In fact, if one projection is at least 10, then the other is < 4.

The following theorem is a straightforward consequence of the Bounded
Geodesic Image Theorem [MMO00] Theorem 3.1].

Theorem 2.11. (Bounded geodesic image) Given k > 1 and ¢ > 0, there
is a constant G > 0 with the following property. Let Y C S be a subsurface.
Let {v,}52, be a 1—Lipschitz (k, c)—quasi-geodesic in C(S) so that v MY
for alli. Then diamy ({vx}2,) < G.

2.5. Teichmiiller theory. We assume that any holes of S are punctures.
The Teichmiiller space of S, Teich(S), is the space of equivalence classes of
marked complex structures [f: S — X], where f is an orientation preserving
homeomorphism to a finite type Riemann surface X, where (f: S — X) ~
(g: S —Y)if fog!is isotopic to a conformal map. We often abuse nota-
tion, and simply refer to X as a point in Teichmiiller space, with the equiv-
alence class of marking implicit. We equip Teich(S) with the Teichmiiller
metric, whose geodesics are defined in terms of quadratic differentials.

Let X be a finite type Riemann surface and let T(H9*X be the holo-
morphic cotangent bundle of X. A quadratic differential ¢ is a nonzero,
integrable, holomorphic section of the bundle TAO*X @ 710X In lo-
cal coordinates q has the form ¢(z)dz? where ¢(z) is holomorphic function.
Changing to a different coordinate w, g changes by the square of the deriv-
ative, and is thus given by ¢(z(w))( %)Zde. The integrability condition is
only relevant when X has punctures, in which case it guarantees that ¢ has
at worst simple poles at the punctures.

In local coordinates away from zeros of ¢ the quadratic differential ¢ deter-
mines the 1—form +/q(z)dz2. Integrating this 1-form determines a natural
coordinate ¢ = £ + in. Then the trajectories of d¢ = 0 and dn = 0, respec-
tively, determine the horizontal and vertical foliations of g on X. Integrating
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|d¢| and |dn| determines transverse measures on vertical and horizontal folia-
tions, respectively. These extend to measured foliations on the entire surface
S with singularities at the zeros. Using the identification MF(S) = ML(S),
we often refer to the vertical and horizontal measured laminations of q.

Now given a quadratic differential ¢ on X, the associated Teichmiiller
geodesic is determined by the family of Riemann surfaces X; defined by
local coordinates (; = e'¢ + e~'n where ( = £ +in is a natural coordinate of
q at X and t € R. Every Teichmiiller geodesic ray based at X is determined
by a quadratic differential ¢ on X. See |Gar87| for details on Teichmiiller
space and quadratic differentials.

2.6. The Thurston compactification. Given a point [f: S — X] in
Teich(S) and a curve «, the hyperbolic length of « at [f: S — X] is defined
to be hyperbolic length of the geodesic homotopic to f(a) in X. Again
abusing notation and denoting the point in Teich(S) by X, we write the hy-
perbolic length simply as Hyp y («). The hyperbolic length function extends
to a continuous function

Hyp()(+): Teich(S) x ML(S) — R.

The Thurston compactification, Teich(S) = Teich(S) U PML(S) is con-
structed so that a sequence {X,,} C Teich(S) converges to [7] € PML(S) if
and only if

oy Py, (@) _i(7,a)
n—oo Hypy, (8) (7, )
for all simple closed curves a, § with i(7,3) # 0. See [Bon88| [FLP79] for
more details on the Thurston compactification.

2.7. Some hyperbolic geometry. Here we list a few important hyper-
bolic geometry estimates. For a hyperbolic metric X € Teich(S) and a
simple closed curve «, in addition to the length Hyp y(«), we also have the
quantity wx («), the width of o in X. This is the width of a maximal embed-
ded tubular neighborhood of « in the hyperbolic metric X—that is, wx (a)
is the maximal w so that the open w/2-neighborhood of « is an annular
neighborhood of a. The Collar Lemma (see e.g. [Busl0, §4.1]) provides a
lower bound on the width

Lemma 2.12. For any stmple closed curve a, we have

1
> 9ginh-! .
wx () > 2sin (sinh(Hypx(a)/2)>
Consequently,
+
2.2 = 21 T 7N
(22) wxte) = 2108 (g 5)

The second statement comes from the first, together with an easy area
argument. The implicit additive error depends only on the topology of S.
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We also let g > 0 be the Margulis constant, which has the property that
any two hyperbolic geodesics of length at most ¢y must be embedded and
disjoint.

2.8. Short markings. For L > 0 sufficiently large, an L-bounded length
marking at X € Teich(S) (or L-short marking) is a marking with the prop-
erty that any curve in base(u) has hyperbolic length less than L, and so that
for each o € base(y), the transversal curve to « has smallest possible length
in X. Choosing e sufficiently large (larger than the Bers constant of the
surface) the distance between any two points in Teichmiiller space can be
estimated up to additive and multiplicative error in terms of the subsurface
coefficients of the short markings at those points, together with the lengths
of their base curves; see |Raf07].

3. SEQUENCES OF CURVES

Over the course of the next three sections we will provide general condi-
tions on a sequence of curves which guarantee that any accumulation point
in PML(S) of this sequence is a nonuniquely ergodic ending lamination. In
|Gab09l §9], Gabai describes a construction of minimal filling nonuniquely
ergodic geodesic laminations. The construction is topological in nature. Our
construction in this paper and that of [LLR] can be considered as quantifica-
tions of Gabai’s construction where the estimates for intersection numbers
are computed explicitly. These estimates allow us to provide more detailed
information about the limits in PML(S) as well as limiting behavior of
associated Teichmiiller geodesics.

In this section we state conditions a sequence of curves can satisfy, starting
with an example, and describe a useful way of mentally organizing them.
The conditions are motivated by the examples in [LLR], and so we recall that
construction to provide the reader concrete examples to keep in mind. A
more robust construction that illustrates more general phenomena is detailed
in

Throughout the rest of this paper {ex}}2, is an increasing sequence of
integers satisfying

(3.1) ex+1 > aey for any k > 0.

where a > 1. Consequently, for all [ < k, we have e, > a¥¢;.

3.1. Motivating example. The motivating examples are sequences of curves
in So5, the five-punctured sphere. We view this surface as the double of a
pentagon minus its vertices over its boundary. This description provides
an obvious order five rotational symmetry p obtained by rotating the pen-
tagon counter-clockwise by an angle 47/5. Let gy be a curve which is the
boundary of a small neighborhood of one of the sides of the pentagon and
let v = p?(y0) (see Figure . Write D = D,, for the positive Dehn twist
about ~.
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Now define v to be the image of 7y under a composition of powers of D
and p by the formula:

Y = D2pDp- - D% pD+1 p(0).

The first five curves, 7o, ...,74 in the sequence are shown in F1gure 1

T

FIGURE 1. The curves 7o,...,74 in Sp4. Any five consecu-
tive curves vyg_oa, ..., Vip+o differ from those shown here by a
homeomorphism, and replacing es by ey.

Observe that for any k& > 3, the four consecutive curves vx_o, ..., Vk+1
are just the image of vy, ...,~3 under the homeomorphism

By_y = D2p--- D% p.

Furthermore, the next curve in the sequence, V42, is the image of D p(~y3).
In particular, up to homeomorphism, any five consecutive curves v¢_s, . . ., Yg+2
in the sequence appear as in Figure With eo replaced by eg.

3.2. Intersection conditions. We now describe the general conditions,
and verify that the above sequence of curves satisfies them. To begin, we
fix positive integers b1 < b < by. We will also assume that eg > E + G (and
hence e; > a¥(E+G) for all k), where G is the constant from Theorem|2.11
and E is the constant in Theorem below. For the examples in Sg s
described above, we will have b = by = by = 2.

In the next definition, D, is the Dehn twist in a curve ~.

Definition 3.1. Suppose m < £(S), and assume b, b1, b, a, and {ej } 32, are
as above. We say that a sequence of curves {vy,}732, on S satisfies P if the
following properties hold for all £ > 0:

(1) Yk .-y Yk+m—1 are pair-wise disjoint and distinct,

(i1) Yy s Ve+2m—1 fill the surface S, and

(iil) Ye+m = D (Vppp)> Where ;. is a curve such that

€ [b1,bo] forje{k—m,...k—1}
i(Vogm-> )4 = for j =k
=0 forje{k+1,.,k+m—1}
(here we ignore any situation with j < 0).

We will wish to impose some additional constraints on the constant a (specif-
ically, we will require it to be chosen so that (5.6) holds), and so in the
notation we sometimes express the dependence on a writing P = P(a). Of
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course, P depends on the choice of constants b; < b < by and the sequence
{exr}, but we will impose no further constraints on the b constants, and the
conditions on {ej} depend on a.

Here we verify that the sequence of curves on Sp 5 described above satisfies
these conditions with m = 2. Note that the conditions are all “local”,
meaning that they involve a consecutive sequence of at most 2m+1 curves—
for our example, that’s a sequence of at most 5 consecutive curves. As
noted above, any five consecutive curves yx_o,...,Vr4+2 differ from those
in Figure |1| by applying the homeomorphism ®;_1 = D®p---D%-1p and
changing ey to ex. From this, it is straight forward to verify that this
sequence satisfies these conditions.

Since m = 2, condition (i) says that 2 consecutive curves are disjoint,
while (ii) says that four consecutive curves fill Sy 5. Note that (i) is clearly
true for vp,71 and (ii) for ~p,...,73. Since any two or four consecutive
curves differ from these by a homeomorphism, conditions (i) and (ii) hold
for all k.

Finally, note that 74 = D52p(73), and so setting 74 = p(73) and observing
that v = 72, (iii) clearly holds for £ = 2 by inspection of Figure The case
for general k follows from this figure as well, after applying ®;_1. Specif-
ically, k1o is obtained from p(vy3) by applying ®5_1DSk, or equivalently,

72’
setting v, o = Pr_1(p(73))
Vi4+1 = (I)kflp,eygq);_ll(q)kfl(p<73))) = Dekk71(72)(’y;€+2) = D’eYllz (fyllf+2)

Because Yx—2, Yk—1, Yh> Vh+1> Viy2> Th+2 are the images of yo, 71,72, 73, 74> V4,
respectively, under ®j_1, (iii) follows for general k by inspection of Figure

Returning to the general case, we elaborate a bit on the properties in P.
First we make a simple observation.

Lemma 3.2. For every j,k > 0 with j € {k—m+1,...,k}, we have
i(Vitm, V5) € [b1, ba] with i(Yetm, ) = .

Proof. Since Y1m = D (Viyy) and Dy, (v;) = 5 (because i(v;, &) = 0),
it follows that

i(Yhtms V) = UDL* (Yrtm)> P55 (V) = i (Vims 75) € [b1, b2

proving the first statement. For the special case j = k, i(7, ., %) = b, and
the second statement follows. O

3.3. Visualizing the conditions of P. The conditions imposed in P in-
volve intervals of length m and 2m, as well as mod m congruence conditions.
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It is useful to view the tail of the sequence starting at any curve ~; (for ex-
ample, when 7 = 0 this is the entire sequence), in the following form

(3.2) Vi Yit1 o Yitm—1 )

<—’> Yi+m — Yi+m+1 T T Yi+2m—1 >
<’> Yi+2m — Yi+2m+1 ———

From the first condition of P, all curves in any row are pairwise disjoint.
Lemma [3.2]tells us that +; intersects the curve directly below it b times and
it intersects everything in the row directly below it between b; and by times.
The second condition in P tells us that any two consecutive rows fill S. The
third condition (part of which is used in the proof of Lemma, can be
thought of as saying that going straight down two rows from v; to Yi+om
gives a curve that “almost” differs by the power of the Dehn twist D57 . To
understand this interpretation, note that ~/ tom and 7y;yon, differ precisely
by this power of a twist, while on the other hand, each of v;,,, and 7; have
intersection number at most be with the filling set v, .. ., ¥it2m—1 (which we
view as saying that ; and ~/ 4o, are “similar”).

4. CURVE COMPLEX QUASI-GEODESICS

The purpose of this section is to provide general conditions (Theorem |4.1)
on a sequence of subsurfaces in terms of subsurface coefficients of consecutive
elements which guarantee that their boundaries define a quasi-geodesic in
the curve complex of the surface. Appealing to Theorem we deduce
that such sequences determine an ending lamination. We end by proving
that a sequence of curves satisfying P are core curves of annuli satisfying
the conditions of Theorem and hence are vertices of a quasi-geodesic in
C(S) defining an ending lamination v € EL£(S).

Variations of this result appeared in [Man13|, [CLM12|, [Mod15|, [LLR/,
and [BM15] for example. Here our conditions only involve the intersection
pattern and projection coefficients of fixed number of consecutive subsurfaces
along the sequence. In this sense these are local conditions.

Theorem 4.1. (Local to Global) Given a surface S and 2 < m < &(9),
there are constants E > C > 0 with the following properties. Let {Y,}72,
be a sequence of subsurfaces of S. Suppose that for each integer k > 0,

(1) The multi-curves Yy, ...,0Yy1m—_1 are pairwise disjoint,

(2) Yy MY; forallj € {k+m,...k+2m —1}, and

(3) dy, (0Y;,0Y;) > E for any j € {k+m,...k+ 2m — 1} and any

je{k—2m+1,..,k—m}.

Then for every j,j', k with j > k+ m and j' < k — m we have

(4.1) Y, MY and Yy, h Yy
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and
(4.2) dy, (0Y},0Yj1) > dy, (0Yi—m, OYiim) — C.

Furthermore suppose that for somen > 1 and all k >0
(4) the multi-curves OYy, ....,0Yg12n—1 fill S.

Then for any two indices k,j > 0 with |k — j| > 2n we have

(4.3) ds(9Y;,0Yy) > "“4—3’ - (ﬁ + 1) .

n 2n

In the hypotheses (as well as the conclusions) of this theorem, we ignore
any condition in which there is a negative index.

Proof. Set the constants
C=2By+4+G and FE=C+ By+G+4.

Here By is the constant from Theorem (Behrstock inequality) and G is
the constant from Theorem (Bounded geodesic image theorem) for a
geodesic (i.e. k =1, ¢ = 0). We prove and simultaneously by a
double induction on (j — k, k — j').

For the base of induction, suppose that m < k — 7' < 2m — 1 and m <
73—k < 2m — 1. The statement follows from . To prove (4.2)
note that by OYytm, ..., 0Y; are pairwise disjoint and have non-empty
projections to Yj. Consequently, the distance in Y; between any two of
these boundaries is at most 2, and so diamy, ({0Y;}]_,_,,,) < 2. Similarly,

diamy, ({0Y; }f:_]’f”) < 2. By the triangle inequality we have

dy, (0Y},0Yy) > dy, (0Yi—m, O0Ykim) — dy, (0Y}, 0Ygym) — dy,(0Yi—m, 0Yjr)
> dYk (aYk—ma aYk—i—m) —4> dYk (aYk—ma aYk—i—m) -C
which is the bound (4.2).

Suppose that (4.1) and (4.2) hold for all m < k —j" < 2m — 1 and
m<j—k <N, for some N >2m — 1. We suppose j —k =N + 1 and we

must prove both (4.1) and (4.2) for (j — k,k — j').
From the base of induction we already have Y} th Yj,. To complete the

proof of (4.1), we prove Yj, h Y;. Since m = (k+m) —k < 2m — 1 and
m<j—(k+m)=N+1—m <N, from the inductive hypothesis we have

Yk h Yk+m and YYJ h Yk+m

and

Ay, s (0Yy, 0Y;) > AYysm (0Yy, OYjrom) —C > E —C > 4.
Consequently, i(0Y, 0Y;) # 0 and Y}, h Y; as required.

We now turn to the proof of (4.2). Since Y3 MY; and Yi M Yy, by (2) we
may write the following triangle inequality
(4.4)  dy, (0Y;,0Y;) > dy, (0Yi—m,0Ykim)
—dyk (8Yk_m, E)Y]/) — dyk (an, 8Yk+m)
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Since m < j— (k4+m) = N+1—m < N, from the inductive hypothesis we
have

dy,.,, (Y%, 0Y;) > dy, . (0Yy, Yiyom) —C > E — C > By.

By Theorem dy, (0Yk4m,Y;) < Bp. On the other hand, as in the proof
of the base case of induction, since m < k — 7' < 2m — 1 we have

dy, (8Yk,m, 8le) < 2.
Combining these two inequalities with (4.4), we obtain
dy;, (an/, 0Y;) > dy, (0Yk—m,0Yksm) — Bo — 2
> dy, (8Yk,m, aYker) - C.

This completes the first half of the double induction.

We now know that and hold for all 7,5’k with m < k — j' <
2m —1 and all j —k > m. We assume that they hold for m < k—j < N and
j—k > m for some N > 2m —1, and prove that they hold for k —j' = N +1.
The proof of is completely analogous to the proof in the first part of
the induction, and we omit it. The proof of is also similar, but requires
one additional step so we give the proof.

We may again write the triangle inequality (4.4). Since m < (k—m)—j' =
N +1—m < N by the inductive hypothesis we have

dy,_,,(0Y},0Y;) > E — C > By,

and so Theorem again implies dy, (0Yy—m,0Yy) < By. If j—k <2m—1,
then as above dy, (0Yj4m, 0Y;) < 2. Otherwise, by induction we have

dy, ., (3Y3,8Y;) > E — C > By

and Theorem once again implies dy, (0Yj4m,0Y;) < By. Combining
these inequalities with (4.4]) we have

dyk (8er, 83/]) dyk (8Yk_m, 8Yk+m) — Bo - maX{Z, Bo}
dy, (0Ygk—m, OYjrm) — C.
This completes the proof of (4.2), and hence the double induction is finished.

AVANAY]

Now further assuming we prove . Note that we must have n > m.
Without loss of generality we assume j < k, so that k—j > 2n > 2m. For the
rest of the proof, for any s,r € Z, s < r, we write [s,r| ={t € Z | s <t <r}.

Suppose ¢ is any multi-curve. Let Z(d) = {s € [j, k] | i(d, 9Y5) # 0}.

Claim 4.2. Suppose s',7" € [j, k] \ Z(0). Then |’ — §'| < 4n — 2.
Observe that by the claim, [j, k] \ Z(d) contains fewer than 4n integers.

Proof. Without loss of generality, we assume s’ < 7/, and suppose for a
contradiction ' — s’ > 4n — 1. By Yy iny...,0Ys 3, 1 fills S, and so
there exists s +n <t < s+ 3n — 1 with ¢t € Z(9).
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Now observe that s'+m < s'+n <tandt < s +3n—-1<7"—n <r'—m,
by the first part of the theorem we know that
dy,(0Yy,0Y) > E —C > 4.
On the other hand, since i(d,0Yy) = 0 = i(d,0Y,), and since t € Z(0)
implies 7y, (0) # 0, the triangle inequality implies
dy,(0Yy,0Y,r) < dy, (Y, 6) + dy,(6,0Y,r) <242 =4
a contradiction. O

Let n be a geodesic in C(S) connecting 9Y; to 9Y). For any | € {j +
m, ...,k —m}, by (4.2) we have that
dy,(0Y;,0Yy) > E—C > G.

Thus Theorem m guarantees that there is a curve §; € n disjoint from Y.
Choose one such 0; € n for each | € [j + m,k — m]. By the previous claim
there are at most 4n integers I’ € [j + m, k — m] such that i(d;,0Yy) = 0,
and hence [ — §; is at most 4n-to-1.

Therefore, n contains at least kej2mtl o koj 3. curves. It follows

4n 4an
that e
Y, 0v) > <7 1)
ds(0Y;, 0Y) = 4dn 2n+
proving (4.3). This completes the proof of the theorem. O

Theorem 4.3. Let {Y;.}72, be an infinite sequence of subsurfaces satisfying
conditions (1)-(4) in Theorem . Then there exists a unique v € EL(S)
so that any accumulation point of {0Y}}32, in PML(S) is supported on v.

Proof. By Theorem Inequality , the sequence {0Y}}72, is (multi-
curve) quasi-geodesic in C(S). Furthermore C(S) is d—hyperbolic. Thus the
sequence converges to a point in the Gromov boundary of C(.5). Theorem
completes the proof. O

We complete this section by showing that P is sufficient to imply the
hypotheses of Theorem Given a curve « and an annular subsurface
Y with core curve 3, we note that o M Y3 if and only if i(a, 8) # O.
Consequently, to remind the reader of the relation to Theorem we write
a M B to mean i(a, 8) # 0.

Proposition 4.4. Any sequence {v;}3>, satisfying P(a) with a > 2 and
eg > E are the core curves of annuli satisfying conditions (1)-(4) of Theo-
remm withn = m. Consequently, {vx}3>, s a 1-Lipschitz, (4m, %)fquasi—
geodesic in C(S) and there exists v € EL(S) so that any accumulation point
of {m}iey in PML(S) is supported on v.

Proof. Condition (i) of P is the same as condition (1) of Theorem while
(ii) is just condition (4) with n = m. Condition (2) follows from Lemmal[3.2]
Finally, to see that condition (3) is satisfied, we note that d, (Vk—m, Ye+m) =

e > a*E > 2E > FE, for all k > m. Furthermore, for k—2m+1 < j < k—m,



18 JEFF BROCK, CHRIS LEININGER, BABAK MODAMI, AND KASRA RAFI

v; M v by Lemma and similarly ;. th g, for k+m < j* < k+2m—1. For
J and j in these intervals, i(yj, Yx—m) = 0 and (7,7, Yk4+m) = 0. Therefore,
by the triangle inequality, d~, (vj,7v;7) > a*E—2 > E, asrequired by (3). O
4.1. Subsurface coefficient bounds. We will need estimates on all sub-

surface coefficients for a sequence satisfying P. This follows from what we
have done so far, together with similar arguments.

Proposition 4.5. Given a sequence {7y}, satisfying P(a) with a > 2 and
eg > E, then there exists R > 0 with the following property.

(1) If i,5,k satisfy j <i—m and i+m < k then v; N v, v M y;, and

+ +
(4.5) dv, (Vi) <R €i and  dy(7vj,v) <R €
(2) If W C S is a proper subsurface, W # ~; for any i, then for any j, k
with v; MW and v, h W

(4.6) dw(vj,v) <R and dw(v;,v) < R.

Let v be a marking on S, then there is a constant R(u) so that
For any k sufficiently large and i < k —m

+ +
(4.7) do, (1, k) ZR(p) €0 and  dy, (11, V) SRy €
For any proper subsurface W # ~; for any i we have
(4.8) dw (ks v) < R(p) and  dw(p,v) < R(p)

Proof. We begin with the proofs of and . First note that since any
accumulation point of {v} in PML(S) is supported on v, any Hausdorff ac-
cumulation point of {7} contains v. Thus, for any fixed, proper subsurface
W C S and all sufficiently large k£ we have 7y (v) C 7y (g ). Furthermore,
since v is an ending lamination, my (v) # (), and hence dw (v, v) < 1, for
k sufficiently large. Therefore, for each of and , the statement on
the left implies the one on the right after increasing the constant by at most
1. Thus it suffices to prove the two statements on the left.

We begin with (4.5)). From the conditions in P, we have d., (Yi—m, Yitm) =
e;. By Theorem (which is applicable according to Proposition ,
{v}; is a 1-Lipschitz (4m,3/2)—quasi-geodesic such that every curve
has nonempty projection to ;. Therefore, by Theorem[2.11]and the triangle
inequality we have

|dy, (Yiemy, V) — dyy (Yiem, Yidm)| < dy, (Vigm, T6) < G-
Note that G depends only on m. Similar reasoning implies
Combining these we have
|dy, (055 k) = Aoy (Yimms Yiem)| = dy, (95, k) — doy, (Vi Vi)
+dy, (Yiem, Vi) — dy, (Yiem, Yiem)|
2G

IN
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We now move on to (4.6), and without loss of generality assume j < k.
If £ < j+2m —1, then the conditions in P together with Lemma imply
i(74, ) < ba, so by Lemma[2.5] dw (v, v) < 2b2 + 1.

Next, suppose that k = j + 2m. Let -, be the element guaranteed by
P, so that vy, = DSF-" (7). There are two cases to consider depending on
whether 7}, (f W or 7}, h W. If 4, ¢f W, then since v = D5¥"™ (v,) h W, we
must have y,_,,, W W. Now observe that j < k—m=j4+m<j+2m—1
and k —m <k <k—m+2m — 1. It follows from the previous paragraph

that dw (vj, Ye—m) < 2b2 + 1 and dw (Yk—m, V&) < 2b2 + 1, hence

dw (v, k) < 4ba + 2.

Now suppose v, h W. If 44, M W then just as in the first case we have
dw (7j, k) < 4ba+2. Suppose then that v;_,, #f W. If W is not an annulus,
then my (yx) = mw (;,) since D,, , is supported outside W. Therefore

dw (v, ) = dw (v;,75,) < 2ba + 1

since i(7;,7,) < ba. If W is an annulus, because W # vy, and yy—pm, (# W,
it easily follows that

dw (v, ) < dw (7, %) + dw (T, 76) < (202 +1) + 1
(see e.g. [FLMO1]). Therefore, we have shown that if k < j + 2m, we have
(4.9) dw (v, k) < 4b2 +2.

It follows that d., (v, vk ;QG e;. For R > 2@, || holds.
i

Now we suppose k > j + 2m. Setting § = OW, as in the proof of
Theoremwe let Z(0) = {s € [j,k] | i(0,7s) # 0}. Similarly, we let
I(W)={s€[j,k]|~vs ™MW}, and observe that Z(d) C Z(WW).

Note that j,k € Z(W), and we let s < r be such that [j,s],[r,k] C
Z(W) are maximal subintervals of Z(W') containing j and k, respectively (if
Z(W) = [j, k|, we can arbitrarily choose j < s < k and r = s + 1 for the
argument below). By our choice of r and s, it follows that s+1,r—1 ¢ Z(W),
and so Claim implies r — 1 — (s + 1) < 4m — 2 and hence r — s < 4m.

Note that since any 2m consecutive curves fill S, either r —s < 2m, or else
there exists s',r" € Z(W) such that s < ' <r' <randr—r",17'—s' s —s <
2m. For example, consider the extremal case that r — s = 4m. Then

s =maxZ(W)N|[s,s+2m] and ¢ =minZ(W)N[s+ 2m,7]

have the desired properties. Indeed, s’ — s,7 — 7’ are clearly less than 2m.
If ' — s’ > 2m, then since any 2m consecutive curves fill S, there must be
some s’ < u < r’ in Z(W), contradicting the choice of either s’ or /. The
general case is similar.

By the triangle inequality and we have

(4.10)  dw (Vs ) < dw (s, Vs) + dw (Vs Vo) + dw (e, 7)) < 1203 + 6.
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Since {v}j_; and {y}F_, are 1-Lipschitz (4m,3/2)-quasi-geodesics with

v W for all I € [j,s] U][r k], we can apply Theorem and so the
H

triangle inequality and ( ) give us

So the inequality on the left of holds for any R > 2G + 12b, + 6. This
completes the proof of the first four estimates.

Given a marking u, note that the intersection number of any curve in p
and any of the curves in the set of filling curves o, ..., Y2m—1 is bounded.
Then the estimates in li follow from the ones in and Lemma
respectively. Similarly the estimates in follow from the ones in (4.8).

O

5. MEASURES SUPPORTED ON LAMINATIONS

In this section we begin by proving intersection number estimates for a
sequence of curves satisfying P. Using these estimates, we decompose the
sequence into m subsequences and prove that these converge in PML(S).
In the next section, we will show that these m limits are precisely the ver-
tices of the simplex of measures on the single topological lamination v from

Proposition

5.1. Intersection number estimates. Here we estimate the intersection
numbers of curves in the sequence of curves {v;}72, satisfying P. The
estimates will be in terms of the constant b and sequence {ey} fixed above.
Specifically, given i, k € N with k > i, define

(5.1) ARy = ] bes

i+m<j<k and
j=k mod m

When the set of indices of the product is the empty set we define the product
to be 1. It is useful to observe that for k > i + 2m,

A(i k) = beg—_m A,k —m).
It is also useful to arrange the indices as in (3.2) in the following form

) 1+1 i+m—1
(5.2) i+m i+m+1 i+2m—1
14 2m 1+2m+1

Then A(i, k) is 1 exactly when k is in the first or second row. If k is below
these rows, then the product defining A(7, k) is over all indices j directly
above k, up to and including the entry in the second row.

We now state the main estimate on intersection numbers.

Theorem 5.1. Suppose {V,}32, s a sequence on a surface S satisfying
P(a). For a is sufficiently large, there is a constant k = k(a) > 1, so that
for each i,k with k > i +m we have

(5.3) i(’Yia’Yk) ;N A(Z7k)
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Recall that for i < k < i+ m, i(v;,7) = 0. Combining this with the
theorem gives estimates on all intersection numbers i(~;, v ), up to a uniform
multiplicative error.

Throughout all that follows, we will assume that a sequence of curves
{132, satisfies P = P(a) for a > 1.

Outline of the proof: The proof is rather complicated involving multi-
ple induction arguments, so we sketch the approach before diving into the
details. The upper bound on i(v;, k) is proved first, and is valid for any
a > 1. We start by recursively defining a function K (i, k) for all nonnegative
integers ¢ < k. By induction, we will prove that

i(’}/i, ’Yk) < K(ia k)A(Za k)

By a second induction, we will bound K (i, k) < Ky = K;(a), with the bound
K (a) a decreasing function of a. Next, we will recursively define a function
K'(i, k) = K'(i,k,a). By another induction, we prove that

i(%”yk) > K/(i7 k)A(l, k)

For a sufficiently large, we prove that K'(i,k,a) > Ko = Ks(a) > 0. Setting
k = max{Kj, %2} will prove the theorem.

Upper bound. Recall from P (Deﬁnition that for any k& > 2m, the
set of curves {'yl}f:_kl_Qm fill the surface, and the curve 7} intersects each
of these at most by times. Consequently, all complementary components of
S\ (Vk—2m U ...7x—1) are either disks or once-punctured disks containing
at most 2mby pairwise disjoint arcs of ;. In examples we may have many
fewer than 2mby such arcs, and it is useful to keep track of this constant on
its own. Consequently, we set

(5.4) B < 2mb,

to be the maximum number of arcs in any complementary component (over
all configurations in minimal position).

We are now ready for a recursive definition which will be used in the
bounds on intersection numbers (it is useful again to picture the indices as
in (5.2)):

0 fori<k<i+m
bo fori+m<k<i+2m
K(i, k)= LS
K(i,k—m)+2B A((Z’k))K(z’,l) for i +2m < k
I=k—2m ’

Lemma 5.2. For all i < k, we have i(~v;,vi) < K(i,k)A(i, k).

The proof takes advantage of the following well-known estimate on the
intersection of two curves after applying a power of a Dehn twist on one
proved in the Appendix A of [FLP79, Exposé 4], see also Lemma 4.2 in
[Iva92| §4].
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Proposition 5.3. (INTERSECTION NUMBER AFTER DEHN TWIST)
Let 6, &', and 8 be curves in C(S). Then for any integer e

(5:5) i(Dj, &') — |eli(B, 0)i(B, 0')| < i(d, ).

As above, Dg is a Dehn twist in 3. This proposition has the following
general application to intersection numbers of curves with the curves in our
sequence.

Proposition 5.4. For any curve 6 and any k > 2m, we have
k—1

I=k—2m

Proof. Since v; = D5F " (7)), Proposition implies

Assume all curves intersect minimally transversely and that there are no
triple points of intersection. From the definition of B, all complementary
components of S\ (Yx—2mU...Vk—1) contain at most B pairwise disjoint arcs
of 7;.. Therefore, between any two consecutive intersection points of J with
Yi—2mU. . .Uyk_1, there are at most 2B intersections points with +;, (any two
arcs in a disk component can intersect at most once, and in a once-punctured
disk component can intersect in at most two points). Therefore,

(5%SBZ i(6,7)-
l=k—2m

Combining this with the above inequality proves the proposition. ([
We are now ready for the

Proof of Lemma Fix i. The proof is by induction on k. For ¢ < k <
i+m, i(vi,7) = 0, K(i,k) = 0 and A(i,k) = 1, so the lemma follows.
Similarly, for i+m < k < i+2m, i(vi, k) < ba, K(i,k) = by, and A(i, k) = 1,
so again the lemma follows. Now suppose that & > i 4+ 2m, and assuming
that (v, v) < K(i,1)A(3,1) for all i <1 < k, we must prove i(y;,vr) <
K(i, k)A(i, k).

Applying Propositionto the case 6 = ;, we have

k—1
(i, Vi) = ber—mi(Yir Ye—m)| < 2B > i3, ).
l=k—2m
Therefore, we have
k—1

i(Yi, k) < beromi (Vi Yoom) + 2B Y i(yim)-
I=k—2m
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Applying the inductive hypothesis and the definitions of A and K to this
inequality we obtain

k—1
(Vi) < bekomi (Vi Yeom) + 2B D> i3, m)
I=k—2m
k—1
< bep-mK(i,k—m)A(i,k—m)+2B Y K(i,1)A(i,1)
l=k—2m
k—1 .
= A(i,k)K(i,k —m) + A(i, k)2B j(?’l? K(i,1)
l=k—2m (Z’ )
AGL))
= A(i k) (K(z, k—m)+ 2B H;m i k)K(z, 1)>
= A(i,k)K (i, k),
as required. O

Next we prove that K (i, k) is uniformly bounded, and in particular:

Proposition 5.5. There exists K1 = Ki(a) > 0 so that for all i < k,
K(i,k) < Ky and in particular, i(v;,v) < K1A(i, k). As a function of a,
Ki(a) is decreasing.

For the proof of this proposition, we will need the following bound.

Lemma 5.6. For allt <1 < k, we have
A(?,l) < A5
Al k) —

i
Proof. If k < i + 2m, then A(i,l), A(i,k) = 1 and o=l > 1, so the
inequality follows.

Now assume k > ¢ + 2m. By definition, we have

H bej/
AG, D)
A(i7 k) H bej

i+m<j<k and
j=k mod m

(where A(i,1) is 1 if [ < i+ 2m). Observe that the denominator has r =
ij = [£=1] —1 > 0 terms in the product, indexed by j € {k—m,k—

m .
2m, ...,k —rm}, while the numerator has s = max{0, [=!| — 1} > 0 terms,
indexed by j' € {l —m,l —2m,...,l — sm} (possibly the empty set). Since

I <k, s <r. Moreover, we have k —pm > [ —pm, and thus eg_,, > ae;_pp,
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by (3.1), for all p =1,...,s. Since (3.1) also implies e; > a for all j > 1,
combining these bounds with the equation above gives

A(vl) ° m 5 - r _ ., _@
A(;,k) Help H <J[a" [] et =a"=a"tm],

e
k—pm p=s+1 Ck—pm p=1 p=s+1

as required. O
As an application, of Lemma we prove

Lemma 5.7. For all i < k we have
j—it1

K(i,k)<by J] (Q+4mBa'~"m ).

i+m<j<k
As above, the empty product is declared to be 1.

Proof. The proof is by induction on k. Since K (i, k) < by for i < k < i+2m,
the lemma clearly holds for all such k. Now assume that k& > i + 2m, and
assume that the lemma holds for all integers less than k& and at least ¢. Let
lop be such that k — 2m <[y <k —1 and

K(i,lp) = max{K (1) | k—2m <l <k-—1}.
From this, the definition of K(i,k), and from Lemma we have

k—1
K(ik) = K(k—m)+28 Y j((’ Ii))K(z,l)
I=k—2m
< K(,lp)(1+2B i
I=k—2m

= K(i,lo)(1 + 4mBa~ L= ))

Since [y < k, the proposed bound on K (i,ly) holds by the inductive assump-
tion. Next, observe that the proposed upper bound is an increasing function
of k. Indeed, the required bound for K(i,k) is obtained from the one for
K(i,k — 1) by multiplying by a number greater than or equal to 1. By this
monotonicity, the above bound implies

K(i,k) < K(i,lo)(l—l—élmBal_L%J)

=i+l ~
< | b H (1+4mBa*~| ha+ 4mBa1_LkTJ)
i+m<j<k—1
H—l
= b [] (1+4mBd'" 15 h.
i+m<j<k
This completes the proof. O

We are now ready for the
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Proof of Proposition The upper bound on K (i, k) in Lemmais itself
bounded above by the infinite product

- j—it1 o0 "
Ki(a) = by H (1+ 4mBa1_LJ m ) = by H(l +4mBa~lm 1y,
j=i+m -0

where we have substituted | = j — ¢ — m. We will be done if we prove
that this product is convergent, for all @ > 1, since the product then clearly
defines a decreasing function of a.

The infinite product converges if and only if the infinite series obtained
by taking logarithms does. Since log(1l + x) < x we have

- Ll - Ll
log | b2 H(l +4mBa~lm )| = log(by) + Zlog(l + 4mBa~m )
1=0 1=0
>0 I+1
< log(bs) +4mB Z a bl
1=0

The last expression is essentially a geometric series, and hence converges for
all @ > 1, completing the proof. O

Lower bound. Let by be the constant in P (Definition [3.1). We assume
a > 1 is sufficiently large so that

(5.6) C'=8mBK; Y a™/ <b.
j=1

(which is possible since K; = Kj(a) is decreasing by Proposition . For
all k > i + m, define the function K’(i,k) by the recursive formula for all
k>i+m

C fori+m<k<i+2m
T k=1
K'(i, k) = K'(i,k—m)-2BY fAj‘g;;,?)K(i,Z) for i +2m < k
I=k—2m

Lemma 5.8. For all k > i+ m, we have i(vi,v) > K'(i,k)A(i, k).

Proof. Fix integer ¢ > 0. The proof is by induction on k. For the base case,
we let i +m <k <i+2m. Then A(i,k) =1 and K'(i, k) = C < by, while
i(7i, k) > b1, and hence i(v;, k) > K'(i,k)A(i, k). We assume therefore
that & > 7 4+ 2m and that the lemma is true for all s + m <1 < k.
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Applying Proposition to the curve § = ~;, together with Lemma
and the inductive hypothesis we have
k—1

(Vi) = erembi(yi, Yeem) — 2B > i, )
l=k—2m

v

k—1
ekmbK'(i,k —m)A(i,k —m) —2B > K(i,1)A(i,1)
I=k—2m

k—1

= A(i, k) <K’(z’,k:m)QB > jgj,?)K(i,z)>
I=k—2m

= A(i,k)K'(i, k)

as required. O
>

Lemma 5.9. Setting Ko = C/2 > 0, then whenever k > i+ m, K'(i, k)
K.

Proof. It i +m < k < i+ 2m, then K'(i,k) = C > C/2 = Ky > 0. Suppose
now that k > i+2m, and let k£ = p+ sm, where s and p are positive integers
with i +m < p < i+ 2m and p = k£ mod m. Note that

k—1 p+sm—1 p—1
= = == 1.
: m I=1 m I=s+1 m =5+
By Lemma it follows that for all [ < k, we have j((;,?) < a7%. Then

from the definition of K’ and Propositionwe have

k—1
K'(i,k) = K'(i,k—m)-2B > JEEK(i,0)
l=k—2m
k—1
> K'(i,k—m)-2B Y  a°K
I=k—2m
> K'(i,k—m)—2B(2m)a °Ky = K'(i,k —m) —4mBKia™*

Iterating this inequality s times implies

S
K'(i,k) > K'(i,p) — 4mBK1 Y a9
q=1
Since i +m < p <i+2m, K'(i,p) = C =8mBK; > 2, a~J and hence

K'(i,k) > 4mBE1(2) a7/ =) "a™9) >4mBK; Y a™l =C/2 = K>.
j=1 q=1 j=1
This completes the proof. O
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Proof of Theorem For a > 1 satisfying (5.6), we have proved that for
all k > i+ m,
Ko A(iy k) <i(vi,v) < K1A(4, k).

Since K1, Ky > 0, setting k = max{Kj, %2} finishes the proof. O

Convention. From this point forward, we will assume that P = P(a)
always has a > 1 sufficiently large so that is satisfied, and consequently
the intersection numbers of curves in any sequence {7, }7° , satisfies in
Theorem For concreteness, we note that from , a > 16 > 2 (though
in fact, it is much larger).

5.2. Convergence in ML(S). Consider again a sequence of curves {73},
which satisfies the conditions of Theorem Let v € EL(S) be the lam-
ination from Proposition In this section we will prove this sequence
naturally splits into m convergent subsequences in PML(S).

For each h =0,....,m — 1 and ¢ € N let

(5.7) = A(0,im + h) HbeJmHL

where A is defined in (5.1)).
For each h = 0,1,...,m — 1, define the subsequence 'yzh of the sequence

{’Yk}zozo by
(5.8) W= Yimth-
The main result of this section is the following theorem.

Theorem 5.10. Suppose {V}32, satisfies P. Then for eachh =0,1,...,m—
1, there exists a transverse measure " on v so that

h
lim 7—2 =l
1—00 G

in ML(S), where 4 and c* are as above.
We will need the following generalization of Theorem

Lemma 5.11. For any curve 0, there exists k(5) > 0 and N(6) > 0 so that
for all k > N(6)

(5.9) (0, 7) =iy A0, k).

Remark 5.12. Note that in Theorem we estimate i(7;, ) with a uni-
form multiplicative constant x that works for any two curves ~; and ~;, but
the comparison is with A(4, k) rather than A(0, k). On the other hand, the
ratio of A(0,k) and A(i, k) is bounded by a constant depending on i, and
not k, so the lemma for § = ~; is an immediate consequence of that theorem.
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Proof. First we note that by Theorem we have

iy ) =x A(i, k).

From the definition of A, and the fact that {e; };?io is an increasing sequence,
it follows that for each ¢ = 0,...,2m — 1, and all £ > i, we have the bound

A(07 k) 2
< <b .
> A(Z, k) = 0 €2me3m
Setting kg = Kkb*eame3m, for each i = 0,...,2m — 1, we have
(5~10) i(%v ’Yk) ;HO A(()? k)

Next, let d = 2mkg. Note that since vy, ...,vom—1 fills S, the set of
measured laminations

2m—1
A={X] Y i(y5,A) Za 1} € ML(S)
=0
is compact. From (5.10) we have {05 Hizam C A
Let v € £L(S) be the lamination from Proposition Since v is an

ending lamination, the set of measures 7 € A supported on v is a compact
subset. By continuity of the intersection number 4, there exists ¢(d) > 0 so
that (9, v) ;c((;) 1 for all such v.

Let K(0) € ML(S) be a compact neighborhood which contains the set
of measures 7 which are supported on v and are in A. By continuity of
i again, we can take K (§) sufficiently small so that there exists x(J) > 0

such that (6, \) ;5(5) 1 for all A € K(d). Since every accumulation point
of {ﬁ}?’:&n is a measure 7 € A supported on v, it follows that there

exists N(0) so that for all & > N(J), % € K(9). Consequently, for all

k> N(§), we have i(0,vx) ;H((;) A(0, k), which completes the proof. O

Using the estimates from Lemma we prove the next lemma. Theo-
rem will then follow easily.
Lemma 5.13. For any curve 0 and any h = 0,....m — 1, the sequence

h
{2(5,1—2) 0 converges.
1

Proof. By Proposition we have that
im+h—1
(8, Yim+n) = €(i—1)ym+nbi(d, 'Y(i—l)m—i—h)‘ <2B ) i(d,m)
I=(i—2)m+h
Dividing both sides by ¢ = A(0,im + h) = be(;_1ymsnA(0, (i — 1)m + h),
and letting x(5) be the constant from Lemma [5.11] it follows that for all
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h=0,...,m— 1, and ¢ sufficiently large
im+h—1

(5, Jimthy g5 Yimehy o 2B :
0, 2558 i | < s +h)(l(§)m+hz<5,w>)
2B im+h—1
< 8)A(0,1
< A(O,z‘m—i—h)(l:(i%):erhH()( ))
im—+h—1
A(0,1)
= Y 2Br(0)
I=(i—2)m+h A(0,im + h)

Lemma[5.6]implies that the expressions in the final sum admit the following

bounds: .
A(O,l) < a}*LMJ 1—

A, im +7) = moosa

Since fyih = Yim-h, We have

ol ) |
’i(é, Ty s, ;;1)] < 4mBk(8)al".
G Ci—1

Consequently, for all ¢ > j sufficiently large, applying this inequality and
the triangle inequality we have

h h i
e Vi e Yy 1
‘2(5,6—2)—1(5,0—2)‘ < 4mBr(5) 3 a'.
i J I=j+1
By taking ¢ and j sufficiently large, the (partial) sum of the geometric series
h
on the right can be made arbitrarily small. In particular, {i(J, Z—g)} is a

Cauchy sequence, hence converges. [l

Proof of Theorem Fix h € {0,...,m—1}. Since the intersection num-
h

bers {i(4, Z—;)};’io converge for all simple closed curves 4, it follows that

h
{Z—Zh %, converges to some lamination 7" in ML(S) (since ML(S) is a

closed subset of RC(S)). By Proposition vl is supported on v. O

6. ERGODIC MEASURES

We continue to assume throughout the rest of this section that {y;}72,
h
satisfies P and that {Z—g};’io forh=0,...,m—1 are the subsequences defined

in the previous section limiting to 7 supported on v by Theoremfor
cach h =0,...,m—1. We say that " and 7" are not absolutely continuous
if neither is absolutely continuous with respect to the other one. Note that
this is weaker than requiring that the measures be mutually singular.
Recall from the introduction that the space of measures supported on v is
the cone on the simplex of measure A(r). We denote (choices of) the ergodic
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measures representing the vertices by i, ..., a9 !, where 0 < d < £(9) is
the dimension of the space of measure on v. The ergodic measures are
mutually singular since the generic points are disjoint. It follows that if we
write 7" and 7" as nonnegative linear combinations of 1%, ..., g% !, then
" and 7" are not absolutely continuous if and only if there exists i, ﬁj/ SO
that i/ has positive coefficient for 7" and zero coefficient for 7", while i/’
has positive coefficient for 7" and zero coefficient for .

The aim of this section is to show that d = m, and in particular, v is
nonuniquely ergodic. In fact, we will prove that up to scaling and reindexing
we have il = "

Using the estimates on the intersection numbers from Theorem we first
show that the measures 7" for h = 0, ...,m — 1, are pairwise not absolutely
continuous.

Theorem 6.1. Let h,h' € {0,....m — 1} and h # 1'. Then

- h =h N A
lim 2(727’_’/,) =00 and lim M
o0 iyl 77 e i)

70

= OQ.

In particular, the measures 7" and v are not absolutely continuous with
respect to each other.

The last statement is a consequence of the two limits, for if 7" and "'
were positive linear combinations of the same set of ergodic measures, then
these ratios would have to be bounded.

Proof. For h # I/, we will calculate that

*

(6.1) (v, )it P =1 and lim i(ad ol )iG8, 7) = 0.

Dividing the first equation by the second and taking limit (and doing the
same with the roles of h and b’ reversed) gives the desired limiting behavior.

To treat the two estimates simultaneously, we suppose for the time being
that h, k' € {0,...,m—1}, but we do not assume h # h’. From Theorem|5.10]

together with (5.7) and (5.8) we have

h 71? Vkm+h
b — 1 Tk _ m
YT i T k% A0, km + h)

Combining this with , (5.8), and the estimate in Theorem we see
that for any ¢ we may take k sufficiently large so that

Ry X VkmA+h'
) - )

~

= i(Vhs Vit 1ymeh )i (Yimeths A(0, km + 1)
A(h, (i+1)m + h)A(im + h,km + 1)
A(0, km 1 1)

We will simplify the expression on the right, but the precise formula
depends on whether A’ > h or h' < h. From the definition (5.1), the right

Z('Yov%‘—i-l)l(% yV

*

(6.2) =
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hand side of (6.2) can be written as

) k—1 i
Hrzl bererh HT:jo berm+h’ B Hizl berm+h

Hf;ll bererh’ i():—ll bererh/
where jo =i+ 1if A’ > h and jo = i + 2 if K’ < h. Therefore, from (6.2) we

can write

i

€rm+h /!
ho_h B X l:‘[e””“"' =
(6.3) i(v0,Yi)i(y V) = =
1 €rm+h /
bernin ]1 €(r+1)m+hn! W <h
r=

Now observe that when A’ = h, this becomes

S h R Ni(h =hy X
1(7077i+1)2(7i vV ) - 17
proving the first of the two required equations. So, suppose h # h'. Then
each of the i terms in the product is bounded above by a~! since the index
for the denominator is greater than that of the numerator, and ¢; > ae;_4
for all { > 1. Thus we have
bk Ne b ShIN K i
i(v0s i )iy V") < a”
where when h' < h, we have absorbed the constant be,, s into the multi-
plicative error since m+h’ < 2m. Letting 7 tend to infinity, we arrive at the
second of our required estimates, and have thus completed the proof. O

We immediately obtain the following
Corollary 6.2. The lamination v is nonuniquely ergodic.

In fact, Theorem implies the main desired result of this section in a
special case. To prove this we first prove a lemma which will be useful in
the general case as well.

Lemma 6.3. If m > d, then m = d, the measures 0°,--- , ™

and ergodic, and these can be taken as the vertices of A(v).

are distinct

Proof. Recall that i, ..., i%"! are ergodic measures spanning the (d-dimensional)
space of measures on v. For each 0 < h < m, write

d—1
~h __ h—j
o= E ci i’
=0

where c}‘ > 0 for all 7, h. Then for each i, h, and A/, we have

i ") =) it /).

9
—

<
Il
o
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Next, fix h and let j, € {0,.. — 1} be such that c - # 0 and so that
there exists a subsequence of q/ih, SO that fo<j<m-— 1 and c] # 0, then
(6.4) UCUNTDEICUNT)

Now suppose that for some h' # h, c?; # 0. On the subsequence of {y!}
above where (6.4) holds, Theorem implies

Zc’f‘i (', ) Zchi(%h,ﬁ])
oo = lim —=—/—F—F-— < limsup —————
i—00 Zchz 'sz o0 h (%”u]h)

This contradiction shows that th = 0 for all A/ ;é h. Since c;?h £ 0, it follows
that h — jj, defines an injective function {0,...,m — 1} — {0,.. d— 1}.
Since m > d, this function is a bijection, m = d, and 7" = c?hﬂ“. Since

A, ..., a% ! are distinct ergodic measures spanning the simplex of measures
on v, the lemma follows. U
Corollary 6.4. If m = £(S), then the measures ¥, --- , ™! are distinct

and ergodic and can be taken as the vertices of A(v).

Proof. Since the dimension of the space of ergodic measures d is at most
£(9), it follows that m > d, and hence Lemmaimplies the result. O

6.1. The general case. In [LM10] Lenzhen and Masur prove that for any
nonuniquely ergodic lamination v the ergodic measures are “reflected” in the
geometric limit of a Teichmiiller geodesic whose vertical foliation is topolog-

ically equivalent to v. We will use this to prove the following generalization
of Corollary we need.

Theorem 6.5. Suppose that {v,}°, satisfies P and that {y}}2, .h
0,....,m — 1, is the partition into m subsequences with klim ’y,}; =", all sup-
— 00

ported on v. Then the measures 7°,--- 0™\ are distinct and ergodic and
can be taken as the vertices of A(v).
Let @0, ..., a% ! be the ergodic measures on v and set
d—1 m—1 m—1
_ i _ h
=Y md 7= =Yk
j=0 7=0 h=0

Here we are viewing the curves in the sum on the right as measured lami-
nations with transverse counting measure on each curve. We choose a nor-
malization for the measures i/ so that i(¥, 1) = 1. According to [GM91],
there is a unique complex structure on S from a marked Riemann surface
S — X and unit area holomorphic quadratic differential ¢ on X with at
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most simple poles at the punctures, so that the vertical foliation |dz| is
and the horizontal foliation |dy| is 4. Area in the g—metric is computed by
integrating dp|dy|. We will also be interested in the measure obtained by
integrating dfi;|dy| for each j =0,...,d — 1, which we denote by Area;. Of
course, Area = ) Area;.

Next let ¢ denote the Teichmiiller geodesic defined by g. We will write
g(t) = [ft: X — X(t)] where X (t) is the terminal Riemann surface, or ¢g(t) =
[fe: (X,q) = (X(t),q(t))], where ¢(t) is the terminal quadratic differential.
Note that since v is a nonuniquely ergodic lamination by Masur’s criterion
[Mas92] the geodesic g is divergent in the moduli space. The vertical and
horizontal measure of a curve 7 is denoted v (v) and Pt (), which are
precisely the intersection numbers with the horizontal and vertical foliations
of ¢(t), respectively. These are given by

vy (V) = € hi(, dy|) = e7ti(y,7) and  hyy(y) = €'i(y, |dz|) = €'i(v, ).

From this it follows that the natural area measure from ¢(t) is the push for-
ward of the area measure from ¢. Likewise, this area naturally decomposes
as the push forward of the measures Area;, for j = 0,...,d — 1. Conse-
quently, we will often confuse a subset of X and its image in X (¢) and will
simply write Area and Area; in either X or X (t).

Given € > ¢/ > 0, an (¢, €)-thick subsurface of (X(t),q(t)) is a compact
surface Y and a continuous map Y — X (¢), injective on the interior of Y
with the following properties.

(1) The boundary of Y is sent to a union of ¢(t)-geodesics, each with
extremal length less than €' in X (¢).

(2) If Y is not an annulus, then every non-peripheral curve in Y has
q(t)-length at least € and Y has no peripheral Euclidean cylinders.

(3) If Y is an annulus, then it is a maximal Euclidean cylinder.

Remark 6.6. We will be interested in the case that ¢ < €. In this case,
dY has a large collar neighborhood in Y, which does not contain a Eu-
clidean cylinder (i.e. a large modulus expanding annulus; see |Raf05]). Con-
sequently, dY will have short hyperbolic and extremal length.

As an abuse of notation, we will write Y C X, although Y is only embedded
on its interior. An (€', €)-decomposition of (X (t),q(t)) is a union of (€', ¢€)—
thick subsurfaces Yi(¢), ..., Y,(t) C X (t) with pairwise disjoint interiors. We
note that X (¢) need not be the union of these subsurfaces. For example,
suppose (X (t), ¢(t)) is obtained from two flat tori by cutting both open along
a very short segment, and gluing them together along the exposed boundary
component. If the area of one torus is very close to 1 and the other very
close to 0, then an (€', €)-decomposition would consist of the larger slit torus,
Y (t), while X (t) — Y (¢) would be the (interior of the) smaller slit torus.

The key results from |[LM10] we will need are summarized in the following
theorem.
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Theorem 6.7 (Lenzhen-Masur). With the assumptions on the Teichmiiller
geodesic g above, there exists € > 0 and B > 0 with the following property.
Given any sequence of times t, — oo, there exists a subsequence (still de-
noted {tx}), a sequence of subsurfaces Yo(tx),...,Yq—1(tx) in X(tx), and a
sequence € — 0, so that for all k > 1

(1) Yo(tr), ..., Ya—1(tx) is an (ex, €)~thick decomposition,

(2) Areaj(YjO(tk)) > B for all 0 < j < d—1 and for any component
YP(tr) C Yj(ty),

(3) Area;(Yi(ty)) < e for all0 <i,5 <d—1 with i # j, and

(4) Area(X(tk.) - (}/O(tk) u...u Yd—l(tk)) < €.

The bulk of this theorem comes from Proposition 1 of [LM10|. More
precisely, in the proof of Proposition 1 given in [LM10], the authors pro-
duce a sequence of subsurface {Y (¢;)} whose components give an (e, €)—
thick decomposition so that each component has area uniformly bounded
away from zero, so that the areas of the complements tend to zero. For
each ergodic measure ji/ the authors then find subsurfaces Y;(tx) so that
Area;(Yi(ty)) — 0 as k — oo if i # j (see inequality (16) from [LM10] and
its proof). This proves (1), (3), and (4). Since Area =}, Area;, (2) follows
as well.

To apply this construction, we will need the following lemma. First, for
a curve v and t > 0, let cyl,(y) C X(¢) denote the (possibly degenerate)
maximal Euclidean cylinder foliated by ¢(t)—geodesic representatives of ~.
We note that cyl,(y) = fi(cyly(y))-

Lemma 6.8. Given any sequence ti, — 0o, let Yo(tg), ..., Yy_1(t) C X (tx)
denote the (e, €)—thick decomposition from Theorem (obtained after pass-
ing to a subsequence). Then for all k sufficiently large, each Yj(ty) contains
a curve from the sequence {v;} as a non-peripheral curve, or else contains
a component which is a cylinder with core curve in the sequence {~}.

We postpone the proof of this lemma temporarily and use it to easily
prove the main result of this section.

Proof of Theorem Let t;, — oo be any sequence and Yy(tx), ..., Yg_1(tk)
the (eg, €)-thick decomposition obtained from Theorem after passing to
a subsequence. Let k be large enough so that the conclusion of Lemma
holds. For each j € {0,...,d—1} let 71; be one of the curves in our sequence
so that -, is either a nonperipheral curve in Yj;(ty), or else Y;(#;) contains
a cylinder component with core curve v;,. Since Yo(t), ..., Ya—1(tx) have
disjoint interiors, it follows that ~;,,...,7, , are pairwise disjoint, pair-
wise nonisotopic curves. By Theorem for example, the difference in
indices of disjoint curves in our sequence is at most m, and consequently
{Vg»--->M,_, } consists of at most m curves. That is, m > d. By Lemma
d=m,and 7°, ..., 0™ ! are ergodic measures spanning the space of all mea-
sures on v, proving the theorem. ([
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6.2. Areas and extremal lengths. The proof of the Lemmabasically
follows from the results of [Raf05|, together with the estimates on inter-
section numbers described at the beginning of this section and subsurface
coefficient bounds in Let g(t) = [fi: (X,q) — (X(t),q(t)))] be the
Teichmiiller geodesic described above with vertical foliation & = ) fi;, the
sum of the ergodic measures on v, and horizontal foliation |dy| = 7.

Suppose Y — X () is a map of a connected surface into X (¢) which is an
embedding on the interior, sends the boundary to ¢(t)-geodesics, and has
no peripheral Euclidean cylinders unless Y is itself a Euclidean cylinder (in
which case we assume it is maximal). As in the case of thick subsurfaces,
we write Y C X (¢), though we are not assuming that Y is thick. Suppose
Y C X(¢) is a subsurface so that the leaves of the vertical and horizontal
foliations intersect Y in arcs. This is the case for Y = cyl,(yx) for all &k
sufficiently large, as well as any Y for which Extx ;) (9Y’) is small when ¢ is
large, and these will be the main cases of interest for us.

As in [Raf05], the surface Y decomposes into a union of horizontal strips
Y =H (Y)U...UH.(Y) and vertical strips Y = V1(Y)U... UV (Y). Each
horizontal strip H;(Y) is the image of map f/7: [0,1] x [0,1] — Y which is
injective on the interior, sends [0, 1] x {s} to an arc of a horizontal leaf with
endpoints on dY". Furthermore, the images of the interiors of f{I,..., fI are
required to be pairwise disjoint. Let £ = f/([0,1] x {1}) be a “core arc”
of the strip. Vertical strips are defined similarly (and satisfy the analogous
properties for the vertical foliation) as are the core arcs £}, ... ,Ky,.

Remark 6.9. This is a slight variation on the strip decompositions in|Raf05).

The width of a horizontal strip H;(Y'), denoted w(H;(Y)) is the vertical
variation of any (or equivalently, every) arc H;({s} x [0,1]). The width of
a vertical strip, w(V;(Y)), is similarly defined in terms of the horizontal
variation. An elementary, but important property of these strips is the
following.

Proposition 6.10. Let Y C X(t) be as above. If
Y=HY)U..UHY)=V(Y)U...Vu(Y)

18 a decomposition into maximal horizontal and vertical strips, then

vy (OY) =2 w(Hi(Y))  and  hyy(9Y) =2 w(Vi(Y)).
=1 =1
The area of Y can be estimated from this by the inequalities
S w(H (V) (V; (V) (i(, ) — 2) < Area(Y)

6.5 J
(6:5) < > w(HW)w(V;()) () +2)

To see this, we note that the area of Y is the sum of the areas of the
horizontal (or vertical) strips. Every time V;(Y") crosses H;(Y"), it does so in



36 JEFF BROCK, CHRIS LEININGER, BABAK MODAMI, AND KASRA RAFI

a rectangle, which contains a unique point of intersection E{I N E}/, except,
near the ends of H;(Y) where we might not see an entire rectangle (and
consequently we may or may not see a point of £/ N E;/) We may also have
an intersection point in Ef{ N E}/ that does not come in a complete rectangle
(but only part of a rectangle). Adding and subtracting 2 to the intersection
number accounts for the ends of H;(Y'), and summing gives the bounds.

If Y is non-annular, then note that

Yo ) +2 <ilry (3), 7y (1))

To see this, we note that the horizontal foliation (for example) is 4 and
7y () is basically obtained from the arcs ¢ by surgering with arcs from
the boundary (see also Lemma 3.8 from [Raf05]). Combining this inequality
with the upper bound in and Propositionwe obtain

(66) Area(Y) < hq(t) (8Y)Uq(t)(8Y)Z(7ry(’7), Wy(V)).

Now suppose that Y = cyl,(y) is a maximal Euclidean cylinder with core
curve . Then there is a decomposition into strips with just one horizontal
strip H(Y') and one vertical strip V(Y) and core arcs £ and ¢V, respec-
tively. In this case, the intersection number (¢, ¢V) is just dy(,v) up
to an additive constant (of at most 4—again, see Lemma 3.8 of [Raf05]).
Therefore, the bounds in together with Proposition implies

4 Area(cyly(y)) 4 Area(cyly(y)) + .
PN o T e i e o A

In particular, if d-(%,v) is large, then

(6.7)

Area(cyly(V)) = gy (Nvge (Ndy (3, v) = i(y,7)i(y, B, v).

The balance time of v along the Teichmiiller geodesic g is the unique ¢ € R

so that
V() (V) = Py (7)-

Consider Y = cyl,y(7) at the balance time of ~, together with the horizon-
tal and vertical strips H(Y') and V(Y'), respectively. In this situation, the
rectangles of intersections between H(Y') and V(Y) are actually squares.
We can estimate the modulus of Y, which is the ratio of the length to the
circumference using these squares. Specifically, we note that the circum-
ference of Y is precisely the length of the diagonal of a square, while the
length of Y is approximately half the number of squares, times the length of

a diagonal. Since the number of squares is [/ N ¢V | z d(¥,v), we see that
the modulus is 2d,(¥,v), up to a uniform additive error. When d- (%, v) is
sufficiently large, the reciprocal of this modulus provides an upper bound
for the extremal length

(6.8) Excty(y)(7) < TG0



LIMIT SETS OF TEICHMULLER GEODESICS 37

We note that this estimate was under the assumption that cyly(y) was a
non-degenerate annulus. In fact, if d,(7,v) is sufficiently large (e.g. at least
5), then cyly(7) is indeed nondegenarate.

Proof of Lemma Suppose that t; — oo is a sequence of times, Y (tx) C
X (t) is a sequence of subsurfaces with ¢(t)—geodesic boundary, embedded
on the interior and having no peripheral Euclidean cylinders, unless Y is
itself a Euclidean cylinder in which case we assume it is a maximal Euclidean
cylinder. We further assume that Exty,)(9Y (tx)) — 0. We pass to a
subsequence, also denoted {t;}, and assume that either Y (¢;) is nonannular
and no nonperipheral curve lies in the sequence {v;}, or that Y (¢x) is a
cylinder whose core is not a curve from our sequence {7;}. To prove the
lemma, it suffices to prove that Area(Y (tx)) — 0, for this implies that such
subsurfaces Y (¢;) cannot be a component of any Yj(;) from Theorem [6.7
Decompose the sequence into an annular subsequence and non-annular
subsequence, and we consider each case separately. For the non-annular
subsurfaces, we bound the area of Y (t;) using the inequality . Specif-
ically, we note that since no ~; is homotopic to a nonperipheral curve in
Y (tx), Propositionprovides a uniform bound for dyy (7, v) for all subsur-
faces W C Y (t). By Theorem follows that i(my (7), my (v)) is uniformly
bounded. Since the extremal length of Y (¢) is tending to zero, so is the
q(tr)-length, and so also the horizontal and vertical variations:

kli}Iilo Uq(tk)(8Y(tk)) =0 and klirgo hq(tk)(GY(tk)) =0.

Combining this with proves Area(Y (t;)) — 0, as required.

The annular case is similar: Again by Proposition since the core curve
ay, of Y(tx) is not any curve from the sequence {v;}, we have that d,, (7, 7)
is uniformly bounded, while the horizontal and vertical variations of ay
tend to zero (since the extremal length, and hence ¢(t;)-length, tends to
0). Appealing to (6.7) proves that Area(Y (tx)) — 0 as k — oo in this case,
too. ([

7. CONSTRUCTIONS

In this section we provide examples of sequences of curves satisfying P,
and hence to which the results of Sections 3-6 apply.

7.1. Basic setup. Consider a surface S and pairwise disjoint, non-isotopic
curves g, - . ., Ym—1. For each k, let T, = (90U ... UYm—1) — Yk, and let Xy,
be the component of S cut along I'y containing ;. For each k we assume

(1) 0X) contains both v;4+1 and v;—1 (with indices taken modulo m),

(2) we have chosen fr: S — S a fized homeomorphism which is the
identity on S\ X}, and pseudo-Anosov on Xy,

(3) the composition of fi and the Dehn twist D! , denoted D7 _f, has
translation distance at least 16 on the arc and curve graph AC(X})
for any r € Z, and
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(4) there is some b > 0 so that (v, fx(7%)) = b, independent of k.

For 0 < k,h < m — 1, let J(k,h) be the interval from k to h, mod m.
This means that if & < h then J(k,h) = {k,k+1,...,h} is the interval in
Z from k to h, while if h < k, then

J(k,h) ={k,k+1,...,m—1,0,...,h}.
If k = h, then J(k,h) = {k} = {h}.
For any 0 < k,h <m — 1, set

Xen= |J X

leJ(k,h)
If k = h, note that X}, = X}, = Xj. In general, Xy, 5, is the component of
cut along I'y j, = Yp41 U ... Uvg_1 containing all the curves v, ...,v,. That

there is such a component follows inductively from the fact that v+1 C 0X],
with indices taken mod m.
We also define

Fippn=frofrg10---0 fn.
where we are composing f; over | € J(k,h). Because f; is supported on X,
it follows that for all 0 < k,h <m — 1,

Vs> Vo Fren(Vh) C X,
In fact, the first and last curves in this sequence fill X}, .

Lemma 7.1. For each 0 < k,h<m—1

{7k Fren(vn) }
fills Xy p. In particular, (v, Fin(vn)) # 0 for alll € J(k, h).

Remark 7.2. In the case k = h+1 (mod m), we note that X415 = S and
the lemma states that

rmats Frrrn(m) } = { frferr - fn(n)}
fills S. We also observe that for all j € J(k, h), Xy j C Xpp. It follows that
Yi> Y41y -+ -3 Yh and Fhk(’yk), ... ,Fk,h(’m) are contained in Xk,h'

In the following proof, we write 7y, ,,(6) for the arc-projection to AC (X}, 1)
of a curve 0. This is just the isotopy class of arcs/curves of § intersected
with X}, 5. Likewise, dj 4(0,0¢") is the distance between mp, () and 7 1 (6")
in AC(X} ). We similarly define 7, and dj, for the case k = h.

Proof. The last statement follows from the first assertion since, for all [ €
J(k,h), i(vi,7%) = 0, and so assuming {7y, Fi, »(7,)} fills, we must have
(s Fien(vn)) # 0.

The conditions on the curves and homeomorphisms are symmetric under
cyclic permutation of the indices, so it suffices to prove the lemma for h =
m — 1 and 0 < k < h (which is slightly simpler notationally). We write
Jj = h—k and must prove that {v,—;, Fr—;n(7s)} fills X} ;. We prove this
by induction on j.
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The base case is j = 0, in which case we are reduced to proving that
{Yns fn(yn)} fills Xj. This follows from the fact that f has translation
distance at least 16 on AC(X},), and hence dp (v, fr(vn)) > 16.

Suppose that for some 0 < j < h, {Yh+1—j; Fhs1—5n(y0)} fill Xpp1—jin,
and we must prove that {yn,—j, Fr—jn(vs)} fills Xp_j 4.

Note that since y4—j41 C 0Xp—j, and i(Yh—jt+1, Fhp1—jn(vn)) # 0 (be-
cause they fill X, 1_;4), it follows that Fj,11_;,(7s) has nontrivial projec-
tion to Xp,_;. On the other hand, because j,—; is disjoint from Xp 155 (it
is in fact a boundary component), it follows that i(ys—;, Fh+1—jn(7)) =0,
hence dp—j(Yh—js Fhy1—jn) = 1. Since fj_; translates by at least 16 on
AC(Xp—j), it follows that

dh—j(Fh—jn (W) Yh—j) = dh—j(fa—j(Fhg1—in(70))s Yh—j)
dh—i (fr—j (Fng1—50(W0))s Frr1—j.n(7n))

—dh_j(Fh+1_j,h(’Yh)7'Yh—j)
16 — 1 =15.

Vv

v

Now suppose {Vn—j, Fr—jn(vn)} does not fill X}, . Let § be an essential
curve in Xj,_jp which is disjoint from both ~v,—; and Fj_;x(y,). Observe
that 0 cannot intersect the subsurface Xj_; essentially, for otherwise

dh—j(Yh—js Fr—jn(n)) < dh—j(Yh—j, 0) + dn—j (6, Fh—jn(vn)) < 2

a contradiction.
Therefore, § is contained in Xj,_; 5, —Xp,_; C Xp11—5,. We first claim that
0 must be an essential curve in Xj1_;. If not, then it is contained in the
boundary. However, any boundary component of Xj,;_;; which is essential
in Xj,_jp is contained (and essential) in Xj,_;. This is a contradiction.
Now since ¢ is essential in X, 11_; 5, by the hypothesis of the induction
we have

0 # (9, Yag1—5) + (0, Fpp1—jn(vn)) = i(0, Yag1—5) + 0(0, Frejn(7n))-

The last equality follows from the fact that Fj,_; 5 differs from Fj,41_; ;, only
in Xj_;, which is disjoint from ¢. Finally, we note that v,11_; € 0X}_;,
and hence (9, yp+1—;) = 0. Consequently,

(0, Fn—jn(yn)) #0

contradicting our choice of 6. Therefore, {y4—;, Fj,—j n(vn)} fills Xp—j . This
completes the induction, and hence the proof of the lemma. O

Lemma 7.3. Forall0 <k <m-—1,
(Vs Fieo—1.f (Vi) = (Ve frefror1 - fe—1 fu()) # 0.

Proof. We recall from the previous proof that {viy1, Fr+1%(7x)} not only
fills S, but satisfies

A1 (Vet15 Fro1,6 () > 15.
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Since yx4+1 € 0Xy and v € 0Xj41 and X and Xy overlap, Theorem
(see also Remark [2.10)) implies

A (Vs Frv1,6(k)) < 4.
Since fi translates at least 16 on AC/(X}y), it follows that

di(Vies [eFrr1.6()) > de(Frr1e(), fuFrs16(k)) — die(Ve, Freg1.6 (V)
> 16—4>12.

Since frFyy1,x = Fgx—1fr, the lemma follows. (Il

7.2. General construction. Let {e;}°, be a sequence of integers satis-
fying Inequality for a > 2 sufficiently large as so as to satisfy (5.6) and
hence in Theorem (see the convention at the end of Section|5.1)).
For k > 0, let k € {0,...,m — 1} be the residue mod m, and for k > m
define
Dy = D—eylgim and ¢ = Dk‘fl_g'
The sequence of curves {v;}72, is defined as follows.

(1) The first m curves are 7o, ..., Vm—1, as above.
(2) For k > m, set

Ve = ¢m¢m+1 e ¢k(7]})-

Remark 7.4. We could have avoided having the first m curves as special
cases and alternatively defined a sequence {0y }x>0 by 0r = ¢o - - - ¢ (73) for
all k > 0. This sequence differs from ours by applying the homeomorphism
@0 -+ - dm—1. This is a useful observation when it comes to describing consec-
utive elements in the sequence, but our choice allows us to keep Vg, . . ., Ym—1
as the first m curves.

Proposition 7.5. With the conditions above, the sequence {7V}, satisfies
P for some 0 < by < b < by (where b is the constant assumed from the start).

To simplify the proof, we begin with

Lemma 7.6. For any 2m consecutive curves Vg—m.,-- -, Yk+m—1, there is a
homeomorphism Hy, : S — S taking these curves to the curves

Vis s Yepmet TR s - fi o Fepnet (=)

(in the same order). Furthermore, the homeomorphism can be chosen to
take Yi1m to

DE o e femm=t /i)

Proof. We prove the lemma assuming k > 2m to avoid special cases (the
general case can be easily derived from Remark for example). We define

Hy, = (¢ S-1DkDis1 ++ Dim—1) "
Let h,h' € {0,...,m—1} and note that since i(y4, va/) = 0, Dy, , (Y1) = Vn-

Furthermore, if h # B/, from the fact that f;, is supported on X} and ~,/ is
disjoint from X} we easily deduce D,,, and fj, commute, and ¢p(yn) = Vi
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From these facts we observe that for K —m < j < k — 1, we have

H'(v) = 6m O-1DkDis1 - Dirm—1(75)
= m- Pe-1(75)
= ¢ 0i() = v,
while for £ < j < k+4+m — 1, we have

H ' (fi (1) = 0m 1Di Digm—1.fi - f5(75)
= ¢m Ok-1Drfg - Djf;Djt1 Drrm-1(75)
= ¢m-9jDjs1- Dgm—1(73)
= Om- () = -
This completes the proof of the first statement.
Next, since Dy = D%, we have

T i Orem(8) = fo fimnm i Pk f5 (k)
= [iDrsmSirr Fimnmt /()
(7.1) = [iDramf7 oo Frmmt /i)
= iDL S e Frrmet e Or)
= Dol St fiOn)-

Applying H, ! to the left hand side gives Yk+m, Proving the last statement.
O

Proof of Proposition|[7.5] For any 2m consecutive curves in our sequence,
Vi—ms -« -y Vitm—1, let Hg: S — S be the homeomorphism from Lemma-
putting these curves into the standard form described by that lemma. Since
Hj, sends the first m to v,...,V55,=7, it follows that these curves are
pairwise disjoint. Moreover, the set of all 2m curves fills S by Lemma
and Remark (in fact, the first and last alone fill S). Therefore, the
sequence satisfies conditions (i) and (ii) of P.

To prove that condition (iii) is also satisfied we need to define ;. so that
Yitm = D5E(Viym)> and verify the intersection conditions. We fix k > 2m
and define

’Yl/g-i-m = ¢m - Grmak—1S5(0%)

(the case of general k > m is handled by special cases or by appealing to

Remark. Note that by definition, Yitm = ¢m - - Gmtk—10m+r(7;) and
applying Hy to v and Yg4m, Lemma- gives us

Hi(w) = frle)  and  Hi(yrsm) = D 7k)(fk et /i)
Then, as in the proof of Lemma (compare (7.1)), we have

Hy(Yirm) = 5 Fop= /e (1)
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Therefore,
Hy(Yem) = D () Hi(Viym)) = Hi(DSE (Veym)),

50 Vet = D (Y n)-

To prove the intersection number conditions on i(~y,, tmo ~;) from property
(iii) of P, it suffices to prove them for the Hy—images. Thus, for j € {k +
}11, ...,k +m — 1} we note that by Lemma Hy(vj) = fz f3(7;), and

ence

(Vi Vewm) = 5 506 fro o Fmet /i)
= (v, [ Temn /e (Om)
= i(y;,7) = 0.

The second-to-last equality is obtained by applying ( fm- N ey fz) "t to
both entries, and observing that this fixes v; (c.f. the proof of Lemma .

On the other hand, for j = k, the same basic computation shows

(Vs Vo) = 17k fr (7)) = b
by assumption (4).
Finally, similar calculations show that for j € {k —m,...,k — 1}, by
Lemmas and [7.3] we have

i(Vjs Yewm) = 1%, fr - Frmm= S5 () # O

There are only finitely many possible choices of j and k, so the values are
uniformly bounded between two constants b; < be. Without loss of gener-
ality, we may assume by < b < by. This completes the proof. O

While any sequence of curves as above satisfies the conditions in sections
in P from Deﬁnition we will need one more condition when analyzing
the limits of Teichmiiller geodesics. It turns out that any construction as
above also satisfies this property. We record this property here for later use.

Lemma 7.7. Suppose the sequence {y}32 is constructed as above. If vy, v
are any two curves with m < h—k < 2m—1, then v and vy, fill a subsurface
whose boundary consists entirely of curves in the sequence. Furthermore, for
any k < j < h, v; is either contained in this subsurface, or is disjoint from
it. If h—k>2m — 1, then v and vy, fill S.

Proof. First assume m < h — k < 2m — 1. Applying the homeomorphism
Hp: S — S from Lemma v, and 7y, are sent to vz and fi--- f5(75) =
Fy. (), respectively. This fills the surface Xj j which has boundary con-
tained in yoU...U7yp,—1. By Lemmait follows that Hk_l(X,jcﬁ) is filled by
{V%,vn} and has boundary in Hg(yo)U...U Hg(ym—1). All the components
of this multicurve are in our sequence, as required for the first statement.
Foreach k<j<h-mandk+m <j<h,jc J(kh), and as pointed
out in Remark 7; and Fy, 5(v;) are contained in X} ;. Consequently, for
these values of j, 7; € Hg(X ). On the other hand, if & < j < h, and j
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does not fall into one of the above two cases, then h—m+1<j <k4+m-—1,
which implies 0 < j — k,h — j < m — 1 and hence (v}, ) = (75, ) = 0,
and hence v; is disjoint from Hy (X} ;). This completes the proof of the
second statement.

When h —k =2m — 1, X ; = S, and hence {7z, I ;(73)} fills S. Con-
sequently {vx,vn} also fills S.

Now we must prove that for h — k > 2m — 1, that 7 and 4 fill S. The
proof is by induction, but we need a little more information in the induction.
For simplicity, we assume that k > m + 1 to avoid special cases.

To describe the additional conditions, for k < [, let ®; = ¢,,, - - - ¢y, so that

(I)I;im—l sends the curves 7, ...,7v, (in order) to the curves

Vier -+ > Vi Phtm (Vigm)s -+ +» P+ Or(Vp)-
With this notation, we now wish to prove by double induction (on k and
h — k) that for all m + 1 < k < h with h — k > 2m — 1 we have
s} fills S and do, - (x) (Vs YR) > 12
The base case is h—k = 2m—1 and any kK > m+1. We have already pointed

out that {vg, v} fills S. We note that applying (I)l;-il-m takes Yk41,.. ., toO

Y1 Vexrmo ¢k+m+1(’}’m)7 ey Qg ¢k+2m—1(7m)-

For the first and last curves {W’ Okmatl ¢k+2m_1(m)} we see

that these fill X073 r75,.— = X377 5=7 which has 7; as a boundary compo-
nent. Since 75 (¢k+m+1 - Pkr2m—1(Vizm—1)) is disjoint from 4z it follows

that applying ¢x 4, to this last curve ¢rimi1 -+ rr2m—1(Vigzm—1) We have
di (Vs PhtmPhtmt1 *+* Phrom—1 (Vigam—1)) = 14 > 12.

But notice that @gim71(7k+2m_1) = Oktm ** Pkr2m—1(Vigzm—7) while on
the other hand @;imfl(vk) = 7, hence

Aoy 1 (X2) Vs Vet2m—1) > 12,

as required for the base case.

For the induction step, the proof is quite similar. We assume that the
statement holds for all k > m+1 and all 2m —1 < h—k < N, and prove it
forh—k=N+1. Sinceh—(k+1)=Nandk+1>m+2>m+1, by
the inductive assumption it follows that {~vx41,v} fills S and that

dq’k-«—m(Xm) (7’6-"—17 PY}L) > 12.

—1
k+m>

(Ve Pkttt - dn (7)) = 12.

Therefore, applying ® we have

The homeomorphism @,;im sends g, . .., Yn to the sequence

¢;;1m(%5), Vi Vg Pkrm1 (VigD)s - - 5 Phtma1 - Gr(V3)-
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Since v C 0Xz77 and 7 C 90X, Theorem (see also Remark [2.10)
ensures that we have

dr.(Vgs Prtmr1 - (7)) < 4.

Applying ¢pim (which translates by at least 16 on C(Xj)) to the second
curve we get

dp (Vs PhamPhtms1 -+ On(yg) > 12

In particular, we have

Aoy 1 (xp) (ks 7m) > 12.

This proves part of the requirement on v, vs.

We must also show that {yx, 5} fills S. We will show that the ®p,,_1—
image, {7z, Pk+m - - - ¢n(7z)} fills S, which will suffice. To see this, take any
essential curve § and suppose it is disjoint from both v and ¢xym, - - - o (77)-
Then note that 6 must have empty projection to Xz, for otherwise the trian-
gle inequality implies that the distance from 77 (7;) to 77 (Pktm - - on(77))
is at most 4, a contradiction to the fact that

A (Vs Prtm+1 - on(W)) = day s x) (Vs Y0) = 12

Since {Vi77, Pktm+1 - dn(yy) ) fills S, 6 must intersect one of these curves.
However, 777 is contained in the boundary of X%, and hence ¢ is disjoint
from this. Consequently, 6 must intersect ¢pym+1--- Pn(7z). Since gpyp, is
supported on Xz which is disjoint from ¢ we have

0% (8, Prgmit - () = H(Bjtn(6), Phmsr - Pu(77))
= (3, Pkrm - Dn(7))-

This contradicts our initial assumption on §, and hence no such § exists and
{Vs Pkivm - - Oon(y3) } fills S as required. This completes the proof. O

7.3. Specific examples. Here we provide two specific families of examples
of the general construction, but it is quite flexible and easy to build many
more examples. We need to describe 7, ..., Vm—1, together with the rest
of the data from the beginning of Section For this, we will first ensure
that all of our subsurfaces Xj have the property that vy,+; C 0X (indices
mod m). This is the first of the four conditions required. For the other
three conditions, it will be enough to choose the sequence so that for any
0 < k,h < m—1, there is a homeomorphism of pairs (X, %) = (Xn,v4). For
then, we can choose fp: S — S any homeomorphism which is the identity
on S\ X, pseudo-Anosov on AC(X}) with translation distance at least 15,
and then use the homeomorphisms (Xg,7v) = (Xk, V%) to conjugate fy to
homeomorphisms f;: S — S.
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FI1GURE 2. The pairwise disjoint curves vy, ..., Vm—1 for the
first family of examples in the case of genus 5 (and hence

m = 12).

7.3.1. Mazimal dimensional simplices. For the first family of examples, we
can choose a pants decomposition on Sy a closed genus g > 3 surface as
shown in Figure Each X; is homeomorphic to a 4-holed sphere, and
v C Xk is an essential curve. Any two (Xg,vx) and (Xp,~y,) are clearly
homeomorphic pairs. In this case m = 3g — 3, and the limiting lamination
v from Proposition[4.4] defines a simplex of measures with maximal possible
dimension in PML(S) by Theorem One can also construct examples in
genus 2 by taking 7y, 71,72 to be a pants decomposition of non-separating
curves.

7.3.2. Non-mazximal examples. For our second family, we choose m = g — 1,
and take a sequence 7, ..., ¥m-1 as shown in Figure Here each X} is
homeomorphic to a surface of genus 2 with two boundary components and
v is a curve that cuts X into two genus 1 surfaces with two boundary
components.

8. TEICHMULLER GEODESICS AND ACTIVE INTERVALS

In [Raf05|,|Raf07| and [Rafl4| the fourth author has developed techniques
to control the length-functions and twist parameters along Teichmiiller geodesics
in terms of subsurface coefficients. In |LLR, this control was used to study
the limit sets of Teichmiiller geodesics in the Thurston compactification of
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F1GURE 3. The pairwise disjoint curves vy, ..., Vm—1 for the
second family in the case of genus 5 (and hence m = 4).

Teichmiiller space. Here we also appeal to this control. Most of the estimates
in this section are similar to the ones in §6 of |[LLR].

For the remainder of this section and the next we assume that {y,}72, is a
sequence of curves satisfying the condition P from Deﬁnition with a > 1
large enough to satisfy and consequently so that in Theorem [5.1
holds, and the sequence of powers {ej} 32, satisfy the growth condition 1i
for this a. For h=0,...,m — 1, let %.h = Yim-+h, &S usual.

Let v be the nonuniquely ergodic lamination determined by the sequence
(see Theorem and Corollary. Furthermore let 7", for h =0, ..., m—1,
be the ergodic measures from Theorems and so that ’yf‘ it
PML(S), for each h. Let

—_

e
v=Y ",
h=0
for any xp > 0 for each h =0,...,m — 1.

Let X € Teich(S) and p be a short marking at X. By [HM79|, there is a
unique Teichmiiller geodesic ray starting at X with vertical foliation 7, and
we let 77 be the horizontal foliation (with support n7). Denote the Teichmiiller
geodesic ray by r : [0,00) — Teich(S). For a t € R, we sometimes denote
r(t) = X; and denote the quadratic differential at X; by ¢.. We write
ve(a), he(a), €¢(a) for the g—vertical variation, g—horizontal variation, and
qi—length of a, respectively. In particular, v;(a) = exp(—t)i(«a, 1), hi(a) =
exp(t)i(a, ), and £;(a) = vy(a) + he(e).
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We write Hyp, (o) = Hypy, (@), the X;—hyperbolic length of o and wy (o) =
wx, (a) for the X;~width, and recall from (2.2) that

+ 1

wi(a) < 2log (Hypt(oz))
We also recall that ¢y > 0 is the Margulis constant, and that any two
hyperbolic geodesics of length at most ¢y must be embedded and disjoint.

For any curve « let cyl,(«) be the maximal flat cylinder foliated by all
geodesic representatives of « in the ¢; metric, as in and let mod(cyl,(a))
denote its modulus. Fix M > 0 sufficiently large so that for any curve «
with mod(cyl,(a)) > M, for some t € R, then Hyp,(a) < 9. For any k € N,
let .J,, , also denoted Jj, be the active interval of v

Ji = {t € [0, 00) | mod(cyly(yx)) = M}

Write Ji, = [ay, ax] and denote the midpoint of Ji by aj (the balance
time of ~y, along the geodesic, i.e. the unique ¢ when v (yx) = hi(7x)). For
each h € {0,...,m — 1} and i > 0, we also write Jimypn = J, al' = aimin,

g? = Qpyp» and C_L? = G;m+h, t0 denote the data associated to %h = Yim-+h-

Proposition 8.1. (Active intervals of curves in the sequence) With the
assumptions and notation as above, we have the following.
(i) For k sufficiently large, Ji # 0. Moreover J, N J; = O whenever
i(Yk,m) # 0.
(it) For 0 < f < k sufficiently large with k — f > m, Jg occurs before Jj,.
Consequently, some tail of each subsequence {th};‘)io appears in order.

(iii) For k sufficiently large and a multiplicative constant depending only on

v and X ) .
Hyp, (&) = ———— = —.
o (%) dy (1, v) e

(iv) For an additive constant depending only on v, X, and M, we have
+ +
|| < log dy, (11, v) =< log(ex).
The following will be convenient for the proof of Proposition

Lemma 8.2. With notation and assumptions above, there exists kg > 0
sufficiently large so that if Y C S is a subsurface such that for some k > ko,
ds(k,0Y) < 2, then

+
dY(N? V) =G+1 dY(nv V)'
where G is the constant from Theorem (for a geodesic).

Proof. Let g be a geodesic in C(S) from (any curve in) p limiting to 7 if n is
an ending lamination, or from p to any curve a with i(«,7) = 0 otherwise.
Since n and v fill S, and v, — v € 9C(S5), the distance from ~v; to g
tends to infinity with k. For Y and 7; as in the statement of the lemma,
ds(9Y, k) < 2, and hence for k sufficiently large, Y has distance at least
4 from g. Consequently, Y intersects every curve on g, and Theorem [2.11]
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guarantees that diamy (g) < G. Thus for all 8 € g, dy(5,1) < G. Since g
limits to 7 (or one of it is curves is disjoint from 7)), it follows that dy (n, u) <
G + 1, and so the lemma follows from the triangle inequality in C(Y). O

Proof of Proposition[8.1} From |[Raf05|, if d,, (n, v) is sufficiently large, then
at the balance time ay, cyl,, (7x) has modulus at least M. For all k suffi-

ciently large, Proposition [4.5[4.7) and Lemma[8.2]imply

+ +
dy, (0, V) X dyy (1, v) X €.

By construction, e, — oo as k — oo, and hence J # ) for all sufficiently
large k. Furthermore, for all t € Ji, we have Hyp,(7x) < €. Since two
curves with length bounded by ¢y are disjoint, part (i) follows.

By Proposition [4.5[4.5) we have

+
d’Yk (f)/fa f)/l) = €L

foral 0 < f<k<lwithl—Fk,k—f>m. Let K> 0 be such that for all
k > K, e > By, where By is the constant from Proposition [2.9] Thus for
all K < f <k <lwithl—k, k— f > m we have

dy; (ks M) < Bo.
Since v — v € OC(S), the triangle inequality in C(7y) implies that

+
d’Yf (’Yka V) =0
forall K < f < k with k — f > m. Let Ko > K be sufficiently large so that

if f > Ky then dy, (n,v) = e;. Thus, for k— f > m, [ > Ky, at the balance
time t = ay of vy, the ¢;—geodesic representative of v is more vertical than
horizontal, and hence ay < a. By part (i), the intervals Jy and Jj, are
disjoint, so part (ii) holds. (See also the discussion in Proposition 5.6 of
[Raf05].)

For part (iv), observe that by [Raf05], the modulus of cyl,(vx) satisfies

«  dy (n,v)
8.1 mod(cyl L
( ) ( Yt(’)/k)> COSh2(t—ak)

. . o + +
For k is sufficiently large, Lemma 8.2 implies d., (n,v) < d,, (i, v) < ep. At
the endpoint ay of Ji, mod(cyl;, (vx)) = M. Since |Ji| = 2(ar — ax), we
have

* €L

~

- COSh2(%’Jk’)'

Taking logarithms we obtain log(ey) — | Jk| £ log(M), proving part (iv).

We proceed to the proof of part (iii). Following Rafi in §6 of [Raf05/, we
introduce the following constants associated to a curve a € C(S) and an
essential subsurface Y C S with o C Y (when Y is an annulus, recall that
a C JY means that a is the core curve of V).
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e If Y is a non-annular subsurface, an arc 5 in Y is a common K —quasi-
parallel of wy (n) and 7y (v) for o and Y if B transversely intersects
o and

max{i(57 WY(”))? Z(ﬁv WY(V»} < K.

Here 7y (n) denotes the arc-and-curve projection of 7: the union of
arcs and curves obtained by intersecting n with Y (likewise for v).
Define K(Y) = log K, where K is the smallest number so that  and
v have a common K—quasi-parallel.

e If Y is an annular subsurface, let K(Y) = dy(n,v).

Now define K, to be the largest K(Y) where a C 0Y. Then Theorem 6.1 of

|Raf05| implies that Hyp, («) = %ﬂ, where a is the balance time of « along
the geodesic ray r.

In what follows we show that for all sufficiently large k, K., is approx-
imately equal to ex. Since we will be interested in subsurfaces Y with
v € 9Y (or subsurfaces of those, Z C Y), we can apply to Lemma

deducing that dy (n,v) £ dy (p,v). We will assume that k is sufficiently
large for this to hold, and will use this without further mention.

First suppose Y is the annulus with core curve 7., and observe that by

. + + -

Pr0p0s1t10n and Lemma dy (n,v) < dy(u,v) < eg, thus K(Y) < e.
So we consider the case that Y is a non-annular subsurface with v, C 9Y,
and prove that for sufficiently large k, K(Y) < ey.

If Y contains no curves v from the sequence as essential curves, then
for every subsurface Z C Y, by Proposition and Lemma we have

dz(n,v) £ dz(p,v) £ 0. Then choosing the threshold A in Theorem
larger than the upper bound on these projections, and applying the theorem

to my(n), 7y (v), we see that i(my(n),my(v)) £ 0. In this case we have

K(Y) £ 0, and so K(Y') < e, for all sufficiently large k.

Next we suppose there are curves from our sequence contained in Y. Let
{vihec € {7r}72o where £ is an ordered subset of N which is the set of
curves from our sequence which are contained in Y. From in Theorem
We see that L C {k—m +1,...,k +m — 1} since any other curve in the
sequence intersects vy. We proceed to find an upper bound for the factor
K(Y). For this purpose let 5 C 7y (Yx+m) be any component arc of the
projection. Then from Theorem and Lemma we have

i(,@,ﬂ'yV) = Z {dW(7k+m7V)}A + Z log{dW('ykeraV)}A'

wWcCy, WcCY,
non-annular annular
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and
iBmn) < > Adw(amemIa+ Y log{dw (Yesm:n)}a
WcCy, WCY,
non-annular annular
= Y Adwmemem)a+ D log{dw (epm, )} a-
way, way,
non-annular annular

Choose the threshold constant A from Theoremlarger than the constant
R(p) from Proposition Appealing to that proposition and the fact that
any | € L is less than k + m, the first of these equations implies that
i(B8,myv) =< 0. For the second set of equations, note that any [ € £ with
Y M Yk+m has I < k. Therefore, by Theorem and the fact that {es} is

increasing, we have

k
Z(Bv ’/TYM) = Z IOg{d’)’l (7]€+m7 :u')}A = Z IOg(d% (FYkerv M))
lec I=k—m+1
k
= Z log(e;) < mlog(er) < ek.
l=k—m+1

Therefore, § is a K—quasi-parallel with K < e;. Consequently, K(Y) <
log(K) < log(ex) < ex. This completes the proof of part (iii), and hence the
proposition. U

Next we list some estimates for the locations of the intervals J? C [0, 00),
and provide more information on the relative positions of the intervals.

Let h € {0, ...,m —1}. From part (i) and (iv) of Proposition together
with the definitions, we have that for ¢ sufficiently large

h
+ log e’
ah g€

(8.2) a' = d 5 and
log el
(8.3) at L o %.

Together with these estimates, the next lemma tells us the location of the
active intervals, up to an additive error.

Lemma 8.3. For any h ={0,...,m — 1} and i sufficiently large

i—1 h
nt n  loge! logxy
(8.4) a; < jE_O log be} + ; i 5

The additive error depends on X, 78, and v.

Proof. The proof of this lemma is similar to that of [LLRL, Lemma 6.3], so
we just sketch the proof. Choose i sufficiently large so that J! # () and
a > 0, and so that we may estimate (7", ) using Lemma|5.11| (since u is
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a finite set of curves). Then appealing to the fact that X is a fixed surface
and p a short marking, we have

(8:5)  wo(7) = lo(l) = Hypo(v2) = i(3, 1) = A0, h +im) = Hbe

Since v (y)he(y1) is constant in ¢, and v,n(Y2) = hn(¥R), we have, for i
sufficiently large

208 = a6l 6l
= vo(¥"ho(7})
= '(%-h,u)'(%h,’)

; ’Y@a (Z xql 7z7 )

Since p is a fixed set of curves and 7 a fixed curve, i(y{, %) = i,y for
all i sufficiently large. Thus from (6.1)), for h # d, d € {0,...,m — 1}, we

have

(h—h

i), and i(~}", 77)i(yf 1, ) — 0

(V1 1)
The above estimates and Lemma imply that for ¢ sufficiently large

(Al
2 (L hy & i 1) = Th
Uon (i) X @hs = :
K (Y1 m) el

Combining this with (8.5) we have
1
v () Ilizobe

exp(al) = B ‘
p(a;') eXp(—a?)UO(%‘h) Y h(% ) W

Solving for af and taking logarithms (discarding a constant logb) proves
(8.4), completing the proof. ([

Lemma 8.4. For any k sufficiently large, a < Qg with additive error
depends on X, M, ’y(’}, and v.
Proof. Let k = im + h where h € {0, ...,m — 1}. From (8.2, and (8.4)

we calculate

_ h _
Oy, — Ak = Q41 — G
i h h
+ Z n o logel  logxp logel
= log be; + — —
= 2 2 2
i—1
log e log z, logel
- (Zlog be + + ! )
= 2 2 2

= log be? — log ezh = logb.
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_ =+ . .
Therefore aj, < ay, ,, since logb is a constant. U

Let k,] € Nand 0 < [ — k < m. Suppose that &k = h mod m and
! =d mod m where h,d € {0,...,m — 1}. Then for the pair (k,[) one of the
following two hold:

(8.6) h < dand Ji €N, sothat k=mi+ handl=mi+d, or
(8.7) h > dand Ji €N, so that k=mi+hand l =m(i+ 1) +d.

Notation 8.5. Let {z;}°, and {y;};°, be sequences of real numbers. We
write x; < y; if x; < y; for all ¢ sufficiently large and y; — x; — oo as i — oo.

Lemma 8.6. Fork,l € N sufficiently large where 0 < [—k < m the following
holds:

(8.8) Ap—m, < @ K Q.

Proof. The proof is similar to the proof of Lemma 7.3 of [LLR]. For the first
inequality, note that [ — (k —m) > m. By Propositionparts (i) and (ii),
Jk—m occurs before J;, and so we have a;_,, < g;.

Now we show that a; < ay. If [ = k, then since |Jx| — oo as k — oo, we
have a;, < a. Now assume k <[ and let k =h mod m and l =d mod m

with h,d € {0,...,m — 1}. First, suppose that holds so h < d. Using
1D 1} 1) and li and the fact that e, > ak*fef for k > f, we

have
a—a = a—af
i—1 i—1
+ 1 1
= Zlogbe? + loge? — §logajh — Zlogbe? + 3 log x4
j=0 §=0
i—1 h
e 1
= Zlog—i +loge? + flog@
° el 2 Th
7=0 J
i oh 1
= Zlogd—J +log66‘ + §logﬁ
j=1 €j71 Th
: 1 Td
> > (m+h—d)loga+ glog "
h

Jj=1

1
= i(m—i—h—d)loga%—flogﬂ.
2 Th

Now since m + h — d > 0, the last term goes to co as i — oc.
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Next suppose that (8.7) holds so h > d. Then we similarly have

av—a = af —af,
Lol i 1 .
- h h d d
= Zlogbej + loge; — Zlogbej + gloga
7j=1 7=1
7 eh
= Zlog—; + flogﬁ —logd
j=1 eJ
i e
= Y log 2 + - log 2% —logb
, ed 2 Tp
J=1 J
1
= i(h—d)loga + flogﬂ —logb.
2 Th
Now since h — d > 0, the last term goes to oo as ¢ — oo. ([

To obtain a greater control over the arrangement of intervals J; along the
Teichmiiller geodesic ray (see Lemma below) we consider the following
growth conditions, in addition to :

k
(8.9) erir > (J] )
j=0
Such sequences exist simply by setting ey > a and defining e; recursively,
ensuring at every step that is satisfied.
Condition has the following consequence.

Lemma 8.7. Suppose a sequence {ey} satisfies and .

i—1

1
If holds, then (8322 e—h — 00, and
. J

(8.10)

7=0

i
d
If holds, then (e;-i+1)% H :%L — 0.
7
J

0

Proof. Let k = d mod m and | = h mod m, where d,h € {0,...,m — 1}.
First suppose that holds so h < d. Since {ey} is increasing (more than)
exponentially fast

j:
Moreover, by we have (e?)% > el that is, (e?)%/e? > 1. Thus (8.10
follows.

Now suppose that (8.7) holds so h > d. Then
m(i+1)+d—1 i

> H 63'2H6§L-

N|=

(e§+1)



54 JEFF BROCK, CHRIS LEININGER, BABAK MODAMI, AND KASRA RAFI

where the second inequality holds because m(i+ 1) +d > mi+ h. Therefore,
condition (8.10) easily follows in this case as well. O

Lemma 8.8. Suppose that the growth condition holds. Then for k,l €
N sufficiently large with 0 <1 —k < m we have

(8.11) a < q

Proof. Let f =h mod m and I =d mod m where h,d € {0,...,m — 1}.
First suppose that holds so h < d. Then from (8.3) and (8.4) we

calculate

a; —ap = ag — (_L?
. A 4 loged logmy = h n o logxp
= Zlogbej + 5 i - Zlogbej + loge;’ — 5
Jj=0 7=0
L i1
_ (ed)2 ed 1 Th
7=0
where the sequence tends to infinity as ¢ — oo by Lemma (8.7
Now suppose that (8.7) holds so h > d. Then we have
a—ax = afy, —a;
SIS 4, log ezc‘l+1 log x4 — h n logzy,
= Zlogbei + 5 - Zlogbej + loge;’ — 5
7=0 7=0
d 1 ¢ e? 1 Th
= Iog<(ei+1)2 1_[06?> + logb + §log$—d — 00
]:
where again the convergence to infinity as ¢ — oo is by Lemma O

The following conveniently summarizes the relative positions of intervals
for large indices. See Figure

Lemma 8.9. For k <[ sufficiently large and I < k + m, we have
ap < 4 K ap K g < Qg < a1 K A1 < Ay < Uy

Furthermore
_ +
Ak = Qg
Proof. This is immediate from Lemmas|8.4] [8.6]and O
ag ag A Qkim Ak 4m
° ° o o
° ® ° o
aQ ap a; Qg

FIGURE 4. Relative positions of active intervals, k <[ < k + m.
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9. LIMIT SETS OF TEICHMULLER GEODESICS

In this section, we continue with the assumptions from the previous
section on the sequences {y;}72, and {ex}72, (including both (3.1) and
(8.9)), limiting lamination v € 9C(S) of {7y}, Teichmiiller geodesic ray
r(t) = X with quadratic differential ¢; at time ¢ € [0, 00), vertical foliations
7= Y7 ;7" and horizontal foliation 7 for (X, q) = (Xo, qo), short mark-
ing p for X, and active intervals Jy = [a;, ar] with midpoint a;. We will
also be appealing to all the estimates from the previous sections regarding
this data.

In addition, we will need one more condition on {v;}72,, which we add
to the properties P assumed already: For any k > 0, let

Ok = Ve UVk+1 U Yetm—1-
The additional condition is

P(iv) Let o be any essential curve in S\oy. Then there is no subsurface
Y C S with @ C Y which is filled by a collection of the curves in
the sequence {7} -

Recall that when Y is an annular subsurface by o C 0Y we mean that « is
the core curve of Y.

Remark 9.1. Note that when oy is a pants decomposition of S the con-
dition P(iv) holds vacuously because there are no essential curves in S\oy.
Together with the other conditions in P, the new condition P(iv) is equiv-
alent to requiring that any subsurface filled by a subset of {v;}?°, has as
boundary a union of curves in {74} ,. According to Lemma ﬁcondition
P(iv) holds for the sequences constructed in

Under these assumptions, Theorem from the introduction, which de-
scribes the limit set of 7(t) in the Thurston compactification Teich(S) =
Teich(S) U PML(S), can be restated as follows. Recall that the set of pro-
jective classes of measures on v is a simplex A(v) spanned by the projective
classes of the ergodic measures [#°], ..., [¢™71].

Theorem 9.2. The accumulation set of r(t) in PML(S) is the simple closed
curve in the simplex A(v) that is the concatenation of edges

(129, ('] U [17, 22 U U [, 7).

We begin by reducing this theorem to a more manageable statement (The-
orem , which also provides more information about how the sequence
limits to the simple closed curve. We then briefly sketch the idea of the
proof, and describe some of the necessary estimates. After that we reduce
the theorem further to a technical version (Theorem , providing even
more detailed information about what the limit looks like, and which allows
for a more concise proof. After supplying the final estimates necessary, we
carry out the proof.
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9.1. First reduction and sketch of proof. By Proposition the in-
tervals Ji are nonempty for all k sufficiently large. Combining this with
Lemma it follows that for all k& < [ sufficiently large, ai < a;, and that
a; — oo with [. Therefore, the set of intervals [ay, k1] for all sufficiently
large k, cover all but a compact subset of [0,00), and consecutive segments
intersect only in their endpoints. Theorem[9.2]easily follows from

Theorem 9.3. Fiz h,h' € {0,...,m—1} with h’ = h+1 mod m and suppose
{ti} is a sequence with t; € [Gimth, Gim+nr1] for all sufficiently large i. Then
r(t;) = Xy, accumulates on the edge [["], [ﬂh,]] C Av).

Furthermore, if {t; — Gim+n} is bounded independent of i, then

lim X;, = [7"].

Proof of Theorem assumz'ng From the second part of Theorem
applied to t; = Gjpmn, it follows that

12%10 Xaierh = [ljh]'
for all h € {0,...,m —1}. If ¥’ = h+ 1 as in Theorem then combining
this with the first part of that theorem, we see that the accumulation set of
the sequence of subsets {r([@im-+hs Gim+h+1]) }iog C Teich(S) is contained in
([, [Eh/]] and contains the endpoints. Consequently, any Hausdorff limit of
this sequence of connected sets is a connected subset of [[#"], [#"']] containing
the endpoints, and hence is equal to [[Dh], [ﬂh/ﬂ. The accumulation set of

this sequence of sets therefore contains [[7"], [Dh/]], and is thus equal to it.
Since this holds for every h € {0,...,m — 1}, and the intervals {[ax, ar+1]}
cover all but a compact subset of [0,00), this completes the proof. O

Remark 9.4. Before proceeding we note that the assumptions on {v;}72,
and {e;}72, are “shift invariant”, meaning that if we start the sequence at
any ko > 0, and reindex (without changing the order), the resulting sequence
will also satisfy all the required conditions. Consequently, it suffices to prove
T heoremfor h =0 and A’/ = 1. This greatly simplifies the notation, and
allows us to avoid duplicating essentially identical arguments.

To sketch the proof, we recall that a sequence {Z;} C Teich(S) converges

to [A] € PML(S) if and only if

L Hyps () i(A.0)
e Hypy, (8) ~ i(%,9)

for all simple closed curves d,0 with i(\, ') # 0; see Thus we must
provide sufficient control over the hyperbolic lengths of curves and relate
these to intersection numbers with measures on v.

Now the idea of the proof of this theorem is as follows. For any sufficiently
large ¢, we estimate hyperbolic lengths Hyp y, () in terms of “contributions”
from the intersections of § with the curves in a bounded length pants decom-
position (Proposition . When ¢ is in the interval [ag, ar+1] we choose a
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bounded length pants decomposition containing either oy or oy41, depend-
ing on more precise information about ¢. The contributions from the curves
in these sub-multicurves dominate the contributions from the other curves
(the ratios tend to zero), and so the key is to understand these contributions.

On the active interval J;, the contribution from ~; grows linearly in the
first half of the interval (Lemma , but during the second half, they
speed up. Thus near ag, the contribution from ~;, will be greater than from
the rest of o, since ay, is still in the first half of J;, for l = k+1,..., k+m—
1. As we proceed far beyond aj, the bounded length pants decomposition
eventually changes to become oy41. The contribution from v transitions
to the contribution from 74, and until the contribution from ~41 speeds
up, this is the dominating term. However, as the contribution from ;1
speeds up, its contribution eventually takes over. During the transition, the
contribution from -, for 2 <1 < m — 1 is still dominated by either v, or

Vi+1-
With this sketch in mind, we now start to discuss the details.

9.2. General hyperbolic geometry estimates. For a curve a € C(S5)
and Z € Teich(S), we have the length and width Hyp,(a) and wz(«a),
respectively, as defined in §2| Given two curves «,§ € C(S) and Z € Teich(S)
we will also need the twist of & about o with respect to Z, denoted tw, (9, Z).
This is defined as

twa (6, Z) = diam, (74(6) Uat?) >0

where a*Z is the set of Z-geodesics in the annular cover Y, meeting (the
lift of the geodesic representative of) « orthogonally.

€

Remark 9.5. There are different definitions of twq (0, Z) in the literature
(see e.g. [Min96l|CRO7, |[CRS08|). Some of these come equipped with a sign
which we have no need of, and our definition agrees with (the absolute values
of) the other definitions, up to a uniformly bounded additive error (at least
those we will be appealing to).

For curves «,d € C(S) and Z € Teich(S) define the contribution to the
Z—length of & coming from a by

(91 Hypz(8,a) = i(3a) |wz() + twa (0, 2) Hyp(a)]

The next fact, from [CRS08| Lemma 7.2], provides our primary means of
control on hyperbolic lengths.

Proposition 9.6. Given L > 0 and Z € Teich(S), suppose that P is an
L-bounded length pants decomposition ( Hyp,(«) < L for all a € P). Then
for any curve § € C(S) we have

9.2) [Hyp(0) = > Hyp(6,0)| = 0( D i(8,0))
a€EP

acP

where the constant of the O—notation depends only on L.
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To effectively use this proposition to analyze lengths of curves in X; as
t — oo we must develop a better picture of the hyperbolic geometry of
bounded length curves in Xj.

q

9.3. Hyperbolic estimates for {y;}. As in §8 we will write Hyp,(a) =
Hypy, (a), Hyp,(6,a) = Hypy, (0, ), and wy(a) = wx,(c). By a result of
Wolpert [Wol79|, hyperbolic lengths change (grow /shrink) at most exponen-
tially in Teichmiiller distance, and hence we have

Lemma 9.7. For any curve a and any t,s € R, we have
Hyp,(a) < exp(2(|t — s])) Hyp(a).

From Lemma[8.9] all sufficiently large ¢ are either contained in exactly
m intervals Ji, ..., Jyrm—1 or in exactly m — 1 intervals Jii1,..., Jgrm—1
and the bounded length interval [ay,a; ] (the interval after J; but before
Jk+m). In the former case, every curve in oy has length at most ey, the
Margulis constant. In the latter case, we can use Lemma[9.7] to bound the
length of curves in o;. It will be useful to have a slight generalization of
that, which we state here.

Lemma 9.8. For any W > 0, if t is sufficiently large (depending on W),
is contained in Jyi1, Jgio, ..., Jkam—1, and satisfies 0 < t —ap < W, then
every curve in oy has Xy—length at most exp(2W)eg.

Proof. Since ay, is in all the intervals Ji, ..., Jyym—1, we have Hyp,, (1) < €0
for k <1 <k+m—1. Now apply Lemma U

In particular, note that once k is sufficiently large, Lemmaguarantees
that ay,,, — @ is uniformly bounded by some constant Wy, and so setting
Lo = exp(2Wp)ep, we see that for any sufficiently large ¢, there is always
some k so that all curves of o; have length at most Ly. In addition, this
gives us lower bounds on lengths as well.

Lemma 9.9. For all k sufficiently large, Hypg, (k) 1% Hypa, (&)-

The multiplicative constant here depends only on Wy, the constants in
property P, and the Margulis constant €g.

Proof. We already have Hyp, (vk) < €0, so we need to prove a uniform
lower bound. Since i(7Vg, Yk—m) € [b1,b2] from P, and Hyp, (Yk—m) < Lo =
exp(2Wy)ep, according to Lemma we have

Hyp,, (V&) = Wa, (Ve—m)i(Ves Vh—m) > QSinhfl(l/sinh(Lo/Q))bl.
A similar argument applies for the estimate on Hyp;, (7x)- O

We will also need good estimates on wy(7yx), especially on the first half of
the interval when -y initially becomes short.

Lemma 9.10. For all sufficiently large k and t € [ay,, ax], we have

we() X At — a).
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The implicit constant depends on the constant from Lemma

Remark 9.11. There is a mistake in |[LLR}) Lemma 8.3|, which claims that
the width grows at most linearly with coefficient 1 (instead of 4). This does
not affect any of the proofs. It is also worth noting that only an upper bound
was proved there, whereas here there are both upper and lower bounds.

Proof. We first prove the upper bound on wy (7). For this, we note that by
Lemma

1 = Hyp,, (k) < exp(2(t — a;,)) Hyp, (7).
Dividing by Hyp,(7%) and taking logarithms, we get

1 n
log (m) 22t — ay).

Multiplying by 2 and applying (2.2) proves

+
wi (V) < 4t — ay,)-
For the lower bound, we will appeal to (8.1), which for & sufficiently large
implies
ek
cosh?(t — ay,)’
Lifting cyl;(y%) to the annular cover Y., , the modulus of the former is
bounded above by the modulus of the latter by monotonicity of modulus
of annuli. The latter on the other hand can be computed explicitly as
7/ Hyp,(7%) (see e.g. Mas85|). Thus, taking logs and noting that

mod(cyly (1)) =

log(cosh?(t — az)) £ 2|t — ag| = 2(ag, — 1),
we have

log(ex) — 2(ag —t) z log (%)

Then by Proposition |8.1) we have log(e) £ 2(ax — a;,) and hence

2(t — ay,) X log (W)

Appealing to (2.2) again we have

At — ay) < wi().
O

We will also want to estimate tw,, (9, X;), for an arbitrary curve §. This
is given by the following formula from [Raf07].

Theorem 9.12. Given a curve § € Co(S) and large enough k € N we have

1
0+ O(Hypxt(vk))’ b<a

1
€k & O(Hypxt(%))’ b2 ay

tW»yk (5, Xt) =
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This Theorem shows, in particular, that the twisting is independent of §
(up to an error). In fact, arguing as in Lemma we can easily prove that
this is the case in general.

Lemma 9.13. For any two curves 6,0 and constant L, there exists T >
0 with the following property. If o € C(S) is a curve and ty > T with
Hypy, (o) < L, then for all t,

+
twa (0, X1) <¢ twa (0, X¢)
where G is the constant from Theorem (for geodesics).

Proof. For sufficiently large g, a curve a with bounded length must have
bounded distance from some 7 in C(S). As in the proof of Lemma this
can be assumed to be very far from the geodesic in C(S) between § and ¢’
(by assuming #o, and hence k, is very large). Appealing to Theorem [2.11]
we see that dy(d,0") < G. Since tw, (0, X¢) is defined in terms of distance in
C(a), the lemma follows from the triangle inequality in C(«). O

9.4. Bounded length pants decompositions. When m = £(S), then
for all sufficiently large times ¢, there exists k so that oy is a bounded
length pants decomposition for X;. In this case, the estimates from the
previous section then provide many of the necessary ingredients to apply
Propositionto control Hyp,(d), for an arbitrary curve 9.

If m < £(S), then a bounded length pants decompositions will contain
other curves not in the sequence {~x}, and in this section, we describe the
necessary estimates to handle the contribution to length from these. The
reader only interested in the case m = £(.S) may skip this subsection.

We begin by bounding from below the length of the other curves in a
bounded length pants decomposition.

Lemma 9.14. There exists € > 0 depending on R(u) from Proposition
such that for all sufficiently large t, if Hyp,(a) <€, then a € {V}32,-

Proof. Let a be a curve not in {7;}7°,. We will show that K|, is uniformly
bounded. This requires us to bound K(Z) for all essential subsurfaces Z
with @ C 9Z; see the proof of Proposition for the definition of K, and
K(Z).

By Proposition[4.5|and Lemmal[8.2] do (1, v) < R(1)+G+1. Consider the
set of curves in {4}, that are contained in and fill an essential subsurface
Z with the property that « C 0Z. Then, by P(iv), this set of curves is
contained in a subsurface Y C Z such that « is not a boundary component
of Y.

Let W C S — (Y Ua) be the (possibly disconnected) union of components
meeting « (so two components of W are isotopic to « in S). Since W
contains no curves in {7}, Proposition and Lemma imply that for
all connected subsurfaces V-C W, dy(n,v) < R(n)+G+1. By Theorem
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i(mw(n), 7w (v)) is bounded above (depending only on R(x) and G). Con-
sequently, there exists a simple closed curve w in S intersecting a at most
twice with i(mw (w), 7w (1)) and i(mw (w), 7w (v)) uniformly bounded (again
depending on R(u) and G). Therefore, i(mz(w), 7z(n)) and i(7z(w), 72 (v))
are uniformly bounded, hence so is K(Z).

According to |[Raf05] Theorem 6.1], there is uniform lower bound for
Hyp;(«). The lemma is completed by setting ¢ > 0 to be any number
less than this uniform lower bound. ]

In what follows, we will assume L > Lo = exp(2Wy)eg as in §9.3]

Theorem 9.15. Let § € C(S) be any curve and L > Lo. Then there exists
K,C,T > 0, depending on L, &, and R(u) from Proposition 4.5, with the
following property. Suppose t > T and that P is an L-bounded length pants
decomposition of S containing oy, for some k. Then for all o € P\ o, we
have

i(6,0) 2k A0,k +m —1).
and

twa(é, Xt) S C

Proof. We first prove the bound on intersection numbers. For any ¢, sup-
pose « is part of an L-bounded length pants decomposition. Then [Rafl4]
Theorem 6.1] and the triangle inequality imply that for every subsurface
Z #Y,, we have

Jr
dZ(Ua a) =+ dZ(Oé, V) = dZ(Tlv V)
where the additive error depends on S and L.
We assume that Ty > 0 is large enough so that for all t > T there exists

k so that every curve in oy has length at most L at time ¢t. We write k(t)
for such a k. As in the proof of Lemma and Lemma we may

take T' > Ty so that for all t > T, dz(d,v) < dz(n,v) for surfaces Z with
ds(0Z,vr)) < 2.

Now let t > T and P be an L-bounded length pants decomposition
containing o), and let Y be the component of S\ o) containing a and
Z C 'Y any subsurface. According to Proposition and Lemma we
have dz(n,v) < R(pu)+G+1, and so combining the inequalities above, there
exists R’ (depending on R(u) and L) so that for all surfaces Z C Y, we have

dz(5, a) S R/.

Therefore, taking the threshold sufficiently large in Theorem for the
subsurface Y, there exists a constant I (depending on R’ and Theorem
so that

i(my (6),a) < 1.
Now, every arc of my (d) comes from a pair of intersection points with curves
in oy,). Consequently, taking #(§) to be the constant from Lemmawe
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have
k(t)+m—1 k(t)+m—1
i6,0) <T > (6,70 Zuy I Y. A(0,d) < mIA0,k(t)+m —1).
d=Fk(t) d=k(t)

Thus, setting K = mIk(d) proves the first statement.

For the bound on twist number, we again appeal to [Raf07—the same
estimate in Theorem Since o € {71 }72, (and a has bounded length at
time ¢t > T'), we have do(n,v) < R(n) + G + 1, where R(u) is from Proposi-
tion and G the constant appearing in Lemma (from Theorem [2.11).
Since the length of a is bounded below by €, according to Lemma |9.14]
|[Raf07] implies

tWa(é, Xt) § C
for some C' > 0 depending on R(u), G, € and the surface S. O
9.5. Second reduction and division into cases. We now consider the
setup as in Theorem As mentioned in Remark to simplify the

notation we assume h = 0 and A’ = 1. It is convenient to switch to the

notation ’Yih = Yim+h> a? = Gim-+h, Uzh = Oim—+h, €tc.
We consider sequences {t;} with t; € [a?,a}] for all sufficiently large i,
falling into one of two possible cases:

Case 1. There exists W > 0 so that t; € [a},a} + W].

177

Case 2.lim t; — @) = oo.
1—00

For any curve 6 € C(S) define
U7 (t,6) = wi(y") + tw.n (9, X¢) Hypy(7]")-
We will also fix a curve §y for reference and write
Ult) = Ul(t, ).

The next lemma is not needed for the reduction, but for later use we make
note of it now.

Lemma 9.16. For any curve § € C(S) and L > 0, there exists T > 0 so
that for allt > T and i, h with Hyp,(v*) < L, we have

Jr
UMt, 6) =qr, UR(t).
Here the constant G is from Theorem appearing in Lemma

Proof. Given L, Lemma provides T" > 0 so that for all ¢t > T, if
Hyp, (/") < L, then

’ tw’yf’ ((5, Xt) — tW’yZh ((50, Xt)‘ <G.
Therefore, we have

U1, 8) — U] = | tw0 (6, X) — tw. (80, Xo)| Hypy (+}) < GL.
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We now turn to our second reduction.

Theorem 9.17. Suppose {t;} is a sequence with t; € [a},a}] for all suffi-
ciently large © and ¢ is any curve (not necessarily oo ).

If {t;} falls into Case 1, then

0(+.\s 0
i Zil)i0,) _
1—00 Hypti(é)

If {t;} falls into Case 2, then

lim U (t:)i(6, %) + UL ()i (8,774 1)

=1.
1—00 Hypti (5)

Note in this theorem, the terms U]h (t;) do not depend on § (c.f. Lemmal9.16).

Proof of Theorem assuming Theorem Suppose {t;}72, with t; €
[c‘z?j,d}j] for all sufficiently large j and some ij, so that X;, converges to
some point in PML(S). We may pass to a subsequence so that either
tj — aoj < W for some W, or else t; a — oo with j. This subsequence

can be viewed as a subsequence of a sequence falling into Case 1 or Case 2,
respectively, and hence the conclusion of Theoremholds for {t;}.

Now let 4,8 € C(S) be any two curves. If we are in Case 1, then by
Theorem and Theorem we have

U? ()i(6,47)

L Hyp, () y Hypy, (0) =55, @
—7 = lim
Jj—00 Hyp o Jj—o0 UO (t5)i (5/7’)’0 )
1) Hyp,; (&' )W

i(6,~° s =0
= lim ( %j) = 2(5,1/7)
j—o0 i (4, 'yz ) (0", v0)

Since 4,0’ were arbitrary, it follows that X;, — [7Y].
Now suppose we are in the second case. Compactness of PML(S) implies
that by passing to a further subsequence (of the same name) the sequence

{[Uilj (tj)%J + U0+1(tg)%3+1]}g 0
converges in PML(S). Note that this limit is necessarily of the form
o + 7' € [ (7], 7]

by Theorem Now observe that for all j, the numerator from Case 2 of
Theorem is given by

UL ()00, 3E) + UL 41 (1)i(8.40 1) = i(8. UL (670, + U241 ()70 41)-
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Therefore, similar to the above calculation, appealing to Theorem we
have

Hyp,, (6) i(6,U}. (ty) ‘|‘U0 (tj)%ojﬂ)
lim ———— = lim

j—oo Hypt (6") j—ro0 (0, (ty) .t U?j+1(tj)’}’?j+1)

i(8, yo?° + 17"

i(0, yo?® + y17t)
Again, because 4,0’ were arbitrary we see that Xy limits to [yot° + 31071
This completes the proof. [l

9.6. Final estimates and proof of Theorem Here we provide the
final estimates necessary for the proof of Theorem [9.17|(and hence the main
theorem). The proof for each of the two cases are similar, and many of the
estimates can be made simultaneously.

We assume for the remainder of the paper that {¢;} is a sequence so that
t; € [a?,a}] for all sufficiently large i and that d is an arbitrary curve (not
necessarily our reference curve dy).

If we are in Case 1 with ¢; —a) < W, then by Lemma for all suffi-
ciently large i there exists L > exp(2W)e and an L-bounded length pants
decomposition P; for Xy, containing a? . Let

PP= P\ol,

If We are in Case 2, then by Lemma for ¢ sufficiently large, we have
t; € [ad,1,ad, ], and there exists L > 0 (depending only on S) and an L—
bounded pants decomposition P; for X;, containing 0' . Similar to Case 1,
we let

Ff=Fi\o.

We use Proposition|9.6[to estimate Hyp,, (0). Appealing to Theorem|9.15
together with Lemma and monotonicity of {A(0,k)}72, (Lemma [5.6)
to group together all the intersection number errors in Proposition this
takes a somewhat simpler form. To write it, recall that for all h € {0, ..., m—
1} and i > 0, we have

i—1
= A(0,im + h) = H be?.

The estimates are then similar, but depend on the case:

Case 1.

m—1
(9:3) Hypy, (6) = > Hypy, (8,9F) + D Hypy,(8,0) + O(" ™).
h=0 acPf

The O-error term depends on L (hence W) and ¢, but is independent of 1.
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Case 2.
m—1
Hyp,, (5) = Y Hyp,, (6,%") + Hypy, (8, 7511)
(9.4) h=1

+ Y Hypy,(6,0) + O(csy).
aEP?

In this case, the O—error term depends on L (which depends only on S) and
0, but is again independent of 1.
We will appeal to the various estimates previously made, specifically those

in §8] §9.3] and §9.4| The first estimate involves the contributions to (9.3)

and (9.4) from the curves of Pf.
Lemma 9.18. For all i sufficiently large and o € Pf, we have

B O(clm’l) in Case 1
Hypti((s, 0‘) - { O(C?}rl) in Case 2.

Here the implicit constant in the O—notation depends on §.

Proof. From (9.1) we have
Hypy, (3, @) = (wy, (@) + twa (0, Xy,) Hypy, (@) (3, @).

By Lemma and Theorem [9.15| every term on the right except i(d, o)
is bounded, depending on ¢ and L (and the resulting constants from those
statements). The lemma follows. O

Corollary 9.19. For all i sufficiently large we have
m—1

(9.5) Hyp,,(6) = > _ Hyp,,(5,4") + O(cf™) in Case 1
h=0

m—1

(9.6) Hyp,,(6) = > _ Hyp,, (5,%") + Hypy, (6,7941) + O(cly1) in Case 2.
h=1

We write the remaining terms using the notation set in the previous sec-
tion as

Hyp,, (6,v)') = UL (t:,6)i(8,7}).
Estimates for these terms are given in the next four lemmas.

Lemma 9.20. For all sufficiently large i and all 1 < h < m — 1, we have

Ul (t;, ) £ 4(ilog (ezg )+t — d?).
i=1 !

—1

In Case 1, this also holds for h = 1.

Proof. Note that for 1 <h < m —1 (as well as h = 1 in Case 1), we have
al < t; < al, for all sufficiently large i. Therefore, Hyp,(7?) < ey < L and

so Theorem implies
tW%_h (57 th) Hypti (’Yzh) =<1
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On the other hand by Lemma

we, (75 )A4(t —a) =4@ - ad+ (¢t -a))),

since al' < @) < t; < al (for sufficiently large i and all 1 < h < m — 1
in both cases, and also h = 1 1in Case 1) by Lemma The lemma now
follows from this by substituting in from (8.2} , and (8.4) and dropping

O

constants.

Lemma 9.21. Suppose {t;} falls into Case 1 with constant W. Then for
all sufficiently large i, we have

Uio(ti7 6) ; e?

where the multiplicative error depends on W, 0, (and all resulting constants),
but not 1.

Proof. Because t; — ao < W, Hyp,, (%) is bounded above and below by

Lemmal9.9] and Lemma m the bound depending on W. By Lemma|2.12}
wy, (70) is also bounded. To complete the proof we note that by Theorem|9.12

w0 (6,t;) = ey.
O
Lemma 9.22. Suppose {t;} falls into Case 2. Then for all large i, we have

UL (t:,6) = 4(t — a?).

Proof. This is almost identical to the proof of Lemma|9.20} so we omit it. [J
For the only remaining situation, a very coarse estimate will suffice.
Lemma 9.23. Suppose {t;} falls into Case 2. Then
Ull(tz,é) — Q.

Proof. Since We are in Case 2, t; — a >t — EL — 00. Then either ¢; < az-l
or a} <t; <al. In the former case, Lemma shows that wy, (v}) — oo.
In the latter case, either wy,(7}) — oo, and we are done, or else wy, (v}) is
bounded. If wy, (’yll) is bounded, then (2.2)) implies Hyp,, (%1) is bounded be-

low. Since e} — oo, Theorem |9.12[implies that tw.,1 (8,7}) — oo, completing
the proof. O

From these, we deduce the following

Corollary 9.24. If {t;} falls into Case 1 (and hence t; —a) < W), then for
all i sufficiently large and 1 < h < m — 1 we have

)Hbej,

(9.7) Hyp,, (6.1) = (

(9.8) Hyp, (6,77) = H be!
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If {t;} falls into Case 2 (and hence t; — @) — o), then for all i sufficiently
large and 2 < h <m — 1 we have

(9.9) Hypti(d,’yih) = (Zlog ]: - +ti—a; ) Hbej,

(9.10) Hyp, (5,7%,) = <ti—@?>Hb€9

The multiplicative constants depend on W (in Case 1) and 4, and all
constants that depend on these.

Proof. By Lemmal5.11] there exists x(5) > 0 so that

i—1
Q6,70 Z(a) A0 im + ) = = ] ] bel.
j=0

Since
Hypy, (6,7)") = U} (£, 8)i(8, 7)),
the corollary follows from Lemmas|9.20}9.21}9.22] and[9.23| O

We are now ready for the

Proof of Theorem[9.17] Observe that from Lemmas [9.20] [9.21] [9.22] and
we see that for all h, as i — oo we have

UM, t;) — oo and UL, (8,t;) —

where the second limit is only true in Case 2, and the first is only relevant
for h = 0 in Case 1. By Lemma it suffices to prove Theorem
replacing all terms of the form U jh(tz) w1th terms U h(t;,6).

The proof will use the estimates and (9.6 . from Corollary and
we divide it into the two cases.

Proof in Case 1. We look at each term on the right-hand side of (9.5)
and divide by the term Hyp,, ((5 9. Domg this for the terms Hyp,, (d,7,")

for 1 < h <m — 1, Equations (9.7) and (9.8) imply
0
J

Hyp, (6,77) = beo( ) ~os (li[ :7,1> lj e;.;al.

Hypt( j=1 ] j=1 J

h ;
Since jm > (j — 1)m + h implies eg > a ] 1, we have [[ 6261 < a~, and
J

since a > 1
. o5 T )
im ———=

= 0.
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The only remaining term, other than Hyp,, (8,7Y), is O(c™™1). For this, we
note that by definition
i—1
c? = H be? )
j=0

and therefore, for the same reason as above, we have

O(ch * : el
—— (2)0 =bef [[ % —0
yptz(’yZ) j:1 J

as ¢ — 0o. Now combining all these estimates into (9.5) we have

=1

_Hyp(0) nf Hyp,, (5,9)) | o)
1—00 Hypti (5, "y?) i—00 Py Hypti (57 ’Y?) Hypti (6,7?)

This completes the proof since
Hypy, (8,77) = U (i, 0)i(8,7)).

Proof in Case 2. We again look at each term on the right-hand side of
lmi and this time begin by dividing most of the terms by Hyp,, (, ).
Doing this for the terms Hypy, (6, ) for 2 < h < m — 1, Equations
and , together with the fact that ¢; — EL? — 00, imply

Hypy, (5,7}") be: ( : e Lot
: = — log (2 +t-—60) et §
Hypy, (5,7741) ti—ay ; ( 1) Lo JHI ¢

*

0

beg<1+log (ﬁ e,fj )) ﬁ eigl.
=1

IN

. j—1
Jj=1 Jj=

Now as above, the right-hand side tends to 0 as ¢ — co, and hence
L AR
A s (5.0 1)
1—00 Hypti (57 7@'+1)
Next we consider the O(c?, ) term of . By definition of ¢, ;, together
with (9.10) and the fact that ¢; — a? — 0o, as i — oo we have

=0

O(C,?_;’_l) * H;:O be? _ 1 0
Hypy, (6,901~ (ti—a)) TTi_obe?  ti—aj

Since Hyp,, (6,7})+Hypy, (6,7911) > Hyp,,(6,77,1), we could have divided
by this larger quantity, and the above limits would still be zero. Plugging

into we deduce
lim Hypt,- (5)
i=oo Hypy, (6,~}) + Hypy, (5,79, 1)

=1.

Since
Hyp,, (6,7;) + Hypy, (6,741) = U (:,6)i(8,7;) + U1 (ti,6)i(8,741)
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this completes the proof of Case 2, and hence of the theorem. ([
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