LIMIT SETS OF WEIL-PETERSSON GEODESICS
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ABSTRACT. In this paper we prove that the limit set of any Weil-
Petersson geodesic ray with uniquely ergodic ending lamination is a
single point in the Thurston compactification of Teichmiiller space. On
the other hand, we construct examples of Weil-Petersson geodesics with
minimal non-uniquely ergodic ending laminations and limit set a circle
in the Thurston compactification.
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1. INTRODUCTION

Given a surface S, let Teich(S) denote the Teichmiiller space of hyper-
bolic metrics on S, and Mod(S) the mapping class group of S. Thurston
compactified Teich(S) by adjoining the space of projective measured lami-
nations PML(S), and used this in his classification of elements of Mod(.S);
[FLP79]. On the other hand, Teich(S) has two important, Mod(S)-
invariant, unique-geodesic metrics, and hence has natural visual compacti-
fications. These metrics have their own drawbacks—the Teichmiiller metric
is not negatively curved and Weil-Petersson metric is incomplete
[Wol75|—and hence the standard results about visual compactification do
not readily apply to any of these metrics. For example, the action of Mod(S)
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extends continuously to neither the Teichmiiller visual boundary [Ker80| nor
the Weil-Petersson visual boundary |Bro05|.

In [Mas82|, Masur showed that the Thurston boundary and the Teichmiiller
visual boundary are not so different, proving that almost every Teichmiiller
ray converges to a point on the Thurston boundary (though positive di-
mensional families of rays based at a single point can converge to the same
point). Lenzhen [Len08| constructed the first examples of Teichmiiller geo-
desic rays that do not converge to a unique point in the Thurston bound-
ary, and recent constructions have illustrated increasingly exotic behavior
[LLR13I[BLMRI16} [CMW14] [LMR16].

In this paper we begin an investigation into the behavior of how the
Weil-Petersson visual compactification relates to Thurston’s compactifica-
tion. Specifically, we study the behavior of Weil-Petersson geodesic rays in
the Thurston compactification. Our results are stated in terms of the end-
ing laminations of Weil-Petersson geodesic rays introduced by Brock, Masur
and Minsky in [BMM10]; see The first theorem is a version of Masur’s
convergence for Teichmiiller geodesics. We say that a lamination is uniquely
ergodic if it admits a unique transverse measure, up to scaling. Moreover,
we say that the lamination is minimal if every leaf of the lamination is dense
in the lamination, and filling if the lamination intersects every simple closed
geodesic on the surface nontrivially.

Theorem 1.1. Suppose that the ending lamination of a Weil-Petersson
geodesic ray is minimal, filling, and uniquely ergodic. Then the ray converges
in the Thurston compactification to the unique projective class of transverse
measures on the ending lamination.

On the other hand, we prove that there are geodesic rays for which the
ending lamination is minimal but non-uniquely ergodic, and whose limit sets
are positive dimensional and in fact are non-simply connected.

Theorem 1.2. There exist Weil-Petersson geodesic rays with minimal, fill-
ing, non-uniquely ergodic ending laminations whose limit sets in the Thurston
compactification are topological circles.

See Theorem for a more precise statement. Without the minimality
assumption, the construction of Weil-Petersson geodesic rays that do not

limit to a single point requires some different ideas. This construction is
given in |BLMRI17].

1.1. Outline of the paper. Section |2| is devoted to background about
Teichmiiller theory, curve complexes and laminations. In Section we
state our technical results about sequences of curves on surfaces that limit
to non-uniquely ergodic laminations. These results are minor variations
of those in [BLMRI16|, and their proofs are sketched in the appendix of
the paper. In Section [3| we construct explicit examples of non-uniquely
ergodic laminations on punctured spheres, appealing to the results from
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Section In Sectionwe study the limiting picture of axes for pseudo-
Anosov mapping classes of a punctured sphere arising in the construction
of non-uniquely ergodic laminations in Section In Section we use this
analysis to determine limit sets of our WP geodesic rays with non-uniquely
ergodic ending laminations, and thus prove Theorem In Section [6] we
prove Theorem about limit sets of geodesic rays with uniquely ergodic
ending laminations.

Acknowledgment: The authors would like to thank Yair Minsky for use-
ful conversations related to this work. They would also like to thank the
anonymous referee for many helpful suggestions.

2. BACKGROUND

Notation 2.1. Our notation for comparing quantities in this paper is as
follows: Let K > 1 and C > 0. Given two functions f,g : X — R2", we

write f <g,c g if g(z) —C < f(z) < Kg(z) + C for all 2 € X, f ;C g
if g(x) — C < f(2) < g(a) + C and f = g if 2g(x) < f(x) < Kg(x). The

notation f :cg means that f(z) < g(z)+C for all z € X and f <x g means
that f(z) < Kg(x) for all z € X.

When the numbers K, C' are understood from the context we drop them
from the notation.

2.1. Surfaces and subsurfaces: In this paper surfaces are connected, ori-
entable and of finite type with boundaries or punctures. We denote a surface
with genus g and b boundary curves or punctures by S, ; and define the com-
plexity of the surface by £(Sg5) = 39+ b—3. The main surfaces we consider
always have only punctures, however we consider subsurfaces of the main
surfaces with both punctures and boundary curves.

2.2. Curves and laminations.

Notation 2.2. Throughout this paper, by a curve we mean the isotopy class
of an essential, simple, closed curve. When convenient, we do not distinguish
between a curve and a representative of the isotopy class. A multicurve is a
collection of pairwise disjoint curves (that is, curves with pairwise disjoint
representatives).

By a subsurface of S, we mean the isotopy class of an embedded essen-
tial subsurface: one whose boundary consists of essential curves and whose
punctures agree with those of S.

We say that two curves o and [ overlap and denote it by a m g if the
curves o and 3 cannot be represented disjointly on the surface S. Two
multicurves o and 7 overlap if there are curves o € ¢ and § € 7 which
overlap. A curve « and a subsurface Y C S overlap, denoted by o M Y,
if a cannot be realized disjointly from Y (up to homotopy). A multicurve
and a subsurface overlap if a component of the multicurve overlaps with the
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subsurface. We say that two subsurfaces Y and Z overlap, and denote it by
YNhNZ,ifoY "Zand 0Z MY.

We refer the reader to [MM99, IMMOO] for background about the curve
complex and subsurface projection maps. Denote the curve complex of a
surface S by C(S) and the set of vertices of the complex by Cy(S). The set
Co(S) is in fact the set of essential simple closed curves on S.

A pants decomposition on the surface S is a multicurve with a maximal
number of components. A (partial) marking p on the surface consists of
pants decomposition, called the base of u, and a choice transversal curves
for (some) all curves in the base. For background about pants and marking
graphs and hierarchical structures and (hierarchy) resolution paths in pants
and marking graphs we refer the reader to |[MMO00]. We denote the pants
graph of the surface S by P(S). Here we only recall that hierarchy paths
are certain quasi-geodesics in P(S) with quantifiers that only depend on the
topological type of S.

Let Y C S be an essential subsurface. The Y —subsurface projection coef-
ficient of two multicurves, markings or laminations u, i/ is defined by

(2.1) dy (. ) = diame vy (my (1) Uy (1))

Here 7y is the subsurface projection (coarse) map and diame(y() denotes
the diameter of the given subset of C(Y'). When Y is an annular subsurface
with core curve v we also denote dy (u, ") by d- (i, it').

Our results in this paper are formulated in terms of subsurface coefficients
which can be thought of as an analogue of continued fraction expansions
which provide a kind of symbolic coding for us.

We assume that the reader is familiar with basic facts about laminations
and measured laminations on hyperbolic surfaces (see e.g. |PH92| for an
introduction). We denote the space of measured laminations equipped with
the weak* topology by ML(S) and the space of projective classes of mea-
sured laminations equipped with the quotient topology by PML(S).

Recall that a measurable lamination is wuniquely ergodic if it supports
exactly one transverse measure up to scale. Otherwise, the lamination is
non-uniquely ergodic.

An important property of curve complexes is that they are Gromov hy-
perbolic [MM99|. By the result of Klarreich [Kla99] the Gromov boundary
of the curve complex is homeomorphic to the quotient space of the space
of (projective) measured laminations with minimal, filling supports by the
measure forgetting map equipped with the quotient topology, denoted by
EL(S).

The Masur-Minsky distance formula [MMO00| provides a coarse estimate
for the distance between two pants decompositions in the pants graph P(S).
More precisely, there exists a constant M > 0 depending on the topological
type of S with the property that for any threshold A > M there are constants
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K > 1 and C > 0 so that for any P,Q € P(S) we have
(2.2) dP,Q)=xc Y, {dv(P,Q)}a

YCS
non-annular

z ifz>A
0 ifz<A

The following theorem is a straightforward consequence of [MMO0O0, The-
orem 3.1].

where the cut-off function is defined by {z}4 =

Theorem 2.3. (Bounded geodesic image) Given K > 1 and C > 0. Sup-
pose that {7;}i is a sequence of curves which forms a 1—Lipschitz (K,C)-
quasi-geodesic in C(S). Further, suppose that for a subsurfaceY C S, v MY
for all i. Then there is a constant G > 0 depending on K,C so that

diame(y ({WY(%)}@) <G.
For the following inequality, see |Beh06]|[Man13|.

Theorem 2.4. (Behrstock inequality) There exists a constant By > 0 such
that for any two subsurfaces Y, Z C S with Y M Z and a fized marking or
lamination p we have that

min {dy(aZ, w),dz(9Y, u)} < By.

We also need the following no back-tracking property of hierarchy paths,
which follows from inequality (6.3) in [MMO00| §6.3].

Theorem 2.5. There is a constant C > 0 depending only on the topological
type of S so that given a hierarchy path o : [m,n] — P(S) (Im,n] C Z U
{£o0}), for parameters iy < iy < i3 < iy in [m,n], and a non-annular
subsurface Y C S we have

dy (0(i1), 0(is)) > dy (o(i2), o(i3)) — C.

2.3. Twist parameter. We define the twist parameter of a curve § about
~ at a point X in Teichmiiller space by

(2.3) b, (0, ) = d (1, 6)
where £ is a Bers marking at X (for definition of Bers marking see §2.6).
Note that for a filling set of bounded length curves I' at X we have
+ ..
tw, (9, X) < diame(y (I' U ).

2.4. The Thurston compactification. Recall that a point in the Te-
ichmiiller space Teich(S) is a marked complete hyperbolic surface [f: S —
X]. The mapping class group of S, denoted by Mod(S), acts by remark-
ing on Teich(S) and the quotient is the moduli space of hyperbolic surfaces
M(S).

Given a curve o € Cy(5), the hyperbolic length of « at [f: S — X] is
defined to be the hyperbolic length of the geodesic homotopic to f(a) in
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X. Abusing notation and denoting the point in Teich(S) by X, we write
the hyperbolic length simply as ¢,(X). For an € > 0, the e—thick part of
Teichmiiller space consists of points X € Teich(S) with £, (X) > 2¢ for all
curves «. The projection of this set to the moduli space is the e-thick part
of moduli space.

The hyperbolic length function extends to a continuous function

0.(-): Teich(S) x ML(S) — R.

Let v be a measurable lamination and 7 a measured lamination with
support v. Moreover, denote the projective class of 7 by [p]. The Thurston

compactification, T(Eh\(s ) = Teich(S) U PML(S) is constructed so that a
sequence {X,}, C Teich(S) converges to [7] € PML(S) if and only if
. la(Xy) (e, D)
lim = - —
oo p(Xn)  i(5,7)

for all simple closed curves «, 8 with i(7, 8) # 0. Here and throughout this
paper the bi-homogenous function i(-,-) denotes the geometric intersection
number of two curves and its extension to the space of measured laminations
ML(S). See |Bon01} [FLP79] for more details on the intersection function
and Thurston compactification.

2.5. Sequences of curves. In [LLR13| and | BLMRI16| the authors studied
infinite sequences of curves on a surface that limit to non-uniquely ergodic
laminations. The novelty in this work is that local estimates on subsurface
projections and intersection numbers are promoted to global estimates on
these quantities. We require minor modifications of some of the key results
from | BLMRI16| so as to be applicable to the sequences of curves on punc-
tured spheres described in We state the results here and sketch their
proofs in the appendix for completeness.
Given a curve 7 let D, be the positive (left) Dehn twist about .

Definition 2.6. Fix positive integers m < £(S) and ¥ > b > 0, and a
sequence £ = {er}32, € N. We say that a sequence of curves {v;}7,
satisfies P = P(€) if the following hold:

(i) any m consecutive curves are pairwise disjoint,
(ii) any consecutive 2m curves fill S, and
(iii) for all k > m, Viym = DSF (V) pp)> Where 75, is a curve such that

<V forj=k-m,....k+m-—1

{(Vpprmo i) § =0 forj=kk-1
=0 forj=k+1,....k+m—1

Remark 2.7. The only real difference between this definition and the one
given in our previous paper |[BLMRI16, §3] is that this one requires fewer of
the intersection numbers to be nonzero.
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For the remainder of this subsection, we will assume that I' = {v}x
satisfies P for some m,b, b’ and £ = {er}r (see for explicit examples).
Furthermore, we assume there exists an a > 1 such that e > ae for all
k> 0.

The first result describes the behavior of {7} in the curve complex of §
and its subsurfaces. Let M be the monoid generated by m and m + 1, that
is

M = {im + j(m+1) | i,j € Z*°}.

Theorem 2.8. There exist constants £, K,C > 0 such that if eg > FE,
then {vi}x is a 1-Lipschitz (K, C')—quasi-geodesic. In particular, there exists
av € ELS) such that any accumulation point of {yx}tr in PML(S) is
supported on v.

Furthermore, there exists a constant R > 0, and for a marking p another
constant R(p) > 0 depending on p, so that fori < k < j, with k—i, j—k € M,
we have v; M vk, v My, and

+ +
(24)  dy, (i, 75)s doy (Vs v)=RE: and  dy, (1, 7;5), duy (1 V)< R €4

Also, for any i < j and a subsurface W which is not an annulus with core
curve v for some k we have

(2.5)  dw(isvs),dw(vi,v) <R and  dw(p, ;) dw (. v) < R(p).

The next result provides estimates on intersection numbers for curves in
our sequence. To describe the estimates, for all ¢ < k, define the integers

(2.6) A k)= J[  be
i+m<j<k,
j=k modm

where the product is taken to be 1 whenever the index set is empty.

Theorem 2.9. If a > 1 is sufficiently large and exy1 > aey, then there
exists kg > 1 such that i(v;, vi) < koA(i, k) for all i < k, and

(2.7) (i, k) g A, ).

ifk—1>2m andi=k mod m, orifi <2m—1 and k—i>m24+m—1.
For any curve ¢, there exists k(0) > 1 such that for all k sufficiently large

For reference, we also record the following simple fact (see BLMRI6)
Lemma 5.6]).

Lemma 2.10. Suppose that € = {ey} satisfies e, > aex—1 for all k and
some a > 1. Then whenever k < 1, we have
A(i, k)
A(i, 1)

< al_L%J.
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The final result tells us that {74}« splits into m subsequences, each pro-
jectively converging to a distinct ergodic measure on v.

Theorem 2.11. If {y}x is as in Theorems and then the sequence
determines a v € EL(S) which is non-uniquely ergodic and supports m er-

godic measures, 70, ..., 0™ L, given by

. h+i _
lim Vhtim 7

for each h=20,...,m— 1.

2.6. Weil-Petersson metric. The Weil-Petersson (WP) metric is an in-
complete, mapping class group invariant, Riemannian metric with negative
curvature on the Teichmiiller space. The WP completion of Teichmiiller
space Teich(S) is a stratified CAT(0) space. Each stratum is canonically
isometric to the product of Teichmiiller spaces of lower complexity, each
equipped with the WP metric. More precisely, for any possibly empty mul-
ticurve o on S the stratum S(o) consists of finite type Riemann surfaces
appropriately marked by S\o, and this is isometric to the product of Te-
ichmiiller spaces of the connected components of S\o. An important prop-
erty of completion strata is the following non-refraction property.

Theorem 2.12. (Non-refraction; [Woll0|[DWO03|) The interior of the geo-
desic segment connecting a point X € S(o) to a point Y € S(o') lies in the
stratum S(o N ao’).

Let Lg > 0 be the Bers constant of S (see [Busl0, §5]). Then each point
X € Teich(S) has a pants decomposition P (Bers pants decomposition) with
the property that the length of every curve in P with respect to X is at
most Lg. Any curve in a Bers pants decomposition is called a Bers curve.
Moreover, a marking whose base is a Bers pants decomposition and has
transversal curves with shortest possible length is called a Bers marking.

Brock [Bro03| showed that the coarse map

(2.9) Q : Teich(S) — P(S)

which assigns to a point in the Teichmiiller space a Bers pants decomposition
at that point is a quasi-isometry.

Using the non-refraction property of completion strata Wolpert [Wol03|
gives a picture for the limits of sequences of bounded length WP geodesic
segments in Teichmiiller space after remarkings. The following strengthening
of the picture was proved in [Mod15) §4]. For reference, given a multicurve o
let tw(o) < Mod(S) denote the subgroup generated by positive Dehn twists
about the curves in o.

Theorem 2.13. (Geodesic Limit) Given T > 0, let (, : [0,7] — Teich(S5)
be a sequence of geodesic segments parametrized by arc length. After possibly
passing to a subsequence, there exist a partition 0 = tg < ... < tgy1 =T
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of the interval [0,T], multicurves oy, | = 0,...,k+ 1, a multicurve 7 with
T =0 No1 foralll =0,...,k and a piecewise geodesic segment

~ -

¢ :[0,T] — Teich(S)
such that

(1) ((t) € S(oy) for each 1=0,... k+1,

(2) C((t1,t11)) € S(7) for each 1=0,... .k,

(3) there exist elements 1, € Mod(S) which are either trivial or un-
bounded as n — oo and elements T;,, € tw(o; — 7) such that for
any v € o — 7 the power of the positive Dehn twist D~ about v is
unbounded as n — 0o, and we have:

Tim (1) = {(2)
for any t € [0,t1]. Moreover, for each l =1,... k let

(2.10) Oin=Tino...0Tino0Yn,
then
Tim 1 (Ga(t)) = C(1)
for any t € [t t141].

In [Mod15] controls on length-functions along WP geodesics in terms of
subsurface coeflicients are developed. The following are corollaries 4.10 and
4.11 in [Mod15|. Here we denote a Bers marking at a point X € Teich(S)

by pu(X).
Theorem 2.14. Given T,eg and € < €y positive, there is an N € N with
the following property. Let ¢ : [0,T"] — Teich(S) be a WP geodesic segment
parametrized by arc length, of length T' < T, such that
sup £y(((t)) = €o.
t€[0,77]
Then if dy(1(€(0)), u(¢(T7))) > N we have

inf £,(((t)) <e.
o 1(C(1) < e
Theorem 2.15. Given T, ¢y, s positive with T > 2s and N € N, there is
an € € (0,€e9) with the following property. Let ¢ : [0,T"] — Teich(S) be a
WP geodesic segment parametrized by arc length of length T' € [2s,T]. Let
J C [s,T" — s] be a subinterval. Suppose that for some v € Co(S) we have

sup £,(C(t)) > eo.
tel0,77]

Then, if infic 7 €4 (C(t)) < €, we have
dy (1(¢(0)), u(¢(T7))) > N.

In this paper we will frequently use the following result of Wolpert for
estimating distance of a point and a completion stratum. It is part of [Wol08|
Corollary 4.10].
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Corollary 2.16. Let X € Teich(S) and let o be a multicurve, then

dwp(X,S(0)) < 21 la(X) and
dwp(X,8(0) =, [27 3 €a(X) + O Y £a(X))*?)

where the constant of the O notation depends only on an upper bound for
the length of curves in o at X.

2.7. End invariants. Brock, Masur, and Minsky [BMM10| introduced the
notion of ending lamination for Weil-Petersson geodesic rays as follows: Note
that here and throughout the paper all geodesics would be parametrized by
the arc length. Let r: [a,b) — Teich(S) be a complete WP geodesic ray
(a ray whose domain cannot be extended to the left end point b). First,
the weak™ limit of an infinite sequence of weighted distinct Bers curves at
times t; — b is an ending measure of the ray r, and any curve « with
limy_p 0o (r(t;)) = 0 is a pinching curve of r. Now the union of supports
of ending measures and pinching curves of r is the ending lamination of r
which we denote by v(r).

Let g: I — Teich(S) be a WP geodesic, where I C R is an interval. De-
note the left and right end points of I by a,b, respectively, and let ¢ be
a point in the interior of I. If g is extendable to b in Teich(S), including
the situation that b € I, then the forward end invariant of g, denoted by
vt is a (partial) Bers marking at g(b). If not, the forward end invariant
of g (also called the forward ending lamination) is the ending lamination of
the geodesic ray g(t)||.) defined above. The backward end invariant (end-
ing lamination) v~ of g is defined similarly considering the ray g(—t)](a,c}.
Finally, the pair (v, ") is called the end invariant of g.

For example, the end invariant of a geodesic segment g: [a, b] — Teich(S)
is the pair of markings (u(g(a)), u(g(d))).

For more detail about end invariants of WP geodesics and their appli-
cation to study the geometry and dynamics of Weil-Petersson metric see
[BMM10| BMM11] Mod15| Mod16|[BM15][?].

2.8. Bounded combinatorics. Given R > 0, a pair of (partial) markings
or laminations (u, v) has R—-bounded combinatorics if for any proper subsur-
face Y C S the bound

(2.11) dy (u,v) < R

holds. If the bound holds only for non-annular subsurfaces of S we say that
the pair has non-annular R—bounded combinatorics.

The following theorem relates the non-annular bounded combinatorics of
end invariants to the behavior of WP geodesics.
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Theorem 2.17. For any R > 0 there is an € > 0 so that any WP geodesic
ray r: [0,00) — Teich(S) whose end invariant has non-annular R—bounded
combinatorics visits the e-thick part of Teich(S) infinitely often.

Proof. The fact that an individual ray r visits an e-thick part of Teich(.S)
infinitely often is [BM15| Theorem 4.1]. To show that ¢ can be chosen
uniformly for all geodesic rays r whose end invariants have non-annular
R-bounded combinatorics consider a decreasing sequence ¢, — 0 and a
sequence of WP geodesic rays r, : [0,00) — Teich(S) with non-annular
R-bounded combinatorics end invariants (p(r,,(0)), ;") and assume that €,
is the largest number that r, visits the €,—thick part of Teichmiiller space
infinitely often. In particular, for each n > 1 there is a time £, so that
Tn([tn, 00)) does not intersect the 2¢,—thick part of Teich(S).

Since the end invariant of r,, has non-annular R—bounded combinatorics,
a hierarchy path g, between the end invariant is stable in the pants graph
P(S) [BMM11, Theorem 4.3][Mod15, Theorem 5.13], in particular g, and
Q(ry), the image of 7, under Brock’s quasi-isometry , D—fellow travel
in P(S) where the constant D depends only on R. Theorem then guar-
antees that any two points along g, also satisfy the non-annular bounded
combinatorics condition with a larger constant.

Now for any two times t1, ta € [0,00), let i1, i2 be so that d(on(i1), Q(rn(t1)))
and d(gy,(i2), Q(rn(t2))) are at most D. Then from the distance formula
we see that all subsurface coefficients of the pair (9,(i1), Q(rn(t1))) and the
pair (o, (i2), Q(rn(t2))) are bounded by max{A, KD + KC'} for a choice of
threshold the A in the formula. This together with the fact that the pair
(0n(i1), 0n(i2)) has non-annular bounded combinatorics imply that the pair
(Q(rn(t1)), Q(rn(tz))) also satisfies the non-annular bounded combinatorics
condition for some R’ > R which depends only on R.

For R’ > 0 as above let the constants Ty > 0 and ¢y > 0 be as in Lemma
4.2 of [BM15|. Let I,, C [tn,00) be an interval of length 7 which contains
a time s, so that r,(s,) is in the e,—thick part of Teichmiiller space and
Sp — 00 as m — 00. By the previous paragarph the end points of r,,|;, have
non-annular R'~bounded combinatorics, so by Lemma 4.2 of [BM15| after
possibly passing to a subsequence the geodesic segments 7, |7, intersect the
eo—thick part of Teichmiiller space. But for n sufficiently large 2¢, < ¢y and
by the choice of I,, the segment r, |7, does not intersect the 2¢,—thick part,
which contradicts that 7, |7, intersects the eg—thick part. The existence of a
uniform e for all » with non-annular R-bounded combinatorics follows from
this contradiction. (]

2.9. Isolated annular subsurfaces. In this section we recall the relevant
aspects of the notion of an isolated annular subsurface along a hierarchy
path from |Mod15l §6] and its consequences for our purposes in this paper.

Let (u,v) be a pair of (partial) markings or laminations with non-annular
R-bounded combinatorics. A hierarchy path ¢ : [m,n| — P(S5), [m,n] C
ZU{+xo0}, with end points (u,v) is stable in the pants graph of S [BMM11].
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In particular, Q(g) the image of a WP geodesic g with end invariant (u,v)
under Brock’s quasi-isometry D—fellow travels p for a D > 0 depending
only on R. For a parameter i € [m,n], we say that the time ¢ corresponds
to 4, if Q(g(t)) is within distance D of p(7), and vice versa.

Let i € [m,n], and let @ be a pants decomposition within distance D of
the point p(i), moreover let v be a curve in ). By [Mod15| Definition 6.3]
the annular subsurface with core curve +y is isolated at ¢ along ¢ and hence
by [Mod15| Lemma 6.4] we have:

Lemma 2.18. (Annular coefficient comparison) There are positive con-
stants w,b and B depending on R and a constant L depending only on the
topological type of S, so that for the curve v, a time t corresponding to 1,

_ +
any s > w and s' <y s, we have:

+ . )
(2.12) dy (1u(g(t = 8')), (g (t + ) =p dy(0(i — 5), 0(i + 5)),
where p(-) is a choice of Bers marking at the point. Moreover,
(2.13) min{l,(g(t — 8)), 4(g(t + &)} = L.

3. SEQUENCES OF CURVES ON PUNCTURED SPHERES

In this section we construct a sequence of curves that satisfies the condi-
tion P of Deﬁnition This construction is a generalization of the one in
|ILLR13] to spheres with more punctures. Fix a sequence of positive integers
€ = {ex}io-

Let p > 5 be an odd integer and S = Sy, be a sphere with p punctures.
We visualize S as the double of a regular p-gon (with vertices removed),
admitting an order p rotational symmetry, as in Figure Let p: S — S be
the counterclockwise rotation by angle 47 /p. Set m = p%l.

Next, let 79 be a curve obtained by doubling an arc connecting two sides of
the polygon adjacent to a common side. Then {p’ ('yg)}?;é is a set of p curves
that pairwise intersection 0 or 2 times; see Figure We let @ = p™(70),
and recall that D, denotes the positive Dehn twist about the curve «. For

k>1, set

(3.1) ¢ = Dg*™'p, and
D = Q102 Py,

(in particular, &g = id).
Define a sequence of curves I' = I'(£) = {y;}72, starting with ~o, by the
formula

(3.2) Yk = Px(70)-

Since a twist about « has no effect on a curve disjoint from it, for 0 < 5 <
2m — 1,

(3.3) Ve = Pr—j (7)) = Pr-m(a),
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for all £ > m. See Figure for a picture illustrating 2m 4 1 consecutive
curves.

FIGURE 1. Sp7 as a double of a 7-gon. The curves
Y05 Y1, Y25 Y3 = @, Y4, Y5 and v5 = p(7y5) are shown.

Proposition 3.1. The sequence I'(E) = {v}72, satisfies condition P(E) in
Deﬁnitionfor m = % and b = b= 2.

e
o) (4

FIGURE 2. For Sp7 and any k > 3, applying ®;_3 to any

=

seven consecutive curves in the sequence, Yi_3, ..., V543,
: (k) _
gives Yo, ...,75,% = = Pr—3(Yk+3) as shown here.

Proof. The proof boils down to showing that, after applying an appropriate
homeomorphism, any 2m + 1 = p consecutive curves differ from 7y, ..., vom
only in the amount of relative twisting of vg and o, around ~,,; see Figure
and compare with the construction from |[LLR13|. We now explain this in

more detail. ‘
First, observe that for j =1,...,p—2 =2m — 1, i(e, p? (70)) = 0. Thus

v =0 (70),
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for j =0,...,2m — 1. By construction, any two of these curves intersect 0
or 2 times, while the first m are pairwise disjoint. Furthermore, the entire
set of 2m curves fills S; see Figure

Next, for any k& > m, applying @;_lm to the 2m — 1 consecutive curves

{fykfma s 77k+m71}7 implies
(3.4) (I’/;_lm(’kaerj) =7
for each j = 0,...,2m — 1. Since k was arbitrary, it follows that any m
consecutive curves are pairwise disjoint, and any 2m consecutive fill S. Thus,
conditions (i) and (ii) of P are satisfied.

For part (111)7 let ,.)/]/H_m = q)kfm(p(fmm—l)) = Qkfm(p%n(fm))' Then, for
7=0,...,2m — 1, we may apply @;Em, and we have

2 for j =m,

(Ve Yeem5) = (0" (70),75) = 1(p*™(10), £’ (0)) = and m — 1
0 otherwise,

which implies the intersection number requirement for (iii), with ¥’ = b = 2.
Finally, applying ®;_., to Vit+m we get

Ot (Yham) = Ghoma1 Orrm(90) = Ghom1(P7™ " (0))

= DL (0P () = DSE (0P (0))

where we have used the fact that o = p™(7y9) = vm. Therefore,

Yerm = Phem(DE (PP (0))
= B D% L Do (y0)

Dcebkkfm(’Ym) (f)/llc“'m) - D’iﬁ (fy;ﬂ-m)'

Therefore, part (iii) from P is also satisfied. O

Corollary 3.2. If £ = {ey}}2, satisfies ex41 > aey, for all k and for an
a > 1 sufficiently large, then the conclusions of Theorem Theorem|2.9
and Theorem hold for the sequence I'(E) = {}32,. In particular, the
sequence determines a minimal, filling non-uniquely ergodic lamination v.

4. LIMITS OF CLOSED GEODESICS

Let S = Spp be the p—punctured sphere where p > 5 is an odd integer.
Let a, p then be as in e be a positive integer, and f. = D¢p. To re-
late this to the previous section, note that for any fixed e, the sequence of
mapping classes {¢;}72, obtained from the constant sequence £ = {e}72,
is constant; ¢ = fe for all k. Consequently, the sequence of curves I'(£) is
obtained by iteration: T'(£) = {f¥(a)}s (after a shift of indices).

We assume in the following that e > E from Theorem Then by Propo-
sition and Theorem k — fF(a) is a f.-invariant quasi-geodesic in
the curve complex, and hence f is pseudo-Anosov. By [Kla99| Theorem 4.1]
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the sequence of curves {f¥(a)}2°, determines a projective measured lam-
ination [7] and {f¥(a)}; 5 determines a projective measured lamination
7).

A key ingredient in our construction of a Weil-Petersson geodesic ray in
will be a very precise understanding of the limiting picture of the axes g,
of the pseudo-Anosov mapping classes f., as e tends to infinity. The main
results of this section are Proposition in which we describe a biinfinite
piecewise geodesic in Teich(S) which approximate the geodesics g. in the
Hausdorff topology and gives us the necessary limiting picture for g. as
e — 00.

Our analysis of the axes g, of f. begins with an analysis of the action of
p on Teich(S) and certain strata in the Weil-Petersson completion. Observe
that the quotient of S by (p) is a sphere with one puncture and two cone
points. A fixed point of p in Teich(S) is a p—invariant conformal structure
on S, or equivalently, a conformal structure obtained by pulling back a
conformal structure on the quotient S/(p). Since the sphere with three
marked points is rigid, there is a unique such conformal structure, and hence
exactly one fixed point Z € Teich(S) for the action of p.

Proposition 4.1. For the stratum S(v) defined by a multicurve v, there

exists a point Xg € S(v) so that
dwp(Xo,p(Xo)) = inf dwp(Y,p(Y)).
YeS(v)
Remark 4.2. Note that unless S(v) is a point (i.e. v is a pants decompo-
sition), S(v) is not compact.
Now we define the function
F : Teich(S) — R=0,
by F(X) = dwp(X,p(X)). The proposition is then equivalent to showing

that the restriction of F to the closure S(v) attains a minimum value. We
begin with a lemma.

Lemma 4.3. The function F : Teich(S) — R=2° is conver, 2-Lipschitz, and
for any R > 0, F~([0, R]) is a bounded set.

Proof. Since the completion of the Weil-Petersson metric is CAT(0), the
distance function on Teich(S) is convex, and hence so is F'. The triangle
inequality proves that F'is 2-Lipschitz, since

IF(Y) - F(X)| = |dwp(Y,p(Y)) — dwp(X, p(X))|

|dwp (X, Y) + dwp (X, p(Y)) — dwp (X, p(X))|
dwp(X,Y) + dwp(p(X), p(Y))

= 2dwp(X,Y).

Let Z € Teich(S) be the fixed point of the action of p on Teich(S) and
suppose that Ry > 0 is sufficiently small so that Bgr,(Z), the closed ball

<
<
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of radius Ry in Teich(S) about Z, is contained in Teich(S), and thus is
compact. Let Ry > 0 be the minimum value of F on 0Bg,(Z).

For any Y € Teich(S) \ Br,(Z), let Y; be the unique point of intersection
of the geodesic from Z to Y with the sphere dBpg,(Z). Then it follows that
dwp(Y,Z) = Ry + dwp(Y, Yp), and so convexity of F' implies

Ry dwp (Y, Y0)
F(Yy) < —F— ——=FZ
Fo) < dwp (Y, Z) dwp (Y, Z) &)
But then since F'(Z) = 0 and F(Yy) > Ry we have

d zY d 4Y
Ro RO

Rearranging the above inequality, we have
Ry

dwp(Z,Y) < EF(Y)

Y)+

F(Y) R;.

and hence if R > Ry and F(Y) < R, then we have dwp(Z,Y) < RRLF. That
is, F~1([0, R]) C Bpyr/r,(Z), as required. O

Proof of Proposition[{.1] Any stratum in S(v) has the form S(v') for a mul-
ticurve v’ containing v. Observe that the infimum of the function F' on any
stratum S(v’) in S(v) is no less than the infimum of F on S(v). Let S(v')
in S(v) be a stratum in the closure having minimal dimension, so that the
infimum of F on §(v') is equal to the infimum on S(v). It suffices to show
that the infimum of F on S(v') is realized on S(v).

Let {X,,}52, C S(v') be an infimizing sequence for F on S(v'); that is
(4.1) nh_)ng@ F(X,) = Xelg{v') F(X).

Let R < oo be such that F(X,,) < R for all n > 1. Lemmathen implies
that there exists D > 0 such that dwp(Z, X,) < D for all n > 1.

By the triangle inequality, the lengths of the geodesic segments [X7, X,]
are bounded by 2D. Let Si,...,Sy be the connected component of S\v'.
Then S(v') is isometric to []7L, Teich(S;) with the product of WP metrics
on each factor. Let ¢, : [0, 7] — [[Z; Teich(S;) be the parametrization of
[X1, X, by arc length. Let

pr; : H Teich(S;) — Teich(S;)
j=1

be the projection to the j-the factor and let ¢, : [0,73] — Teich(S;) be
parametrization by arc length of prjo(,. Note that T! < 2D for j =
1,...,m. So for a fixed j, trimming the intervals and reparametrization
we get a sequence of geodesic segments (J : [0,77] — Teich(S;) of equal
length. We may then apply Theorem m (Geodesic Limit Theorem) to
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the sequence of geodesic segments Cﬂ; : [0, 79] — Teich(S;). Let the multic-
urves Uf, ©t=0,...,k; + 1, the multicurve 77, the partition t{) <. < tiﬁl
and the piecewise geodesic éj be as in the theorem. Also let the elements
of mapping class group vy and gog’n, Il =1,...,k; be as in the theorem.
Note that by the theorem when k; > 1 we have that /() € S(o?) and
limy, 00 ‘le,n@rjl(tjl)) = éj (tjl)

Since the geodesics Cﬂ; have a common starting point prj(Xl), it follows
that 17, is the identity map for all n. Hence, if k; = 0, then after possibly
passing to a subsequence the points pr; (X,,) converge.

First suppose that k; = 0 for all j = 1,...,m, then after possibly passing
to a subsequence all sequences pr; (X,,) converge as n — oo. As a result the
points X,, converge and we are done. A

Now we suppose that k; > 1 for some j, let 8 € o], and we derive
a contradiction. Note that pr;(X1) and pr;(X,) are in Teich(S;). Claim
4.9 in the proof of Theorem 4.6 in [Mod15| tells us that for Bers markings

pu(pr;(X1)) and p(pr;(X,)) and curves B, = (¢1,,) 7' (8),

s, (1(pr; (X1)), p(pr;(Xa)) ) = oo.
as n — 00. ‘ ‘ ' '

Now recall that ¢}, = T, o7, also that 7/, is the composition of a
power of the Dehn twist about the curve 5, and powers of Dehn twists about
curves disjoint from f3,. Moreover, as we saw above 1, is identity. Thus
Bn = B for all n. Therefore the above limit becomes

ds (1n(pr; (X1)), u(pry (X)) ) — o

as n — 0o. We may then choose a sequence {ny}3°, so that

(4'2) d,ﬁ’ (,U,(pl“j (X”k))? ,u(prj (Xnk+1))) — 0
as k — oo.

Claim 4.4. There exists a sequence of points {Y},, }; on the geodesic seg-
ments (X, , Xp, ] with the property that the distance between Y, and
S(v' U B) goes to 0.

Proof. It suffices to show that there is a sequence of points Y3, on [Xp, , Xy, ]

so that the distance between pr;(Y,,) and S(f) C Teich(S;) goes to 0. If
the distance between pr;(X,, ) and S(8) goes to 0, the sequence Y;,, = Xy,

is the desired sequence. Otherwise, there is a lower bound for the distance
between pr;(Xp, ) and S(f). Moreover, by Corollary we have

dwp(pr; (Xn,), S(8)) < /275 (pr;(Xo,)).
Thus we obtain a lower bound for £5(pr;(Xn,)). Appealing to Theorem|2.14|
the annular coefficient limit |i provides a point Yy, on [pr; (X, ), pr;(Xn,, )]
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so that KB(YTZ,C) — 0, and hence again by Corollary the distance be-
tween Yy, and S(8) goes to 0. Now the points Y, on [X,,,X,, | with
pr;(Yy,) = Y3, are the desired points. O

It follows from the above claim and the convexity of the function F' that
(4.3) F(Yy,) < max{F(Xy, ), F(Xn,,,)}-

Therefore, {Y},, } is also an infimizing sequence for the function F' on S(v).
Let Y} be the closest point to Y, in S(v' U ). Since the distance of the
points Y, and S(v' U ) goes to 0 we have that

dWP(Ynk,Y]é) —0

and therefore F'(Y;, ) and F(Y,)) have the same limit since F' is 2-Lipschitz.
Therefore {Y}/}; is a infimizing sequence for the function F' in the stratum
S(v" U B), but this stratum has dimension less than that of S(v). This
contradiction finishes the proof of the proposition. (|

Now we can describe the biinfinite piecewise geodesics g¥ C Teich(S5)
which approximate the geodesics g, the axes of the pseudo-Anosov mapping
classes f. as follows. First, appealing to Proposition , let X € S(p~1 ()
be a point where the function F(X) = dwp(X, p(X)) is minimized in the
closure of the stratum S(p~!(a)). As already observed, on S(p~1(a)), we
have f. = DSp = p since D¢ acts trivially on p(S(p~(a))) = S(«). Con-
sequently, f.(Xo) = p(Xp), and we may concatenate the geodesic segment
w = [Xo, p(Xo)] with its f.—translates to produce an f.—invariant, biinfinite
piecewise geodesic in Teich(.S):

(4.4) g = U (W)U fFHw) Uw U fe(w) U f2(w) U+

Proposition 4.5. The path g% is a biinfinite piecewise geodesic that fellow
travels ge, and the Hausdorff distance between g% and g. tends to 0 as e —
00.

For the proof of the proposition we need the following theorem which is a
characterization of the short curves along the geodesic g.. In the following
let £ > 0 be the constant from Theorem [2.8

Theorem 4.6. There exists € > 0 so that for all e > E and every point of
Je, at most one curve on S has length less than €, and such a curve is in the
set {f¥(a) rez (with a as in @ Moreover, let te be the translation length
of fe, then after reparametrization of g. we have that the minimal length
of the curve f¥(a), k € Z along ge is realized at kt. and tends to zero as
e — 0.

Proof. Let vF, as before, be the laminations determined by the sequences of
curves { fek(a)}f;’?) There is a uniform bound for all subsurface coefficients
of the pairs (v, v}) except those of {f*(a)}rez. This follows from the fact

er”e
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that in Theorem the upper bound R depends only on the parameters
from Definition and the initial marking p which is the same for all f..
Similarly we have

(4.5) d k(o) (Ve vl) Le

for all k € Z, where the additive error is independent of e.

Let ge : [—00, +00] — P(S) be a hierarchy path between the pair (v, , 1)
(see [MMOQ]). Since the pair has non-annular R-bounded combinatorics g,
is stable in P(S) [BMM11l Theorem 4.3][Mod15, Theorem 5.13]. Therefore,
0 and Q(ge) the image of g under Brock’s quasi isometry D—fellow

travel, where the constant D > 0 depends only on R.

Lemma 4.7. There is an €2 > 0, so that for all e > E, g, visits the ea—thick
part of Teich(S) infinitely often in both forward and backward times.

Proof. Let 11(ge(0)) be a Bers marking at ¢.(0), and let i be so that g.(7) is
within distance D of Q(ge(0)). Then all non-annular subsurface coefficients
of the pair (g¢(i), Q(ge(0))) are bounded by max{KD + KC, A} by the dis-
tance formula for a choice of threshold A. Moreover, by Theorem
all non-annular subsurface coefficients of the pair (g¢(i), V) are bounded by
an enlargement of R. Combining the bounds with the triangle inequality in
the curve complex of each subsurface then implies that (1(ge(0)),v.), the
end invariant of ge|(y ), has non-annular bounded combinatorics, indepen-
dent of e. Theorem then guarantees that for an e2 > 0, independent
of e, the geodesic ray gl o) Visits the es—thick part of Teich(S) infinitely
often. The proof of that the geodesic ray geljo, o) Visits the ex-thick part
of Teich(.S) infinitely often is similar. O

Now we prove the following:

Lemma 4.8. There exists e > 0, depending only on R, so that for alle > E
the length of each curve v ¢ {f¥(a)}y, is bounded below by e, along ge.

Proof. Suppose that for a t € R the length of v at g(¢) is less than the Bers
constant. Then, v € Q(g.(t)) and thus ~ is isolated at some ¢ along g,; for
the discussion about isolated annular subsurfaces see By Lemmal2.18|
there are constants w,b depending only on R and a constant L such that

for any s > w and s’ Qb s,
min{ly(ge(t — 5)), &y (ge(t + 5'))} = L.

Fix s,s" as above and fix u < s'. Let J = [t — ' + u,t + s’ — u]. Then,
Theorem applies to the geodesic segment gel(, 4y ¢~y and implies that
for any integer N > 1, there is an € € (0, L/2) so that

(4.6) if 22567(96(7“)) < €, then dy (u(ge(t — '), u(ge(t +5))) > N,

where p(-) denotes a Bers marking at the given point.
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According to Lemma there is a constant B > 0 depending only on
R such that

(4.7) dy(1(ge(t — '), 11(ge (8 + 8))) Z oy (0e(i — 8), 0 (i + 9)).

Further, suppose that v is not in the set {f*(a)}rez. Then the upper
bound for d, (v, ,v}) and Theorem [2.5(for the parameters —co,i—s,i+s, 00
of o, give us an upper bound for the subsurface coefficient

dy(0e(i = 5), 0e(i + 5))
depending only on R. So by (4.7) we get an upper bound for

dy (11(ge(t = 5')), pu(ge(t + )

depending only on R. On the other hand, since t € J by if £,(g(t)) gets
arbitrary small, then d.(u(ge(t — ")), p(ge(t + s"))) would become arbitrary
large, which contradicts the upper bound we just obtained. Therefore, there
is a lower bound €; > 0 for the length of v at time ¢ which depends only on
R. Since t was arbitrary the proof of the lemma is complete. O

The length of each one of the curves in the set {f¥(a)}rez is strictly
convex along g. (|Wol08|), and so has a unique minimum. The unique min-
imum for f¥(a) occurs at the f¥-image of the point where a is minimized.
Thus, we can parameterize g. by arc length so that for ¢, the WP translation
length of f., the length of the curve f*(a) is minimized at g.(kt,).

By Lemmathere is an eo > 0 so that for all e > FE, g, visits the eo—thick
part infinitely often in both forward and backward times. Let t. € (0,t.) be
a time for which g.(t.) is in the ex—thick part. But then g.(kt. +t.) is in the
thick part for all k. In particular, by convexity of the length of «, it follows
that outside the interval (—t. + t.,t.), 2e is a uniform lower bound for the
length of . Likewise, the length of f¥(a) is uniformly bounded below by
2¢9 outside the interval ((k — 1)t. + t., kte + t.). Consequently, for k # k/,
the curves f¥(a) and f*(a) cannot simultaneously have length less than
262.

As we saw in Lemma[4.8] the only curves which can get shorter than €
along g. are {f¥(a)}r. Moreover, since we saw above that two of these
curves cannot get shorter than es at the same time, the first statement of
the theorem holds for € = min{ej, 2e2}.

Let the laminations z/;t be as before, and let ¢, be a hierarchy path be-
tween v, and v. Recall that g is stable and that g, and Q(g), D-fellow
travel for a D that depends only on R.

Note that by each curve f¥(a) (k € Z) for e sufficiently large has a
big enough subsurface coefficient that f¥(c) is in g, (i) for an i in the domain
of g. by [MMOO| Lemma 6.2 (Large link)]. Thus f¥(a) is isolated at 4 along
0c (see §2.9). Let ¢ be a time so that Q(ge(t)) is within distance D of g.(i).

Then for constants w, b, B from Lemma|2.18 and any s > w and s’ ;b s we
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have that
o (a(ge(t — ")), u(ge(t + 8))) Z 5 dy (0e(i — ), 06 (i + 5)).

Thus the bound dx(q)(ve V*);e and Theorem for the parameters

er-e

—00,7 — 8,14 8,00 of g, imply that

Jr
dy (p(ge(t — 8)), plge(t + 8))) =ce.
Moreover, for the constant L > 0 form Lemma we have that

min{ly (ge(t — '), b (et + )} > L.

Now fix s, s’, then Theorem applies to geodesic segment ge|;_y 111
and implies that

f 4 e(t)) =0
reft 11;1/ s 1E@ )(9e(t))

as e — oo. But the minimal length of f*(«) is realized at kt. so
elig)lo Crr(a) (ge(kte)) = 0.
This completes the proof of the second statement of the theorem. O

We continue to use t, > 0 to denote the WP translation length of f,
and assume the geodesic g, is parameterized as in the proof of the theorem
above. Then, in particular the minimal length of ff («) along g, is realized
at time kte and £px (o) (ge(kte)) — 0 as e — oo. Likewise, {(k — 1)t + 1, }rez
denotes times when g, intersects the fixed thick part of Teich(S). Also, note
that the minimum of the length of f¥(a) is realized at kt. (k € Z) and
lime_wo Eféc(a) (l{?te) = 0.

To prove Proposition [£.5]we also need the following lemma about the limit
of translation length of fe.

Lemma 4.9. The translation distance t. of fe limits to |w| the length of w;
that 1is,

lim ¢, = dwp(Xo, p(X0)) = |w],

e— 00
where Xo € S(p~(«)), as before, is the point where dwp(Xo, p(Xo)) =
inf xes(p-1(a)) dwWp(X, p(X)).

Proof. Let Y, € S(p~!(a)) be the closest point to ge(—t.) (and hence closest
to the entire geodesic ge). Then f.(Y.) = DEp(Ye) = p(Ye), and hence

dwp(fe(Ye), Ye) = dwp(p(Ye), Ye) > dwp(Xo, p(X0)).

Moreover, p~!(a) = f;'(a) so the minimal length of p~!(a) along g. is
realized at time —t. and £,-1(4)(ge(—tc)) — 0 as e — oo. By Corol-
lary [2.16| the distance between g.(—t.) and S(p~!(a)) is bounded above

by \/27T€p71(a) (ge(—tc)), so we obtain
dWP(ifeage(_te)) = dWP(feO/e)vge(O)) —0
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as e — oo. It follows then from the triangle inequality that

11£>£ft6 = hg&ldeP(ge(—te),ge(O))
> liminf (dwp (Yo, fo(Ye)) — diwp(ge(—te). Yo)

— dwp(£(Y2),9.(0)))
> dwp(Xo, p(Xo))-

On the other hand, since g, is the geodesic axis of fe, t. is less than the dis-
tance that f. translates along ¢¥, which is precisely |w| = dwp(Xo, p(X0))-
That is, t. < dwp(Xo, p(Xo)), and hence

lim sup te < dwp(Xo,p(X())).

e— 00

Combining this with the above, we have lim t. = dwp(Xo, p(Xo)), complet-

e— 00

ing the proof of the lemma. U
We are now ready for the proof of Proposition

Proof of Proposition We recall that g, intersects a fixed thick part of
Teichmiiller space, independent of e, at the times (k—1)t.+t,, for all k € Z.
Denote the closest point on g¥ to the point g.((k — 1)t +t,) by X . The
distance between X, ; and ge((k — 1)t. + t,) must tend to zero as e — oco.
Otherwise, the strict negative curvature in the thick part of Teich(S) would
imply a definite contraction factor § < 1 for the closest point projection
to ge restricted to ¢ for all e sufficiently large. Since X, 11 = fe(Xek),
dwp(Xek, Xek+1) = |w|. Now by the contraction of the projection on g,
and Lemmal[Z£.9] we would have that

lw| = lim te < §|w|
e—00

an obvious contradiction. The sequence of points {X¢ i }rez is fe-invariant
and its distance to g. tends to 0 as e — oo. Appealing to the CAT(0)
property of Teich(S5), the furthest point of ¢* to g. must also have distance
tending to 0, and hence the Hausdorff distance between g. and g¢ tends to
0, as desired. O

Corollary 4.10. The point Xo € S(p~!(«)) where the minimum of the
function F(X) = dwp(X, p(X)) (restricted to S(p~(«))) is realized lies in
S(p~(a)). Moreover,

lim ge([—t,0]) = w.

e— 00
Proof. First recall that £, (ge(—te)) = £p-1(a)(ge(—te)) and that L4 (g(0))
goes to 0 as e — oo. The distance between the point g.(—t.) and the stra-
tum S(p~!(a)) by Corollary|2.16|is bounded above by \/27r€p_1(a) (ge(—te)),

and hence tends to zero. Thus the point g.(—t¢) converges to the closure
of S(p~(a)). From Theorem the only curve which is very short (has
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length less than €) at g.(—t.) is p~'(c), so the point g.(—t.) converges to
S(p~(a)). Similarly we can see that g.(0) converges to S().

Moreover, since g, is a geodesic and g.(0) = p(ge(—te)) the point ge(—t.)
converges to X at which the minimum of the function F is realized. Also,
9e(0) converges to p(Xp).

By the non-refraction of property of WP geodesics (Theorern then
the interior of w lies in Teich(S). The limiting behavior of the geodesic
follows from the CAT(0) property of the metric on Teich(S). O

The geodesic axis g. descends to a closed geodesic g. in M(Sp,) and

w descends to a geodesic segment @ in M(Sp ). The previous corollary
immediately implies the following.

Corollary 4.11. As e — oo, we have convergence je — w C M(Sop).

For any e > 0, we let d. denote the geodesic segment from the midpoint
of w to the midpoint of f.(w). We also let w™ and w™ denote the first and
second half-segments of w, respectively (so w = w™ Uw™ and w™ Nw™ is the
midpoint of w). Our construction in the next section will use the following.

Lemma 4.12. Given € > 0, there exists N > 0 so that for all e > N, the
triangle with sides 0., w™, and fo(w™) has angles less than € at the endpoints
of 6c, and the Hausdorff distance between 6. and wt U fe(w™) is at most €.

Proof. By Proposition and Corollary the segment ge([—%ﬂ7 %]) can
be made as close as we like to wT U f(w™). Since ge([—%, %]) and &, are both
geodesics in a CAT(0) space, and since their endpoints become closer and
closer as e tends to infinity, it follows that the distance between g.([—%, f])
and J. tends to zero as e — oo. Therefore, the distance between J. and
wt U fe(w™) tends to zero as e — oo. This proves the second statement of
the lemma.

Short initial segments of J, and w™ are both geodesics in a Riemannian
manifold, they have a common initial point, and the initial segment of .
converges to that of wt as e — oco. It follows that the angle between d
and w™ tends to zero as e — co. A similar argument (composing with f; 1)
shows that the angle at endpoint of §. and f.(w™) tends to zero as e — co.
This proves the first statement of the lemma. O

5. THE NON-UNIQUELY ERGODIC CASE

Given a sequence of integers & C N in this section first we construct a
WP geodesic ray r that is strongly asymptotic to the piecewise geodesic gg
in Teich(S) similar to the construction in 3, but now for a non-constant
sequence &; see . The proof of strong asymptoticity involves produc-
ing regions with definite total negative curvature on ruled surfaces and an
application of the Gauss-Bonnet Theorem (c.f. [BMMI11, IMod16]). The
asymptoticity to g¢ helps us to develop good control on lengths of curves
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along r in and determine the limit set of r in the Thurston compact-
ification of Teichmiiller space in §5.3| In we prove a technical result
required for determining the limit sets of rays in

5.1. Infinite geodesic ray. Consider a sequence £ = {ex}r C N with ey >
E and ex11 > aey, for some a > 1 and all k, to which we will impose further
constraints later. We write ¢, @ = ¢1- - dp_10k, and I'(E) = {m}3,
as in and in Recall from that v = Pk_,,(«) for all
k > m. Moreover, recall that the sequence {7;}r converges to a minimal
non-uniquely ergodic lamination v in E£(S) by Corollary

Let w denote the Weil-Petersson geodesic segment connecting the point
Xo € S(p~Ha)) to p(Xp) € S(a) as in Note that Xy € S(p~!(a)) and
SO

(51)  B(Xo) € S@il(p (@) = S(@1_1(a)) = S(rsm1)-

Write d; for the geodesic segment connecting midpoints of w and ¢y (w)
(compare with and Lemma. The endpoint of §; on w will be called
its initial endpoint, and the one on ¢y (w) its terminal endpoint. The image
of § under any mapping class will have its endpoints labelled as initial and
terminal according to those of dk.

With this notation, we claim that the terminal endpoint of @ (k1) is
the same as the initial endpoint of ®j1(Jx2). Indeed, applying ®, ' to this
pair of arcs, we have 011 and ¢r11(dkr2). The terminal endpoint of §xq
is the midpoint of ¢y1(w). This is the ¢r1-image of the midpoint of w,
which is also the ¢y 1-image of the initial endpoint of d;41, as claimed.

Concatenating segments of this type defines a half-infinite path:

(5.2) Re =01 U @1(52) U @2(53) U @3(54) U---.
This path fellow-travels the concatenation of w and its translates:
(5.3) g8 =wU Py (w) UPa(w)UPg(w)U--- .

By 1» projecting Rg and g¢ to the curve complex (via the systole map
gives paths fellow traveling {v;}72,. By Proposition|3.1/and Theorem [2.8|

it follows that these are quasi-geodesics in the curve complex. Since the
projection to the curve complex is coarsely Lipschitz, so B¢ and g¢ are also
quasi-geodesics.

We will also be interested in a truncation of Rg¢ after k steps:

R(Ig =5 UDi(d2)U---UDk_1(d),

and let r; denote the geodesic segment connecting the initial and terminal
point of the broken geodesic segment R(’é; see F igure

The angle between consecutive segments ®_1(d) and Pk (dg11) will be
denoted 0. Applying ®;_1, this is the same as the angle between d; and
ok (dk+1). Observe that the angle 0y, is at least m minus the sum of the angle
between d;, and ¢y (w) and ¢k (dx11) and ¢x(w) (with appropriate directions
chosen). Since ¢, = D™ 'p = Jerim_1> DY taking epym 1 and egimn,
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sufficiently large, appealing to Lemma|4.12|we can ensure that 6 is as close
to m as we like. In particular, we additionally assume that our sequence
{exr}r grows fast enough that

o0
(5.4) d om—bp <1
k=1
We can also (clearly) assume that the integers ey, are all large enough so

that 6, > 7 for all k.

Remark 5.1. While we have imposed growth conditions here to control
angles, it is worth mentioning that these are in addition to those conditions
already imposed to prove non-unique ergodicity.

Xo & (Xo) P2 (Xo) ®3(Xo) ©4(Xo) @5(Xo) @6(Xo)

FiGurRE 3. The concatenation of geodesic seg-
ments 01, P1(d2),...,P4(d5) defining Rg C Re and
wUP(w) U...U P5(w) C gg, together with the geo-
desic segment r5 connecting the endpoints of Rg.

Proposition 5.2. The geodesic segments r, limit to a geodesic ray r as
k — oo, and all three of r, Re, and g¢ are strongly asymptotic (the distance
between any pair of them tends to zero).

Proof. According to the last part of Lemma Re and g¢ are strongly
asymptotic. Therefore, it suffices to prove that r; has a limit r, and that
this is asymptotic to Rg. Before proceeding, we note that ®(Xy) lies in the
stratum S(@r(p~" (@) = S(Pp—1(a)) = S(Vm)

Let {v;}3°, denote the concatenation points of Rg. Denote by Py a ruled
polygon bounded by r; and Ré. This polygon has vertices vy, ...,v;. Let
95 denote the interior angles of P, at v;, for ¢ = 0,...,k, and observe
that for 0 < ¢ < k, we have 0; < Gf. In addition, there are constants
co < 0 and dy > 0 so that the dy—neighborhood of v; in P, has Gaussian
curvature K < ¢g. Consequently, for any d < dy, if r is disjoint from the
d-neighborhood Ng4(v;) of v;, then since 8% > Z. Ny(v;) N Py contains a
quarter-sector of a disk of radius d centered at v; in a surface of curvature at
most ¢g. Therefore, the integral of the curvature K over Ng(v;) N Py satisfies

2
/ KdA< 9™
Nd(vi)ﬁPk 4
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By the Gauss-Bonnet Theorem (see e.g. |[Cha06) Theorem V.2.5]), we have

k
/ KdA+) (7 —6f) =2n
Py,

1=0
which implies
k—1
05 +0f —> (r—0f)= | KdA.
i=1 P
For any d > 0, let i1,42,...,%; denote those indices ¢ for which R(’; is more

than d away from v;. Then by our assumption on the angles 6; in (5.4) we
have

k—1
05+ 05 —1<05+06F—> (m—6f) = KdA
i=1 Py,
J . 2
< Z/ KA < 10
= JNy,P, 4

Since ¢g < 0, this implies

- 400k + 05 — 1) _A4L- (0F + 0%)] < A0+ 2m)

C()T('d2 - ’C()’Td'cp B ‘Co‘ﬂ'dQ

This bounds the number of vertices along Rfcf» that can be further than d
away from rp by some number J(d), which is independent of k. Therefore,
for any N > 0 and k, k" > N + 2J(d) 4+ 1, there is a vertex v; of Rg
with N < ¢ < min{k, &’} so that r; and rp contain points xp and zy/,
respectively, which are within distance d of v;. Therefore, x; and xp are
within distance 2d of each other. Since Rg is a quasi-geodesic, the distance
from v; to vy tends to infinity with i. Consequently, as N tends to infinity,
the distance from z; and xj to vy also tends to infinity. By convexity of
the distance function between two geodesic segments in a CAT(0) space, it
follows that for any D > 0, the initial segments of {7y}, of length D form a
Cauchy sequence in the topology of uniform convergence. By completeness
of Teich(S), these segments of length D converge. Letting D tend to infinity,
it follows that r; converges (locally uniformly) to a geodesic ray r.

For any d > 0, suppose that v; is a vertex of Rg further than 2d away
from any point of r. For k sufficiently large, it follows that rj is further than
d from v;. Since there are at most J(d) of the latter indices i, it follows that
r must come closer than 2d from all but J(d) vertices. In particular, there
exists N(d) so that for all i > N(d), r comes within 2d of v;. By convexity of
the distance between geodesics in the WP metric, the distance of any point
on Rg lying between consecutive vertices v; and vy (for ¢ > N(d)) and
r is no more than 2d. Therefore, the tail of R¢ starting at vy(gy is within
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Hausdorff distance 2d from some tail of . Since d was arbitrary, it follows
that Rg and r are strongly asymptotic, as required. O

In the rest of this section let r : [0,00) — Teich(S) be the geodesic ray
from Proposition

5.2. Curves along r. The following lemma is a straightforward conse-
quence of the setup of curves {v;}r in §3 and the choice of the segment
w in the previous section which we record as a convenient reference.

Lemma 5.3. For any k > m — 1 the initial and terminal endpoints of
Dp_mt1(w) are in the strata S(vi) and S(Vk+1), respectively. Furthermore,
for any compact subsegment I C int(w), the 2m consecutive curves

{’Yk‘—m-‘rla e 77k+m}

have bounded length on ®k_.,11(1), with the bound depending on the choice
of interval I, but independent of k.

Proof. Recall that o = p™(7y0) = p(ym-1), and hence Xy € S(a) = S(Vm—1)-
Consequently ®_,,,11(X0) € S(k), since Pg_ppi1(Ym—1) = Vi; see .
Thus the initial endpoint of ®;_,,+1(w) is in S(yx). Since the terminal
endpoint of ®y_,,11(w) is the initial endpoint of ®y_,2(w), this common
endpoint lies in S(yx41), proving the first statement.

The compact subsegment I C int(w) is entirely contained in Teichmiiller

space, and hence the curves 7y, ..., Y2m—1 have bounded length in I. Since
the ®j_,,+1—image of these curves are precisely those listed in the lemma,
the second statement also follows. [l

Theorem 5.4. There exists a sequence {1}, which is eventually increas-
ing, such that klim Ly, (r(ty)) = 0. Furthermore, for any € > 0 sufficiently
— 00

small, the set of curves with length less than € along v is contained in {y;}7
and contains a tail of this sequence, {7V }k>n, for some N = N(e) € Z.

Proof. Since r is strongly asymptotic to g¢ by Proposition we may choose
t;. so that

dwp(?’(tk), S('yk)) —0
as k — oo. Then by the formula

dwe (r(t), S(k)) = /27, (1) + O (£, (r(14))"2)

from Corollary where the constant of the O notation depends only on
an upper bound for the length of ~; at the point r(t;), we see that

lim £, (r(t)) = 0.

Since gg passes through the strata {S(y;)}x in order (i.e. g¢ intersects S(vx)
before S(vk+1)), the times when r comes close to {S(yx)}x also occur in
order. This proves the first statement.
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For the second statement, we note that the first statement implies that
for any € > 0, there exists N(e) > 0 so that for all £ > N(e), v has length
less than e at some point along r (in fact, at the point r(tx)). Moreover,
by LemmaCI)k_mH(w) goes from S(7x) to S(Yx+1), and no other curves
become very short along ®j_,,1+1(w). Again appealing to the fact that r is
asymptotic to g¢, it follows that for k sufficiently large, the only curves of
length less than € on r([tg, tx+1]) are v, and yg4+1. Therefore, for e sufficiently
small, the only curves that can have length less than € along r are from

{ e O

Because r is asymptotic to g¢, there is a version of Lemma for r. We
will consider sequences {s}r C [0, 00) satisfying one of the following:

(C1) There exists € > 0 such that t; + € < s < tp11 — €, or
(C2) lim |tg41 — sx| = 0.
k—o0

Corollary 5.5. Suppose that {si}r C [0,00) is a sequence.

o If{sk}k satisfies (C1), then the 2m consecutive curves Ye—m+1y - - - Vitm
have bounded length at r(si), independent of k, but depending on €.
o If {si}r satisfies (C2), then klim loyii (7(s1)) = 0, and the 2m — 1
— 00

consecutive CUrves Yk—m-+2, - - -, Yek+m have bounded length at r(sg),
independent of k.

Proof. Suppose that we are in case (Cl). Then there exists a compact
interval I C int(w) so that the Hausdorff distance between ®5_,,1(I) and
r([tx+e€, tgr1—€]) tends to zero as k — co. By Lemma Vk—mals -+ Vhtm
have bounded length along ®j_,,4+1(). Since Pg_,,11(f) remains bounded
away from the completion strata of Teich(S), Vk—m-+1,-- -, Vk+m also have
bounded length along ([t + €, tx+1 — €]), as required.

For case (C2), the assumptions imply that dwp(r(sx),S(Vk+1)) — 0
as k — oo, and hence /,,_ (r(sy)) — 0 as k — oo. The bound on
the lengths of Yx_mt2,..., Vk+m follows from case (C1l) and convexity of
the length-functions ([Wol08|). Indeed, from case (C1), we know that the

tettkta )
2

CUTVES Vk—m+2, - - - s Vktm have uniformly bounded lengths at r( and

r(%), and hence all the curves have uniformly bounded length along
T([tk+tk+1 tk+1+tk+2])
2 2

by convexity of length-functions. (|

)

As another application of Theorem we can identify the ending lami-
nation of r.

Corollary 5.6. The lamination v is the ending lamination of the ray r.
Proof. By Theorem lim ¢, (r(tx)) = 0. Since, by Theorem |2.11| the
k—o0

subsequence

{7k | K =0 mod m}
converges to 7y in ML(S) (after appropriately scaling), it follows that the
ending lamination of r contains v. Moreover, v € £L£(S), and hence v is the
ending lamination of r. O
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5.3. The Limit set. By Corollary the ending lamination of r is the
minimal non-uniquely ergodic lamination v. Let ", h =0,...,m — 1, be
the ergodic measures supported on v as in Theorem m Theorem
follows immediately from the following theorem.

Theorem 5.7. The limit set of r in PML(S) is the concatenation of the

edges
(@, 21)- - [P, 2]

in the 1—skeleton of the simplex of projective measures supported on v.

We will reduce this to a more technical statement, and then in the next
subsection, prove that technical statement. As we will be exclusively in-
terested in lengths of curves along r, for any curve ¢ and s € [0,00), we

write
l5(s) = Ls(r(s)).

Our main technical result is the following theorem.

Theorem 5.8. Suppose that {si}r C [0,00) is a sequence.

o If {sk}r satisfies (C1), then there exists xy > 0 such that for any
simple closed curve §, we have

k—o0 Eg(sk)

o If {si}r satisfies (C2), then there exist xy,yr > 0 with x + yr > 0
such that for any simple closed curve &, we have

- zk1(8, vk) + Yk (S, Yet1)
k—o0 Eg(sk)

Proof of Theorem assuming Theorem . We will pass to subsequences
in the following, and to avoid double subscripts, for a subsequence of a
sequence {cy }72,, we simply write {cy}xcs, where J is the index set defining

the subsequence. Likewise IICIH} ¢, will denote the limit of the subsequence as
€

the indices from J tend to infinity.
Now suppose that [i] € PML(S) is a limit point of the ray r. That is,
for some sequence of times {s;}; C [0,00) and any two curves 6, ', we have

lim l5(s5) _ ‘1(6, /1_)

j—00 Ky(sj) 1(5’, ,u)
(see . Since s; must tend to infinity as j — oo, by passing to a sub-
sequence, we may assume that the sequence is increasing, and there exists
an increasing sequence {k;}; such that either [s; — #;,| — 0 or else there
exists € > 0 so that t, +€ < s; <1y, +1 — €. Consequently, after reindexing,
we assume (as we may) that our sequence is a subsequence {s }rcs of some

sequence {sj}7° satisfying either (C1) or (C2).
Suppose first that {s;}7°, satisfies (C1), and pass to a further subse-
quence (with index set still denoted J for simplicity) so that all k € J are

=1.

=1.
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congruent to some h € {0,...,m—1} mod m. Then by our assumption and
Theorem [5.8] we have
1(57 ﬂ) 65(3143) xkl(é’ ’Yk) _ 1(67 Ijh)

=1 =1 =
i) ked Ly(se)  ked api(0 ) 16 )

where the last equality follows from the fact that [y;] — [#"] in PML(S),
for k € J by Theorem But this implies that [] = [#"] since d, 6’ were
arbitrary.

We further observe that if h € {0,...,m — 1}, then {s; := %}k sat-
isfies (C1), and the computations just given show that for any subsequence
{sk}res such that £ = h mod m for all k € J, we have ,lfél}’“(sk) = [7"] in

the Thurston topology. Consequently, all the vertices of the simplex are in
fact accumulation points.

Next, suppose that {s;}7° satisfies (C2), and again pass to yet another
subsequence so that all k& € J are congruent to some h € {0,...,m — 1}
mod m. In this case, we must pass to yet another subsequence so that
[ZkVE + YkYk+1] converges to some [i'] € PML(S), for k € J. Note that,
since by Theorem@ [v&] — [P"] and [yr41] — [P"F!] (where we replace
h+1 by 0, if h +1 = m), we have [ii’] € [[?"],[#"*!]]. Then, by similar
reasoning we have

i0,p)  _ lim Cs(sk) _ lim Ti(0, &) + Yri(9, Yet1)
(7, 1) ked Ly (s)  ked 2pi(0, vk) + yri(d), Ye41)
(0, 2p vk + Y ves1) 106, 71)
m - = —.
ked 1(0, opye + yrye+1) (0, @)

Here the second to last equality follow from bilinearity of intersection num-
ber, while the last equality follows since [zxvg + ypYr+1] — [7] in PML(S),
for k € J. Thus again we see that [g] = [i].

So, the limit set of r is contained in the required loop in the 1-skeleton of
the simplex of projective classes of measures on v. If we fix h € {0,...,m—1}
and consider the arcs

{T([thr;Hla tkHJgrtkHD | k= h mod m}

it follows that the initial endpoints converge to [7"] while the terminal end-
points converge to [7"!] (again replacing h+ 1 with 0 if A+ 1 = m). More-
over, the accumulation set of this sequence of arcs is a connected subset of
[[7"], [?"*1]]. Any such set is necessarily the entire 1-simplex. Therefore,
the ray r accumulates on the entire loop, as required. O

5.4. Proof of Theorem @ Here we prove the required technical theorem
used in the proof of Theorem E Throughout what follows, we assume that
{sk}i satisfies (C1) or (C2). Many of the estimates can be carried out for
both cases simultaneously.
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From Corollary the 2m — 1 curves Yg—m+2, - - -, Vk+m have bounded
lengths in 7(sy), and since

Ve—m—+25 -+ Vky V425 - -+ s Vk4+m
fill S —~j+1, there is a pants decomposition Py containing the m—component
multicurve
O =7 U ... U Vktm—1

such that ¢g(sy) is bounded for all § € Py, independent of k (though the
bounds depend on € in case (C1)). Write P{ = P \ oy.

For an arbitrary curve é and a curve 8 € Py, the contribution to the length
of 6 from B in r(si) is defined by the equation:

(5.5) U5, B) 1= 16, B) (we, (8) + twa (0, 51 (sv) )

where twg(d, s;) is the twist of 0 about § at r(s;) as is defined in ,
and ws, (B) is the width of the largest embedded tubular neighborhood of
B in r(t;) (i.e. the minimal distance between boundary components of the
neighborhood). By [Busl0, §4.1], we have

(5.6) ws,, (B) = 2log (@) .

The following estimate for the hyperbolic length of a curve § from [CRS08}
Lemmas 7.2, 7.3] will be our primary tool.

Theorem 5.9. Suppose that the sequence {sy}i satisfies (C1) or (C2).
Then, for any curve 6 we have

(5.7) [t5(s) = 3 talsn )| =0 Y i(6.8))-
Be Py,

BEPy

Here the constant of the O notation depends only on the upper bound for the
length of the curves in Py.

The proof of Theorem now follows from estimating various terms in
the sum in the above theorem, and finding that one (in case (C1)) or two
(in case (C2)) dominate not only the other terms, but also the error term
on the right.

Recall that for any simple closed curve ¢, Theorem implies that for
all j sufficiently large we have

(5.8) i(8,75) = A(0, )
where the multiplicative error depends on 4, but not on j. Combining (5.8)
and Lemma|2.10] we see that for all 0 < h < m — 1, we have
10, Ve+h)
5.9 lim —————— =
(59) A2 A0,k + m)

Observe that the curves 745 here are precisely the components of o. It
turns out that the intersection numbers with the other curves in Py (not
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just those in o0y), are also controlled by A(0, k + m). This is essentially the
Weil-Petersson analogue of [BLMR16| Theorem 9.15].

Lemma 5.10. For any Br € Py we have

i i(6,Br)
im ———— =
Proof. By (5.9) it suffices to prove the lemma when f, € P, for all k.

Let p be any fixed marking on S and let Y, be the component of the
complement S\ oy that contains Sj.

Claim 5.11. There exists I > 0, depending only on x4 and § so that
i(my (6), Br) < 1.

Since d and p are a fixed curve and marking, we can assume that their
projections to all subsurfaces are uniformly close. Let Zp C Yi be any
subsurface with 8, M Zi, and observe that since Zj, is disjoint from the m
consecutive curves in oy, Theorem implies that it cannot be an annulus
with core curve in the sequence {v;};. By Corollary at the point r(sg)
the 2m —1 curves Yx—m+2, - - - , Yk+m have length bounded independent of &,
and hence i(S, ;) is uniformly bounded for each [ =k —m +2,...,k + m.
Since these curves fill S\yx41 and ;11 € ok, 77, (V1) # 0 for some k—m+2 <
| < k+m, and hence dz, (v, Bx) is uniformly bounded. Thus, by the triangle

inequality and (2.5) we have

dz, (Bk,0) L dz, (v, 1) < R(p).

Since this holds for all subsurfaces Z; C Y}, |[CRO7, Corollary D] tells us
that i(my, (), Bx) is uniformly bounded, as required.

Every arc of 7y, (§) comes from a pair of intersection points with curves
in 0. Consequently, taking x(d) as the second paragraph of Theorem
and noting that A(0, j) is increasing in j we have

k+m—1 " k+m—1
i(6,86) <T Y 1(6,79a) =y I D A(0,d) <mIA0,k+m—1).
d=k d=k
Thus, setting K = mIk(d) the proof of lemma is complete. O

Next, we estimate the various terms of £s(sg, 5) for 8 € Py.

Lemma 5.12. Suppose that {si}r is a sequence satisfying either (C1) or
(C2). Then for all k sufficiently large and B € Py, we have

+ + €L 7 /B = Yk
tWB((S’ Sk) = tW,B(fVO’ Sk) = { 0 Bf# "yk/)/OT Vit -

If {si}i satisfies (C1), then for all k sufficiently large, tw, (0, s) Zo.
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Proof. By Theoremand Proposition {7k }k 18 a quasi-geodesic ray in
C(S) (the curve complex of S). Thus, for any fixed curve § and j sufficiently

large, Theorem implies that d.;(70,9) £0. To see this, note that for j
sufficiently large the curve complex distance between «y; and every curve on
a geodesic connecting 7 to ¢ is at least 3 and hence ; intersects all curves
on the connecting geodesic. Thus Theorem [2.3]implies a uniform bound on
d~;(70,6). Since each 3 € Py is within distance 1 of v, similarly we have

ds(70,9) £ 0 for all B € Py, once k is sufficiently large.
Suppose that {sg } satisfies (C1). The filling set of curves Yg—m-+1; - - -, Yetm
have bounded length in r(sg). So, for all k sufficiently large and 5 € Py

+ + ..
twp(9, sk) < twg(v0, sk) < diame(gy (Y0 U Yk—m+1 U+ U Vetm)-

If B € P{, then B ¢ {v;};, and so the term on the right is uniformly close to
0 by Theorem If B = 7; # W, then j > k, and the only curves in the set
Vk—m+1, - - - » Ye+m Which actually intersect v; nontrivially must have index
less than j. In this case, Theorem [2.8]implies that the term on the right is
also uniformly close to 0. When 8 = v, again appealing to Theorem [2.8|
the right-hand side is estimated (up to a bounded additive error) by

+
dryy, (Y0, Vitm) X €k

This proves the lemma when {sy }; satisfies (C1). The proof when {s } sat-
isfies (C2) is nearly identical since the curves Yx_mt2, -« Vs Ykt2s - - - » Vktm
have bounded length and fill S\ vx11, so the only curve whose twisting we
can no longer estimate is y11. Since the conclusion of the lemma is silent
regarding the twisting about this curve in case (C2), we are done. [l
Proof of Theorem In either case that {si } satisfies (C1) or (C2), define

*

xp = Wey, (V) + tWo, (70, Sk)0v, (S5). Observe that £, (s;) <1, so by li

ws,, (Vk) £ (these estimates depend on € in case (C1), but not k). Moreover,
from Lemma|5.12] for any curve ¢ and k sufficiently large we have

+ +
tWa,, (70, Sk) X tWa, (0, 55) <X e, — 00

*
as k — oo. Consequently, we have z < e, and

Cs(sky k) Wsy, (W) + W, (9, 5%)Cy, (sk)
Tki(0, k) wey (Yk) + tWe, (70, 58y, (5k)

as k — oo. Combining this with (5.8) and using the setup of integers A(0, k),
for large k, we have

(5.10) 1

(5.11) Cs(Sky ) X k(6 i) < ek (9, i) < A0, k + m)
Now suppose that we are in case (C1l) and By € Py, but S # ;. As for

*
v, above, we have lg (si) =<1 ;wsk (Br) (with errors depending on €, but
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not k). Combining this with (5.8) and Lemma [5.12| we have

U (55> Be) < (6, Br).

Therefore, by (5.11) and Lemma we have

s (s, Br) * (6, Bk)

= =0
zgi(8, ) A0,k +m)

(5.12)

as k — oo.

Combining Theorem with Lemma , and , for any

curve 0 we have

3 é (’S ) — 3 f (S ;7Y ) 1 H —
Jim A = Jm xii(’c?,wﬁﬁxki(a%)( > Eé(skvﬂkHO( > i, 5k)>) =1
,3%61;5 and Br € Py
k7 Yk

as required.
When {sy}, satisfies (C2), xy is defined as above, and we define

Y = Wsy, (’Yk+1) + tW’ykJrl (707 Sk)g’ykJrl (Sk)

According to Corollary Cyeii(sK) = 0 as k — oo, and so by (5.6) we
have

Ws), (71@-&-1) — 00

as k — oo. Moreover, Lemma ensures that for any curve ¢ and k
sufficiently large, we have

+
tVV’YIH-l ('707 Sk) = tw7k+1 ((5, Sk).

Therefore,
5 (8K, Vit1)
ko0 Yl (9, Yk41)
and combining this with (5.10) we have

Cs(Sks Vi) L5 (Sks Vht1)
m — .
k—oo Tri(6, Vi) + Yri(d, Yrt1)

Because the estimate (5.12) still holds for any curve f;, € P, where 3 # v
or Vg1, we can again apply Theorem and Lemma to deduce that
for any curve § we have

=1

. ls(sk) o s (g, vk) + L5 (S Vet1)
lim - . = lim - -
k—oo Tpi(0, Vi) + Yki(0, Y1) koo Tki(d, k) + Yrki(d, Yir1)

=1,

completing the proof in case (C2), and hence in general. O
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6. THE UNIQUELY ERGODIC CASE

Let 7 : [0,00) — Teich(S) be a WP geodesic ray, and denote the ending
S

lamination of r by v; see §2.7| The following immediately implies Theo-
rem from the introduction.

Theorem 6.1. Suppose that v is uniquely ergodic, then the limit set of r in
PML(S) (Thurston boundary) is the point [v].

Proof. The proof of the theorem closely follows Masur’s proof of the anal-
ogous fact for Teichmiiller geodesics [Mas82) Theorem 1]. Assuming [{]
is any accumulation point of r, let {¢;}; be a sequence of times so that
7(t;) — [€] as i — oo in the Thurston compactification of Teichmiiller space
Teich(S) U PML(S); see According to the Fundamental Lemma of

[FLP79, exposé 8], there exists a sequence {fi;}; C ML(S), such that

i(fi,6) < 5(r(ti)),
for all simple closed curves §, as well as a sequence of positive real numbers
{b;};, so that b;fi; — & € ML(S) and b; — 0, as i — oo.

Let v be a transverse measure on v. Since v is uniquely ergodic, and
hence minimal, there exists a sequence of Bers curves {7;}; and positive real
numbers {¢; };, so that ¢;v; — v € ML(S) and ¢; — 0, as i — oo. Since the
~; are Bers curves, by the inequality above there exists C' > 0 so that

1(fi,vi) < Ly (r(ti) < C.
Consequently, by continuity of the intersection form, we have
i(g, 17) = 'lim i(biﬂiaci%) = 'lim bicii(,aia')/i) <C 'lim bic; =0,
1—00 1—>00 1—00

and hence i(¢,7) = 0. Because v is uniquely ergodic, [Mas82, Lemma 2]
implies £ is a multiple of 7, and therefore [{] = []. Since [£] was an arbitrary
accumulation point of r in PML(S), the proof is complete. O

7. APPENDIX

In this appendix we provide the proofs of the results of about se-
quences of curves. As we mentioned there, many of the proofs closely follow
the ones in [BLMR16|, while others have been streamlined since the writing
of that paper. Here we mainly outline the proofs that are similar, incorpo-
rating the required changes, and otherwise provide the streamlined proofs.

7.1. Subsurface coefficient estimates. In the next Lemma, By is the
constant from Theorem [2.4]

Lemma 7.1. (Local to Global) Fiz any B > By + 1, and let {0x}5_, (w €
72° U {oc}) be a (finite or infinite) sequence of curves in C(S), with the
property that 0p—1 M Ok, dk41 M O and that ds, (6x—1,0k+1) > 3B for all
k> 1. Then for all 0 <i < k < j, we have that §; M 0y, d; M 0 and that

(7.1) |ds, (6i,65) — ds,, (O—1,, Ok+1)| < 2Bo.



36 JEFF BROCK, CHRIS LEININGER, BABAK MODAMI, AND KASRA RAFI

Proof. To simplify the notation, write d (4, j) = ds,(6;,0;). The proof is by
induction on n = j — 4. The base case is n = 2, in which case i = k — 1,
j =k + 1, and the conclusions of the lemma hold trivially.

We suppose that y; M ~; and that holds for all 4, j with ¢ < k < j and
j—1 < n, and prove them for n+1. To that end, suppose that 0 <7 < k < j
are such that j—i = n+1. We claim that di (i, k—1) < By. To see this, note
that if ¢ = k — 1, then the claim holds obviously. Otherwise, 1 < k —1 < k
and k — i < n, so by hypothesis of the induction ~; M ~v; and

di—1(i,k) > e, > 3B — 2By > By,

note that dx_1 M dx by assumptions of the lemma. Then Theorem|2.4]implies
that d (i, k—1) < By. By a similar reasoning, we have that di(k+1, j) < By,
and so by the triangle inequality

|di(i,7) —di(k— 1,k +1)| < dp(i,k—1) +di(j, k+ 1) < 2By,

which is (7.1). Moreover, since dj(k, k + 1) > 3B for the above inequality
we have that dj(i,7) > Bo+ 1 > 1 which implies that ; th ;, finishing the
proof of lemma by induction. O

Set B = max{3, By + 1, Gy}, where G is the constant from Theorem
for a geodesic in C(S). Set Ey = 3B + 4, and for the remainder of this
subsection assume that the sequence I'(€) = {y;}72,, satisfies P(€) from
Definition where £ = {e}}72, ex > aeg—1 for some a > 1 and all £, and
eo > Ey (and hence e > Ey for all k). Also throughout this subsection let
M be the monoid generated by {m,m+1}. A simple arithmetic computation
shows that any integer which is greater than or equal to m? — 1 is in M.

Lemma 7.2. Foralli < k < j such thatk—1i,j—k € M, e.g. ifk—i,j—k >
m? — 1, we have that ~; M v, v; My, and that

|y, (Vi v5) — ex] < 2Bo + 4.

Proof. As in the previous proof, we write dy(7,7) = d+,(7i,7;), and also
write i(4, j) = i(yi,7;) and m(j) = 7y, (75)-

We make a few observations from Deﬁnition First, i(j,j+1) = 0 for all
J, and hence if 7 (), 7 (j +1) # 0 for some k, then di(j,7+1) = 1. Second,
for all k, i(k,k+m),i(k,k+m+1) # 0. Consequently, 7x(j) # 0 for all j, k
with |[j — k| € {m,m+ 1}. Finally, observe that |dx(k —m,k+m) —eg| < 2.
Thus, if i <k < jand k—1i,j —k € {m,m + 1}, by the triangle inequality
(7.2) |di(i, ) — ex] < 4.

Now, for any sequence of integers {k;}; such that k;j 11 —k; € {m,m+1}
for all j, the sequence {fykj }; has the property that Vkj_1s Vi M Yk; and
that dy, (kj-1,kj+1) > 3B by and since e, > Ejy. Hence the sequence

{7, }; satisfies the assumptions o Lemma Then by the lemma, for any
Cwith ¢ < € < g, v¢ M,y hy; and

|dkg(k;’i’ kij) — 6k1| S QBO + 4.
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Therefore, if i < k < j and k — 4,5 — k € M, then
|dy.(i,5) — ex| < 2Bo + 4.
This completes the proof of the inequality in the statement of the lemma. [J

Lemma 7.3. The map k — 7 is a 1-Lipschitz, (K,C)—quasi-geodesic,
where K = C' = 2m? + 2m — 1.

Proof. First, suppose that i < j with j —¢ > 2m? + 2m — 1. Then by
Lemma for each k € {i +m?i + m? +1,...,7 — m?}, we have that
Y& M ¥, v, M y; and that

(73) de (’yi,’yj) > € — 2B[) —4 > B > 3.

Thus the curves +;,y; fill the annulus with core curve ~y;. This implies that
any curve that intersects 7, must intersect one of v; or ;. Moreover, the
2m curves vy, for k=i +m?,...,i+m?+2m —11fill S, Vi, 7vj also fill S.

Next, suppose that j > i +2m? 4 2m — 1 and write j = i + ¢(2m? +2m —
1) + r, where ¢, are nonnegative integers with 0 < r < 2m? 4+ 2m — 1. Set
the curve 0k = Viyr(2m2+2m—1), for k =1,...,¢ — 1. Then the curves

’Y’iuéla .. '76q—177]'

form a sequence in C(S). As we saw above any two distinct curves in the
sequence fill S, and by (7.3) for all 0 < k < g we have

ds, (vi,7;) = B > Go.

So, by Theorem a geodesic from 7; to 7; must have a vertex disjoint
from dg, for all k = 0,...,q. Since any two curves d, 0 in the sequence
fill S, no curve can be disjoint from more than one of them, and hence the
geodesic must contain at least ¢ 4+ 1 vertices, so

j—i—r |
- _J 7T > _(j-i-C
o vam—1- kY 7Y
where K = 2m? +2m — 1 and C = 2m? + 2m — 1. Since this inequality
trivially holds if j —¢ < C and ¢ < j, the required lower bound follows.

Moreover, since 7, vx+1 are disjoint, the map is 1-Lipschitz. Finally the
upper bound for the (K, C')-quasi-geodesic is immediate. [l

d(vi,v5) 2 ¢q

For each k > 0, let pg := {Vk, - Verom—1}-

Lemma 7.4. There exists M > 0 such that for any subsurface W C S
which is neither S nor an annulus with core curve some 7y, we have

dw (i, prj) < M
foralli,j.

Proof. First, let pj = {Vks- -+ Vht2m—2, Vipom—1) Where v, o is as in
Definition From the definition, any curve in p and curve in pj_ ; have
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uniformly bounded intersection number (bounded by m?2bs). Consequently,
there exists My > 0 such that for any subsurface W and any k, we have

dw (pks tg+1) < Mo.

Next, observe that i, and pgyy differ by Dehn twisting v;_ ,,,, about
Yi+m (which has zero intersection number with all curves in p 41 except
Ve +om)- Therefore, there exists another constant M; > 0 so that as long as
W is not the annulus with core vy;1,,, we have

dw (g 15 trt1) < My,

Indeed, for any such W, myw (1), ) V7w (4 1) 7 0, and so we may take M;
to be at most the sum of the diameters of 7y (p}, ) and mw (u ;) which
is at most 4.

From these two inequalities, we see that for any subsurface W which is
not the annulus with core x4, the triangle inequality implies

dw (b, pi+1) < Mo + M.
From this it follows that for any D > 0 and |j —i| < D,

(7.4) dw (7i,7j) < D(Mo + My)

whenever W is not an annulus with core curve vy, for some k.

Finally, suppose that W is any subsurface which is not .S and not an annu-
lus with core curve ~y, for some k. By Lemmal7.3] k — 7, is a quasi-geodesic
in C(S). So there is a uniform bound for the number its vertices that are
within distance 1 of OW. Consequently, there exists Dy > 0 (independent
of W) and ig so that if k ¢ [ig, i9 + Do, then my (vx) # 0. By Theorem
there exists G = G(K, C) so that the projections of both sequences {;};%,
and {1k }72; 1 p, to W have diameter at most G. Combining this with
and setting M = 2G + Dy(My + M;), we have

dlamc(w)({fyk}zozo) <2G + Do(MO + Ml) =M.
Since M is independent of the subsurface W, this completes the proof. [

Proof of Theorem|2.8, The fact that {vx}r is a 1-Lipschitz (K, C)-quasi-
geodesic is Lemma Klarreich’s work [K1a99] Theorem 4.1]) describing
the Gromov boundary of the curve complex then implies that there exists
av e EL(S), so that any accumulation point of {vx}x in PML(S) is sup-
ported on v.

Any accumulation point of {74} in the Hausdorff topology of closed
subset of S contains v, and hence for a subsurface W C S, my(v) C
mw (k) for all k sufficiently large. Consequently the equations on the left
of (2.4) and follow from Lemmas and [7.4] respectively, setting
R = max{M, 2By + 4}. For any marking u, the pairwise intersection be-
tween curves in g and in pg are bounded by some finite number, and hence
dw (1, o) is uniformly bounded by some constant D > 0, independent of
W. Setting R(u) = R+ D, the equations on the right-hand side of and
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(2.5) then follow from those on the left-hand side, together with the triangle
inequality. U

7.2. Intersection number estimates. We now assume that & = {ex}
grows exponentially, with e > aex_1 for some a > 1 and all £ > 1. The aim
is to estimate intersection numbers in terms of the numbers A(i, k) defined
in (2.6). We begin with the upper bound.

Lemma 7.5. If I'(£) = {w}r satisfies P(E) with e > aeg—_1 for some
a > 1, then there exists k > 0 such that

Moreover, we may take Kk to be decreasing as a function of a.

Sketch of proof. The proof is a rather complicated induction, but is essen-
tially identical to the proof of Proposition 5.5 from BLMR16|. We sketch
the proof for completeness.

We first recall from [FLP79| exposé 4], that for any simple closed curves
3,6,¢" and integer e, we have

(7.5) (D4, 8) ~ e, (G, B)| < i(5,8)

Since Y m = D% (71/6+m) and 1(72;+m7 k) = b, we can apply this to estimate
(7, Yk1m) to obtain

The right-hand side can be bounded as follows. Since the curves vgx_m, - - -, Yetm—1
fill S, these cut any simple closed curve § into N arcs, where

k+m—1

N= > i)

j=k—m

Now apply this cutting procedure to both ;. +m and ;. Any pair of resulting
arcs (one from +; . and one from 7;) are either disjoint, intersect at most
once if they lie in a complementary disk, or intersect at most twice if they
lie in a once-punctured complementary disk. Thus

k+m—1 k+m—1
OV Vem) €2 1006%) D iV 19)-
j=k—m j=k—m

Moreover, the assumption on the values of intersection numbers of 7;, +m and
the curves vj, j =k —m, ...,k +m — 1 from Definition implies that

k+m—1
D i Yepm) < (m+ 1Y

j=k—m
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Consequently, setting B = 2(m + 1)1/, we have

k+m—1
(7.6) (9, Yetm) — beri(i )| S B i(9i7),
j=k—m
and hence
k+m—1
(i Yeem) < beri(vi, ) + B Y 1(3,7)-
j=k—m

The goal is to show that i(7i, Vk+m) < KA(i, k +m) for some k > 0. The
proof is by induction on (k + m) — i, and the constant x is actually a limit
of an increasing sequence of constants K (1) < K(2) < K(3) < .... To see
what these constants should be, we assume by induction that i(v;,7;) <
K(j —1i)A(i,7) for all i < j with j —i < k 4+ m, then dividing both sides of
the inequality above by A(i, k + m), we have

(i, Vitm) bexi(vi, i) il )
< + B E
A (i

A(ik+m) = A(i,k+m) Jk+m)
k+m—1 .
ber A(i, k) A(iy 7)
< _ _I\WJ
s Kk )A(zk+m +BJ;mK A k+m)
k+m—1 i
< K(kz+m—1—i)<1+B 3 a_LWJ>
j=k—m

= K((k+m—i)—1)(1+2mBa "))

The right-hand side above suggests the recursive/inductive definition
K(k+m—i):=K((k+m—1i)—1)(1 +2mBal=)).

(Note that the right-hand side depends only on the difference k — i and
not on ¢ and k independently). For a > 1, one shows (using a comparison
with a geometric series, after taking logarithms) that K (j) so defined is
bounded, and since it is increasing, it converges to a constant x > 0. Since
K(j) < & for all j, the inequality above proves the lemma. See [ BLMRI16)
Proposition 5.5] for the details. O

Since we are assuming fewer nonzero intersection numbers in the current
work than in [BLMRI16|, the lower bounds we obtain are weaker, and the
proof is slightly more complicated than the one in §5 of [BLMR16]. Fortu-
nately, the weaker estimates suffice for our purposes.

Lemma 7.6. If e, > aex_1 for a > 1 sufficiently large and all k > 0, then
there exists k' > 0 such that

Z(’yz, ’Yk) > K/A(i’ k)
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whenever
(1)0<i<2m—1andk>i+m?>+m—1, or
(2) k—1i>2m and i =k mod m.

Proof. Fix some constant ag > 1 and assume to begin that e; > aper_1,
and let kK > 0 be the constant from Lemma We will eventually take
a larger a > ag, but we observe that upper bound on intersection numbers
from Lemma [7.5] remains valid with this choice of x.

Now, recalling that A(i, k+m) = ber A(i, k), dividing by A(i, k+m),

we have

100 Wem) o 1070 k) il )
At k+m) — A(i, k) Azkz—i—m

Combining this with Lemmas and [7.5] ﬂ we have

1(717 7k+m) (’YZ) ’Vk
T > kB
A(i,k+m) — A( Z Azk:—i—m
(7, %) =y
—2mkB m
Al k) e
Recursively substituting, we see that for any n > 0 such that ¢ < k — nm,
(77) l(ina '7k+m) > (7@‘7 Yk— nm — 9mkB Z a_LkmlJ'i'

A(i,k+m) — A(i,k —nm)

In this situation, taking a > ag > 1 sufficiently large, we can make the term

n
2mkB Z a_Lk;Hs

as small as we like, independent of n (since this is a partial sum of a geometric
series with common ratio a). Specifically, we choose a > ag > 1 large enough
so that for all £ —¢ > m and n > 0, the sum is bounded above by x/, where
K = 1 min{ !
2 A, )
Now, suppose that 0 < i < 2m — 1 and that & > i 4+ m? + m — 1, and
write k = j +m (so j > i+ m? —1). Let n > 0 be such that

yogigzm—landz’<j§m2+3m—2}.

i+m?—1<j—nm<m?+3m-—2,

which is possible since i +m? —1 < m?+2m—2. By Lemma i N Yj—nm,
s0 i(7i, Yj—nm) > 1, and therefore

1(Yis Vitm) o 1(Yis Vi—nm) b
> —2mkB E m AT > 9’ — g = k.
A(i,j+m) — A(i,j — nm) me @ =T R=R

That is, i(y;, ) > ' A(i, k), proving part (1)
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Next, let k,7 be any two positive integers such that k —i > 2m and i = k
mod m. Write £k = j 4+ m and let n > 0 be such that j — nm =i+ m. Then

by (7.7) we have

I(FYZa’Yj-ﬁ-m) > 1(717'7]—71771) . 2mKan:a_|_j_iJ+5

m

A<Z7] + m) N A(Zaj - nm) s=0
_ i(’}’ifl}/i-i-M) W > — K =K.
The last inequality follows from the fact that ' < % and i(v;, Yitm) = b > 1.
This proves (ii), and completes the proof of the lemma. O

Proof of Theorem The first paragraph of the theorem follows imme-
diately from Lemmas and setting ko = max{x,}. The second
paragraph is the next lemma. O

Lemma 7.7. For any curve 9, there exists k(§) > 0 and N(0) € Z so that
for all k > N(§), we have

i(0, k) =w(s) A0, k).

We only sketch the proof since this is exactly the same statement and
proof as in Lemma 5.11 from [BLMR16].

Sketch of proof. The idea is that from the estimates in Lemma[7.5]and [7.6]
we have some kg, ng > 0 so that for all 0 < i < 2m — 1 and k > ng,
*
(94, Vi) <o A(0, k).
Since po = Yo U ... U yom—1 fills S, this means that the set of laminations
{ﬁ}kzno C ML(S) form a compact subset of ML(S). By Theorem
this sequence can only accumulate on points of ML(S) supported on v.
So, for any curve 4, there is a compact neighborhood of the accumulation
points and a number £(d) > 0 on which intersection number with ¢ lies in
the interval [ﬁ,/{((?)]. But then for k sufficiently large, % is in this
neighborhood and hence
i(0,v) e o\ X
= (4, =) 1
A(0,k) A(0, k)

as required. ([l
7.3. Convergence in ML(S). Lemma together with (7.5), are the key

ingredients in the proof of the following, which is identical to Lemma 5.13
from [BLMR16].

Proposition 7.8. For each h=0,...,m —1,
. Yh+im

lim —htwm

isss0 A0, I+ im)

in ML(S), where 0" is a measure supported on v.

="
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Sketch of proof. Applying (7.5) to estimate i(7gim,d) using the fact that
Yitm = D (Vi 10n), and applying Lemma we may argue as in the proof
of Lemma we have

k+m—1
{(Veetms 8) = beri(k, O)| < i(Vhpmy6) < B D i(,0)
I=k—m

k+m—1

< Br(8) Y, A(0,1).

l=k—m
Dividing both side by A(0, k + m) and applying Lemma this implies

i(m"s) _i<A(?)]jk)’5)

From this and a geometric series argument, we deduce that for all h =

< 2mBm(5)a7L%J.

. o0
0,...,m—1, the sequence {i<7A(Bh}jiT?m) , (5) } is a Cauchy sequence of real
b 1=

0
numbers, and hence converges. By Lemma the limit is nonzero, and

. o
since this is true for every simple closed curve §, the sequence § s 2htim -
’ A(0,h+im) [ ,_

converges to some 7" € ML(S), supported on v by Theorem O

The next lemma is the analog of Theorem 6.1 from [BLMR16|. The proof
is essentially the same, but since the required intersection number estimates
are weaker here, we sketch the proof nonetheless.

Lemma 7.9. For each h,h' € {0,...,m — 1} with h # b/, we have

— = OQ.
1—00 Z(7h+im7 I/h')

Consequently, " is not absolutely continuous with respect to 7" .

Sketch of Proof. As in the proof of [BLMRI16) Theorem 6.1], it clearly suf-
fices to prove that for ¢ sufficiently large,

*
1Y Yt (i41ym )i (Vhtim. M =1
and

Tim (Vi Vi (i4-1)m )i (Vhpim, 77 ) = 0.
12— 00

Appealing to Proposition to estimate 7" by % for large k > 1,
and Theorem we have

. . —hy 2 A0h+(i4+1)m) A(h+im, htk
(905 Vi 34 1ym i (Vapim, 71 = AOLHEIAC A ER)

The last equality here follows from a simple calculation using the formula
for A(i,7) (see the proof of BLMRI16, Theorem 6.1] for details). The
multiplicative error here can be made arbitrarily close to /4;% (taking k suffi-
ciently large).
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Similarly, we estimate M = % and apply Theoremto obtain

:A(0,h+(i+l)m)A(h—l-im,h’—l-k:m) *

1(707 7h+(i+1)m)i(7h+im7 Dh ) A0, +km) =< a*i

The first multiplicative error can be made arbitrarily close to k3 (again by
taking k sufficiently large). The second bound follows from a calculation and
Lemma with multiplicative error depending only on whether h > h’ or
B’ > h (see BLMR16| for details). O

Proof of Theorem[2.11] All that remains is to prove that #%,..., 0™ ! are
ergodic measures. At this point, the proof is identical to the proof of
the analogous statement Theorem 6.7 from [BLMRI6|, appealing to the
facts proved so far. This proof involves a detailed analysis of Teichmiiller
geodesics, drawing specifically on results of Lenzhen-Masur [LM10| and the
fourth author [Raf05|. As this would take us too far afield of the current
discussion, we refer the reader to that paper for the details. O
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