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Abstract

We give a short proof of Masbaum and Reid’s result that mapping class groups involve any
finite group, appealing to free quotients of surface groups and a result of Gilman, following
Dunfield–Thurston.
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Let Sg be a closed oriented surface of genus g and Fn a nonabelian free group of rank n. The
fundamental group, p1(Sg), is residually free [Bau62] and Fn has a wealth finite index subgroups
[MKS04, pp. 116]. In [DT06], N. Dunfield and W. Thurston consider the action of the mapping class
group Mod(Sg) on the set of finite index normal subgroups of p1(Sg) with finite simple quotients,
and in particular those containing the kernel of an epimorphism p1(Sg) ! Fg. Their observations
relating to work of R. Gilman [Gil77], give rise to finite index subgroups of Mod(Sg) that surjects
symmetric groups of arbitrarily large order; see the discussion following the proof of [Bau62, The-
orem 7.4].

Theorem 1 (Dunfield–Thurston). For all g � 3, r � 1, there exists an epimorphism f : p1(Sg)! Fg
and a prime q, so that

�
N /p1(Sg) | kerf < N and p1(Sg)/N ⇠= PSL(2,q)

 

has at least r elements, and its (finite index) stabilizer in Mod(Sg) acts as the full symmetric group
on this set.

We explain the proof of this in Section 1.2. In this note, we observe that since every finite group
embeds in some finite symmetric group, Theorem 1 provides a new elementary proof of a result of
G. Masbaum and A. Reid [MR12]. Recall that a group G involves a group H if there exists a finite
index subgroup L  G and a surjective map f : L ! H.

Corollary 2 (Masbaum–Reid). Let Sg,m be a surface of genus g with m punctures. If 3g�3+m � 1
(or g = 1 and m = 0) then Mod(Sg,m) involves any finite group.

The few mapping class groups not covered by the corollary are finite groups; see, e.g. [FM12].
Corollary 2 is also proved using arithmetic methods by F. Grunewald, M. Larsen, A. Lubotzky, and
J. Malestein [GLLM15].

Further applications of the quotients from Theorem 1 include new proofs of residual finiteness
and separability of handlebody groups; see §3 for theorem statements and proofs.
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1 Preliminaries

1.1 G-defining subgroups

Here we collect some results surrounding definitions and discussions in R. Gilman [Gil77]. Let
G and F be groups. A G-defining subgroup of F is a normal subgroup N of F such that F/N is
isomorphic to G. Let X(F,G) denote the set of all G–defining subgroups of F . The automorphism
group Aut(F) acts on normal subgroups of F while preserving their quotients, and hence on the set
X(F,G) of G-defining subgroups of F . Since inner automorphisms act trivially, the action descends
to an action of the outer automorphism group of F , Out(F), on X(F,G). If G is finite, and F is
finitely generated, one obtains a finite permutation representation of Out(F). Let Fn be the free
group of rank n. The following is Theorem 1 of [Gil77].

Theorem 3 (Gilman). For any n � 3 and prime p � 5, Out(Fn) acts on the PSL(2, p)-defining
subgroups of Fn as the alternating or symmetric group, and both cases occur for infinitely many
primes.

From the proof, Gilman obtains the following strengthened form of residual finiteness for Out(Fn).

Corollary 4 (Gilman). For any n � 3, the group Out(Fn) is residually finite alternating and residu-
ally finite symmetric via the quotients from Theorem 3.

This means that for any f 2 Out(Fn)�{1}, there exist primes p so that the action of Out(Fn)
on X(Fn,PSL(2, p)) is alternating (and also primes p so that the action is symmetric), and f acts
nontrivially.

We will also need the following well-known fact, obtained from the classical embedding of a
free group into PSL(2,Z) as a subgroup of finite index, (c.f. A. Peluso [Pel66]).

Lemma 5. For any n � 2, any element a 2 Fn �{1}, and all but finitely many primes p, there exists
a PSL(2, p)–defining subgroup of Fn not containing a .

Proof. Let Fn be a finite index, free subgroup of rank n in the free group F2 := ha,bi. Identify Fn
with its image in PSL(2,Z) under the injective homomorphism F2 ! PSL(2,Z) given by

a 7!
✓

1 2
0 1

◆
, and b 7!

✓
1 0
2 1

◆
.

Let a 2 Fn �{1} be given and let A 2 SL(2,Z) be a matrix representing a . Since a 6= 1, we may
assume that either A has a nonzero off-diagonal entry d 6= 0, or else a diagonal entry d > 1. Then for
any prime p not dividing d in the former case, or d±1 in the latter, we have that pp(a) is nontrivial
in the quotient pp : PSL(2,Z)! PSL(2, p); that is, a /2 kerpp.

Since Fn has finite index in F2, there exists m � 1 so that the matrices
✓

1 m
0 1

◆
and

✓
1 0
m 1

◆

represent elements of Fn in PSL(2,Z). For any prime p not dividing m, the pp–image of these
elements generate PSL(2, p). Thus, for all but finitely many primes p, kerpp \Fn is a PSL(2, p)–
defining subgroup not containing a .

1.2 Handlebody subgroups and maps to free groups

Let S = Sg be a closed surface of genus g � 2 and let H = Hg be a handlebody of genus g. Given a
homeomorphism f : S! ∂H ⇢H, the induced homomorphism is a surjection f⇤ : p1(S)! p1(H)⇠=
Fg. As is well-known, every epimorphism p1(S) ! Fg arises in this way (see e.g. Lemma 2.2 in
[LR02]). The kernel, Df = ker(f⇤) is an Fg–defining subgroup, and is the subgroup generated by the
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simple closed curves on S whose f–images bound disks in H. We write Hf for the handlebody H,
equipped with the homeomorphism f : S ! ∂H.

Let Mod(Hf ) denote the subgroup of the mapping class group Mod(S) consisting of the isotopy
classes of homeomorphisms that extend over Hf (via the identification f : S ! ∂H). Equivalently,
Mod(Hf ) consists of those mapping classes [ f ] such that f⇤(Df ) = Df ; that is Mod(Hf ) is the
stabilizer in Mod(S) of Df . Any element [ f ] 2 Mod(Hf ) induces an automorphism we denote
F⇤([ f ]) 2 Out(Fg), which defines a homomorphism F⇤ : Mod(Hf )! Out(Fg). The main result of
[Gri64] implies the next proposition.

Proposition 6. For any g � 0, and homeomorphism f : S ! ∂H, F⇤ : Mod(Hf ) ! Out(Fg) is
surjective.

The kernel of F⇤, the set of mapping classes in Mod(Hf ) that act trivially on p1(H) is also a
well-studied subgroup denoted Mod0(Hf ).

Recall that X(Fg,G) and X(p1(S),G) are the sets of G–defining subgroups of Fg and p1(S),
respectively. Define

Xf (p1(S),G) := {f�1
⇤ (N) | N 2 X(Fg,G)} ⇢ X(p1(S),G),

Alternatively, this is precisely the set of G–defining subgroups containing Df :

Xf (p1(S),G) = {N 2 X(p1(S),G) | Df < N}.

Lemma 7. The handlebody subgroup is contained in the stabilizer

Mod(Hf )< stabXf (p1(S),G).

Moreover, if Out(Fg) acts on X(Fg,G) as the full symmetric group, then Mod(Hf ) (and hence
stabXf (p1(S),G)) acts on Xf (p1(S),G) as the full symmetric group.

Proof. Let N 2 Xf (p1(S),G) and let [ f ] 2 Mod(Hf ), where f is a representative homeomorphism.
Since f⇤(Df )=Df , we have Df < f⇤(N), and f⇤(N)2Xf (p1(S),G). Thus, f⇤ preserves Xf (p1(S),G),
as required.

The last statement follows immediately from Proposition 6 and the fact that the bijection from
the correspondence theorem Xf (p1(S),G)! X(Fg,G) is F⇤–equivariant.

2 Mapping class groups involve any finite group: The proofs of

Theorem 1 and Corollary 2.

Here we give the proof of Theorem 1, following Dunfield–Thurston (see [DT06, pp. 505-506]).

Proof of Theorem 1. Fix g � 3 and let P be the infinitely many primes for which Out(Fg) acts on the
PSL(2, p)-defining subgroups as the symmetric group, guaranteed by Theorem 3. As a consequence
of Corollary 4, the cardinality of X(Fg,PSL(2, p)) is unbounded over any infinite set of primes p,
and hence there exists a prime p 2 P where the number of PSL(2, p)-defining subgroups is R � r.

By Lemma 7, stabXf (p1(S),PSL(2, p)) acts on Xf (p1(S),PSL(2, p)) as the symmetric group,
defining a surjective homomorphism

stabXf (p1(S),PSL(2, p))! Sym(Xf (p1(S),PSL(2, p)))⇠= SR.

Since X(p1(S),PSL(2, p)) is a finite set, stabXf (p1(S),PSL(2, p))< Mod(S) has finite index, com-
pleting the proof.
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Proof of Corollary 2. For g,m as in the statement and any r 2N, we show that there is a finite index
subgroup of Mod(Sg,m) that surjects a symmetric group on at least r elements. Since any finite
subgroup is isomorphic to a subgroup of some such symmetric group, this will prove the theorem.

First observe that for any m,g � 0, the kernel of the action of Mod(Sg,m) on the m punctures
of Sg,m is a finite index subgroup Mod0(Sg,m) < Mod(Sg,m). Furthermore, if 0  m < m0, there
is a surjective homomorphism Mod0(Sg,m0) ! Mod0(Sg,m) obtained by “filling in” m0 �m of the
punctures; see [FM12].

Now, because Mod0(S0,4)⇠=F2, and the symmetric group on r elements is 2–generated, it follows
that Mod0(S0,4) surjects Sr. From the previous paragraph, it follows that Mod0(S0,m) surjects Sr for
all m � 4. Similarly, Mod(S1,0) ⇠= SL(2,Z), which has a finite index subgroup isomorphic to F2,
and so there is a finite index subgroup of Mod(S1,m) that surjects Sr for all m � 0. As shown
in [BH71], there is a surjective homomorphism Mod(S2,0) ! Mod(S0,6), and consequently, we
may find surjective homomorphisms from finite index subgroups of Mod(S2,m) to Sr for all m �
0. From this and the previous paragraph, it suffices to assume g � 3 and m = 0. The required
surjective homomorphism to a symmetric group in this case follows from Theorem 1, completing
the proof.

3 Separating handlebody subgroups and residual finiteness

The finite quotients of Mod(S) coming from surjective homomorphisms p1(Sg)! Fg also allow us
to deduce the following result of [LM07]. Recall that a subgroup K < F is said to be separable in F
if for any a 2 F �K, there exists a finite index subgroup G < F containing K and not containing a .

Theorem 8 (Leininger-McReynolds). For any g � 2 and homeomorphism to the boundary of a
handlebody, f : S ! ∂H, the groups Mod(Hf ) and Mod0(Hf ) are separable in Mod(Sg).

While the proof of separability of Mod(Hf ) in Mod(Sg) works for all g� 2, separability of Mod0(Sg)
only follows from the discussion here when g � 3.

Proof. Suppose S = Sg for g � 2, and observe that for any p, any [h] 2 stabXf (p1(S),PSL(2, p)),
and any a 2 Df , we have h⇤(a) 2 K for all K 2 Xf (p1(S),PSL(2, p)). By Lemma 7 this is true for
all [h] 2 Mod(Hf ).

Now let [ f ] 2 Mod(S)�Mod(Hf ), so that f⇤(Df ) 6< Df . Let g 2 Df be an element such that (the
conjugacy class of) f⇤(g) is not in Df . (In fact, well-defining f⇤(g) requires a choice of basepoint
preserving representative homeomorphisms for the mapping class of f , which we make arbitrarily.)
Then f⇤( f⇤(g)) 2 Fg �{1}, and so by Lemma 5, we can find a prime p and a PSL(2, p)–defining
subgroup N 2 X(Fg,PSL(2, p)) so that f⇤( f⇤(g)) 62 N. Therefore,

f⇤(g) 62 f�1
⇤ (N) 2 Xf (p1(S),PSL(2, p)),

and hence [ f ] 62 stabXf (p1(S),PSL(2, p)). Since stabXf (p1(S),PSL(2, p)) is a finite index sub-
group containing Mod(Hf ) (by Lemma 7) and not containing [ f ], and since [ f ] was arbitrary, it
follows that Mod(Hf ) is separable.

Since Mod0(Hf )< Mod(Hf ) and since Mod(Hf ) is separable, it suffices to consider an element
[ f ] 2 Mod(Hf )\Mod0(Hf ), and produce a finite index subgroup of Mod(S) containing Mod0(Hf )
and not containing [ f ]. For all p, Mod0(Hf ) is contained in the subgroup of stabXf (p1(S),PSL(2, p))
consisting of those mapping classes that act trivially on Xf (p1(S),PSL(2, p)). Since [ f ] 62Mod0(Hf ),
F⇤([ f ]) 6= 1 in Out(Fg). For g � 3, Corollary 4 implies that for some p, F⇤([ f ]) acts nontrivially
on X(Fg,PSL(2, p)). Therefore, [ f ] acts nontrivially on Xf (p1(S),PSL(2, p)), and so the finite index
subgroup G<Mod(S) consisting of those mapping classes preserving the subset Xf (p1(S),PSL(2, p))
and acting trivially on this does not contain [ f ], proving that Mod0(Hf ) is separable.

Mapping class groups were shown to be residually finite by Grossman as a consequence of the
fact that surface groups are conjugacy separable; see [Gro75].
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Theorem 9 (Grossman). Mapping class groups are residually finite.

Residual finiteness of Mod(Sg) follows immediately from separability of the handlebody sub-
groups Mod(Hf ), and the following.

Lemma 10. The intersection of all handlebody subgroups Mod(Hf ), over all homeomorphisms
f : Sg ! ∂H is trivial if g � 3, and isomorphic to Z/2Z if g = 2. The intersection of handlebody
subgroups Mod0(Hf ) is trivial for all g � 2.

Proof. In [Mas86], Masur proved that the limit set of the handlebody subgroup in the Thurston
boundary of Teichmüller space is a nowhere dense subset. The intersection of all handlebody sub-
groups is a normal subgroup and so is either finite, or else has limit set equal to the entire Thurston
boundary. By Masur’s result, we must be in the former case, and hence the intersection of handle-
body subgroups is finite. But Mod(Sg) has no nontrivial finite, normal subgroups if g � 3, while
for g = 2, the only nontrivial, finite normal subgroup is the order-two subgroup generated by the
hyperelliptic involution. This proves the first statement. The second follows from the first and the
fact that the hyperelliptic involution of S2 induces a nontrivial automorphism of F2 ⇠= p1(H), for any
homeomorphism f : S2 ! H.

Proof of Theorem 9 for Mod(Sg), with g � 2. An equivalent formulation of residual finiteness is that
the intersection of all finite index subgroups is trivial. Therefore Theorem 8 and Lemma 10 imme-
diately implies the result.
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