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MARKED-LENGTH-SPECTRAL RIGIDITY
FOR FLAT METRICS

ANJA BANKOVIC AND CHRISTOPHER J. LEININGER

ABSTRACT. In this paper we prove that the space of flat metrics (nonpositively
curved Euclidean cone metrics) on a closed, oriented surface is marked-length-
spectrally rigid. In other words, two flat metrics assigning the same lengths
to all closed curves differ by an isometry isotopic to the identity. The novel
proof suggests a stronger rigidity conjecture for this class of metrics.

1. INTRODUCTION

Let S be a closed, orientable surface and 9t(.S) a set of metrics on S, defined up
to isometry isotopic to the identity. For m € 9(S), we denote the marked-length-
spectrum of m by

A(m) = {lm (V) }yee(s),

where C(S) denotes the set of homotopy classes of nonnull homotopic closed curves
on S and /,,(y) the length of a minimal m—geodesic representative of v. We say
that 9(.S) is spectrally rigid if m — A(m) is injective on M(S). Let Flat(S) denote
the space of nonpositively curved Fuclidean cone metrics. In this paper we prove
the following.

Main Theorem. If p1,¢s € Flat(S) and A(e1) = A(p2), then ¢1 = @s.

The first results on spectral rigidity for surfaces are due to Fricke and Klein
\FK65|, who showed that the Teichmiiller space of Riemannian metrics with con-
stant curvature —1 is spectrally rigid. Otal [Ota90| generalized this and showed
that the set of all negatively curved Riemannian metrics is spectrally rigid (see
also Croke |[Cro90|). This was further generalized in two directions, first by Croke,
Fathi, and Feldman [CFF92| who proved that the space of nonpositively curved Rie-
mannian metrics is spectrally rigid, and second by Hersonsky and Paulin [HP97|
who showed that negatively curved cone metrics are spectrally rigid. Frazier shows
in [Fral2| that A(p) distinguishes metrics ¢ € Flat(S) from negatively curved Rie-
mannian and negatively curved cone metrics (and in fact, from nonpositively curved
Riemannian metrics). Duchin, Leininger, and Rafi [DLR10| showed that the sub-
set of metrics in Flat(S) coming from quadratic differentials is spectrally rigid; see
\Danl14] for a related result on this class of metrics. The literature on marked-
length-spectral rigidity is vast, and we have only referenced the results pertinent to
our work.
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1868 ANJA BANKOVIC AND CHRISTOPHER J. LEININGER

The metrics coming from quadratic differential metrics are rather special. Let-
ting 8(5) denote the set of homotopy classes of simple closed curves on S, in [DLR10]
the authors prove that ¢ — {£,(7)}es(s) is injective on the class of quadratic dif-
ferential metrics. For negatively curved metrics, this is far from true, as we now
briefly recall. Birman and Series |BS85| proved that for any & > 0 and any hyper-
bolic metric, the union of all closed geodesics with at most k self-intersections is a
nowhere dense set X; C S. Consequently, the metric can be deformed on an open
subset of S — X}, to negatively curved metrics without changing the lengths of any
curves with at most k self-intersections. Therefore, not only are the set of lengths
of simple closed curves on S insufficient to distinguish any two negatively curved
metrics, but the same is true for curves with at most k self-intersections. Approxi-
mating a hyperbolic metric by a sequence of metrics in Flat(.S) (see, e.g., |Banl4|),
one can similarly construct deformations proving that such classes of closed curves
are insufficient to distinguish metrics in Flat(S).

To prove the Main Theorem, we follow [Ota90,/[CEFF92|[HP97|, associating the
Liouville geodesic current L, to each metric ¢ € Flat(S), which has the prop-
erty that for every closed curve, its length is calculated via Bonahon’s intersection
number with L, [Bon88|. Appealing to a result of Otal [Ota90|, recorded as Theo-
rem[32]here, reduces the proof to proving that two metrics with the same Liouville
current are equivalent. Our analysis diverges at this point as we determine a great
deal about ¢ from the support of the measure L,. Unlike nonpositively curved
Riemannian metrics, L, does not have full support. Indeed, we prove that the
support consists of the closure of the set of nonsingular geodesics; see Corollary [3.5]
for a precise statement. Here we outline the main ideas involved in proving that
L, determines ¢.

Cone points of ¢ in the universal covering determine gaps in the support of
L, encoded by objects we call chains; see Section [d] We prove that chains only
arise from cone points (Proposition [41)) and that the set of cone points of ¢ can
be recovered from the set of (equivalence classes of) chains (Lemma [4.4). For
two cone points (i, (2 of ¢, the p—distance between (i, (2 is computed as the L,—
measure of the set of geodesics “between” the gaps for (; and the gaps for (s
(Proposition [4.5). Therefore, given ¢1, ¢ € Flat(S) with L, = L = L,, we may
construct an equivariant, distance preserving bijection between the cone points
of p1 and 5. Extending this to a path-isometry from the 1-skeleton of a nice
p1—geodesic triangulation, an application of Reshetnyak’s Majorization Theorem
(Proposition[2.1) ensures that we can extend over the triangles to an isometry; see
Section

The very special behavior of the support was evident in [DLR10], and played a
key role in [Fral2|. We conjecture that up to an obvious ambiguity, the support of
L, determines ¢; see Section[6]

The outline of the paper is as follows. In Section[2] we describe Euclidean cone
metrics, the induced metrics in the universal cover, and prove various facts about
their geodesics. In Section[3] we define geodesic currents and the Liouville current
for a flat metric. Section[4]provides key relationships between the Liouville current,
cone points in a flat metric, and distances between cone points. The proof of the
Main Theorem is given in Section [}l We end with a conjecture and question in
Section [6]
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2. EUCLIDEAN CONE METRICS AND THEIR GEODESICS

2.1. CAT(0) geometry. A geodesic metric ¢ on S is called a Euclidean cone metric
if there is a finite set of points on S, denoted cone(y), so that the following hold:

(i) ¢ is locally isometric to R? with the Euclidean metric on S\ cone(y), and

(ii) every point in cone(y) has an e-neighborhood isometric to the metric space
obtained by gluing together some (finite) number of sectors of e-balls about
0 in R? by isometries along their edges.

The points in cone(y) will be called the cone points of p. Each ¢ € cone(y) has
a well-defined cone angle ang(¢), which is equal to the sum of the angles of the
sectors from (ii) above. We can extend the definition of angle on noncone points
by defining ang(¢) = 27 for all ¢ € S\ cone(yp).

Every Euclidean cone surface S has a triangulation (more precisely a A—complex
structure) for which the vertex set is precisely the set of cone points; see, e.g.,
MS91|. By Gromov’s link condition, it follows that a Euclidian cone metric ¢
is nonpositively curved if and only if ang(¢) > 27 for every point { € cone(y);
see [BH99| Theorem I1.5.2]. A nonpositively curved Euclidean cone metric will be
called a flat metric. The space of all flat metrics on .S, up to isometry isotopic to
the identity, is denoted Flat(S). We will not distinguish between a metric and its
equivalence class.

We will eventually use the following to construct our isometry in the proof of the
Main Theorem. Here, a geodesic triangle A in a CAT(0) Euclidean cone surface
actually means the convex hull of the three geodesic sides. We write Al for the
union of the sides.

Proposition 2.1. Suppose A is a geodesic triangle in a complete, locally compact,
CAT(0) Euclidean cone surface X and Ao C R? is its comparison triangle. Then
Area(A) < Area(Ag) with equality if and only if A is isometric to Ag.

Proof. According to Reshetnyak’s Majorization Theorem [Res|, [AKP, Chapter
9.8], the comparison path isometry from A} to Al extends to a 1-Lipschitz map
f: A — X into the convex hull of A! (which is just A in our setting). Therefore, we
must show that Area(A) < Area(A() with equality if and only if f is an isometry.
However, the 1-Lipschitz map is area nonincreasing, and it is area preserving if and
only if it is an isometry. This is obvious for smooth surfaces X, and follows in our
slightly more general case since A contains at most finitely many cone points. [

2.2. Spaces of geodesics. Let p: S — S denote the universal cover. For any
geodesic metric o on S, we use the same name o to denote the induced geodesic
metric on S. Let S1 denote the circle at infinity of S — equlvalently, the Gromov
boundary of S — with respect to o. This compactifies S to a closed disk, and the
action of m1(.S) on S extends to an action by homeomorphisms on this disk. Any
other geodesic metric ¢’ on S induces its own circle at infinity, but the identity on
S extends to a homeomorphism between the corresponding closed disks, and so we
view SL as the boundary of S , independent of o; see [BH99, Chapter ITI.H.3].
Let G(o) denote the space of bi-infinite o—geodesics in S. This is given as the
quotient of the space of unit speed parameterized geodesics with the compact-open
topology, where we forget the parameterization. We record the endpoints-at-infinity
of any ¢ € G(o) and denote it 9,(5) = {x,y}. We view this as an unordered pair of
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1870 ANJA BANKOVIC AND CHRISTOPHER J. LEININGER

points; that is, an element of

5(S) = (S% % 53\ D)/ ap~iy):

where D is the diagonal, D = {(z,z) |z € SL }. The function 9, is a continuous,
71 (S)—equivariant surjective map

ds: G(0) — G(9).

When o is a negatively curved metric, 9, is a homeomorphism, but for a general
metric o, it need not be.

Proposition 2.2. For any geodesic metric o, the map 0, is a closed map.

Proof. Let E C G(o) be a closed set, and we must show that J,(F) is a closed
set in §(S). Since §(S) is metrizable, it suffices to show that if {5,}°2, C E is
a sequence such that 0,(d,) converges to some {z,y}, then there is some § € E
such that 0,(8) = {x,y}. For this, fix a point ¢ € S and observe that since
0y (0,) converges to {z,y} (and x # y), the distance from ¢ to the geodesics 6, is
bounded by some constant R > 0, independent of n. Since the metric o on S is
proper, the closed ball Bg of radius R > 0 about ¢ is compact. Since the 4, all
intersect Bg for all n, the Arzela-Ascoli Theorem implies that some subsequence

{0n, } converges to some geodesic §. Since E is closed, § € E, and continuity of 0,
implies 0,(0) = {x, y}. O

2.3. Linking and betweenness. Fix a hyperbolic metric p inducing a homeo-
morphism d,: §(p) — G(S). Let 01,85 € §(p) be two distinet geodesics, and write
0,(0;) = {xi,yi}, for i = 1,2. If §;,02 transversely intersect, then we say that
{z1,11} and {x2,y2} link. This is equivalent to saying that the O-spheres {x1,y1}
and {xa,y2} in the 1-sphere S1 are linked, meaning that x1,z2,y1,y2 are all dis-
tinct, and the two components of S\ {z1,y;} each contain one of the points 2, ya.
The point is that intersection of 41, d2 can be determined from the image in d,. We
will also say that d1,do link.

Suppose 01, d2 are disjoint (so their endpoints do not link). Then write [d1, 2] C
9(p) for the set of geodesics between d1,02. These are precisely the geodesics that
link neither of §; nor d5 but do link every geodesic which is linked with both d;
and do; See Figure Equivalently, if we let 0,(0;) = {zi, v}, ¢ = 1,2, with the
points appearing in S. in the counterclockwise, cyclic order x1,y1,y2, z2, and if
we let [a,b] denote the counterclockwise interval between a and b in S.  (where
[a,b] = {a} if a =b), then

[01,02] = {0 € G(p) | 9,(9) = {z,y} with x € [22,21],y € [y1,92]}.
The image of [01,82] in §(S) is similarly denoted

{1y} {22, 92}] = 0,([01,02]) = {{z.y} | = € [w2, 71] 9 € [y1, 9]}

For ¢ € Flat(5), the endpoints of d1,02 € G(p) link if and only if either d;, oo
transversely intersect once, or they share a compact segment, with §; crossing from
one side of d5 to the other. In this case, we will also say that d1, o link. Betweenness
for 61,02 € G(p) is also defined as betweenness for the endpoints.
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Y2 4 Y1

T2~ T1

FIGURE 1. 01, d2 do not link, and 0 € [01, J2] since any geodesic ¢’
linking 1, d2 will also link 4.

2.4. Flat metric geodesics. Let ¢ € Flat(S) be any flat metric. A (bi-infinite)
p—geodesic § € G(p) is called nonsingular if it contains no cone points. We let
G°(p) C G(¢) denote the set of nonsingular geodesics, and G*(p) = G°(p) C G(y).

Remark 1. The relevance of §*(¢) is explained in the next section where we see that
it describes the support of the Liouville current for ¢ mentioned in the introduction
(see Corollary[3.5]). For the remainder of this section, we develop the necessary facts
about geodesics in §*(p) we will need to study this current.

Since there are countably many cone points of ¢ in S , and the set of p—geodesics
through any cone point is closed, it follows that G°(¢) is the complement of a
countable union of closed sets, and hence a Borel set. Each ¢ € G(¢p) is two-sided
and we choose a transverse orientation so that we can refer to the positive and
negative sides of ¢. At every cone point x € cone(y) C S, & makes two angles, one
on the positive side and one on the negative side. Because J is a geodesic, at every
x € cone(yp), both angles at  must be at least 7.

Proposition 2.3. If 6 € G(¢) is a geodesic containing at most one cone point and
making an angle ™ on one side at that point, then 6 € §*(p).

Proof. Suppose 6 makes an angle 7 on the positive side at ( € cone(p). Fix a short
reference geodesic arc o emanating from ¢ on the positive side of §, orthogonal
to 0, meeting no other cone points. At every point «(t), we consider the geodesic
through «(t) orthogonal to «, and hence parallel to §. Since these are all parallel
along o and ¢ is CAT(0), these are pairwise disjoint. At most countably many of
these can meet a cone point (since there are only countably many cone points), and
hence 4 is a limit of nonsingular geodesics approaching it from the positive side.
Therefore § € §*(p). O

Proposition 2.4. If 6 € §*(p), then at every cone point ¢ € §, § makes an angle
exactly w on one side. Furthermore, ordering the cone points linearly along §, the
side on which the angle is ™ can only switch at most once.

Proof. Let {0,} C §°(p) be a sequence converging to d. For the first claim, suppose
¢ € cone(yp) is contained in . Since J,, contains no cone points, ¢ & §,,, and therefore
up to subsequence §,, approaches § from either its positive or negative side near
(. In this case, the cone angle of § at ( on the side of approach must be 7. See
Figure[2]
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1872 ANJA BANKOVIC AND CHRISTOPHER J. LEININGER

If ¢1,(2, (3 are three ordered cone points along §, and the angle 7 is on the
positive side at (; and (3 and on the negative side at (3, say, then it follows that
for n sufficiently large, the approximating geodesic d,, € §°(¢) for § must be on the
positive side near ¢; and (3 and the negative side near (s; see Figure[2] But then
dp, crosses  twice, which is impossible since ¢ is CAT(0). 4

G
6n C 5n CS

0 0 G

FIGURE 2. Approximating ¢ by d,, € G°(¢). Left: Side of ¢ near
¢ containing §,, must make angle 7. Right: The points (1, (2, (3
have cone angle 7 on the side indicated, switching sides from (i to
(2 and again from (3 to (3.

If we define G2(p) C G* () to be the set of geodesics in §*(¢) containing at least
two cone points, we have the following corollary of the previous proposition.

Corollary 2.5. The set G2(¢p) is countable.

Proof. Any ¢—geodesic containing more than one cone point must a contain a ge-
odesic segment connecting a pair of cone points. Furthermore, by Proposition [2.4]
every geodesic in §*(¢) switches the sides with angle 7 at most once. Therefore,
there are at most countably many geodesics in §*(¢) containing a given geodesic
segment between cone points. On the other hand, there are countably many geo-
desic segments between cone points. Thus G2(¢) is a countable union of countable
sets, hence countable. O

We are also interested in the 0,-images of the subsets defined above, and we
denote these

§2(S) = 0,(8%(9))  G2(8) =0,(5°(9)  95(S) = 0,(5"(¥)).

2.5. Asymptotic geodesics. Geodesics in §*(¢) can only be asymptotic in one
or both directions in particularly special ways. We will exploit this information,
and so we describe this precisely.

A p-flat strip in S is an isometric embedding F': R x [a,b] — S for some [a, b,
and a o—flat half-strip in S is an isometric embedding of F': [0, 00) x [a,b] — S for
some [a,b]. In both cases we require a # b.

The failure of injectivity of J, is entirely accounted for by ¢-flat strips. More
precisely, the fiber of 0, is either a single geodesic, or else a -flat strip; see
\BH99| Theorem 11.2.13]. In particular, for any point {z,y} € 5(9), 8;1({.7}, y}) is
either a point or an arc.

We say that two rays 61,02 € G(p) are asymptotic in one direction, if there
are subrays 8 C &;, for i = 1,2, so that 6; and &, remain a bounded Hausdorff
distance apart (equivalently, the endpoints of 6f and 5; on S1 are equal). One way
this can happen is if ;" and 65 are boundary rays of a ¢—flat strip. Another way
this can happen is if 5 = 65 In this latter case, we say that &;, 5y are @—cone point
asymptotic in one direction. Note that when §; and d, are p—cone point asymptotic,
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then there is a maximal common ray 6; = d; which necessarily emanates from a
cone point. The next lemma says that for geodesics in §*(p) \ G%(¢), this is the
only way two geodesics can be asymptotic.

Lemma 2.6. Suppose 61,02 € G* () \ §%(¢) are asymptotic in one direction. Then
either 01,02 are w—cone point asymptotic, or else they are separated by a p—flat
half-strip.

Proof. If 6; and 5 do not share a common ray, consider the region bounded by
their asymptotic rays 6; and d5 . Since these geodesics are in G*(¢) \ G2(¢) we
can choose these rays to contain no cone points. Consider the convex hull of these
two rays. Note that there can be no cone points in this region as this would force
the rays to diverge. Therefore, this region can be embedded into R? as the convex
hull of two asymptotic Euclidean rays. But such a convex hull must contain an
isometrically embedded [0, co] x [0, €] for some e > 0. O

Lemma 2.7. If x,x1,70 € SL are three distinct points with the property that
{z, 21}, {z, 22} € §5(5) \ 92(S), then the following conditions are equivalent.
(1) There exists 61,02 € G*(p) with 0,(6;) = {x,x;} for i = 1,2, such that
01,02 are p—cone point asymptotic.
(2) [{wil}ﬂ {z’$2}] N 84,0(9*(90)) = {{x7x1}7 {LE,JZQ}}.

When this happens, d1, 02 are unique and hence so is the cone point they contain.

Recall that [{z,z1},{z,x2}] denotes the set of endpoints between {z,z;} and
{z, 22}; see Section[2.3]

Proof. The first condition implies the second: any geodesic § strictly between 91, do
(i.e. between, and not equal to either ¢;) would have to contain the common ray of
these two geodesics. Note that § cannot agree with, say, ; beyond this ray, since
there are no more cone points along it where ¢ could depart from §; (similarly for
d2). But then § cannot make an angle 7 at the cone point.

Now suppose the {z,z1},{x,z2} satisfy the second condition and let d1,d2 €
G*(¢) be any two geodesics with 0,(d;) = {z,z;} for i = 1,2. Note that 0,02 €
G*(¢) \ G%() by assumption. These geodesics are asymptotic, and so by Lemma
[2:6]they are either cone-point asymptotic or else there is a p—flat half-strip between
them. If they are cone-point asymptotic we are done, so suppose there is a p—flat
half-strip between them.

Suppose first that there is an entire p—flat strip between ¢, d2, and one of the
geodesics, say d1, is a geodesic in this strip. Then ds is not also a geodesic in this
strip as this would imply 1 = x2, contradicting our assumption that x; and xo are
distinct. Since d- is asymptotic to d; in one direction, there must be a ray of dy
that lies on the boundary of the strip, and so we can replace §; with the boundary
component 07 containing this ray (since 0,(07) = 0,(01)), and we see that 07 and
02 are the required p—cone point asymptotic pair.

If there is an entire p—flat strip between d; and J2, and neither of the geodesics are
in this strip, then any geodesic § in the strip lies between d7, d2, and has endpoints
x,y € SL with y # 1, 25. This contradicts condition (2), and therefore we may
assume that there is no such flat strip. Similarly, if there is only a p-flat half-strip
between 41, do, it is easy to find a nonsingular geodesic § containing a ray in this
half-strip. The endpoints of § are x,y € SL with y # z1, 2, producing the same
contradiction.
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1874 ANJA BANKOVIC AND CHRISTOPHER J. LEININGER

We have now found the required cone-point asymptotic geodesics 91, d2, and we
suppose that 87,05 € G*(¢) are such that 0,(d;) = 0,(9;) = {x,x;}, for i = 1,2,
and that 7,05 are also cone-point asymptotic. Either 6; = §; or else §; and ¢,
cobound a flat strip. It is clear that the latter is impossible for either i = 1 or 2
(the flat strip obstructs the cone-point asymptotic condition as above). Therefore,
the former holds, and we have the required uniqueness. ]

3. GEODESIC CURRENTS

3.1. Geodesic currents and intersection numbers. The action of 71(S5) on S
(or on SL) determines an action on §(S). A geodesic current is defined to be a
71(S)—invariant Radon measure on §(S). The space of all geodesic currents on S
with the weak* topology is denoted Curr(S). Given a nonnull homotopic closed
curve v on S, the endpoints of components of the preimage in S is a discrete, 7 (S)-
invariant set of points in 9(§ ). The counting measure on this set defines a geodesic
current on S which we also denote . The set of real multiples of such currents are
dense in Curr(S). For a discussion of these facts, as well as the following theorem,
see Bonahon [Bon86)Bon8§|.

Theorem 3.1. There exists a continuous, symmetric, bilinear form
i: Curr(S) x Curr(S) - R

such that for any two currents v1,v2 associated to closed curves of the same name,
i(v1,72) is the geometric intersection number of the homotopy classes of these
curves.

For geodesic currents u,~y, where v is the current associated to a closed curve
of the same name, (7, 1) can be calculated as follows; see [Bon88|. Choose a
component 3 C S of p~1(y). Let I(¥) be a y—measurable fundamental domain for
the action of the stabilizer of 5 in m1(S) on the subset of §(S) consisting of pairs
of points linking the endpoints of 5. Then i(y, 1) is computed as the y—measure of

1(7):
(1) i, 7) = p(I(7))-

The following result of Otal |[Ota90| is an important ingredient in marked-length-
spectral rigidity.

Theorem 3.2. Two currents p1, po € Curr(S) are equal if and only if i(7y, 1) =
i(y, p2) for every curve v € C(S5).

3.2. Flat Liouville current. Fix ¢ € Flat(S). Here we define the pre-Liouwville
current L, for ¢ as a m (S)-invariant measure on §(g) as follows; see [Pat99AL13].
First, we let 7"(S*) denote the unit tangent bundle over S* = S\ cone(p). The
(local) geodesic flow on T (S*), has a canonical invariant volume form given locally
as one-half of the product of the area form on S* and the angle form on the fiber
circles. Contracting this 3—form with the vector field generating the flow gives a
flow-invariant 2—form. The absolute value is an invariant measure on the local leaf
spaces of the foliation by flow lines. Now lift to the universal cover, and restrict to
the subspace where the flow is defined for all time. The flow lines are precisely the
geodesics in G°(p) (though they are oriented). Thus the measure on the local leaf
space determines a measure on the Borel set §° () which is invariant by 7 (S). This
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is extended by zero to the rest of G(¢). Therefore the support of f)<p is contained
in the closure §*(¢) of G°(¢p).

There is a simple local formula for I:Lp we now describe. First, for any p—geodesic
segment o C S , parameterized by ¢ — «(t) for t € [a,b], containing no cone points
in its interior, consider the subset E°(a) C G°(p) of geodesics transversely crossing
a:

E°(a) ={y€G°(¢) |y ha#0}

Any geodesic 7 € E°(«) is uniquely determined by ¢ € [a,b] with a(t) = vy N«
and the angle § € (0,7) counterclockwise from « (with positive orientation) and
v. Let D°(at) C [a,b] x (0,7) denote the set of pairs (¢,0) such that there exists
a (necessarily unique) geodesic ¥(t,0) € E°(a) meeting o at a(t) and making an
angle 0. The assignment (¢,0) — ~(t,0) defines a bijection D°(a) — E°(«), which
is easily seen to be a homeomorphism. The measure IA/SO restricted to E°(«) is given
by the push forward of the measure on D°(«) given by

A

1
2) L, = 5 sin(6) df dt.

The measure on the right is absolutely continuous with respect to Lebesgue
measure on [a, b] x (0, 7), and we note that D°(«) is a set of full Lebesgue measure.
Indeed, for every t, and each of the countably many cone points in S , there is
exactly one geodesic segment from the cone point to «(t). Consequently, D°(¢p) is
the complement of a countable set of closed sets, each intersecting the sets {¢} x [0, 7]
in a single point, for each t. Consequently, every point of E°(«) is in the support of

A A

L. It follows that every element of §°(y) is in the support, and hence supp(L,) =
G*(p). From (2) we easily deduce the following.

Proposition 3.3. For any geodesic segment o, we have IA/CP(EO(Q)) = l,(a), the
p—length of . O

Now we use the map 0,: §(p) — G(S) to push this forward to currents, and
declare this to be the Liousville current for ¢:

Ly =8yl

Since the geodesic representative of a closed curve « is a union of finitely many Eu-
clidean segments between cone points, the following is straightforward from Propo-
sition[3.3] and equation (I).

Proposition 3.4. For every closed curve o we have i(Ly, ) = £, (). O
We also have the following corollary of Proposition [2.2]
Corollary 3.5. For any ¢ € Flat(S), supp(L,) = 9:‘0(:57)
Proof. A continuous, closed map always sends the support of a Borel measure to
the support of the push-forward measure. O
4. CHAINS AND CONE POINTS

Let L = L, be the Liouville current associated to ¢ € Flat(S). An L-chain is a
sequence of points (finite, half-infinite, or bi-infinite)

x:(...,xo,xl,...)CS;o
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1876 ANJA BANKOVIC AND CHRISTOPHER J. LEININGER

such that for all 7 we have:

(1) {xi,zit1} € supp(L), and
(2) x4, xiq1,xi42 18 a counterclockwise ordered triple of distinct points and

{zi, zia b {wirr, ziva}] Nsupp(L) = {{zi, zis1}, {wit1, ziga}}-

Recall that [{J?Z, Tiv1 )y {Tig1, xi+2}] is the set {z,y} € 9(5) between {z;, x;11} and
{Zi41,Tiyo} as in Section[2.3] For the motivation for condition (2), see Lemmal[2.7]
Two chains that differ by a shift of the indices are considered the same.

4.1. Constructing chains. Fix a cone point ¢ € cone(p) in S. Let G(p, ¢) denote

those p-geodesics in §*(p) containing ¢. Let G(¢,¢) = G(p, () \ 8;1(9?0(5)).

Alternatively, G'(¢, () consists of those § € G(y,¢) which contain no other cone

points besides (, and which are asymptotic only to geodesics containing at most

one cone point.

To xr7
T3

T4

Te
x1

€2
€5

FIGURE 3. A finite chain (xg,21,...,27) = 0x(01,...,d7). The
geodesics d; are constructed from the rays emanating from the cone
point (. We have also drawn nonsingular geodesics approximating
each ¢; (from the side of §; where the angle is 7) to clarify which
pairs of rays are used for each 4;.

Declare two geodesics 61,2 € G (g, () to be adjacent at ¢ if they are asymptotic
in one direction. We make a few simple observations. First, adjacent geodesics
must be p—cone point asymptotic: since they contain the point ¢ they cannot be
separated by a ¢—flat half-strip; see Lemma[2.6] Second, any § € G (i, () can be
adjacent at ¢ to at most two other geodesics in G(p,(): § is made up of exactly
two rays emanating from ¢ and each of these is the common ray of at most one
other geodesic in G*(y, ().

If 61,02 € G'(p,(¢) are adjacent at ¢ with endpoints 9,(d;) = {z,z;} for i =
1,2, and z1,x, 72 are a counterclockwise ordered triple around S, then we write
81 < d. Note that by Lemma [2.7] the triple z1,x, x5 satisfy condition (2) in the
definition of chain.

Now suppose & = (..., 0;,0i11,...) C G1(p, () is a sequence (finite, half-infinite,
or bi-infinite) such that for all i we have §; < §;11. Then let x = (..., x;, Tiy1,...)
be the associated sequence of common endpoints; see Figure[3l When 4§ is bi-infinite
(the primary case of interest), this is given by

xT; = &p(él) N a¢(6i+1).
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The same formula is valid in the finite or half-infinite case, except for the first
and/or last terms of x. We write 0,(d) = x, which is a chain.

Proposition 4.1. Suppose x is an L—chain with at least 3 terms such that all
consecutive pairs {x;, xi41} are in G5 (S) \ §2(S). Then there exists a unique cone
point ¢ and sequence § C G'(p, ) such that 0,(8) = x.

Proof. Suppose that {x;, z;y1,z;12} are three consecutive terms. From the second
condition in the definition of chain, Lemma[2.7] guarantees a unique pair d;,6;,, €
G*(¢) \ G%(p) such that 9,(0;) = {4, zi41} and 9,(8, 1) = {@it1,Tit2}, and
such that d;,d;,, are p—cone point asymptotic. Let ¢; be the unique cone point
contained in ¢; and 9] +1- We similarly have d;1, ol 4o and cone point (;;1 for the
triple {x;11,Tit2, T;y+3}, assuming it exists.

Claim. For any four consecutive terms {x;, 11, Tiy2, Tiy3} of X, we have §;, | =
dit1 and G = Giq1-

Proof of claim. We note that d; , and ;41 are asymptotic (since they have the
same boundary points). Consequently, they are either equal and (; = (;41 (being
the unique cone point in the geodesic), or they are boundary geodesics of a p—flat
strip in S. In the former case, we are done, and hence we assume the latter case
and arrive at a contradiction. This implies that the ray r = §; \ 9;,; of J; (i.e. not
the ray in common with d;, ;) must lie on the opposite side of 6;_ ; as the side where
the cone angle at (; is 7. Similarly, the ray " = &; 5 \ di1 lies on the opposite
side of §;+1 as the side where the cone angle at ;41 is m. Note that the side of
diy1 (respectively, d;, ) containing the o-flat strip is the side where the angle at
the cone point is 7. It follows that x; and z;,3 must lie in different components
of S\ {Zi+1,%ir2}. This contradicts the counterclockwise order around S., for
consecutive triples. See Figure[4] O

Ti+1

FIGURE 4. The o-flat strip has boundary geodesics d; , ; on the left
and d;41 on the right. The common rays of d;,d;,; and 0;41,6; 5
start at ¢; € 6; N 0;,, and at (41 € ;41 N Jj 4, respectively. The
otherrays of §; and §;_, are r and r’, respectively. The strip forces
one of the triples x;, T;11,T;+2 OF Tijy1,Tito, Tir3 to be clockwise
ordered.

By the claim, there is a single cone point ¢ so that ¢; = ¢ for all 4, and that
Dp(. .., 0i,0i41,...) = x. Since each {x;,z511} is in §%5(5) \ §3(95), it follows that
5; € G4(, ¢). Uniqueness of ¢ follows from uniqueness in Lemma [2.7] O
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4.2. Chain types and cone point identification. Continue to assume L =
L, for some ¢ € Flat(S). For any countable set Q C 9:;(§) with Si(g) c Q
(cf. Corollary [2.5), we define an (L,Q)-chain to be a bi-infinite L—chain x such
that the consecutive pair {x;,z;4+1} is in 9;(5) \ Q for all ¢ € Z. Let Chain(L, )
denote the set of all (L, 2)—chains.

Remark 2. The reason for introducing the countable set €2 will become more clear
in the next section, but to explain briefly, we note that the set 9920(§ ) is not a priori
determined by L = L,. In the proof of the Main Theorem, we will consider two
metrics @1, p2 € Flat(S) such that L, = L,. This will give rise to two countable
sets 911(5) and 912(5), and the set Q will be the union of these. Since this is
somewhat of a technical issue (and in the end, Q can basically be ignored), we
suppress the dependence on 2 whenever it causes no confusion.

Since Si(g) C Q Proposition [4.1] implies that every (L, 2)—chain x is given by
x = 0,(8) for some unique ¢ and § C G'(p, ). We therefore have a well-defined
map

#. ;
0% : Chain(L, ) — cone(yp).
Lemma 4.2. For any countable Q2 D 9%(5), OF is surjective.

Proof. Fix any ¢ € cone(yp) in S. Consider the set of p—geodesics 8 € G(¢) so that
for one of the sides of §, it makes an angle 7 on that side at every cone point it
contains. Such geodesics are parameterized by pairs of directions at ¢ making angle
. There are uncountably many such, with only countably many either containing
more than one cone point or being asymptotic to a geodesic with more than one cone
point. Let A be the remaining uncountable set of geodesics. All but countably many
geodesics in A are contained in a unique bi-infinite sequence d = (..., d;, d;+1,...)
with each 0; € A (note that any such bi-infinite sequence is uniquely determined
by any of its elements). There are uncountably many such sequences. At most
countably many of these can contain a geodesic § with J,(d) € €. The remaining
uncountably many sequences d have 0,(6) € Chain(L,$2). Applying 8;75 to any of
these we get (. Since ( was arbitrary, Qf is onto. O

As this proof shows, a sequence 6 = (..., d;,d;+1,...) with 0,(d) € Chain(L, §2)
with 8:?()() = ( is determined by a sequence of rays emanating from (, so that
consecutive rays make counterclockwise angle m. The next lemma is clear from
this.

Lemma 4.3. Any (L,Q)-chain x is either periodic or the sequence consists of
distinct points in S1. . These two cases correspond to the case when the p—cone angle
at Of (x) is a rational multiple of m and irrational multiple of 7, respectively. O

The second case, when all points in x are distinct, we will call aperiodic.

The next lemma tells us that we can decide when two (L, ©2)—chains have the same
8?;# —image, appealing only to topological properties of supp(L). If 1, o € Flat(S)
and L, = L = L,, this lemma will ultimately produce the bijection between cone
points of ¢y and ¢s. To state the lemma, we first make a definition for periodic
chains.

Any periodic (L, Q)—chain x contains exactly k = k(x) > 3 points in SL (re-
peated infinitely often)—this is precisely the minimal period of the sequence. There
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is thus a smallest integer n = n(x) > 0 so that the sequence

Loy Ly L2ny++ -5 x(k}—l)n

is this set of points cyclically ordered counterclockwise. To see this, note that
x;,x;y+1 are endpoints of rays emanating from ¢ making a counterclockwise angle
7. There are finitely many such rays by periodicity, and any two rays which are
counterclockwise consecutive, make the same angle. The shift x; — x;41 generates
a group of rotations of these rays through an angle 7, and this acts transitively on
the rays. Thus, rotating each ray to the next counterclockwise consecutive ray is
some minimal power n of our generator, and thus x; and x;y,, are counterclockwise
consecutive points in x around Séo; see Figure[5]

yo L0
Y2
T3 T2
Y3
Ya
T T4
Y1
FIGURE 5. Endpoints of a periodic chain x = (..., x,21,

T2, T3, T4, ...) with period 5. The periodic chain y = (..., yo0,¥1,
Y2, Y3, Y4, - ..) shown, also with period 5, is perfectly interlaced
with x.

We say that periodic chains x and y are perfectly interlaced if k(x) = k(y) = k
and n(x) = n(y) = n and after shifting indices of y if necessary we have y;,, lies in
the counterclockwise interval (25,2 (j11),) for all j € Z; see Figure[5] By period-
icity, this implies y;,4, lies in the counterclockwise interval (n4r, Z(j41)n+r) for
all j,r € Z.

Lemma 4.4. Given x,y € Chain(L, Q) we have 8225()() = Gf(y) if and only if

(a) x and 'y are both periodic and their endpoints are perfectly interlaced, or
(b) x and y are both aperiodic and for any y;,y;1+1, there exists a sequence
Tj, s Tj,+1 = Yis Yit1 A4S Jn — 00.

Proof. Assume first that ( = 8f(x) = 8f (y). Both are either periodic or both are
aperiodic as this only depends on the cone angle at the point (. If they are both
periodic, then the rays emanating from ( defining x differ from those defining y
by rotating by some fixed angle. This clearly implies that x and y are perfectly
interlaced. If both are aperiodic, and 0,,(d) = x, then note that the set of geodesics
in §; € § are dense in the set of geodesics ' (i, ¢). In particular for any consecutive
pair y;, yi+1, let 6 € G' (¢, ¢) be such that ,(8). Then there is a sequence d;, with
d;, — 0. This implies condition (b). We now prove the reverse implication.
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For case (a), we suppose x,y € Chain(L, () are perfectly interlaced and (x =
Of(x) # ij(y) = (y. Let 6« and dy With~8¢(5x) = x and 0,(6y) = y. For each
diy € 0y, let H, ify denote the half-plane in S bounded by §; ,, containing the side on

which 0; y makes angle 7 at (y. Observe that S = U, H;fy, and thus (x € Hl-fy, for
some 7. Without loss of generality, suppose ¢ = 0, and yjp4r € (mjn+r,x(j+1)n+r)
for all j,r € Z. In particular yy € (z9,2,) and y; € (x1,2,41). The p—geodesic
between xg and x,4+1 passes through (x (though it may make angle greater than
on both sides, and hence may not be in dx). On the other hand, the endpoints of
this geodesic are in the closure of the complementary half-plane S \ Haf y- Thus this
geodesic must meet dp y in two points, contradicting the fact that ¢ is CAT(0); see

Figure [6]

Ty, Yo xg

2l Y1 Tn+1

FIGURE 6. Concatenating the ray from (x to g with the ray from
(x to 41 is a geodesic.

For case (b), we use the same notation as in case (a) writing dx and d, with
0,(0x) =xand 0,(dy) =y, and H f y for the half-planes bounded by 4; y containing
the sides with angle 7 at (y. In this case, we choose i so that (y lies in the
complementary half-plane ¢y € S \ H:“y Condition (b) guarantees a sequence
g i, +1tn = {0,(95, x)n so that {x; ,x; 41} converges to {y, yit1}. It
follows that d;, x converges to a geodesic ¢ which is asymptotic to d;y. However,
(x € ¢ (since it lies in all approximating geodesics) while ¢y is the only cone point
in ;. Consequently there is a ¢-flat strip between ¢ and ;. But this must be
in the closure of ¢, € S \ Hi'fy, which is impossible since the cone angle at ¢, on
that side of 0; y is strictly greater than 7. O

Given two (L, )—chains x and y, we write x ~ y if and only if ajf (x) = 8f (y).
According to Lemma [4.4] we see that x ~ y is determined by supp(L), without
reference of . We write [x] for the equivalence class of x.

4.3. Chains and distances. Continue to assume L = L, for ¢ € Flat(S) and
) C supp(L) a countable set containing Si(g ). As we have already seen, the data
of (L, §2) can be used to reconstruct the cone points for the metric . In this section,
we continue to read off information about ¢ from L.
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For two distinct equivalence classes of (L, )—chains [x] and [y], we define

[, ¥]] = Ui wisa } Ly g s

where the union is over x’ € [x], y’ € [y], and all consecutive pairs {z;, x;41} in x’
and {y;,y;41} in y’. In words, [[x],[y]] consists of all endpoints of geodesics that
lie between some geodesic from some x’ in [x]| and some geodesic from some y’ in
[y]. Write d,, for the distance function associated to ¢.

Proposition 4.5. For any pair of distinct equivalence classes [x],|y] with (x =
0% (x) and ¢y = 0¥ (y) we have

L ([[X]v [Y]]) = dgo((m Cy)

Proof. We first observe that [[x], [y]] N 9;(5 ) is precisely the 0,-image of the set
E°(a) of all p—geodesics in G°(¢p) transversely crossing the p—geodesic segment «
between (x and (y. Since G°(y) is a set of full I:wfrneasure7 SO 9;’3(5) is a set of full
L-measure. Therefore, appealing to Proposition [3.3] we have

L (6 1) = £ ([5: 1] N 628)) = Lo(B*(@)) = £o() = dplGx &) O

5. PROOF OF THE MAIN THEOREM

The Main Theorem will follow easily from the next

Theorem 5.1. Suppose 1,2 € Flat(S) with L,, = L = L,,. Then @1 = @2 in
Flat(S), i.e., there is an isometry (S, 1) — (S, p2) isotopic to the identity.

Proof. Let Q = 9?01(5’) U 9?02 (S). According to Lemma [12] for each i = 1,2 the
map Qﬁ : Chain(L, Q) — cone(yp;) is surjective. Appealing to Lemma[4.4] we have

# — o# # — %
a«pl (X) - 8g01 (y) And X~y A 8ap2 (X) - acpz (Y)
Consequently, sending 9%, (x) to 8?22 (x) well-defines a bijection
F': cone(yp1) — cone(ps)

independent of the choice of x within the equivalence class. Both 8;?&1 and 8722 are
71(S)—equivariant, and so F is also. Furthermore, according to Proposition [£.5] we
have

(3) d, (F(Q), F(C') = dop, (¢, ¢').

Now without loss of generality, assume that Area,, (S) < Area,,(S). Let T
be an ¢;—triangulation of S such that cone(y1) are the vertices of 7. Lift T to a
triangulation 7 on S and define a map

F:(S,01) = (S, 92)

as follows. First, define fvon cone(pq) by ﬂcone(m) = F. This is 71 (S)—equivariant,

and so we extend over edges of triangles of T, 71 (S)—equivariantly mapping these to
geodesics. Note that by equation (3), we can assume that the restriction to every
edge is also an isometry.
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Let A denote a lift of a triangle in T and A’ = f(A). The universal cover (S, 1)
is a CAT(0) space and since all cone points are vertices, we conclude that A contains
no cone points besides its vertices, and hence is itself a comparison triangle for A
Thus by Proposition 2.1] Area(A’ ) < Area(A) for every triangle A and its image
A =f (A) Consequently, applying this to every triangle in T we get Area,, (S) >
Area,, (S). Therefore Area,, (S) = Area,,(S) and Area(A’) = Area(A) for every
triangle A. Appealing to Proposition it follows that we may extend ]? over
every triangle by an isometry, and hence f is a 1 (S)—equivariant isometry. This
descends to an isometry f: (S, p1) — (S, p2).

All that remains is to prove that f is isotopic to the identity. However, the action
of m1(S) on S is independent of the metric ¢;. In particular, 7;(S)—equivariance
implies that the continuous extension of fto S1 is the identity. It follows that f
induces the identity on 71 (.S), and hence is isotopic to the identity. O

The main theorem from the introduction is now an easy corollary of this.
Main Theorem. If p1,¢2 € Flat(S) and A(¢1) = A(p2), then v1 = @a.

Proof. If A(¢1) = A(p2), then by Proposition[3.4] and Theorem [3.2] it follows that
L,, = L,,. Theorem[5.] completes the proof. O

6. OPEN QUESTIONS

If ¢ € Flat(S) is any metric, we can scale by a > 0, and the Liouville current
will scale the same: Lo, = aL,. In particular supp(Ly) = supp(Lay,). If ¢ is
defined by a holomorphic quadratic differential, then for any A € SLy(R), one can
deform the quadratic differential, and hence the metric, by A. If we let 4 be such
a deformation, then the identity S — S becomes an affine map (S, ¢) — (S, ¢4):
there are locally isometric coordinates for ¢ and ¢4 so that in these coordinates,
the identity is affine (with derivative A). The formula for the Liouville current
in [DLR10| shows that L, and L., will also have the same support. The scaling
deformation above is a special case which can be carried out for any ¢ € Flat(S),
but if A is not simply a homothety, then this kind of deformation is special to
those metrics defined by quadratic differentials. This is because an eigenspace of
the derivative of the affine map must be parallel on (S, ¢), and hence the holonomy
must lie in {£I}. We conjecture that this is the only way that two metrics in
Flat(S) can have Liouville currents with the same support.

Conjecture 6.1. Given o1, 2 € Flat(S), if supp(Ly,) = supp(Ly,), then there
exists an affine map f: (S, p1) — (S, 2), isotopic to the identity.

The proof of the Main Theorem shows that if the supports are the same, then
there is a map isotopic to the identity sending cone points bijectively to cone points.
It is also straightforward to see this map actually preserves cone angles. With a
little more work, one can show that the metrics coming from quadratic differentials
can be distinguished from all other metrics in Flat(S) in terms of the supports
of their Liouville currents. The work in [DLRI10| can then be used to prove the
conjecture for quadratic differential metrics. Since metrics coming from holomor-
phic g—differentials, ¢ € Z, can also be distinguished from other flat metrics, this
would be an interesting test case for the conjecture, but we have not carried out
this analysis.
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We also ask the following question which would provide a common generalization
of the Main Theoem, as well as the marked-length-spectral rigidity results in [Ota90}
Cro90,/CFF92|[HP97/DLR10].

Question 1. Are the nonpositively curved cone metrics spectrally rigid?

It seems likely that some combination of the techniques here and in |[CEF92|
may be sufficient, but we have not investigated this.

Added in proof. David Constantine has now answered this question in [Conl5).
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