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Filtration is widely used in industry, therefore prediction of filtration efficacy and analysis of filter perfor-
mance are essential. Real membranes have complex internal geometry: pores inside the membrane branch
and interconnect with each other, which must be taken into account in mathematical models of filtration.
Membrane fouling, as an unavoidable consequence of removing particles, occurs in the course of filtration and
deteriorates the membrane permeability. In addition, for membranes made of elastic materials, the pressure
within the membrane results in expansion of the pore radii. The pore expansion competes with particle depo-
sition to delay fouling and, thus, influences filtration performance. In this paper, we develop a mathematical
model of flow and fouling of such elastic membrane filters with multi-layer bifurcating (hierarchical) interior
morphology. Two filtration forcing mechanisms through the membrane are considered: (i) constant pressure
drop; and (ii) constant flux. We investigate how filtration behaves under these two forcing mechanisms and
mathematically describe the morphology change due to fouling coupled to elastic pore expansion. In particu-
lar, we obtain an analytical solution for the deformation of the elastic pore walls, which is easily incorporated
into the filtration model. Our model provides a quantitative mathematical framework with which to predict
the impact of hierarchical pore morphology and the elasticity of pore walls on filtration performance.

I. INTRODUCTION

Filtration refers to a separation process that uses mem-
brane filters to sieve undesired particles or contaminants
from a fluid. The applications of filtration in industry are
numerous1, inspiring a substantial amount of fundamen-
tal research as well2–8. For instance, filtration is used to
purify wastewater9,10, in which particles including micro-
bial contaminants are removed from the filtrate through
micro-filtration or ultra-filtration. In the medical setting,
filtration technology plays an important role in artificial
kidneys and blood oxygenators1. Other applications in-
clude, but are not limited, to hot gas cleaning11, protein
purification and apple juice clarification12.

Two prominent methods of filtration are: (i) cross-flow
(tangential) filtration; and (ii) dead-end filtration13. In
the first case, the direction of the flow is tangential to
the membrane surface, while the flow is perpendicular to
the surface and the fluid directly penetrates through the
membrane in dead-end filtration. Furthermore, the mem-
brane operation can also be classified by the flow’s driving
force. Specifically, membrane filtration is conventionally
split into constant pressure and constant flow regimes.
Note that, in all of these classifications, the overall re-
quirement for filtration is to remove undesired particles
(contaminants) from the carrier fluid, while maintaining
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low energy usage and cost. In this paper, we focus on
dead-end filtration for the reason that this mechanism
is more ubiquitous in practice and has the characteristic
of high selectivity, economic scalability and lower energy
cost compared with cross-flow filtration14.

Ideally, it is desirable that all the solvent passes
through the membrane filter, while all the undesired par-
ticles are retained in the membrane. However, as the fil-
tration process proceeds, the particles can deposit on the
pore walls within the membrane or block the pores’ en-
tries. This phenomenon is called membrane fouling and
results in additional flow resistance across the whole sys-
tem. Three mechanisms of fouling may occur separately
or simultaneously during filtration: (i) particle adsorp-
tion (also called standard blocking), in which small par-
ticles adhere to the pore walls; (ii) blocking, in which
large particles sit at the pores’ inlets and block the pores
partially or completely; and (iii) cake formation, which
usually happens at the late stages of filtration, when the
large particles block the pore entrance and form an ad-
ditional cake layer on top of the membrane, which ef-
fectively acts as another membrane layer. An extensive
review of modeling of pore-blocking behaviors of mem-
branes during pressurized membrane filtration has been
conducted by Iritani 3 and Grenier et al. 15 . They ex-
amined the three fouling mechanisms using experimen-
tal flux data to illustrate the relevance of each. Ho and
Zydney 16 analyzed the transition between two fouling
mechanisms and their combined impact on filtration per-
formance. Sanaei and Cummings 17 considered standard
blocking as the only fouling mechanism to demonstrate

mailto:psanaei@nyit.edu
https://sites.google.com/nyit.edu/pejman-sanaei-webpage


2

the pore morphology change due to small particle adsorp-
tion, which is the most prominent fouling mechanism and
the only mechanism that makes full use of the pore inte-
rior. Intuitively, fouling will start at the pore inlet, lead
to a shrinkage in the pore radius and finally will result
in the closure of a pore. Therefore, this fouling mecha-
nism controls the total filtration time and the amount of
filtrate processed. According to Grace 18 , fouling is dom-
inated by the standard blocking mechanism until the late
stages of the filtration process, hence we believe that it is
reasonable to make a simplification and leave the effect
of blocking and cake formation to future work. The effect
of sieving by big particles is to increase the total system
resistance, therefore the total throughput decreases. We
may also observe that cake formation actually prolongs
the lifetime of a filter, in the sense that the time to to-
tal blocking is longer relative to the case with no caking.
However, there is a trade-off for this extended lifetime
in terms of inefficiency: the flux through the filter drops
rapidly and filtration is slow, even for situation in which
the cake layer thickness is much less than the membrane
thickness6.

Some prior work used first-principles models to explain
the dynamics involved in the filtration process. How-
ever, most of the literature employs an assumption of
simple geometries, such as tubes spanning through the
whole membrane. For example, Bruining 22 studied the
fluid dynamics in a hollow fiber membrane. In industrial
applications, the membrane’s internal structure can be
quite complicated, as shown in Fig. 1, featuring many
branches and bifurcations. Such structures complicate
the modeling of both feed solution flow and particle mi-
gration, but must be accounted for to make mathemat-
ical models realistic. In general, it is common that the
pores’ cross-sectional area is larger at the upstream com-
pared to the downstream side, yielding an effective poros-
ity gradient (defined as the local pore volume fraction
in any small membrane element) through the depth of
membrane17. It has been observed that this porosity gra-
dient through the depth of the membrane yields better
filtration performance for both removing contaminants,
while also increasing the membrane lifespan. This en-
hancement phenomenon is due to the fact that fouling
begins at the upstream side of the membrane, therefore
the upstream pores shrink faster compared to the down-
stream ones2,6,17,23–26.

Given this impetus to understand filtration processes
with complex internal morphology, recent work has be-
gun to provide insights. For example, Dalwadi, Griffiths,
and Bruna 27 proposed a model of a membrane consisting
of spherical obstacles of various sizes, with filtrate flow-
ing across them externally. Another practical model is
a multilayer structure that boosts the filtration perfor-
mance. For example, Ling et al. 28 noted that, in water
purification treatment, multilayer filters can promote fil-
tration performance by increasing throughput, efficiency
and loading capacity. Recent works7,17,23 capture the
depth variation of the pore structure, which is built into

real membranes, allowing the pore sizes and connectivity
to be a function of depth through the membrane. These
works adopted a layered structure model, with changes
in pore size/connectivity occurring at layer boundaries.

In this paper, we adopt the branching model proposed
by Sanaei and Cummings 17 , considering a series of bi-
furcating pores spanning the membrane, with decreasing
radius through the depth of the membrane. Our model
captures key features of filtration and its performance
(specifically, the total amount of filtrate fluid and con-
taminant concentration in the filtrate). Under constant
flux and pressure drop imposed on the filtration process,
we consider the adsorption of small particles on the pore
walls as the only fouling mechanism. More importantly,
our model includes another factor that affects the pore
radius evolution (as well as filtration performance): the
elasticity of the membrane’s pore walls. Note that most
filtration models in the literature assume that the mem-
brane pore walls are rigid. However, in reality many
membrane filters are made of elastic materials, and pores
expand due to flow forces29,30. For example, Herterich,
Griffiths, and Vella 31 considered the poroelasticity of the
pore walls, providing evidence for the hypothesis that
elasticity prevents backflushing from cleaning clogged fil-
ters. Going further within this context of poroelastic-
ity, Köry et al. 32 investigated how choosing an initial
spatially-dependent permeability can lead to a uniformly
permeable filter. They found a permeability distribu-
tion that maximizes the flux for a given applied pressure.
They extended their framework to model cake filtration
in a dead-end filter33. However, these poroelasticity mod-
els do not consider the deformation of individual pores (as
in the example filter in Fig. 2), but rather how the whole
porous structure respond to the total pressure drop.

This latter effect has been analyzed in related studies
of flow-induced deformation of single cylindrical pores.
Anand and Christov 34 obtained an analytical solution
to the two-way-coupled fluid–structure interaction prob-
lem in a thin and slender tube, including shear-dependent
viscosity effects and also hyperelastic35 and viscoelastic36

material response. Raj M et al. 37 proposed a simple
analytical model that considers the effect of pressure-
driven non-Newtonian flow in a cylindrical pore under
one-way coupling. Karan et al. 38 reconsidered the prob-
lem with axial variations in the Young’s modulus. Mean-
while Boyko, Bercovici, and Gat 39 discussed an unsteady
version of the problem. The elasticity of branching pore
structures has also been modeled40,41 and experimen-
tally interrogated42 and found to have a significant im-
pact on backflow through hydraulically fractures subsur-
face reservoirs (a porous medium much like membrane
filters). Motivated by these results, in this paper, we
investigate the competing effect between the flow-wise
hydrodynamics-induced pore radius expansion (due to
elasticity) and the shrinkage of the pore radius due to
particle adsorption. In particular, we obtain an analyt-
ical solution to the deformation of the elastic pore wall,
which is easily incorporated into the filtration model of
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(a) (b) (c)

FIG. 1. Magnified membranes with various pore distributions, shapes, and sizes. (a), (b) and (c) are reproduced from Refs. 19,
20 and 21, respectively, with permission.

a hierarchical branching membrane.
The goal of this paper is to develop and analyze a

branching model of an elastic membrane filter in which
the flow and filtration process switches from a constant
flux driving regime to a constant pressure regime. To this
end, we analyze (i) the deformation of the elastic branch-
ing model caused by the flow pressure; and (ii) the filtra-
tion performance in both operation regimes. The paper is
organized as follows: in §II, we introduce the mathemat-
ical model for flow in a bifurcating branching structure,
as well as the governing equations of an elastic pore. In
§III, we introduce appropriate scalings, for the two flow
regimes of interest, to nondimensionalize the models from
§II. Then, in §IV, we present simulations that address
filtration performance, specifically the particle retention
and the amount of filtrate fluid are calculated and ana-
lyzed. Finally, we summarize our modeling results in §V
and provide some insight into real-world applications as
well.

II. MATHEMATICAL MODEL

As discussed in §I, the two common filtration scenarios
considered herein are: (i) flow driven by a constant flux;
and (ii) flow driven by a constant pressure drop across
the membrane. In case (i), the pressure at the mem-
brane inlet needs to increase or decrease to sustain the
imposed flux as the membrane fouling or pore expansion,
respectively, occurs during the filtration process. In case
(ii), the flux will be reduced as the membrane is fouled.
These two filtration scenarios are modeled through sets of
assumptions that will be given in §§II A and II B, respec-
tively. Further, in elastic membranes, the pores expands
due to the hydrodynamic pressure within the membrane.
The model for the pore radius expansion due to elasticity
is described in §II C. Throughout, we use uppercase and
lowercase letters to represent dimensional and dimension-
less quantities, respectively.

Absorptive fouling, also known as standard blocking, is
the dominant filtration mechanism, since it strongly de-
pends on the membrane interior pore structure43, which
is also a feature of our branching model. Thus, we focus

X

FIG. 2. Schematic of one unit (width 2W ) of a repeating
branching structure with three layers (m = 3) of the type
modeled herein. The thicknesses (resp. radii) of the three
layers are denoted as D1 (resp. A1), D2 (resp. A2) and D3

(resp. A3), respectively. The pressures at the bottom of the
first and second layers are P1 and P2. Particles at concentra-
tion C(X,T ) deposit onto the pores walls. The coordinate X
denotes the total depth through the structure in the flow-wise
direction.

on fouling due to particle absorption within the mem-
brane structure. We assume the membrane is flat (two-
dimensional) and remains in the (Y,Z) plane. A unidi-
rectional incompressible Darcy flow, with superficial ve-
locity U , passes through the membrane in the positive
X direction. The membrane morphology and properties
are homogeneous in the (Y,Z) plane but vary in the X
direction. The filtrate is assumed to contain particles,
whose diameter is much smaller than the radius of all
the interior pores in the membrane. Thus, the particles
can pass through the (unfouled) filter easily. The parti-
cle concentration is given by C. As particles either pass
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through the entire membrane or are captured by the in-
ternal pore walls, C = C(X,T ) will vary with the depth
through the membrane X and time T . All particles are
assumed to behave identically.

As shown in Fig. 1, the pore network morphology of
membranes used in applications is quite complex. Pores
with depth-dependent structure are interconnected and
branch into further pores. Many membranes have large
pores at the upstream end, which bifurcate into smaller
pores towards the downstream end. We simplify the
model by assuming that the membrane contains repeated
units in a square lattice pattern, with period 2W . The
basic lattice unit is shown in Fig. 2. Each unit con-
tains one cylindrical pore of length D1 at the upstream
side, which bifurcates into two smaller pores, moving
down in the positive X direction. Each of the bifur-
cated pores further branches into smaller pores after a
distance D2, and the branching process continues until
the downstream membrane end is reached. Therefore,
each consecutive layer in the membrane contains twice
the number of pores as the previous layer. The membrane
is proposed to have m internal layers and the schematic
in Fig. 2 is an example of a three-layer membrane.

Hence, for the general case, layer i contains ni = 2i−1

pores with depth Di, and it occupies the domain Xi−1 ≤
X ≤ Xi, with Xi =

∑i
j=0Dj (defining D0 = 0 for con-

venience). We also use D to refer to the thickness of
the membrane, with D =

∑m
j=0Dj . Meanwhile, since

the membrane is assumed to be elastic, the pores tend
to expand due to the hydrodynamic pressure of the flow
through the membrane. To ensure that the pores will not
recombine at the downstream end, and that the sum of
the radii of the pores should not exceed the period 2W ,
the parameters of the model need to be carefully chosen
and the methodology for doing so will be discussed in
§IV.

A. Constant Flux Case

For filtration driven by a constant flux, we introduce
the superficial (or, Darcy) velocity U through the mem-
brane and the constant flux Qpore through the branching
structure. These are related as

(2W )2U = Qpore,
∂U

∂X
= 0, (1)

where the second relation enforces the continuity equa-
tion. We define throughput as

V (T ) =

∫ T

0

(2W )2U dT ′, (2)

which is the total volume of filtrate processed up to time
T . The quantity V is used in experimental studies to
compare the performance of different filters. Equiva-
lently,

dV

dT
= (2W )2U, V (0) = 0. (3)

Similarly, the cross-sectionally averaged pore velocity
in the ith layer, Ūp,i(X,T ), is related to U via a flux
balance argument (conservation of mass):

(2W )2U = πniA
2
i (X,T )Ūp,i(X,T ), 1 ≤ i ≤ m, (4)

where Ai(X,T ) represents the pore radius in layer i.
From equations (2), (4) and the Hagen–Poiseuille law29,
we further obtain

(2W )2U = − π

8µ
niA

4
i (X,T )

∂P (X,T )

∂X
, 1 ≤ i ≤ m,

(5)

where P (X,T ) is the pressure within the branching struc-
ture, and µ is the fluid’s dynamic viscosity. Note that the
pressure gradient ∂P/∂X throughout the structure is not
constant. Integrating both sides of (5) from Xi−1 to Xi

(i.e., across the depth of the membrane ith layer), we
obtain

(2W )2U = − ni
µRi

[
Pi(T )− Pi−1(T )

]
,

Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m,
(6)

where Pi (1 ≤ i ≤ m − 1) are the unknown inter-
layer pressures within the membrane. In other words,
Pi(T ) = P (Xi, T ). Here, P0(T ) is the pressure at the
upstream side and Pm = 0 is the pressure at the outlet
of the membrane. In (6), we have also introduced the
hydrodynamic resistance of a single pore:

Ri(T ) =

∫ Xi

Xi−1

8

πA4
i (X,T )

dX, 1 ≤ i ≤ m, (7)

keeping in mind that we defined D0 = 0 and X0 = 0
above.

Applying (6) at each layer, along with (1), results in a
system of m equations for U and Pi (1 ≤ i ≤ m− 1). If
we solve the system successively for Pi, we obtain:

(2W )2U =
P0(T )

µR(T )
, (8)

where

R(T ) =
m∑
i=1

Ri(T )

ni
(9)

captures the net resistance of the branching structure in
terms of the resistances of its sublayers. Note that, we
define the initial resistance of the total branching struc-
ture as R(0) = R0.

The model presented in this subsection captures the
Darcy flow through a membrane with a hierarchical
branching structure. To explore how the membrane mor-
phology evolves due to fouling during the filtration pro-
cess, we must specify how particles deposit on the pore
walls, and how the pore radii evolve due to particle depo-
sition. Hence, the cross-sectionally averaged particle con-
centration in the pores of the ith layer, Ci(X,T ), needs
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to be determined. In general, the small particles are ad-
vected and diffuse within the flow and adhere to the wall
at a rate proportional to their local concentration. To
represent these processes, within each pore, we use the
prior models2,26, which were derived by a careful asymp-
totic analysis of the advection–diffusion equation govern-
ing particle transport along the pores. These analyses
revealed that (in a certain distinguished Péclet number
limit) diffusion dominates in the radial direction, leading
to the particle concentration being approximately uni-
form across the pore cross-section. Meanwhile, variation
in concentration along the length of the pore is governed
by an advection equation. We refer the reader to these
papers for further details. This model was also used in a
branching structure17, and we employ it herein.

Specifically, the small particle concentration Ci(X,T )
in the ith layer is governed by an advection-reaction
equation:

Ūp,i
∂Ci

∂X
= −Λ

Ci

Ai
, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m,

(10)
where Ūp,i is found from (4). The (dimensional) constant
Λ captures the physics of the attraction between parti-
cles and the pore wall, which results in particle deposi-
tion. Equation (10) is subject to a boundary condition
that specifies the particle concentration at the membrane
inlet:

C1(0, T ) = C0. (11)

The continuity of particle concentration at the junction
of each layer must also be enforced. Equation (10) can
be solved analytically to yield:

Ci(X,T ) = C0 exp

(
−
∫ X

0

Λ dX ′

Ai(X ′, T )Ūpi(X
′, T )

)
,

(12)
for 1 ≤ i ≤ m.

The pore radius Ai(X,T ) in the ith layer shrinks due
to the deposition of small particles, as:

∂Ai

∂T
= −ΛαCi, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, (13)

for some constant α (proportional to the particle size).
Equation (13) is based on the simple assumption that
the pore cross-sectional volume per unit depth shrinks
at a rate determined by the local volume of particles de-
posited. The initial condition for (13) is

Ai(X, 0) = Ai0 , Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, (14)

where Ai0 is the (constant, specified) initial radius of the
pores in the ith layer. At this point in the model, the
elasticity of pores, which results in expansion of the pore
radii, has not been taken into the account. This issue
will be addressed in §II C.

B. Constant Pressure Case

All equations in §II A, i.e., (1)–(14), also hold for
fixed-pressure-drop filtration, but the Darcy velocity
U = U(T ) is a function of time now, the inlet pressure
P0 = Pswitch is constant, and therefore the flux Qpore

through the branching structure is no longer constant.
When discussing our simulations in §IV below, we ex-
plain why we term the inlet pressure in this scenario as
the ‘switch’ pressure.

C. Membrane Elasticity

In this subsection, the effect of elasticity on the pore
radius within the branching structure is modeled. If the
membrane material is elastic (as it is in many practical
situations), then the pore walls will deform under the
fluid pressure forces within the pores, especially as the
pressure increases due to fouling. As shown in Fig. 2,
each pore is basically a cylindrical exclusion. Since we
assume that the membrane contains repeated units in a
square lattice pattern, with period 2W , it is reasonable
to consider a symmetry (no stress) condition between ad-
jacent lattices, otherwise the entire structure might un-
dergo motion (displacement) in some direction, breaking
the periodicity. Therefore, the pores’ shrinkage or ex-
pansion in each layer does not affect the other pores in
the same layer, given that they (and the flows through
them) are all identical. Therefore, it is reasonable to
assume that the deformation of one pore does not af-
fect those nearby. Under this assumption, the deforma-
tion of each pore can be described by the Navier–Cauchy
equations44 (also known as Lamé’s equations45). In the
absence of body forces (gravitational forces are negligible
at the pore-scale), these equations take the form

E

2(1 + ν)
∇2Ωi +

E

2(1 + ν)(1− 2ν)
∇(∇ ·Ωi)

= ρm
∂2Ωi

∂T 2
, 1 ≤ i ≤ m. (15)

Here, Ωi = (ΩiR ,Ωiθ ,ΩiX ) is the displacement vector of
the pore in the ith layer in the cylindrical coordinates
(R, θ,X). Futher, ρm denotes the density of the elastic
material from which the membrane is composed, E is
the Young’s modulus, quantifying the compliance of the
elastic solid material, and ν its Poisson’s ratio, which
quantifies the elastic solid’s compressibility. Assuming
that the time scale related to the pore wall deformation
due to elasticity is longer than the time scale of the flow
(which is the small Strouhal number limit discussed by
Anand and Christov 36), we can impose an elastostatic
condition, i.e., ∂2Ωi/∂T

2 = 0.
Under these assumptions, (15) simplifies to

∇2Ωi +
1

1− 2ν
∇(∇ ·Ωi) = 0, 1 ≤ i ≤ m. (16)
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Based on the geometric setup of our model, we write
the governing equation (16) in axisymmetric cylindrical
coordinates, component-wise45,

∇2ΩiR −
ΩiR

R2
+

1

1− 2ν

∂

∂R
(∇ ·Ωi) = 0, (17)

∇2ΩiX +
1

1− 2ν

∂

∂X
(∇ ·Ωi) = 0, (18)

for 1 ≤ i ≤ m.

To define the boundary conditions for (17)–(18), we
consider the normal stress Σi = (ΣiR ,Σiθ ,ΣiX ) at the
ith layer pore wall. Under the assumption of a long and
slender pore (to be made precise in §III C), it can be
shown that that the shear stresses are negligible, and the
radial normal stress ΣiR matches the hydrodynamic pres-
sure imposed34. At the same time, a symmetry condition
can be imposed on the stress between two adjacent lattice
elements to ensure equal and opposite forces there. Fur-
thermore, the pore in the ith layer is clamped on the top
and the bottom of each layer. Therefore, the boundary
conditions are:

ΣiR |R=Ai
= P,

∂ΣiR

∂R

∣∣∣∣
R=W

= 0 ,

ΩiX |X=Di−1
= 0, ΩiX |X=Di

= 0, 1 ≤ i ≤ m.
(19)

Equations (17) and (18) can be solved with the
boundary conditions (19) after re-expressing the normal
stress Σi in terms of the displacement Ωi. From the
constitutive and strain–displacement relations of linear
elasticity44,45, the relationship between Σi and Ωi is:

ΣiR =
E(1− ν)

(1 + ν)(1− 2ν)

∂ΩiR

∂R

+
Eν

(1 + ν)(1− 2ν)

1

R
ΩiR +

Eν

(1 + ν)(1− 2ν)

∂ΩiX

∂X
, (20)

Σiθ =
Eν

(1 + ν)(1− 2ν)

∂ΩiR

∂R

+
E(1− ν)

(1 + ν)(1− 2ν)

1

R
ΩiR +

Eν

(1 + ν)(1− 2ν)

∂ΩiX

∂X
, (21)

ΣiX =
Eν

(1 + ν)(1− 2ν)

∂ΩiR

∂R

+
Eν

(1 + ν)(1− 2ν)

1

R
ΩiR +

E(1− ν)

(1 + ν)(1− 2ν)

∂ΩiX

∂X
, (22)

for 1 ≤ i ≤ m. Note that we have taken Ωiθ = 0 and
∂(·)/∂θ = 0 for an axisymmetric pore geometry but, nev-
ertheless, a “hoop stress” Σiθ can arise from the axial and
radial deformations.

III. SCALING AND NONDIMENSIONALIZATION OF
THE MODEL

To reduce the number of independent parameters, we
nondimensionalize the model for the (i) constant flux and
(ii) constant pressure drop filtration scenarios described
in §§II A and II B, respectively, using appropriate scal-
ings introduced for each one below. For the elasticity
equations from §II C, the only difference in the nondi-
mensionalization of variables in the two cases is how we
scale the normal stress Σi and the pressure Pi of a pore
in the ith layer.

A. Flow: Constant Flux Case

We use the following scalings to nondimensionalize the
model given by equations (1)–(14):

Pi = µR0Qporepi,

(X,Xi, Di) = D(x, xi, di),

Ci = C0ci,

(Ri,R) = R0(%i, %),

U =
Qpore

4W 2
u,

Ūp,i = Qpore

(
8πD

R0

)−1/2
ūp,i,

T =

(
8D

πR0

)1/4
1

ΛαC0
t,

V =

(
8D

πR0

)1/4
Qpore

ΛαC0
v,

Ai =

(
8D

πR0

)1/4

ai.

(23)

With these scalings, we obtain the governing equations
for v(t), ūpi(x, t), %(t), p(0, t), ci(x, t) and ai(x, t) (i.e.,
throughput, averaged pore velocity, branching structure
resistance, pressure at the pore inlet, averaged particle
concentration and pore radius in ith layer, respectively)
as

dv

dt
= 1 = nia

2
i (x, t)ūp,i(x, t), (24)

%i(t) =

∫ xi

xi−1

dx

a4i (x, t)
, (25)

%(t) =
m∑
i=1

%i(t)

ni
, (26)

p(0, t) = %(t), (27)

ūp,i
∂ci
∂x

= −λf
ci
ai
, λf =

(
8D

πR0

)1/4
πDΛ

Qpore
, (28)

∂ai
∂t

= −ci, (29)
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for 1 ≤ i ≤ m, with boundary and initial conditions

c1(0, t) = 1, ai(x, 0) = ai0 , xi−1 ≤ x ≤ xi. (30)

B. Flow: Constant Pressure Case

In this case, we again nondimensionalize the model
(1)–(14), using the same scalings as in (23), except for

U =
P0

4W 2µR0
u,

Ūp,i =

(
P 2
0

8πµ2DR0

)1/2

ūp,i,

V =

(
8D

πR5
0

)1/4
P0

µΛαC0
v

(31)

Under these scalings, the governing equations for v(t),
ūp,i(x, t), %(t), u(t), ci(x, t), and ai(x, t) (i.e., throughput,
averaged pore velocity, branching structure resistance,
Darcy velocity, averaged particle concentration and pore
radius in the ith layer, respectively) become

dv

dt
= u(t) = nia

2
i (x, t)ūp,i(x, t), (32)

%i(t) =

∫ xi

xi−1

dx

a4i (x, t)
, (33)

%(t) =
m∑
i=1

%i(t)

ni
, (34)

u(t) =
p(0, t)

%(t)
, (35)

ūp,i
∂ci
∂x

= −λp
ci
ai
, λp =

Λµ

P0

(
8π3D5R3

0

)1/4
, (36)

∂ai
∂t

= −ci, (37)

for 1 ≤ i ≤ m, with boundary and initial conditions

c1(0, t) = 1, ai(x, 0) = ai0 , xi−1 ≤ x ≤ xi,
p(0, t) = pswitch, p(1, t) = 0,

(38)

where pswitch is the dimensionless prescribed pressure at
the pore inlet.

C. Elasticity: Constant Flux Case

We introduce the scalings

R = Wr = εDr,

(ΩiR ,ΩiX ) = W (ωir , ωix),

(Pi,ΣiR ,Σiθ ,ΣiX ) = µR0Qpore(pi, σir , σiθ , σix),

(39)

for 1 ≤ i ≤ m, where ε := W/D � 1 is the small aspect
ratio of the pores. Note that, we use the same scaling
of pressure Pi as in section §III A (see (23)) and scale

the normal stresses Σi the same way as the pressure Pi.
Again, recall that we assumed axisymmetry, so Ωiθ = 0
and ∂(·)/∂θ = 0. Now, the dimensionless versions of
equations (17) and (18), via the scalings (23) and (39),
are:

1

εD

{
1

r

∂

∂r

(
r
∂ωir

∂r

)
+ ε2

∂2ωir

∂x2
− ωir

r2

+
1

1− 2ν

∂

∂r

[
1

r

∂ (rωir )

∂r
+ ε

∂ωix

∂x

]}
= 0, (40)

1

εD

{
1

r

∂

∂r

(
r
∂ωix

∂r

)
+ ε2

∂2ωix

∂x2

+ ε
1

1− 2ν

∂

∂x

[
1

r

∂

∂r
(rωir ) + ε

∂ωix

∂x

]}
= 0, (41)

for 1 ≤ i ≤ m. The boundary conditions (19) become

σir |r=ai
= pi,

∂σir
∂r

∣∣∣∣
r=1

= 0,

ωix |x=di−1
= 0, ωix |x=di−1

= 0,

(42)

for 1 ≤ i ≤ m. Equation (20) leads to the dimensionless
expression for the r-component of the normal stress:

σir =
1

ηf

[
(1− ν)

∂ωir

∂r
+ ν

ωir

r
+ εν

∂ωix

∂x

]
, (43)

where we have defined

ηf =
µR0Qpore(1 + ν)(1− 2ν)

E
, (44)

which can be considered as a fluid–structure interaction
(or, compliance) parameter34.

Next, we introduce a perturbation expansion of the
dependent variables ωir , ωix , σir and pi, in powers of the
slenderness parameter ε� 1:

ωir (r, x, t) = ω
(0)
ir

(r, x, t) + εω
(1)
ir

(r, x, t) + · · · ,

ωix(x, r, t) = ω
(0)
ix

(r, x, t) + εω
(1)
ix

(r, x, t) + · · · ,

σir (r, x, t) = σ
(0)
ir

(r, x, t) + εσ
(1)
ir

(r, x, t) + · · · ,

pi(x, t) = p
(0)
i (x, t) + εp

(1)
i (x, t) + · · · .

(45)

Substituting these expansions into (40) and (41), at the
leading order we have

1

r

∂

∂r

(
r
∂ω

(0)
ir

∂r

)
−
ω
(0)
ir

r2
+

1

1− 2ν

∂

∂r

(
1

r

∂(rω
(0)
ir

)

∂r

)
= 0,

(46)

1

r

∂

∂r

(
r
∂ω

(0)
ix

∂r

)
= 0.

(47)
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It is easy to verify that the solution to the last two equa-
tions is of the form:

ω
(0)
ir

= f1(x)r +
f2(x)

r
, ω

(0)
ix

=
f3(x)

r
, (48)

where f1(x), f2(x) and f3(x) are arbitrary functions of
integration to be determined. The leading-order term of
equation (43) is

σ
(0)
ir

=
1

ηf

[
(1− ν)

∂ω
(0)
ir

∂r
+ ν

ω
(0)
ir

r

]
. (49)

Considering the boundary conditions (42) at leading
order, along with (49), we obtain f1(x), f2(x) and f3(x).
Therefore, the solution (48) to the differential equations
for the radial and axial displacements, at the leading or-
der in ε, simplifies to

ω
(0)
ir

(r, x, t) = ηf p
(0)
i (x, t) r, ω

(0)
ix

(r, x, t) = 0, (50)

valid for ai ≤ r ≤ 1. Consequently, for the elastic mem-
brane, equation (29) describing the evolution of the pore
radius should be updated as

∂ai
∂t

= −ci + ηf
∂pi
∂t

r

∣∣∣∣
r=ai

, ai(x, 0) = ai0 , (51)

for 1 ≤ i ≤ m and xi−1 ≤ x ≤ xi.
Observe, from (50), that the asymptotic analysis

and the clamped boundary conditions on ωix lead to

ω
(0)
ix

(r, x, t) = 0 identically at the leading order. This
result generically holds for many types of fluid–structure
interactions in slender (small aspect ratio) flow conduits.
On the other hand, some works on fluid–structure in-
teractions assume no axial displacement in long pores
straightaway, which the asymptotic analysis above justi-
fies. Actually, it turns out that axial-clamping and no-
axial-displacement are equivalent assumptions for long,
slender cylindrical pores, under the lubrication approxi-
mation, under which the shear stress on the wall is neg-
ligible compared to the pressure (normal stress). Anand
and Christov 34 elaborate on this points in detail, in the
context of viscous flow in a slender cylindrical shell.

D. Elasticity: Constant Pressure Case

For the case of constant pressure filtration, we use the
same scalings as in (23) and (39), but the pressure Pi and
the stresses Σi are scaled with P0:

(Pi,Σi) = P0(pi, σir , σiθ , σix). (52)

Note that all equation from §III C are valid for the con-
stant pressure scenario, except ηf is replaced by ηp, so
that (51) becomes

∂ai
∂t

= −ci + ηp
∂pi
∂t

r

∣∣∣∣
r=ai

, ai(x, 0) = ai0 , (53)

for 1 ≤ i ≤ m and xi−1 ≤ x ≤ xi, having defined the suit-
able fluid–structure interaction parameter for this case to
be

ηp =
P0(1 + ν)(1− 2ν)

E
. (54)

IV. RESULTS

In this section, we present and analyze simulations of
the models (24)–(30), (32)–(38), (51) and (53). Our nu-
merical scheme is straightforward, based on first-order
accurate finite-difference spatial discretization of the gov-
erning equations with implicit time-stepping of the pore-
blocking evolution (i.e., (51) and (53)), and trapezoidal
quadrature to evaluate the necessary integrals. In our
simulation, we consider a process in which, at first, the
flux through the membrane is kept constant. In order to
sustain the flux, the pressure increases in time. To mimic
practical applications, we set a threshold pressure pswitch,
at which the model transitions to a scenario in which the
imposed inlet pressure remains at pswitch until the pores
close. Thus our simulation is composed of two tempo-
ral periods. During the constant flux period, equations
(24)–(30) and (51) are solved. Then, upon transitioning
to the constant pressure regime, equations (32)–(38) and
(53) govern the filtration process. Through simulation,
we will demonstrate how the pore radius at each layer
ai(x, t), throughput v(t), flux q(t), and the imposed pres-
sure at the top of the membrane p(0, t) evolve during a
typical filtration process. Then, we will present findings
on how the filtration performance changes for different
values of the compliance coefficients ηf and ηp (defined
in (44) and (54)).

To fully specify our model, various dimensional and di-
mensionless parameters given in Tables I and II, respec-
tively, are estimated based on the typical ranges arising
in filtration applications. Specifically, the dimensionless
parameters λf and λp capture the physics of the attrac-
tion between particles and the pore walls in the constant
flux and constant pressure drop cases, respectively. The

Parameter Description Typical value
2W Width of repeating lattice 4.5 µm
µ Viscosity of feed 0.001 Pa s
Λ Particle–wall attraction coeff. Varies
D Membrane thickness 300 µm
R0 Initial resistance 1013-1015 m−3

Qpore Flux 2-3 L/h
Pswitch Pressure drop 10-100 kPa
C0 Inlet particle concentration 1-10 g/L
α Pore shrinkage parameter Varies
E Young’s modulus 0.1-10 MPa

TABLE I. Dimensional parameter values5,26,46,47 for the
model.
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FIG. 3. Pore radius variation a1(x, t) with distance down the filter x in the first layer i = 1, at certain times t (the red curves
are for the switching time) up to the final blocking time tf , for a membrane with (a) elastic and (c) rigid pores. Pore radii at
the top of each layer ai(xi−1, t) versus time t, for a membrane with (b) elastic and (d) rigid pores. The asterisk in each plot
denotes the instant of time at which the filtration process switches from the constant flux to the constant pressure drop regime.
In all cases, λf = 0.5, λp = 0.5, pswitch = 5, %0 = 1, and the initial pore radius of each layer is geometrically decreasing with
coefficient κ = 0.8. In (a) and (b), we use ηf = 0.005 and ηp = 0.001.

Parameter Formula Typical value
ε W/D 10−2

λf (8D/(πR0))1/4 (πDΛ/Qpore) 0.5

λp (Λµ/P0) (8π3D5R3
0)1/4 0.5

ν Poisson’s ratio 0.2-0.3
ηf µR0Qpore(1 + ν)(1− 2ν)/E 0.001-0.01
ηp P0(1 + ν)(1− 2ν)/E 0.0002-0.002

TABLE II. Dimensionless parameters values5,26,46,47 for the
model.

values vary for different filters and largely depends on
the structure and material of the filter membrane. Per
prior literature6,17,26, we take λf = 0.5, λp = 0.5 and

pswitch = 5 for our simulations. The initial branching
resistance is fixed at %0 = 1 and the initial pore radii
are geometrically decreasing with coefficient κ = 0.8, i.e.
ai(x, 0) = a0κ

i−1 for i ∈ {1, 2, 3, 4, 5}, where a0 can be
obtained by (25) and (26) (or (33) and (34)). Addition-
ally, the dimensionless parameters ηf and ηp describes
the compliance of the pores (radius expansion caused by
interior pressure) due to their elasticity for constant flux
and pressure regimes, respectively. Note that λf = λp,
and ηf = ηp pswitch.

Figures 3(a) and (c) show the change of the pore ra-
dius in the first layer a1(x, t) for an elastic and a rigid
membrane, respectively, at certain times up to the fi-
nal blocking time tf . The red curves in both figures
show the pore radius at the time when the filtration pro-
cess switches from the constant flux driven flow to the
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FIG. 4. (a)–(d) Depth-variation of elastic membrane pore radii ai(x, t) for i ∈ {2, 3, 4, 5} (layers 2-5), respectively, at specific
instants of time up to the final blocking time tf . All panels simulated with λf = 0.5, λp = 0.5, pswitch = 5, %0 = 1, κ = 0.8,
ηf = 0.005, and ηp = 0.001. The red curves show the pores’ radii at the switching time t = 0.34tf .

constant pressure regime. From Fig. 3(a), we conclude
that, the pore shrinks relatively uniformly across x dur-
ing early stages of filtration. Then, as more particles
are deposited at the inlet of the pore, the distribution
of pore radius over x, gradually becomes steeper, until
a1(0, tf ) = 0 at the instant when the pore is completely
blocked. We observe that the pore radius has a tendency
to expand when the pressure increases, since the pore
profiles at t = 0.2tf and t = 0.4tf are very close to each
other and in both case the pore radii are less than the
corresponding ones at the switching time t = 0.34tf , as
shown in Fig. 3(a). This observation indicates a con-
spicuous expansion of the pore radius at the switching
time. This phenomenon is explained by the fact that
the pore radius evolution is mainly driven by pressure at
that point in the filtration process, rather than particle
deposition. Generally speaking, the pore radius shrinks
at a steady rate in the absence of elasticity, as shown in
Fig. 3(c). Note that, due to pore expansion in elastic

membranes, the final time of filtration tf = 1.845 for the
elastic case, which is larger than tf = 1.140 for the rigid
case, as shown in Fig. 3(a) and (c), respectively.

Figures 3(b) and (d) show the evolution of the pore ra-
dius at the upstream side of each layer ai(xi−1, t), where
i ∈ {1, 2, 3, 4, 5}, for an elastic and a rigid membrane,
respectively. Note that the red asterisks in these figures
show the switching point from the constant flux regime
to the constant pressure regime. In Fig. 3(d), the pore
radius at the top of the first layer shrinks to zero steadily,
while the downstream pores shrink more slowly and less
uniformly in time. This pattern is consistent with re-
sults obtained by Gu et al. 4 , Sanaei and Cummings 17 .
Therefore, we can use the same rationale to explain this
phenomenon: when top layers shrink, spatial gradients in
the particle concentration increase, leading to a decrease
of the closure rate in downstream layers. When we study
the two regimes separately, we observe some apparent
differences in the radius at the top of the downstream
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FIG. 5. Elastic membrane pore radius versus depth x at sev-
eral different instants of time, showing the radii across all
layers. Here, λf = 0.5, λp = 0.5, pswitch = 5, %0 = 1, κ = 0.8,
ηf = 0.005, and ηp = 0.001.

layers, which is more pronounced in the 5th layer. Af-
ter changing to the constant pressure scenario, the top
of the pore in the 5th layer first shrinks with a slower
rate (compared to the other layers) and then tends to a
constant radius. This phenomenon gradually diminishes
as we move up in the layers, to the point that it is not ob-
served in the first layer. This observation is related to the
small particle concentration in the feed solution, which
will be explained in detail later. When the elasticity of
the pores is accounted for, as shown in Fig. 3(b), pore
radius expansion is observed. For example, in the first
layer, there is an upward tendency compared with the
same curve in Fig. 3(d). This stems from the fact that,
in the late stage of constant flux scenario, the effect of
expansion brought by large pressure compensates for the
shrinkage due to deposition of small particles. This phe-
nomenon is less discernible in downstream layers, since
pressure decreases along the depth of the branching struc-
ture.

To further investigate the novel aspects of the elastic
membrane pore shrinkage, we plot representative depth-
variation of the pore radii ai(x, t) (i ∈ {2, 3, 4, 5}), for
layers 2-5, at some specific instants of time in Fig. 4(a)–
(d). These plots collectively show that the pore shrinkage
is more pronounced at the upstream end of each layer,
which is consistent with the observations from Fig. 3(a).
In addition, we notice that the fourth and fifth layers’
pore radii do not change close to the final filtration times,
for example at t = 0.8tf and tf . In all panels of Fig. 4, the
pores’ radii at the switching time t = 0.34tf do not ex-
pand as much as the first layer’s pore radius (at the same
instant of time), which was shown before in Fig. 3(a).

To gain more insight into the evolution of the elas-
tic membrane pore radii across all layers, we plot them
for several different instants of time in Fig. 5. The ini-
tial stage pattern at t = 0 represents the whole mem-
brane branching structure. Only one pore in each layer

is selected for the figure since all pores in the same layer
are identical. Figure 5 more clearly shows the different
shrinkage patterns in different layers, and it demonstrates
how the membrane’s hierarchical bifurcating structure
evolves during the filtration process.

Next, in Figs. 6(a) and (b), we show the evolution
of the particle concentration at the membrane outlet
cm(1, t), throughout the filtration process in a membrane
with and without elasticity, respectively. Again the red
asterisks denote the instant of time at which the flow
transits from the constant flux scenario to the constant
pressure regime. It can be observed that the trend of
cm(1, t) in the constant flux scenario is increasing. Then,
after transferring to the constant pressure regime, the
small particle concentration drops quickly. This change
in trends of cm(1, t) explains why the pore radius shrinks
faster after the filtration process switches to the constant
pressure regime. It is evident that the particle concentra-
tion remains low for a long time at the final stage of the
filtration process, which indicates clogging of the branch-
ing structure at that time. Both Figs. 6(a) and (b) show
that more particles escape from the elastic membrane,
compared to the rigid one, throughout the filtration pro-
cess, since the closure time tf is longer for the elastic
case.

Note that, during the filtration process, the flux is pro-
portional to the averaged Darcy velocity, therefore the di-
mensionless flux is given by q(t) = u(0, t). Consequently,

the dimensionless throughput is v(t) =
∫ t

0
q(t′)dt′, since it

is the total filtrate processed and equal to the cumulative
flux at time t. Figures 7(a) and (b) show the total flux
q(t) and the reciprocal of the pressure drop imposed at
the top of the branching model 1/p(0, t) versus through-
put v(t) for an elastic and a rigid structure, respectively.
In both figures, the blue curves (left axes) indicate that at
first flux q(t) remains constant until the filtration process
changes to the constant pressure regime, then it drops to
0 due to clogging. The orange curves (right axes) repre-
sent the inverse of the pressure at the upstream 1/p(0, t).
It decreases during the constant flux scenario and be-
comes constant after the process switches to the constant
pressure regime.

Figures 7(a) and (b) tell us that, for the elastic struc-
ture, the inverse of the pressure at the upstream 1/p(0, t)
decreases with a smaller slope compared to the rigid
membrane, while the flux falls to 0 with almost the same
rate in both cases. Moreover, for the elastic membrane
in Fig. 7(a), the flux-throughput curve’s shape is concave
at first and then becomes convex (although it might be
harder to see this in Fig. 7(b)), which is consistent with
the shape curvature discussed by Giglia and Straeffer 48

for their experiment. Note that, for the elastic mem-
brane, the pressure reaches the threshold value pswitch

more slowly than the for the rigid membrane; and the
whole filtration process lasts longer as well. Thus, our
model quantitatively captures the consequences of pore
elasticity in the filter. When the pressure increases, the
pore radii will expand due to elasticity, allowing more
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FIG. 6. Particle concentration at the downstream end, c(1, t), versus time t for a membrane with (a) elastic and (b) rigid pores.
Here, λf = 0.5, λp = 0.5, pswitch = 5, %0 = 1, κ = 0.8, ηf = 0.005, and ηp = 0.001. The asterisk in each plot denotes the instant
of time at which the filtration process switches from the constant flux to the constant pressure drop regime.

fluid to flow through. Then, it takes longer for the elas-
tic pores to shrink and become clogged.

Figure 7(c) shows the throughput v(t) (left axis) and
particle concentration at the outlet of each layer ci(xi, t)
for i ∈ {1, 2, 3, 4, 5} (right axis) versus time t. Note that
the throughput curve is monotonic but its slope decreases
with time due to clogging, meaning that the filter perfor-
mance ultimately deteriorates, as expected. The curves
representing the particle concentration at the outlet of
each layer ci(xi, t) show that the concentration of par-
ticles decreases along the depth of the membrane after
switching to the constant pressure scenario. This hap-
pens with steeper slopes as we move towards the top
layers, resulting in faster pore closure there. Our obser-
vations here are consistent with the ones for Fig. 3(d),
showing that the top of the pore in the 5th layer first
shrinks at a slower rate (compared to the other layers)
and then tends to a constant radius.

Figures 8(a) and (b) show the flux q(t) versus time
t and throughput v(t), respectively, for several different
values of the compliance coefficient ηf . Note that ηf
and ηp can not be changed independently, since they are
related by ηf = ηp pswitch (recall (44) and 54)). The sim-
ulation starts in the constant flux scenario, thus q(t) re-
mains constant until the flow is switched to the constant
pressure regime. We observe that as ηf increases, the
transition point moves to larger t (and, consequently, we
achieve larger v(t)). This observation can be explained
by, once again appealing to the membrane’s elasticity.
The constant flux scenario lasts longer because it takes
longer to reach the same pswitch. In addition, as should
be expected, the filtration process lasts longer, and more
filtrate is processed for larger values of ηf (and, thus,
ηp), as shown in Fig. 9, in which the dependence of tf
and v(tf ) on ηf are quantified.

V. CONCLUSION

In this paper, we derived a mathematical model of a
membrane filter with a branching hierarchical structure
composed of elastic pores. Using our model, we analyzed
the filtration performance of such a filter. In particu-
lar, taking adsorption of small particles at pore walls of
the membrane as the dominant mechanism of blocking
during the filtration process, we addressed the impact
of the hierarchical bifurcating interior morphology and
the elastic pore wall properties on the filtration perfor-
mance. Simulations of the filtration model performed
involved two stages: (i) filtration under constant flux un-
til the pressure drop reaches a threshold value, then (ii)
filtration switches to a constant pressure drop scenario.
Through analysis, scaling and simulations, we showed
that the key model parameters that determine filtration
performance are the dimensionless attraction coefficients
λf and λp (for constant flux and constant pressure drop
conditions, respectively) between the pore wall and parti-
cles. In addition, the dimensionless fluid–structure inter-
action parameters ηf and ηp, which describe the elastic
wall’s compliance under constant flux and constant pres-
sure drop scenarios, respectively, were found to have a
strong influence on filtration performance.

In simulations, we first applied the constant flow con-
dition, for which the pressure increases to sustain the
flow. Then, we set a threshold pressure pswitch, at which
the model switches to the scenario in which the constant
pressure pswitch is maintained until the pores close (the
filter clogs). Due to the hierarchical branching morphol-
ogy, membrane fouling affects the pore sizes in each layer
differently. Our model quantitatively captures the evolu-
tion of these pore radii. Importantly, for the prototypical
membrane filter mechanical properties and flow condi-
tions considered in this work (recall Tables I and II), we
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FIG. 7. The flux q(t) (left axis) and the inverse of the pressure drop imposed at the upstream 1/p(0, t) (right axis) versus
throughput v(t) for a membrane with (a) elastic and (b) rigid pores. (c) Throughput v(t) (left axis) and particle concentration
at the outlet of each layer ci(xi, t) for i ∈ {1, 2, 3, 4, 5} (right axis) versus time t. Here, λf = 0.5, λp = 0.5, pswitch = 5, %0 = 1,
κ = 0.8, ηf = 0.005, ηp = 0.001.

showed that the balance between pore radius shrinkage
by particle absorption and its expansion by pressure (due
compliance of the elastic pore walls) delays fouling. In-
terestingly, as seen by comparing, e.g., Fig. 3(b) and (d),
compliance of the pores leads to a transition from de-
creasing pore radius with time (as the pores clog) back
to an increasing radius (expansion of the pores) near the
switching time from constant flux to constant pressure
operation.

Comparing the filtration performance through the par-
ticle concentration at the downstream end of the mem-
brane, we showed that the flux drops rapidly to zero for
rigid pores, while the flux remains largely unimpeded in
the case of elastic pores. In particular, the elastic mem-
brane remains viable (i.e., maintains flow) beyond the
time of clogging of the rigid-pore structure. Therefore,
we conclude that the elastic pores enable the whole fil-
tration process to last longer. For example, comparing

Fig. 8(a) and (b), we see that the total filtration time can
be increased significantly. As expected, larger values of
ηf and ηp (corresponding to more compliant pores) allow
for a longer duration of the filtration process and, con-
sequently, a greater total throughput q(t). In particular,
our model predicts a strong (greater than linear) depen-
dence of the filtration time tf and total throughput v(tf )
on ηf (see Fig. 9, in which an increase by a factor of al-
most two is achieved in tf over the range of ηf shown),
which has important implications for filter design.

Our model only considered one of the three common
fouling mechanisms: adsorption of small particles. Block-
ing by large particles and cake formation can affect the
filtration process as well. Therefore, incorporating these
latter two fouling mechanisms is a worthwhile direction
for future research. In addition, the branching structure
can also be generalized. Our study on only addressed
the performance of filtration through a symmetric hier-
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FIG. 8. Flux q(t) versus (a) time t, and versus (b) throughput v(t), for several values of ηf , with ηp = ηf pswitch. Here,
λf = 0.5, λp = 0.5, pswitch = 5, %0 = 1 and κ = 0.8.
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FIG. 9. Total time of filtration tf (left) and total throughput
v(tf ) (right) versus the elastic compliance coefficient ηf for
λf = 0.5, λp = 0.5, pswitch = 5 and %0 = 1.

archical branching membrane structure. Real membrane
filters can have more complex, irregular pore morphology
(recall Fig. 1). Therefore, in future work, it would be rel-
evant to study an asymmetric branching model with a,
possibly irregular, network of bifurcations and pore con-
nections. It would also be of interest to incorporate our
perturbative analytical solution for evolution of elastic
pores (recall §III C) into broader pore-network models of
multiphase flow in porous media49, which do not con-
sider pore deformation due to pressure. In this respect,
it would also be insightful to incorporate our modeling
into a systems engineering framework for industrial de-
sign considerations in the future. For example, in some
applications, the filter might be replaced or cleaned be-
fore switching from the constant flow to the constant
pressure drop scenarios. Whether to clean or exchange
a filter is based on financial considerations, as well as

how practical it is to do so in a given industrial device.
On a longer research horizon, a techno-economical anal-
ysis of filtration operations, which might determine best
practices, could be informed by our fundamental physical
modeling.
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