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Abstract

Geyser eruption is one of the most popular signature attractions at the Yellowstone
National Park. The interdependence of geyser eruptions and impacts of covariates
are of interest to researchers in geyser studies. In this paper, we propose a para-
metric covariate-adjusted recurrent event model for estimating the eruption gap time.
We describe a general bivariate recurrent event process, where a bivariate lognormal
distribution and a Gumbel copula with different marginal distributions are used to
model an interdependent dual-type event system. The maximum likelihood approach
is used to estimate model parameters. The proposed method is applied to analyzing
the Yellowstone geyser eruption data for a bivariate geyser system and offers a deeper
understanding of the event occurrence mechanism of individual events as well as the
system as a whole. A comprehensive simulation study is conducted to evaluate the
performance of the proposed method.

Key Words: Competing risks; Copula; Event dependence; Gap time; Recurrent

events; Yellowstone National Park.



1 Introduction

1.1 Background

Geyser eruption is one of the signature attractions at the Yellowstone National Park, which
is home to two-thirds of the worlds’ geysers. Tourists around the world crave to witness
this fascinating natural phenomenon. Many researchers are interested in studying geyser
eruptions and the underlying mechanisms. Fournier (1969) built a physical model to describe
the time interval between eruptions for the Old Faithful geyser, which is one of the most
famous geysers in the Yellowstone National Park. Rinehart (1972) showed that the Old
Faithful Geyser activities are affected by earth tidal forces, barometric pressure, and tectonic
stresses. However, geyser eruptions have not been studied by statistical methods. This
paper develops a statistical model for analyzing geyser eruption data from a bivariate geyser
system. This work will benefit the geyser study community for understanding and effectively
modeling geyser eruption activities.

Typical geyser eruption is a repeating process and hence can be modeled with a recurrent
process for events repeatedly occurring over time. Recurrent processes have had broad
applications in diverse areas. For example, they have been widely used for studying vehicle
failures in warranty studies (Lawless, 1995), relapse biomarkers in cancer research (Schaubel
and Cai, 2004), and sports injury analysis (Ullah et al., 2014). Typically the time interval
between two consecutive events, which is also referred to as the gap time, is studied to model
the event frequency in a recurrent process. The proportional intensity models (Cox, 1972,
and Andersen and Gill, 1982) are popular for modeling event occurrences of a single type of
event. In more sophisticated studies, there are multiple types of recurrent events observed
in a single system. The occurrence of any type of event will result in a system event. In
addition, in a multi-type recurrent event process, the gap time for different event types could
be correlated. For example, the occurrence of one type of event could cause other types of
events to occur more frequently. In this case, a multivariate recurrent process should be
considered to model the interdependence of multiple event types in the same system.

In many event analyses, covariates are found to be useful for modeling the event occur-
rence time and frequency. Many recurrent processes are affected by process conditions. For
example, some mechanical failures could occur at a higher frequency under a higher tem-
perature, humidity, or pressure. Incorporating covariates into the recurrent process models
could improve the model performance and provide a more precise estimation of the event
time and frequency. Models of this type are referred to as the covariate-adjusted recurrent

event process models.



In this paper, we focus on modeling and analysis of geyser eruptions for a two geyser
system in the Yellowstone National Park. In a multi-type recurrent event system, the system
events can result from either type of events, and hence any consecutive events could be
associated with the same or different event types. In order to describe this bivariate recurrent
event process, we need to not only understand the marginal behavior of each type of event,
but also understand the interdependence between the two types of events. We consider a
bivariate distribution for the gap times between successive events for a bivariate event system.
To improve the estimation, we leverage the covariate information on the eruption duration
and develop a covariate-adjusted bivariate recurrent event process model for estimating the
eruption gap time of a two geyser system formed by West Triplet Geyser and Grotto Geyser

in the Yellowstone National Park.

1.2 Related Literature

Recurrent event processes are extensively studied in the areas of reliability, public health,
and medical studies. The nonparametric estimation of gap time distribution based on mul-
tivariate failure time data was introduced in Schaubel and Cai (2004). Dauxois and Sencey
(2009) considered the risks of two nosocomial infections for patients admitted to hospitals.
Bouaziz et al. (2013) provided a nonparametric method to estimate the intensity function of
a recurrent process. Other than hazard functions and intensity functions, survival status in
time is often of interest as well. Huang and Liu (2007) investigated the disease free survival
rate in a recurrent heart failure study. Zeng and Lin (2009) and Garre et al. (2008) focused
on studying the terminal events in recurrent systems. Meyer and Romeo (2015) presented
Bayesian analysis of recurrent event using copulas. An earlier review regarding recurrent
events can be found in Lawless (1995) and a review on modeling of repairable systems can
be found in Lindqvist (2006). Classical books on recurrent event data analysis include Daley
and Vere-Jones (2003), Cook and Lawless (2007), and Duchateau and Janssen (2008).

In medical research, Liu and Huang (2009) presented repeated measurements of biomarker
to determine the HIV survival status in a recurrent event system. Sun et al. (2006) applied
covariate-adjusted additive hazard model for the data, which is involving recurrent gap
times. Prasad and Rao (2002) used a proportional hazard function with covariate adjustment
in a repairable system. In another application of recurrent event data, Huzurbazar and
Williams (2010) incorporated covariates in a flowgraph model. Yang et al. (2013) introduced
multivariate lognormal assumption on event gap times of different event types. Yang et al.

(2017) considered a parametric model for the multi-type event recurrent event data without



covariates and developed copula function on gap times for the recurrent process in a car
body manufacturing process.

Existing research does not consider correlated renewal process with covariate adjustments.
Motivated by the geyser data, we propose the CARP model to study the eruption gap time
for a two-geyser system. Application-wise, geyser eruption is rarely studied by statistical
models. For the geyser eruption study, the modeling and analysis presented in this paper

are new to geyser research.

1.3 Overview

The rest of this paper is organized as follows. Section 2 provides more details on the geyser
eruption data from the Yellowstone National Park. Section 3 discusses the model formulation
for the multi-type recurrent event system. Section 4 describes the maximum likelihood
approach for estimating the model parameters. A simulation study is described in Section 5
to evaluate the proposed method with model comparisons made under different parameter
settings. The modeling and analysis of the Yellowstone geyser data are detailed in Section 6.

Section 7 contains some concluding remarks.

2 Geyser Data

We use the publicly available Yellowstone geyser eruption data, which were collected in 2008
by the Geyser Observation and Study Association (GOSA). By using underground sensors,
water levels were measured continuously, and occurrences of geyser eruptions were detected
automatically. For each geyser, the GOSA data include the starting time and duration of each
eruption. We choose to analyze the data from the West Triplet Geyser and the Grotto Geyser
during the study period between June 2008 and November 2008. This particular dataset and
study period were chosen to ensure that completely uninterrupted recurrent event data are
available over a relatively long time span to allow for the dependence modeling for the two
geysers.

We merge their eruption records in a temporal order as illustrated in Table 1. The data
include the date and time when an eruption occurred, the eruption duration, and which
geyser had the eruption. During the study period, the West Triplet Geyser erupted more
frequently than the Grotto Geyser. Also, the eruptions of the West Triplet Geyser also lasted
longer than those of the Grotto Geyser on average. More specifically, the average eruption

gap time for the West Triplet Geyser is 6.8 hours with a standard deviation of 2.8 hours, while



the Grotto Geyser had an average eruption gap time of 9.3 hours with a standard deviation
of 8.6 hours. For the eruption duration, the Grotto Geyser eruptions lasted generally longer
than the West Triplet Geyser, with the average duration of the Grotto Geyser eruptions
being 3.5 hours with a standard deviation of 5.2 hours and the eruption duration of the
West Triplet Geyser averaged at 0.7 hours with a 0.5 hours standard deviation.

Figures 1a and 1b display the side-by-side boxplots of the time between eruptions and
the duration of eruptions, respectively, for the West Triplet and Grotto geysers. We can see
compared with the West Triplet Geyser, the Grotto Geyser has a much larger variation of
the eruption gap time with a number of extremely long gaps between eruptions and also
more variation in the eruption frequency. On the other hand, the West Triplet Geyser
has considerably shorter and less variable eruption durations than the Grotto Geyser. In
addition, Figure 2 shows the plots of the time between eruptions versus the duration time
of the previous eruption for both geysers. We can observe a moderate correlation between
these two variables for the West Triplet Geyser and a strong correlation for the Grotto geyser.
Hence, we decided to utilize the duration of the previous eruption for both geysers to help
model the eruption gap time.

Figure 3 illustrates the data obtained for the two-geyser system. In this figure, Wy,
denotes the gap time of the kth eruption (i.e., the time interval between the (K  1)th and
kth eruptions) for geyser j where j = 1 for the West Triplet Geyser and j = 2 for the Grotto
Geyser. The covariate x; denotes the eruption duration for the ¢th eruption in the bivariate
geyser system, where ¢ = 1, xxx,n, n = n; + ny is the total number of eruptions for both
geysers, and n; denotes the number of eruptions for the jth geyser. In particular, n; = 580,
ny = 421, and n = 1001 for the dataset we analyzed. Note here the time between eruptions
are labeled separately for each individual geyser. To model the bivariate geyser system, we
will introduce new notation for jointly describing the event time, event type and covariate

information in Section 3.

3 Data Setup and Model

3.1 Data Setup

Suppose that in a bivariate recurrent process with n total events, the systematic event time
is described by the variable T; for i = 1, x,n. We use T} to denote the starting time or the
system installation time, and 7,, denotes the last event time in the system. In a bivariate

system, there are two types of events, and hence we use an indicator variable A; / }1,2| to



Table 1: Sample observations from the West Triplet and Grotto Geysers.

Eruption time Duration (hours) Geyser
2008-06-20 16:58:00 0.93 Grotto
2008-06-20 20:46:00 0.75 West Triplet
2008-06-20 21:31:00 2.05 Grotto
2008-06-21 02:51:00 1.08 West Triplet
2008-06-21 04:48:00 2.63 Grotto
2008-06-21 11:15:00 1.72 Grotto
2008-06-21 13:02:00 0.48 West Triplet
2008-06-21 17:56:00 3.58 Grotto
2008-06-21 18:20:00 0.73 West Triplet
2008-06-22 00:11:00 0.93 Grotto
c, | g |
— | s s
' 5
(a) Time to eruption (Hour) (b) Eruption duration (Hour)

Figure 1: Boxplots for the time to eruption and the eruption duration for the West Triplet
Geyser and Grotto Geyser from June to November in 2008. Note that the y axis is on log
scale.
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Figure 2: The plot of the time between eruptions versus the eruption duration for (a) the
West Triplet Geyser and (b) the Grotto Geyser from June to November in 2008. Note that
both the z axis and the y axis are on log scale.
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Figure 3: Illustration of geyser eruptions with West Triplet and Grotto Geysers.



represent the type of event. For an event that occurs at time ¢;, the covariate vector on the
event duration is denoted by X;, which is a vector of the previous duration for both types
of events. Therefore, each event can be represented by }T;, A;, X;|, where i = 1, xxx,n. We
use }t;, 0;, ;| to denote the observations of the ith event which occurs at time ¢; and it is
from event type 0; with covariates measured as ;. Note in an observed recurrent process
with n total events, the last event is observed at time t,, where ¢, > k with s being the
pre-defined study termination time.

This sequence of bivariate events can be expressed as a counting process }N(t) : t ~ 0],
where N (t) denotes the cumulative number of events at time ¢ regardless of the event type.
Similarly, we define the counting process for each individual event type j as }N;(t) : t ~ 0|,
where 7 = 1 or 2. In addition, we denote the event history of the system up to a time
point s > k by Xy = }N(t) : t > s|. Similarly, the covariate history can be expressed as
{s = }x; : t > s|. For further discussion, we use Hy = }X;, {s| to denote the history
including both event and covariate information.

For a bivariate recurrent process system, event time variable T; defined above satisfies
0="To < T < xxx< T, < xxx< 1), > K.

Similarly, for events of type j, the event time variables are defined as 7j;, where [ =1, ..., n;
and n; is the number of events from type j. In a bivariate recurrent system, we have the
relation n; + ny = n. The time variable Tj; is also presented in temporal order. For the

events of type 7, j = 1 or 2, we have
0="To; <Thiy << Ty < X< T 5 2 K.

Based on the ordered event times, the event gap time for the jth type as the interval between
two consecutive events can be calculated as Wi; = Tjyq; Ty, where [ =0,1,...,n; 1.
Now consider the joint bivariate recurrent system. For the i¢th event in the system, the

two-dimensional event gap time variable is defined as
“/i - (VI/Z“,:U mi2,2>,7

where [;; = N;(t;) is the cumulative number of events for jth event type by time t,. For
example, at the system installation time where ¢ = 0, the event gap time vector is Wy =
(Wor, Woo)'. Tf the first event occurs at time ¢; and is from event type 1, then the event gap

time vector is denoted as Wy = (W1, Wyo)'. In this case, [;; = 1 since one event of type 1



has occurred as of time t;, while /15 = 0 as no event of type 2 has occurred by that time
point.

To link the event gap time W; with the system event time 7}, we introduce an age variable
at time ¢ which is defined as the time between the time point ¢ and the time of the latest
event of each event type. In a bivariate recurrent process, the age variable is a vector of two

components denoted as
A; = [A(Th), A(TH)]

where A;(t) =t Tn;t),; for j = 1 and 2. For an observed event at time ¢;, the observed
age vector is denoted as a; = [a1(t;), ax(t;)]’, where a;(t) =t  tn,@),;. For example, at the
system installation time at ¢ = 0, the age vector is ag = (0,0)’. If the first event occurs from
type 1 at time ¢y, then a; = (0,¢;). The age variable then connects between the system
event time and the event gap time W, through the relation W; ~ A;. Here, the vector
comparison is defined to be an element-wise comparison. In other words, W, ~ A, suggests
Wi,,.; ~ A;(T;) for both j =1 and 2.

3.2 Model

In this section, we introduce the proposed covariate-adjusted recurrent process (CARP).
After an event occurred at time ¢; (or after the system installation at time ¢, = 0), the

distribution of the event gap time is given by
W, H,, coFw (v a;, x;), i=0,1,2 xxx n. (1)
Here, W = (W, Ws)', v = (v, v2)’, and
Fw (v a;, ;) =Pr(W; > v W, ~ a;, x;) (2)

is the joint cumulative distribution function (cdf) of the event gap time conditioned on the
age and covariates. At any event time, the information we have about the event type that
has not yet occurred is captured through its age and the conditional probability that is
conditioned on the event eruption time is greater than or equal to the age since the last
eruption. At each event time, the age is set to be zero for the occurred event type. The
event gap time variable W; is adjusted by covariates x; which is further discussed in Section

3.3 in more detail.



3.3 Dependence Modeling and Covariate Adjustment

Dependence between events from different types in a bivariate system is modeled by im-
plementing distributional assumptions on variable W; = (W;1, W;3)". In this paper, we use
a bivariate lognormal distribution and a copula function to model the random vector W,
where in both models, covariates x; are used for adjustment. We refer to the CARP models
under these assumptions as the CARP-MLN and CARP-copula models, respectively. Here

MLN is short for multivariate lognormal.

The CARP-MLN Model

For the multivariate lognormal distribution,
W, coMLN|[pu(x;), X,

where the location parameter in the bivariate lognormal distribution is expressed as a linear

form of covariates x;. That is,

pu(x;) = po + Bx; . (3)

In the linear expression above, pg is a vector of baseline location parameters and B is a 2
< 2 coefficient matrix. In the bivariate lognormal assumption, we use a covariance matrix
3} to capture the event dependence between events from two event types. Specifically, the
diagonal elements in 3 represent marginal variances while the off diagonal elements stand
for the covariances. When using the bivariate lognormal distribution, the covariance matrix

is defined as X = CC’ to ensure X to be positive definite, where

cz<“1 0). @)
n o2

The correlation p is determined by o, and 7 as

S
o3+ 17

Note the above covariance matrix offers great flexibility to model different correlation rela-
tionships of varied size and direction. The sign of the n value determines if the two types
of events have a positive or negative correlation. In a bivariate lognormal distribution, the

marginal distribution of each dimension also follows a lognormal distribution. Therefore,
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when the observed marginal distributions do not seem to follow the lognormal distributions,
or their dependency cannot be characterized by the covariance matrix 3, the assumed bi-
variate lognormal distribution is not appropriate. In this case, the alternative strategy is
to define W7 and W, by separate distributions and combine them through a more flexible
copula function. This is referred to as the CARP-copula model, which will be introduced in

the next section.

The CARP-copula Model

Let F} and F5 denote the marginal cdfs of W7 and W;. There always exists a copula function

C' such that the joint cdf of the two dimensional variable (Wi, W5)" can be written as
F(vi,v2) = C[F1(vy), Fa(v)], (5)
where for any unitary uniform variable U;, j = 1,2, the bivariate copula is defined as
C(uy,u9) = Pr(Uy > uy, Us > us).

This is also known as the Sklar’s Theorem. By using a copula function, we have the flexibility
to choose marginal distributions separately for each event type. For instance, a Gamma
distribution and a Weibull distribution can be used as marginal distributions for the two types
of events, respectively. With selected F} and F5, one can combine the marginal distributions
by using different copula functions.

Note the copula approach allows us to model the marginal distributions separately and
then combine them through an appropriate copula function for modeling the dependence
structure. For the geyser system, we choose to use parametric distributions for modeling the
marginal distributions. However, the method can be easily generalized to using nonparamet-
ric methods for modeling the marginal distributions and hence offers great flexibility to be
adapted for broad applications.

In the literature, a variety of copula functions has been introduced to capture different
dependence patterns among the marginal distributions. A Gaussian copula uses a multivari-
ate normal distribution of transformed marginal distributions based on the inverse cdf of the
standard normal distribution. The Archimedean copulas are an associative class of copula
functions that model the multivariate dependence through a single parameter. The power
variance function copulas including Clayton, Gumbel and Inverse Gaussian are among the

most popular ones that are flexible for modeling various dependence structures (e.g., Romeo
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et al., 2018). In this paper, we use the Gumbel copula function which is popular for model-
ing stronger dependence in the positive tail. We refer to the CARP model with the use of
Gumbel copula as CARP-copula model for the rest of the paper. In fact, the CARP-MLN
model is a special case of the CARP-copula model, where in CARP-MLN, the Gaussian
copula is applied and lognormal marginal distributions are selected.

The CARP-MLN model characterizes the dependence among event types through the
covariance matrix 3, while the CARP-copula model quantifies dependence using the copula
parameter. Particularly, in the Gumbel copula model, the parameter is denoted as . As
a result, in the CARP-MLN and CARP-copula models, we have different parameters to
characterize event dependence. In order to compare dependence from different models, we
introduce the Kendall’s tau.

In the CARP-copula model, the Kendall’s tau is expressed as 7 = 1  1/«, where « is
the copula coefficient in the Gumbel copula. In the CARP-MLN model, the Kendall’s tau
is calculated as 7 = (2/7) arcsin(n/+/03 + 1?), where 1 and oy can be found in (4).

Similar to the CARP-MLN model, for the CARP-copula model, we also use a linear form
of the covariates x; to represent location parameters in marginal distributions as in (3). In the
CARP-MLN model, we use a two dimensional vector p(x;) = [p1(@;), u2(x;)]’ to represent
the location parameter of the lognormal distribution. While in the CARP-copula, p;(;)
and po(x;) stand for the location parameters for the first and second marginal distributions,

respectively.

3.4 Properties of CARP

For event gap time variable W, we define the survival function (sf), cdf and hazard function

as follows. We denote the joint sf of W; as,
S('v) = PI”(VVH > 1, Wig > 1]2). (6)
The joint cdf is
Fw(v) = Pr(Wi > v, Wig > v),

and the corresponding joint probability density function (pdf) is denoted by fw (v). Accord-
ing to (2), the joint pdf of the event gap time variable given all historical events W, H;, is
given by

fwlai(c1), as(co)]
S(CI,Z> '

fw(’v ai,wi) = Uj > aj<ti>7 ] = 1727 (7)
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where ¢; = t;,,; + W;,j = 1,2. The denominator in (7) takes age condition into account,
while the numerator builds the relationship among the event gap time W;, the event time
ti,;; and the age a;(c;). Covariates x; are used to adjust the gap time W; as discussed in
Section 3.3.

For further discussions, let H;,~ be the event history up to time t. Note that for event
type j, T, (-),; gives the most recent event time by time ¢, and the age variable prior to
time ¢ is denoted as A;(t) =t Ty, , which calculates the cumulative running time
upon time ¢ since the last event. We use a™(t) = [ay (t), a5 (t)]" to denote the age vector for
the two event processes prior to time ¢. Hence, prior to an event time ¢;, the age vector is
denoted as a; = a~ (t;). For example, at the initial time 0, the vector is a, = (0,0)". If the
event type is §; = 1 at ¢y, then a; = (t1,t;)". Note that a; updates the age to be zero for
the corresponding event type at an event time, while a; does not. This notation is used to
derive the likelihood in Section 4, is also used to define the hazard function below.

In the literature, the sub-intensity function (i.e., cause-specific event intensity function)
is often used to characterize an event process. In particular, the sub-intensity function for
event type j is defined as

Pr[T / (t,t + At),A =6, Hy| 8
N : (8)

where T is the event time, and A is the event type. The sub-cumulative intensity function
is H;(t) = fot h;(s)ds. The hazard function and cumulative hazard function for the system

are calculated as the sum of corresponding functions for the two event types,
2
h(t)=> hi(t) and H(t)=Y Ht).
j=1

The sub-intensity function in (8) is calculated as

_ Djla"(1)]
h;(t) = Sla (1]

where D;(v) = , 9)

and v = (v1,02) is a vector with two components. More detail about the calculation of

D;(v) under different models will be discussed in Section 4.
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4 Parameter Estimation

The maximum likelihood (ML) approach is used to estimate model parameters. Parameters
in the model include parameters in the joint distribution function, the copula function and
the linear covariate transformation function. Given all the event history H,, the likelihood

function is constructed as follows:
LOH.) =[] Li(6 ai,x), (10)

where

LZ(O ai,:ci) = PI'[E / (ti,ti + At),AZ = 57, ;thiflh for = 1, XXX, . (11)

Let @ denote the vector of all the parameters in the model. The estimated parameters 0
are asymptotically normally distributed based on the large sample ML theory (Casella and
Berger, 2002). The calculation of the likelihood L; for the proposed CARP models is shown
below.

For any observed recurrent process with n total events, the likelihood contribution for

i=1,xxnin (11) is given by

In (12), the quantity Ds,(a; ), which is introduced in (9), is the partial derivative of the
bivariate sf S(a; ). The covariates @; are used to adjust the distribution of W;. Likelihood
calculations so far are the same for both the CARP-MLN and CARP-copula models. How-
ever, we need different ways to calculate D;(a; ) for the two CARP models based on how
the survival functions are calculated, which are detailed below.

For the CARP-MLN model, the sf is calculated in a closed form as discussed in (6), and

the partial derivative with regard to the jth event type can be written as

63(’0]‘, ’Uj/)

Dj(a;) = .
J

= Jfilay (t)] S PriWy ~aj(t); 5" F Wi = aj ()], (13)

1):0,7:

where f;la; (t;)] is the jth marginal density function from a bivariate lognormal distribution.

In (13), the conditional probability can be calculated from the conditional normal distribu-
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tion with a logarithm transformation. Calculation details can be found in Appendix A.1.
For the CARP-copula model, the likelihood function is calculated based on the relation-
ship between the bivariate sf S(a; ) and the cdf F(a; ). In bivariate cases, the sf and cdf

have the following relationship:
Slai(ti), az(ts)] =1 Flai(ti), € ] Fl€ ,aa(ti)] + Flai(t:), a2(t)],

where the joint cdf can be calculated by the copula as in (5). The calculated likelihood will
vary for different choices of the marginal distribution and the copula function. In our case,
we chose the Gumbel copula as described in Section 3.3. The ML estimates 6 are obtained

by maximizing the likelihood function in (10).

5 Simulation Study

This section describes the simulation study we conducted for evaluating the proposed method.
We simulated bivariate recurrent system data based on different models and parameter values.
The performance of the proposed method was then evaluated based on the simulated data.
Different parameter values were considered in the simulation for both the CARP-MLN and
the CARP-copula models to understand the impact of the model parameters. We evaluated
the model goodness of fit by calculating the average AIC and the mean squared error (MSE)
of the estimated model parameters. The goal is to demonstrate the performance of the

proposed method and the improvement by using the covariate adjustment.

5.1 Simulation Setting

We used both the CARP-MLN and CARP-copula models to simulate the data. For each
generated data set, both models were fitted to the data and results were evaluated. The
model used to generate data is referred to as the true model, while the models used to fit
the data are referred to as the fitted models. We explored changing the sample sizes (n),
the Kendall’s tau value, the scale parameters (o;, j = 1,2), and the linear transformation
matrix (B) to understand their impacts on the analysis.

First, to understand the impact of sample size, we varied the sample size at n =200, 500,
1000 and 2000 when generating the data using each model. For the CARP-copula model,
the lognormal marginal distributions were used for both event types along with the Gumbel
copula function. The location and scale parameters for lognormal marginal distributions in

the true model were specified at (1 = 1,07 = 0.25) and (uz = 1.5, 09 = 0.25). For the linear
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transformation matrix B, we used the 2 < 2 matrix below

15 0
BZ( 0 0.1)' 14

We chose to set the Gumbel copula parameter o at 1.5. When generating the data based on
the CARP-MLN model, we used the same location and scale parameters for the marginal log-
normal distributions, and adjusted the correlation parameter 7 to obtain the same Kendall’s
tau as in the CARP-copula model.

Second, to evaluate the effect of the Gumbel copula coefficient «, we varied its value at 1,
1.12, 1.5 and 2.22 by changing the Kendall’s tau parameter in the true models, while keeping
all other parameters the same with the sample size fixed at n = 1000. Considering that the
CARP-MLN and CARP-copula models quantify the Kendall’s tau differently, we used n at
0, 0.0443, 0.1445 and 0.299 for the CARP-MLN model, so that the Kendall’s tau from both
CARPs are varied at 0, 0.11, 0.33 and 0.55.

We also explored the impact of the scale parameters by letting o and o, vary at 0.35,
0.3, 0.25 to 0.20 for the marginal lognormal distributions of the CARP-Copula model while
keeping sample size at n = 1000 and the Kendall’s tau was kept at 0.33. Similarly for the
CARP-MLN model, covariance matrices were adjusted to align with the marginal distribu-
tions used in the CARP-Copula model.

Lastly, the effect of covariate adjustment was studied by using different types of B. True
models used both non-zero and zero B matrices. In the non-zero B case, we used the
coefficient matrix in (14) to generate data. In the zero B case, B = 0 was used. The
Kendall’s tau was set to be 0.33, while other parameters are the same as ones in the sample

size case. A sample size of 1000 is used across true models.

5.2 Simulation Results

The simulation results under different true models and fitted models are summarized in this
section. For each true model, the model performance was summarized over 1000 simulated
data sets. The simulation size was chosen to ensure a reliable analysis result while balancing
the computing time needed to evaluate a broad number of scenarios. Further increasing the
simulation size would not result in a meaningful change in the evaluated summary statistics
and the drawn conclusions. Under each fitted model, the average AIC was computed. In
order to evaluate the performance of parameter estimates, we calculated the MSE of the

location parameter pu, scale parameter ¢ and the linear transformation parameter B for
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Table 2: Average AIC from CARP-MLN and CARP-copula calculated by 1000 repeated
samples on true models generated by both CARP-MLN and copula models. Sample sizes
from true models are changed from 200, 500, 1000 and 2000.

True Model Copula Generation MLN Generation
Fitted Model MLN Copula MLN Copula
200 702.0 722.5 722.9 721.9
Sample 500 1755.4 1751.3 1806.1 1808.7
size n 1000 3513.7 3504.9 3615.4 3622.3
2000 7027.7 7014.3 7220.0 7234.8

Table 3: Average AIC by CARP-MLN and copula under different Kendall’s tau. a and 7
are used to adjust the Kendall’s tau in the true models for CARP-MLN and CARP-copula,
respectively.

True Model Copula Generation MLN Generation
Fitted Model MLN Copula MLN Copula
0 3472.2 3459.5 3459.4 3455.7
Kendall’s 0.11 3510.5 3506.9 3489.3 3490.8
tau (7) 0.33 3513.7 3504.9 3611.7 3618.6
0.55 3445.6 3439.7 3837.3 3852.3

different sample sizes.

Table 2 shows the average AIC of the fitted models summarized over the 1000 simulated
data sets generated using both the CARP-copula and CARP-MLN models at different sample
sizes. Both the CARP-MLN and CARP-copula models were applied to each simulated data
set. We can see at each fixed sample size, the fitted CARP model that matches the true
model used for simulating the data generally outperforms the other model by having a smaller
average AIC value, except for the smallest size case at n = 200 where the difference in the

average AIC values are extremely small. The advantage of using the true model becomes

Table 4: The Average AIC by CARP-MLN and copula under different scale parameters. oy
and oy are set equal in the true models for CARP-MLN and CARP-copula.

True Model Copula Generation MLN Generation
Fitted Model MLN Copula MLN Copula
Seale 0.35 4084.7 4071.7 4148.9 4158.1
parameter 0.30 3747.4 3736.1 3820.0 3826.7
(o1 and o) 0.25 3513.7 3504.9 3615.4 3622.3
0.20 2891.6 2882.7 2980.9 2983.3
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Figure 4: MSE for the location and parameter p;, po, scale parameter oy, 0o and coefficient
B, calculated by both CARP-MLN and copula model with different sample sizes. The true

model is CARP-copula with lognormal marginal distributions.
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Table 5: Average AIC from different true models and fitted models to evaluate effect of
covariate adjustment. True and fitted models are copula and MLN with or without coefficient

B.

Fitted Model Copula MLN
True Model Non-zero B Zero B Non-zero B Zero B
Copula Non-zero B 3505.6 4069.9 3514.4 4064.8
Zero B 2480.5 2485.1 2492.9 2489.0
MLN Non-zero B 3617.7 4186.2 3610.8 4180.0
Zero B 2572.9 2568.7 2565.3 2561.1

more prominent as the sample size increases.

Figures 4 and 5 compare the MSE of the estimated parameters at different sample sizes
between the two fitted models for the simulated data generated from the CARP-copula and
the CARP-MLN models, respectively. The MSEs are evaluated for the location parameter
1, the scale parameter o and linear transformation coefficient B which are included in both
figures. The black solid lines represent the MSE based on the fitted CARP-MLN model,
and the red dashed lines represent the estimates from the fitted CARP-copula model. Two
major conclusions can be drawn from these two figures. First, the MSEs of all the parameters
decrease with the sample size. The more data we generate and use to fit the models, the
more reliable the estimated models are with more accurate estimates of model parameters
regardless of the choice of the model. Second, the use of the correct model does lead to
slightly more accurate estimate of the model parameters across all sample size and model
parameters. However, the improvement is more prominent for the scale parameters o than
other model parameters. When the true underlying model is generated by CARP-copula
and far from bivariate lognormal, CARP-copula fits data better.

Table 3 shows the average AIC values of the fitted models when the Kendall’s tau for
capturing the dependence between two event types varies at the levels of 0, 0.11, 0.33 and
0.55. When the Kendall’s tau is not zero which suggests some level of dependence between
two marginal variables, using a fitted model that matches the true model for generating the
data will result in a smaller average AIC value with a bigger improvement achieved when
stronger dependence exists between the two types of events. When the Kendall’s tau is zero
indicating the marginal distributions are independent, the average AIC values are generally
similar regardless which model is used to fit the data.

Table 4 shows the comparison based on using different scale parameters in the true
underlying model for both the CARP-copula and CARP-MLN models. Again, across all

evaluated scale parameter values, we observe consistently smaller average AIC values when
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the fitted model matches the true model used for data generation.

Lastly, Table 5 compares the results of using different coefficient matrix B. We simulated
data with both non-zero and zero B using both the CARP-MLN and CARP-copula models.
For each simulated data, we fitted both the CARP-MLN and CARP-copula models with
non-zero and zero B. Similar patterns can be observed. When the true model was used as
the fitted model, it results in the smallest AIC value. When non-zero B was used to generate
the data, the use of covariate adjustment led to substantial improvement in the average AIC
of the fitted model compared to using zero B. On the other hand, when the data were
generated with zero B, using the non-zero B fitted models produced similar AIC values as
the zero B models. Therefore, the covariate adjustment is generally recommended due to
its potential to substantially improving the model performance by leveraging the additional

covariate information.

6 Analysis of the Geyser Data

In this section, we present the analysis for the bivariate geyser system in the Yellowstone
National Park using the proposed CARP models. Two adjacent geysers including the West
Triplet and the Grotto Geyser are considered for our analysis. Geyser eruptions are highly
related to underground water levels, which can be affected by a nearby geyser eruption. Also,
it is believed that the eruption duration could affect the gap time until the next eruption. In
particular, the longer the current eruption lasts, the longer it will take for the next eruption
to occur. This is because a longer eruption usually indicates more water consumption during
the eruption and hence a longer water gathering time is expected to reach the next eruption.

We use both the CARP-MLN and the CARP-copula models with lognormal marginal dis-
tributions to analyze the geyser data. For the CARP-MLN model, the parameters are 8 =
(p1, p2, 01, 09,1, b11, bia, ba1, bao)', where pq, pia, 01,09 and 1 define the baseline location pa-
rameters and scale parameters in the bivariate lognormal distribution. For the CARP-Copula
model, the parameters are @ = (1, fi2, 01, 02, @, b1y, bia, ba1, ba2)’, where g, s, 01 and oy are
the location and scale parameters in marginal lognormal distributions, and « is the coef-

ficient parameter in the Gumbel copula. In both cases, the 2 < 2 matrix B is the linear

bin b
B— b2
o1 bao

coefficient, and it can be denoted as
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Table 6: Parameter estimates and 95% confidence intervals from CARP-MLN model for the
geyser data.

Parameter | Estimates 95% lower 95% upper
iRt 1.881 1.839 1.922
Lo 2.126 2.072 2.180
b1 0.880 0.720 1.041
b1 0.058 0.166 0.283
bio 0.003 0.008 0.003
boo 0.063 0.050 0.077
n 0.053 0.093 0.014
o1 0.416 0.391 0.440
lop) 0.493 0.459 0.527
T 0.069 0.070 0.067

Table 6 shows estimation results for the CARP-MLN model, while Table 7 presents esti-
mation results for the CARP-copula model. For simplicity, we use §MLN and é\cp to represent
parameter estimates based on the CARP-MLN and CARP-copula models, respectively.

The estimated linear coefficients B for both models are shown as follows,

. 0.880  0.003 . 0862  0.017
B = and Bep = . 15
MEN (0.058 0.063 ) or (0.081 0.062 ) (15)

The estimates in (15) indicate that in general the longer the previous eruption duration is,
the longer waiting time it takes until the next eruption. The eruption duration impact is
substantial for the West Triplet Geyser as shown by /b\u = 0.880 in ﬁMLN, which suggests the
marginal previous eruption duration effect of West Triplet Geyser on its location parameter
is 0.880 on average.

For the CARP-MLN model, the estimated covariance matrix is

$_ 0.172 0.022
S\ 0022 0246 )
where the correlation estimation is calculated as 7j/1/03 + 1> =  0.05. This indicates a small
negative correlation between the event gap times of the West Triplet and Grotto Geysers. In

other words, a longer eruption gap time for West Triplet Geyser could be associated with a

shorter time interval for the next eruption of the Grotto Geyser. The Kendall’s tau provides
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Table 7: Parameter estimates and the corresponding 95% confidence intervals from CARP-
copula model using lognormal marginal distributions for the geyser data.

Parameter | Estimates 95% lower 95% upper
f1 1.847 1.809 1.886
Lo 2.102 2.051 2.152
b1 0.862 0.700 1.024
bo1 0.081 0.147 0.311
bio 0.017 0.007 0.004
boo 0.062 0.047 0.076
o1 0.417 0.392 0.442
09 0.497 0.459 0.535
o 1.000 0.958 1.042
T 0.000 0.001 0.001

a measure on event dependence in both models. The estimates from the CARP-MLN and
the CARP-copula models are 7y v = 0.07 and 7cp = 0, respectively. The confidence
intervals for 7 is calculated by the Delta method in Appendix A.2. The calculated AICs for
the CARP-MLN and CARP-copula models are 5113.1 and 5120.5, respectively, indicating
the CARP-MLN model is a slightly better fit for the geyser data.

One way to measure the goodness of fit is to compare the estimated cumulative intensity
function with the observed. The estimated and observed cumulative intensity functions from
both models are shown in Figures 6 and 7, with the black solid lines and the red dashed
lines representing the estimated and the observed cumulative intensity functions respectively.
We can see a better agreement between the estimated and the observed cumulative intensity
functions based on the CARP-copula model compared with the CARP-MLN model.

7 Concluding Remarks

This paper introduces two CARP models, CARP-MLN and CARP-Copula, for modeling
a bivariate recurrent process. With the covariate adjustment, the CARP models provide
improvements over traditional models for capturing the interdependence of the bivariate
event system. When the underlying data are close to a bivariate lognormal distribution,
both models work similarly well. However, when the real data are inconsistent with a
bivariate lognormal distribution, the CARP-copula model is recommended to improve the

model performance.
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Figure 6: Cumulative intensity function from fitted CARP-MLN model using the geyser
data.
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A special case of Archimedean copulas, the Gumbel copula function, is considered in
this paper. However, the general method can easily be adapted for other copula functions
available for the chosen models. One example is the Frank copula. Compared to the Gumbel
copula where only positive dependence can be quantified, the Frank copula can accommodate
both positive and negative dependence between two event types. On the other hand, the
Gumbel copula has an asymmetric dependence structure where correlations on the tail can
be very different than both the Gaussian and Frank copulas. In addition, differences of
the joint density functions between the Frank and Gaussian copulas are negligible when the
marginal distributions are the same.

The adjustment by using effective covariates significantly improves the model perfor-
mance. We have shown through the simulation study, when the true model includes a
significant covariate effect, that using the covariate adjustment significantly improves model
fitting. On the other hand, if there is no significant covariate effect, using the covariate
adjustment does not raise the AIC values. Therefore, in general we recommend using the
covariate adjustment given the true underlying model is unknown.

The choice of the marginal distributions in the CARP-copula model was made based
on the AIC value. Marginal distributions achieving the minimum AIC value were selected
in our model. One advantage of using the CARP-copula model is that different marginal
distributions can be easily used to model different event types. This offers tremendous
flexibility and broader generality to the CARP-copula model.

A multivariate CARP model will be considered for future work when there are more
than two event types in the recurrent system. For the geyser application, other covariates in
addition to the eruption duration would also be explored to further improve the performance
of the CARP models. In engineering applications when testing the reliability of systems is
often of interest. The loading-sharing system is related to the CARP model (e.g., Smith,
1983, Tierney, 1982, Sutar and Naik-Nimbalkar, 2014, and Zhang et al., 2020). In the future,
it will be interesting to apply the CARP to model the reliability of loading sharing systems.

Acknowledgments

The authors thank the editor, associate editor, and two referees, for their valuable comments
that helped in improving the paper significantly. The authors acknowledge the Advanced
Research Computing program at Virginia Tech for providing computational resources. The
work by Hong was partially supported by National Science Foundation Grant CMMI-1904165
to Virginia Tech.



25

A Appendix

A.1 Conditional Lognormal Probability

If a bivariate random variable y = (y1,y2)" follows a lognormal distribution MLN(u, 3)

where
r = (M17u2)/ and 3= ( oo ) )

021 022

then the conditional distribution of log(y;) log(ys) follows a normal distribution N(u., o.)

with location and scale parameter as
fte = p1 4 012055 [log(y2)  p2]  and  oc =011 01205 0o,

respectively.

A.2 Confidence Interval for Kendall’s tau

For lognormal cases, the Kendall’s tau estimator can be expressed as

2 7
T=—arcsil | —(——— | ,
4 o3+

where the asymptotic distribution is known from the ML estimator. Using the Delta method,

A or\?. . oF\* . . o7\ [ 07 P
Var(7T) = 8_ﬁ Var(n) + 75, Var(oy) + 2 8_?7\ 5, cov(n, 72),

where R
oo " @ap g ey,
o5+ 12
and R
e — [ 7ot + 3
L o3 + 1

For the Gumbel copula case,

o L

Q
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Similarly with the lognormal case, the variance for the estimator can be written by using

the Delta method. That is,
99()
oa

Var(?) = | ]QVar(@),

where g(z) =1 1/x.
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