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Abstract

Geyser eruption is one of the most popular signature attractions at the Yellowstone

National Park. The interdependence of geyser eruptions and impacts of covariates

are of interest to researchers in geyser studies. In this paper, we propose a para-

metric covariate-adjusted recurrent event model for estimating the eruption gap time.

We describe a general bivariate recurrent event process, where a bivariate lognormal

distribution and a Gumbel copula with different marginal distributions are used to

model an interdependent dual-type event system. The maximum likelihood approach

is used to estimate model parameters. The proposed method is applied to analyzing

the Yellowstone geyser eruption data for a bivariate geyser system and offers a deeper

understanding of the event occurrence mechanism of individual events as well as the

system as a whole. A comprehensive simulation study is conducted to evaluate the

performance of the proposed method.

Key Words: Competing risks; Copula; Event dependence; Gap time; Recurrent

events; Yellowstone National Park.
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1 Introduction

1.1 Background

Geyser eruption is one of the signature attractions at the Yellowstone National Park, which

is home to two-thirds of the worlds’ geysers. Tourists around the world crave to witness

this fascinating natural phenomenon. Many researchers are interested in studying geyser

eruptions and the underlying mechanisms. Fournier (1969) built a physical model to describe

the time interval between eruptions for the Old Faithful geyser, which is one of the most

famous geysers in the Yellowstone National Park. Rinehart (1972) showed that the Old

Faithful Geyser activities are affected by earth tidal forces, barometric pressure, and tectonic

stresses. However, geyser eruptions have not been studied by statistical methods. This

paper develops a statistical model for analyzing geyser eruption data from a bivariate geyser

system. This work will benefit the geyser study community for understanding and effectively

modeling geyser eruption activities.

Typical geyser eruption is a repeating process and hence can be modeled with a recurrent

process for events repeatedly occurring over time. Recurrent processes have had broad

applications in diverse areas. For example, they have been widely used for studying vehicle

failures in warranty studies (Lawless, 1995), relapse biomarkers in cancer research (Schaubel

and Cai, 2004), and sports injury analysis (Ullah et al., 2014). Typically the time interval

between two consecutive events, which is also referred to as the gap time, is studied to model

the event frequency in a recurrent process. The proportional intensity models (Cox, 1972,

and Andersen and Gill, 1982) are popular for modeling event occurrences of a single type of

event. In more sophisticated studies, there are multiple types of recurrent events observed

in a single system. The occurrence of any type of event will result in a system event. In

addition, in a multi-type recurrent event process, the gap time for different event types could

be correlated. For example, the occurrence of one type of event could cause other types of

events to occur more frequently. In this case, a multivariate recurrent process should be

considered to model the interdependence of multiple event types in the same system.

In many event analyses, covariates are found to be useful for modeling the event occur-

rence time and frequency. Many recurrent processes are affected by process conditions. For

example, some mechanical failures could occur at a higher frequency under a higher tem-

perature, humidity, or pressure. Incorporating covariates into the recurrent process models

could improve the model performance and provide a more precise estimation of the event

time and frequency. Models of this type are referred to as the covariate-adjusted recurrent

event process models.
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In this paper, we focus on modeling and analysis of geyser eruptions for a two geyser

system in the Yellowstone National Park. In a multi-type recurrent event system, the system

events can result from either type of events, and hence any consecutive events could be

associated with the same or different event types. In order to describe this bivariate recurrent

event process, we need to not only understand the marginal behavior of each type of event,

but also understand the interdependence between the two types of events. We consider a

bivariate distribution for the gap times between successive events for a bivariate event system.

To improve the estimation, we leverage the covariate information on the eruption duration

and develop a covariate-adjusted bivariate recurrent event process model for estimating the

eruption gap time of a two geyser system formed by West Triplet Geyser and Grotto Geyser

in the Yellowstone National Park.

1.2 Related Literature

Recurrent event processes are extensively studied in the areas of reliability, public health,

and medical studies. The nonparametric estimation of gap time distribution based on mul-

tivariate failure time data was introduced in Schaubel and Cai (2004). Dauxois and Sencey

(2009) considered the risks of two nosocomial infections for patients admitted to hospitals.

Bouaziz et al. (2013) provided a nonparametric method to estimate the intensity function of

a recurrent process. Other than hazard functions and intensity functions, survival status in

time is often of interest as well. Huang and Liu (2007) investigated the disease free survival

rate in a recurrent heart failure study. Zeng and Lin (2009) and Garre et al. (2008) focused

on studying the terminal events in recurrent systems. Meyer and Romeo (2015) presented

Bayesian analysis of recurrent event using copulas. An earlier review regarding recurrent

events can be found in Lawless (1995) and a review on modeling of repairable systems can

be found in Lindqvist (2006). Classical books on recurrent event data analysis include Daley

and Vere-Jones (2003), Cook and Lawless (2007), and Duchateau and Janssen (2008).

In medical research, Liu and Huang (2009) presented repeated measurements of biomarker

to determine the HIV survival status in a recurrent event system. Sun et al. (2006) applied

covariate-adjusted additive hazard model for the data, which is involving recurrent gap

times. Prasad and Rao (2002) used a proportional hazard function with covariate adjustment

in a repairable system. In another application of recurrent event data, Huzurbazar and

Williams (2010) incorporated covariates in a flowgraph model. Yang et al. (2013) introduced

multivariate lognormal assumption on event gap times of different event types. Yang et al.

(2017) considered a parametric model for the multi-type event recurrent event data without
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covariates and developed copula function on gap times for the recurrent process in a car

body manufacturing process.

Existing research does not consider correlated renewal process with covariate adjustments.

Motivated by the geyser data, we propose the CARP model to study the eruption gap time

for a two-geyser system. Application-wise, geyser eruption is rarely studied by statistical

models. For the geyser eruption study, the modeling and analysis presented in this paper

are new to geyser research.

1.3 Overview

The rest of this paper is organized as follows. Section 2 provides more details on the geyser

eruption data from the Yellowstone National Park. Section 3 discusses the model formulation

for the multi-type recurrent event system. Section 4 describes the maximum likelihood

approach for estimating the model parameters. A simulation study is described in Section 5

to evaluate the proposed method with model comparisons made under different parameter

settings. The modeling and analysis of the Yellowstone geyser data are detailed in Section 6.

Section 7 contains some concluding remarks.

2 Geyser Data

We use the publicly available Yellowstone geyser eruption data, which were collected in 2008

by the Geyser Observation and Study Association (GOSA). By using underground sensors,

water levels were measured continuously, and occurrences of geyser eruptions were detected

automatically. For each geyser, the GOSA data include the starting time and duration of each

eruption. We choose to analyze the data from the West Triplet Geyser and the Grotto Geyser

during the study period between June 2008 and November 2008. This particular dataset and

study period were chosen to ensure that completely uninterrupted recurrent event data are

available over a relatively long time span to allow for the dependence modeling for the two

geysers.

We merge their eruption records in a temporal order as illustrated in Table 1. The data

include the date and time when an eruption occurred, the eruption duration, and which

geyser had the eruption. During the study period, the West Triplet Geyser erupted more

frequently than the Grotto Geyser. Also, the eruptions of the West Triplet Geyser also lasted

longer than those of the Grotto Geyser on average. More specifically, the average eruption

gap time for the West Triplet Geyser is 6.8 hours with a standard deviation of 2.8 hours, while
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the Grotto Geyser had an average eruption gap time of 9.3 hours with a standard deviation

of 8.6 hours. For the eruption duration, the Grotto Geyser eruptions lasted generally longer

than the West Triplet Geyser, with the average duration of the Grotto Geyser eruptions

being 3.5 hours with a standard deviation of 5.2 hours and the eruption duration of the

West Triplet Geyser averaged at 0.7 hours with a 0.5 hours standard deviation.

Figures 1a and 1b display the side-by-side boxplots of the time between eruptions and

the duration of eruptions, respectively, for the West Triplet and Grotto geysers. We can see

compared with the West Triplet Geyser, the Grotto Geyser has a much larger variation of

the eruption gap time with a number of extremely long gaps between eruptions and also

more variation in the eruption frequency. On the other hand, the West Triplet Geyser

has considerably shorter and less variable eruption durations than the Grotto Geyser. In

addition, Figure 2 shows the plots of the time between eruptions versus the duration time

of the previous eruption for both geysers. We can observe a moderate correlation between

these two variables for the West Triplet Geyser and a strong correlation for the Grotto geyser.

Hence, we decided to utilize the duration of the previous eruption for both geysers to help

model the eruption gap time.

Figure 3 illustrates the data obtained for the two-geyser system. In this figure, Wkj

denotes the gap time of the kth eruption (i.e., the time interval between the (k 1)th and

kth eruptions) for geyser j where j = 1 for the West Triplet Geyser and j = 2 for the Grotto

Geyser. The covariate xi denotes the eruption duration for the ith eruption in the bivariate

geyser system, where i = 1,×××, n, n = n1 + n2 is the total number of eruptions for both

geysers, and nj denotes the number of eruptions for the jth geyser. In particular, n1 = 580,

n2 = 421, and n = 1001 for the dataset we analyzed. Note here the time between eruptions

are labeled separately for each individual geyser. To model the bivariate geyser system, we

will introduce new notation for jointly describing the event time, event type and covariate

information in Section 3.

3 Data Setup and Model

3.1 Data Setup

Suppose that in a bivariate recurrent process with n total events, the systematic event time

is described by the variable Ti for i = 1,×××, n. We use T0 to denote the starting time or the

system installation time, and Tn denotes the last event time in the system. In a bivariate

system, there are two types of events, and hence we use an indicator variable Δi � }1, 2| to
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Table 1: Sample observations from the West Triplet and Grotto Geysers.

Eruption time Duration (hours) Geyser
2008-06-20 16:58:00 0.93 Grotto
2008-06-20 20:46:00 0.75 West Triplet
2008-06-20 21:31:00 2.05 Grotto
2008-06-21 02:51:00 1.08 West Triplet
2008-06-21 04:48:00 2.63 Grotto
2008-06-21 11:15:00 1.72 Grotto
2008-06-21 13:02:00 0.48 West Triplet
2008-06-21 17:56:00 3.58 Grotto
2008-06-21 18:20:00 0.73 West Triplet
2008-06-22 00:11:00 0.93 Grotto
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Figure 1: Boxplots for the time to eruption and the eruption duration for the West Triplet
Geyser and Grotto Geyser from June to November in 2008. Note that the y axis is on log
scale.
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Figure 2: The plot of the time between eruptions versus the eruption duration for (a) the
West Triplet Geyser and (b) the Grotto Geyser from June to November in 2008. Note that
both the x axis and the y axis are on log scale.

Figure 3: Illustration of geyser eruptions with West Triplet and Grotto Geysers.
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represent the type of event. For an event that occurs at time ti, the covariate vector on the

event duration is denoted by Xi, which is a vector of the previous duration for both types

of events. Therefore, each event can be represented by }Ti,Δi,Xi| , where i = 1,×××, n. We

use }ti, δi,xi| to denote the observations of the ith event which occurs at time ti and it is

from event type δi with covariates measured as xi. Note in an observed recurrent process

with n total events, the last event is observed at time tn, where tn ≥ κ with κ being the

pre-defined study termination time.

This sequence of bivariate events can be expressed as a counting process }N(t) : t ∼ 0| ,

where N(t) denotes the cumulative number of events at time t regardless of the event type.

Similarly, we define the counting process for each individual event type j as }Nj(t) : t ∼ 0| ,

where j = 1 or 2. In addition, we denote the event history of the system up to a time

point s ≥ κ by X s = }N(t) : t ≥ s| . Similarly, the covariate history can be expressed as

{ s = }xt : t ≥ s| . For further discussion, we use Hs = }X s, { s| to denote the history

including both event and covariate information.

For a bivariate recurrent process system, event time variable Ti defined above satisfies

0 = T0 < T1 < ×××< Ti < ×××< Tn ≥ κ.

Similarly, for events of type j, the event time variables are defined as Tlj, where l = 1, . . . , nj

and nj is the number of events from type j. In a bivariate recurrent system, we have the

relation n1 + n2 = n. The time variable Tlj is also presented in temporal order. For the

events of type j, j = 1 or 2, we have

0 = T0j < T1j < ×××< Tlj < ×××< Tnj ,j ≥ κ.

Based on the ordered event times, the event gap time for the jth type as the interval between

two consecutive events can be calculated as Wlj = Tl+1,j Tlj, where l = 0, 1, . . . , nj 1.

Now consider the joint bivariate recurrent system. For the ith event in the system, the

two-dimensional event gap time variable is defined as

Wi = (Wli1,1,Wli2,2)
′,

where lij = Nj(ti) is the cumulative number of events for jth event type by time ti. For

example, at the system installation time where t = 0, the event gap time vector is W0 =

(W01,W02)
′. If the first event occurs at time t1 and is from event type 1, then the event gap

time vector is denoted as W1 = (W11,W02)
′. In this case, l11 = 1 since one event of type 1
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has occurred as of time t1, while l12 = 0 as no event of type 2 has occurred by that time

point.

To link the event gap timeWi with the system event time Ti, we introduce an age variable

at time t which is defined as the time between the time point t and the time of the latest

event of each event type. In a bivariate recurrent process, the age variable is a vector of two

components denoted as

Ai = [A1(Ti), A2(Ti)]
′,

where Aj(t) = t TNj(t), j for j = 1 and 2. For an observed event at time ti, the observed

age vector is denoted as ai = [a1(ti), a2(ti)]
′, where aj(t) = t tNj(t), j. For example, at the

system installation time at t = 0, the age vector is a0 = (0, 0)′. If the first event occurs from

type 1 at time t1, then a1 = (0, t1)
′. The age variable then connects between the system

event time and the event gap time Wi through the relation Wi ∼ Ai. Here, the vector

comparison is defined to be an element-wise comparison. In other words, Wi ∼ Ai suggests

Wlij ,j ∼ Aj(Ti) for both j = 1 and 2.

3.2 Model

In this section, we introduce the proposed covariate-adjusted recurrent process (CARP).

After an event occurred at time ti (or after the system installation at time t0 = 0), the

distribution of the event gap time is given by

Wi Hti ∞FW (v ai,xi), i = 0, 1, 2,×××, n. (1)

Here, W = (W1,W2)
′, v = (v1, v2)

′, and

FW (v ai,xi) = Pr(Wi ≥ v Wi ∼ ai,xi) (2)

is the joint cumulative distribution function (cdf) of the event gap time conditioned on the

age and covariates. At any event time, the information we have about the event type that

has not yet occurred is captured through its age and the conditional probability that is

conditioned on the event eruption time is greater than or equal to the age since the last

eruption. At each event time, the age is set to be zero for the occurred event type. The

event gap time variable Wi is adjusted by covariates xi which is further discussed in Section

3.3 in more detail.



9

3.3 Dependence Modeling and Covariate Adjustment

Dependence between events from different types in a bivariate system is modeled by im-

plementing distributional assumptions on variable Wi = (Wi1,Wi2)
′. In this paper, we use

a bivariate lognormal distribution and a copula function to model the random vector Wi,

where in both models, covariates xi are used for adjustment. We refer to the CARP models

under these assumptions as the CARP-MLN and CARP-copula models, respectively. Here

MLN is short for multivariate lognormal.

The CARP-MLN Model

For the multivariate lognormal distribution,

Wi ∞MLN[μ(xi),Σ],

where the location parameter in the bivariate lognormal distribution is expressed as a linear

form of covariates xi. That is,

μ(xi) = μ0 +Bxi . (3)

In the linear expression above, μ0 is a vector of baseline location parameters and B is a 2

≤ 2 coefficient matrix. In the bivariate lognormal assumption, we use a covariance matrix

Σ to capture the event dependence between events from two event types. Specifically, the

diagonal elements in Σ represent marginal variances while the off diagonal elements stand

for the covariances. When using the bivariate lognormal distribution, the covariance matrix

is defined as Σ = CC′ to ensure Σ to be positive definite, where

C =

(
σ1 0

η σ2

)
. (4)

The correlation ρ is determined by σ2 and η as

ρ =
η√

σ2
2 + η2

.

Note the above covariance matrix offers great flexibility to model different correlation rela-

tionships of varied size and direction. The sign of the η value determines if the two types

of events have a positive or negative correlation. In a bivariate lognormal distribution, the

marginal distribution of each dimension also follows a lognormal distribution. Therefore,



10

when the observed marginal distributions do not seem to follow the lognormal distributions,

or their dependency cannot be characterized by the covariance matrix Σ, the assumed bi-

variate lognormal distribution is not appropriate. In this case, the alternative strategy is

to define W1 and W2 by separate distributions and combine them through a more flexible

copula function. This is referred to as the CARP-copula model, which will be introduced in

the next section.

The CARP-copula Model

Let F1 and F2 denote the marginal cdfs of W1 and W2. There always exists a copula function

C such that the joint cdf of the two dimensional variable (W1,W2)
′ can be written as

F (v1, v2) = C[F1(v1), F2(v2)], (5)

where for any unitary uniform variable Uj, j = 1, 2, the bivariate copula is defined as

C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2).

This is also known as the Sklar’s Theorem. By using a copula function, we have the flexibility

to choose marginal distributions separately for each event type. For instance, a Gamma

distribution and aWeibull distribution can be used as marginal distributions for the two types

of events, respectively. With selected F1 and F2, one can combine the marginal distributions

by using different copula functions.

Note the copula approach allows us to model the marginal distributions separately and

then combine them through an appropriate copula function for modeling the dependence

structure. For the geyser system, we choose to use parametric distributions for modeling the

marginal distributions. However, the method can be easily generalized to using nonparamet-

ric methods for modeling the marginal distributions and hence offers great flexibility to be

adapted for broad applications.

In the literature, a variety of copula functions has been introduced to capture different

dependence patterns among the marginal distributions. A Gaussian copula uses a multivari-

ate normal distribution of transformed marginal distributions based on the inverse cdf of the

standard normal distribution. The Archimedean copulas are an associative class of copula

functions that model the multivariate dependence through a single parameter. The power

variance function copulas including Clayton, Gumbel and Inverse Gaussian are among the

most popular ones that are flexible for modeling various dependence structures (e.g., Romeo
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et al., 2018). In this paper, we use the Gumbel copula function which is popular for model-

ing stronger dependence in the positive tail. We refer to the CARP model with the use of

Gumbel copula as CARP-copula model for the rest of the paper. In fact, the CARP-MLN

model is a special case of the CARP-copula model, where in CARP-MLN, the Gaussian

copula is applied and lognormal marginal distributions are selected.

The CARP-MLN model characterizes the dependence among event types through the

covariance matrix Σ, while the CARP-copula model quantifies dependence using the copula

parameter. Particularly, in the Gumbel copula model, the parameter is denoted as α. As

a result, in the CARP-MLN and CARP-copula models, we have different parameters to

characterize event dependence. In order to compare dependence from different models, we

introduce the Kendall’s tau.

In the CARP-copula model, the Kendall’s tau is expressed as τ = 1 1/α, where α is

the copula coefficient in the Gumbel copula. In the CARP-MLN model, the Kendall’s tau

is calculated as τ = (2/π) arcsin(η/
√
σ2
2 + η2), where η and σ2 can be found in (4).

Similar to the CARP-MLN model, for the CARP-copula model, we also use a linear form

of the covariates xi to represent location parameters in marginal distributions as in (3). In the

CARP-MLN model, we use a two dimensional vector μ(xi) = [μ1(xi), μ2(xi)]
′ to represent

the location parameter of the lognormal distribution. While in the CARP-copula, μ1(xi)

and μ2(xi) stand for the location parameters for the first and second marginal distributions,

respectively.

3.4 Properties of CARP

For event gap time variable Wi, we define the survival function (sf), cdf and hazard function

as follows. We denote the joint sf of Wi as,

S(v) = Pr(Wi1 > v1,Wi2 > v2). (6)

The joint cdf is

FW (v) = Pr(Wi1 ≥ v1,Wi2 ≥ v2),

and the corresponding joint probability density function (pdf) is denoted by fW (v). Accord-

ing to (2), the joint pdf of the event gap time variable given all historical events Wi Hti is

given by

fW (v ai,xi) =
fW [a1(c1), a2(c2)]

S(ai)
, vj > aj(ti), j = 1, 2, (7)
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where cj = tlij ,j + Wj, j = 1, 2. The denominator in (7) takes age condition into account,

while the numerator builds the relationship among the event gap time Wj, the event time

tlij ,j and the age aj(cj). Covariates xi are used to adjust the gap time Wi as discussed in

Section 3.3.

For further discussions, let Ht− be the event history up to time t. Note that for event

type j, TNj(t−),j gives the most recent event time by time t, and the age variable prior to

time t is denoted as A−
j (t) = t TNj(t−),j, which calculates the cumulative running time

upon time t since the last event. We use a−(t) = [a−1 (t), a
−
2 (t)]

′ to denote the age vector for

the two event processes prior to time t. Hence, prior to an event time ti, the age vector is

denoted as a−
i = a−(ti). For example, at the initial time 0, the vector is a−

0 = (0, 0)′. If the

event type is δ1 = 1 at t1, then a−
1 = (t1, t1)

′. Note that a1 updates the age to be zero for

the corresponding event type at an event time, while a−
1 does not. This notation is used to

derive the likelihood in Section 4, is also used to define the hazard function below.

In the literature, the sub-intensity function (i.e., cause-specific event intensity function)

is often used to characterize an event process. In particular, the sub-intensity function for

event type j is defined as

hj(t) = lim
Δt→0

Pr[T � (t, t+Δt),Δ = δj Ht− ]

Δt
, (8)

where T is the event time, and Δ is the event type. The sub-cumulative intensity function

is Hj(t) =
∫ t

0
hj(s)ds. The hazard function and cumulative hazard function for the system

are calculated as the sum of corresponding functions for the two event types,

h(t) =
2∑

j=1

hj(t) and H(t) =
2∑

j=1

Hj(t).

The sub-intensity function in (8) is calculated as

hj(t) =
Dj[a

−(t)]
S[a−(t)]

, where Dj(ṽ) =
∂S(v)

∂vj

∣∣∣∣
v=ṽ

, (9)

and ṽ = (ṽ1, ṽ2)
′ is a vector with two components. More detail about the calculation of

Dj(ṽ) under different models will be discussed in Section 4.
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4 Parameter Estimation

The maximum likelihood (ML) approach is used to estimate model parameters. Parameters

in the model include parameters in the joint distribution function, the copula function and

the linear covariate transformation function. Given all the event history Hτ , the likelihood

function is constructed as follows:

L(θ Hτ ) =
n∏

i=1

Li(θ ai,xi), (10)

where

Li(θ ai,xi) = Pr[Ti � (ti, ti +Δt),Δi = δi Hti−1
], for i = 1,×××, n. (11)

Let θ denote the vector of all the parameters in the model. The estimated parameters θ̂

are asymptotically normally distributed based on the large sample ML theory (Casella and

Berger, 2002). The calculation of the likelihood Li for the proposed CARP models is shown

below.

For any observed recurrent process with n total events, the likelihood contribution for

i = 1,×××, n in (11) is given by

Li(θ ai,xi) =
Dδi(a

−
i )

S(ai−1)
. (12)

In (12), the quantity Dδi(a
−
i ), which is introduced in (9), is the partial derivative of the

bivariate sf S(a−
i ). The covariates xi are used to adjust the distribution of Wi. Likelihood

calculations so far are the same for both the CARP-MLN and CARP-copula models. How-

ever, we need different ways to calculate Dj(a
−
i ) for the two CARP models based on how

the survival functions are calculated, which are detailed below.

For the CARP-MLN model, the sf is calculated in a closed form as discussed in (6), and

the partial derivative with regard to the jth event type can be written as

Dj(a
−
i ) =

∂S(vj, vj′)

∂vj

∣∣∣∣
v=a−i

= fj[a
−
j (ti)]≤ Pr[Wj′ ∼ a−j′(ti); j

′ F= j Wj = a−j (ti)], (13)

where fj[a
−
j (ti)] is the jth marginal density function from a bivariate lognormal distribution.

In (13), the conditional probability can be calculated from the conditional normal distribu-
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tion with a logarithm transformation. Calculation details can be found in Appendix A.1.

For the CARP-copula model, the likelihood function is calculated based on the relation-

ship between the bivariate sf S(a−
i ) and the cdf F (a−

i ). In bivariate cases, the sf and cdf

have the following relationship:

S[a1(ti), a2(ti)] = 1 F [a1(ti),∈ ] F [∈ , a2(ti)] + F [a1(ti), a2(ti)],

where the joint cdf can be calculated by the copula as in (5). The calculated likelihood will

vary for different choices of the marginal distribution and the copula function. In our case,

we chose the Gumbel copula as described in Section 3.3. The ML estimates θ̂ are obtained

by maximizing the likelihood function in (10).

5 Simulation Study

This section describes the simulation study we conducted for evaluating the proposed method.

We simulated bivariate recurrent system data based on different models and parameter values.

The performance of the proposed method was then evaluated based on the simulated data.

Different parameter values were considered in the simulation for both the CARP-MLN and

the CARP-copula models to understand the impact of the model parameters. We evaluated

the model goodness of fit by calculating the average AIC and the mean squared error (MSE)

of the estimated model parameters. The goal is to demonstrate the performance of the

proposed method and the improvement by using the covariate adjustment.

5.1 Simulation Setting

We used both the CARP-MLN and CARP-copula models to simulate the data. For each

generated data set, both models were fitted to the data and results were evaluated. The

model used to generate data is referred to as the true model, while the models used to fit

the data are referred to as the fitted models. We explored changing the sample sizes (n),

the Kendall’s tau value, the scale parameters (σj, j = 1, 2), and the linear transformation

matrix (B) to understand their impacts on the analysis.

First, to understand the impact of sample size, we varied the sample size at n =200, 500,

1000 and 2000 when generating the data using each model. For the CARP-copula model,

the lognormal marginal distributions were used for both event types along with the Gumbel

copula function. The location and scale parameters for lognormal marginal distributions in

the true model were specified at (μ1 = 1, σ1 = 0.25) and (μ2 = 1.5, σ2 = 0.25). For the linear



15

transformation matrix B, we used the 2 × 2 matrix below

B =

(
1.5 0

0 0.1

)
. (14)

We chose to set the Gumbel copula parameter α at 1.5. When generating the data based on

the CARP-MLN model, we used the same location and scale parameters for the marginal log-

normal distributions, and adjusted the correlation parameter η to obtain the same Kendall’s

tau as in the CARP-copula model.

Second, to evaluate the effect of the Gumbel copula coefficient α, we varied its value at 1,

1.12, 1.5 and 2.22 by changing the Kendall’s tau parameter in the true models, while keeping

all other parameters the same with the sample size fixed at n = 1000. Considering that the

CARP-MLN and CARP-copula models quantify the Kendall’s tau differently, we used η at

0, 0.0443, 0.1445 and 0.299 for the CARP-MLN model, so that the Kendall’s tau from both

CARPs are varied at 0, 0.11, 0.33 and 0.55.

We also explored the impact of the scale parameters by letting σ1 and σ2 vary at 0.35,

0.3, 0.25 to 0.20 for the marginal lognormal distributions of the CARP-Copula model while

keeping sample size at n = 1000 and the Kendall’s tau was kept at 0.33. Similarly for the

CARP-MLN model, covariance matrices were adjusted to align with the marginal distribu-

tions used in the CARP-Copula model.

Lastly, the effect of covariate adjustment was studied by using different types of B. True

models used both non-zero and zero B matrices. In the non-zero B case, we used the

coefficient matrix in (14) to generate data. In the zero B case, B = 0 was used. The

Kendall’s tau was set to be 0.33, while other parameters are the same as ones in the sample

size case. A sample size of 1000 is used across true models.

5.2 Simulation Results

The simulation results under different true models and fitted models are summarized in this

section. For each true model, the model performance was summarized over 1000 simulated

data sets. The simulation size was chosen to ensure a reliable analysis result while balancing

the computing time needed to evaluate a broad number of scenarios. Further increasing the

simulation size would not result in a meaningful change in the evaluated summary statistics

and the drawn conclusions. Under each fitted model, the average AIC was computed. In

order to evaluate the performance of parameter estimates, we calculated the MSE of the

location parameter µ, scale parameter σ and the linear transformation parameter B for



16

Table 2: Average AIC from CARP-MLN and CARP-copula calculated by 1000 repeated
samples on true models generated by both CARP-MLN and copula models. Sample sizes
from true models are changed from 200, 500, 1000 and 2000.

True Model Copula Generation MLN Generation
Fitted Model MLN Copula MLN Copula

Sample
size n

200 702.0 722.5 722.9 721.9
500 1755.4 1751.3 1806.1 1808.7
1000 3513.7 3504.9 3615.4 3622.3
2000 7027.7 7014.3 7220.0 7234.8

Table 3: Average AIC by CARP-MLN and copula under different Kendall’s tau. α and η
are used to adjust the Kendall’s tau in the true models for CARP-MLN and CARP-copula,
respectively.

True Model Copula Generation MLN Generation
Fitted Model MLN Copula MLN Copula

Kendall’s
tau (τ)

0 3472.2 3459.5 3459.4 3455.7
0.11 3510.5 3506.9 3489.3 3490.8
0.33 3513.7 3504.9 3611.7 3618.6
0.55 3445.6 3439.7 3837.3 3852.3

different sample sizes.

Table 2 shows the average AIC of the fitted models summarized over the 1000 simulated

data sets generated using both the CARP-copula and CARP-MLNmodels at different sample

sizes. Both the CARP-MLN and CARP-copula models were applied to each simulated data

set. We can see at each fixed sample size, the fitted CARP model that matches the true

model used for simulating the data generally outperforms the other model by having a smaller

average AIC value, except for the smallest size case at n = 200 where the difference in the

average AIC values are extremely small. The advantage of using the true model becomes

Table 4: The Average AIC by CARP-MLN and copula under different scale parameters. σ1

and σ2 are set equal in the true models for CARP-MLN and CARP-copula.

True Model Copula Generation MLN Generation
Fitted Model MLN Copula MLN Copula

Scale
parameter
(σ1 and σ2)

0.35 4084.7 4071.7 4148.9 4158.1
0.30 3747.4 3736.1 3820.0 3826.7
0.25 3513.7 3504.9 3615.4 3622.3
0.20 2891.6 2882.7 2980.9 2983.3
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Figure 4: MSE for the location and parameter μ1, μ2, scale parameter σ1, σ2 and coefficient
B, calculated by both CARP-MLN and copula model with different sample sizes. The true
model is CARP-copula with lognormal marginal distributions.
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Figure 5: MSE for the location parameter μ1, μ2, scale parameter σ1, σ2 and B, calculated
by both CARP-MLN and copula model with different sample sizes. The true model used to
generated data is CARP-MLN.
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Table 5: Average AIC from different true models and fitted models to evaluate effect of
covariate adjustment. True and fitted models are copula and MLN with or without coefficient
B.

True Model
Fitted Model Copula MLN

Non-zero B Zero B Non-zero B Zero B

Copula
Non-zero B 3505.6 4069.9 3514.4 4064.8
Zero B 2480.5 2485.1 2492.9 2489.0

MLN
Non-zero B 3617.7 4186.2 3610.8 4180.0
Zero B 2572.9 2568.7 2565.3 2561.1

more prominent as the sample size increases.

Figures 4 and 5 compare the MSE of the estimated parameters at different sample sizes

between the two fitted models for the simulated data generated from the CARP-copula and

the CARP-MLN models, respectively. The MSEs are evaluated for the location parameter

µ, the scale parameter σ and linear transformation coefficient B which are included in both

figures. The black solid lines represent the MSE based on the fitted CARP-MLN model,

and the red dashed lines represent the estimates from the fitted CARP-copula model. Two

major conclusions can be drawn from these two figures. First, the MSEs of all the parameters

decrease with the sample size. The more data we generate and use to fit the models, the

more reliable the estimated models are with more accurate estimates of model parameters

regardless of the choice of the model. Second, the use of the correct model does lead to

slightly more accurate estimate of the model parameters across all sample size and model

parameters. However, the improvement is more prominent for the scale parameters σ than

other model parameters. When the true underlying model is generated by CARP-copula

and far from bivariate lognormal, CARP-copula fits data better.

Table 3 shows the average AIC values of the fitted models when the Kendall’s tau for

capturing the dependence between two event types varies at the levels of 0, 0.11, 0.33 and

0.55. When the Kendall’s tau is not zero which suggests some level of dependence between

two marginal variables, using a fitted model that matches the true model for generating the

data will result in a smaller average AIC value with a bigger improvement achieved when

stronger dependence exists between the two types of events. When the Kendall’s tau is zero

indicating the marginal distributions are independent, the average AIC values are generally

similar regardless which model is used to fit the data.

Table 4 shows the comparison based on using different scale parameters in the true

underlying model for both the CARP-copula and CARP-MLN models. Again, across all

evaluated scale parameter values, we observe consistently smaller average AIC values when
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the fitted model matches the true model used for data generation.

Lastly, Table 5 compares the results of using different coefficient matrix B. We simulated

data with both non-zero and zero B using both the CARP-MLN and CARP-copula models.

For each simulated data, we fitted both the CARP-MLN and CARP-copula models with

non-zero and zero B. Similar patterns can be observed. When the true model was used as

the fitted model, it results in the smallest AIC value. When non-zero B was used to generate

the data, the use of covariate adjustment led to substantial improvement in the average AIC

of the fitted model compared to using zero B. On the other hand, when the data were

generated with zero B, using the non-zero B fitted models produced similar AIC values as

the zero B models. Therefore, the covariate adjustment is generally recommended due to

its potential to substantially improving the model performance by leveraging the additional

covariate information.

6 Analysis of the Geyser Data

In this section, we present the analysis for the bivariate geyser system in the Yellowstone

National Park using the proposed CARP models. Two adjacent geysers including the West

Triplet and the Grotto Geyser are considered for our analysis. Geyser eruptions are highly

related to underground water levels, which can be affected by a nearby geyser eruption. Also,

it is believed that the eruption duration could affect the gap time until the next eruption. In

particular, the longer the current eruption lasts, the longer it will take for the next eruption

to occur. This is because a longer eruption usually indicates more water consumption during

the eruption and hence a longer water gathering time is expected to reach the next eruption.

We use both the CARP-MLN and the CARP-copula models with lognormal marginal dis-

tributions to analyze the geyser data. For the CARP-MLN model, the parameters are θ =

(µ1, µ2, σ1, σ2, η, b11, b12, b21, b22)
′, where µ1, µ2, σ1, σ2 and η define the baseline location pa-

rameters and scale parameters in the bivariate lognormal distribution. For the CARP-Copula

model, the parameters are θ = (µ1, µ2, σ1, σ2, α, b11, b12, b21, b22)
′, where µ1, µ2, σ1 and σ2 are

the location and scale parameters in marginal lognormal distributions, and α is the coef-

ficient parameter in the Gumbel copula. In both cases, the 2 × 2 matrix B is the linear

coefficient, and it can be denoted as

B =

(
b11 b12

b21 b22

)
.
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Table 6: Parameter estimates and 95% confidence intervals from CARP-MLN model for the
geyser data.

Parameter Estimates 95% lower 95% upper
µ1 1.881 1.839 1.922
µ2 2.126 2.072 2.180
b11 0.880 0.720 1.041
b21 0.058 0.166 0.283
b12 0.003 0.008 0.003
b22 0.063 0.050 0.077
η 0.053 0.093 0.014
σ1 0.416 0.391 0.440
σ2 0.493 0.459 0.527
τ 0.069 0.070 0.067

Table 6 shows estimation results for the CARP-MLN model, while Table 7 presents esti-

mation results for the CARP-copula model. For simplicity, we use θ̂MLN and θ̂CP to represent

parameter estimates based on the CARP-MLN and CARP-copula models, respectively.

The estimated linear coefficients B̂ for both models are shown as follows,

B̂MLN =

(
0.880 0.003

0.058 0.063

)
and B̂CP =

(
0.862 0.017

0.081 0.062

)
. (15)

The estimates in (15) indicate that in general the longer the previous eruption duration is,

the longer waiting time it takes until the next eruption. The eruption duration impact is

substantial for the West Triplet Geyser as shown by b̂11 = 0.880 in B̂MLN, which suggests the

marginal previous eruption duration effect of West Triplet Geyser on its location parameter

is 0.880 on average.

For the CARP-MLN model, the estimated covariance matrix is

Σ̂ =

(
0.172 0.022

0.022 0.246

)
,

where the correlation estimation is calculated as η̂/
√

σ̂2
2 + η̂2 = 0.05. This indicates a small

negative correlation between the event gap times of the West Triplet and Grotto Geysers. In

other words, a longer eruption gap time for West Triplet Geyser could be associated with a

shorter time interval for the next eruption of the Grotto Geyser. The Kendall’s tau provides
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Table 7: Parameter estimates and the corresponding 95% confidence intervals from CARP-
copula model using lognormal marginal distributions for the geyser data.

Parameter Estimates 95% lower 95% upper
µ1 1.847 1.809 1.886
µ2 2.102 2.051 2.152
b11 0.862 0.700 1.024
b21 0.081 0.147 0.311
b12 0.017 0.007 0.004
b22 0.062 0.047 0.076
σ1 0.417 0.392 0.442
σ2 0.497 0.459 0.535
α 1.000 0.958 1.042
τ 0.000 0.001 0.001

a measure on event dependence in both models. The estimates from the CARP-MLN and

the CARP-copula models are τ̂MLN = 0.07 and τ̂CP = 0, respectively. The confidence

intervals for τ is calculated by the Delta method in Appendix A.2. The calculated AICs for

the CARP-MLN and CARP-copula models are 5113.1 and 5120.5, respectively, indicating

the CARP-MLN model is a slightly better fit for the geyser data.

One way to measure the goodness of fit is to compare the estimated cumulative intensity

function with the observed. The estimated and observed cumulative intensity functions from

both models are shown in Figures 6 and 7, with the black solid lines and the red dashed

lines representing the estimated and the observed cumulative intensity functions respectively.

We can see a better agreement between the estimated and the observed cumulative intensity

functions based on the CARP-copula model compared with the CARP-MLN model.

7 Concluding Remarks

This paper introduces two CARP models, CARP-MLN and CARP-Copula, for modeling

a bivariate recurrent process. With the covariate adjustment, the CARP models provide

improvements over traditional models for capturing the interdependence of the bivariate

event system. When the underlying data are close to a bivariate lognormal distribution,

both models work similarly well. However, when the real data are inconsistent with a

bivariate lognormal distribution, the CARP-copula model is recommended to improve the

model performance.
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Figure 6: Cumulative intensity function from fitted CARP-MLN model using the geyser
data.
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Figure 7: Cumulative intensity function calculated from the CARP-copula model with the
lognormal marginal distributions.
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A special case of Archimedean copulas, the Gumbel copula function, is considered in

this paper. However, the general method can easily be adapted for other copula functions

available for the chosen models. One example is the Frank copula. Compared to the Gumbel

copula where only positive dependence can be quantified, the Frank copula can accommodate

both positive and negative dependence between two event types. On the other hand, the

Gumbel copula has an asymmetric dependence structure where correlations on the tail can

be very different than both the Gaussian and Frank copulas. In addition, differences of

the joint density functions between the Frank and Gaussian copulas are negligible when the

marginal distributions are the same.

The adjustment by using effective covariates significantly improves the model perfor-

mance. We have shown through the simulation study, when the true model includes a

significant covariate effect, that using the covariate adjustment significantly improves model

fitting. On the other hand, if there is no significant covariate effect, using the covariate

adjustment does not raise the AIC values. Therefore, in general we recommend using the

covariate adjustment given the true underlying model is unknown.

The choice of the marginal distributions in the CARP-copula model was made based

on the AIC value. Marginal distributions achieving the minimum AIC value were selected

in our model. One advantage of using the CARP-copula model is that different marginal

distributions can be easily used to model different event types. This offers tremendous

flexibility and broader generality to the CARP-copula model.

A multivariate CARP model will be considered for future work when there are more

than two event types in the recurrent system. For the geyser application, other covariates in

addition to the eruption duration would also be explored to further improve the performance

of the CARP models. In engineering applications when testing the reliability of systems is

often of interest. The loading-sharing system is related to the CARP model (e.g., Smith,

1983, Tierney, 1982, Sutar and Naik-Nimbalkar, 2014, and Zhang et al., 2020). In the future,

it will be interesting to apply the CARP to model the reliability of loading sharing systems.
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A Appendix

A.1 Conditional Lognormal Probability

If a bivariate random variable y = (y1, y2)
′ follows a lognormal distribution MLN(μ,Σ)

where

μ = (μ1, μ2)
′ and Σ =

(
σ11 σ12

σ21 σ22

)
,

then the conditional distribution of log(y1) log(y2) follows a normal distribution N(μc, σc)

with location and scale parameter as

μc = μ1 + σ12σ
−1
22 [log(y2) μ2] and σc = σ11 σ12σ

−1
22 σ21,

respectively.

A.2 Confidence Interval for Kendall’s tau

For lognormal cases, the Kendall’s tau estimator can be expressed as

τ̂ =
2

π
arcsin

(
η̂√

σ̂2
2 + η̂2

)
,

where the asymptotic distribution is known from the ML estimator. Using the Delta method,

Var(τ̂) =

(
∂τ̂

∂η̂

)2

Var(η̂) +

(
∂τ̂

∂σ̂2

)2

Var(σ̂2) + 2

(
∂τ̂

∂η̂

)(
∂τ̂

∂σ̂2

)
cov(η̂, σ̂2),

where
∂τ̂

∂η̂
=

2

π

1√
1

η̂2

σ̂2
2 + η̂2

[
(η̂2 + σ̂2

2)
− 1

2
1

2
η̂(η̂2 + σ̂2

2)
− 3

2

]
,

and
∂τ̂

∂σ̂2

=
2

π

1√
1

η̂2

σ̂2
2 + η̂2

[
η̂σ̂2(η̂

2 + σ̂2
2)

− 3
2

]
.

For the Gumbel copula case,

τ̂ = 1
1

α̂
.
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Similarly with the lognormal case, the variance for the estimator can be written by using

the Delta method. That is,

Var(τ̂) =
[∂g(α̂)

∂α̂

]2
Var(α̂),

where g(x) = 1 1/x.
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