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Abstract

Multi-type recurrent events are often encountered in medical applications when two
or more different event types could repeatedly occur over an observation period. For
example, patients may experience recurrences of multi-type nonmelanoma skin cancers
in a clinical trial for skin cancer prevention. The aims in those applications are to
characterize features of the marginal processes, evaluate covariate effects, and quantify
both the within-subject recurrence dependence and the dependence among different
event types. We use copula-frailty models to analyze correlated recurrent events of
different types. Parameter estimation and inference are carried out by using a Monte
Carlo expectation-maximization (MCEM) algorithm, which can handle a relatively
large (i.e., three or more) number of event types. Performances of the proposed methods
are evaluated via extensive simulation studies. The developed methods are used to
model the recurrences of skin cancer with different types.

Keywords: Clinical trial; MCEM algorithm; Multi-type recurrences; Multivariate

frailty; Skin cancers; Survival models.



1 Introduction

In recurrent event data, the event of interest can occur more than once in a study. Examples
of such events include hospitalizations, children’s asthma, heart attacks, infections, bleedings,
and recurrent tumors. The literature in the analysis of univariate recurrent event data
is abundant (e.g., Prentice et al. 1981, Andersen and Gill 1982, and Wei et al. 1989).
Sometimes two or more different types of recurrent events may occur throughout the study,
and those different types of recurrent events may be correlated to each other. This type of
data is referred to as multi-type recurrent event data. For multi-type recurrent event data,
it may not be sufficient to perform separate analyses for each type of recurrent event, while
ignoring the dependence among event types.

In this paper, we are interested in the modeling and analysis of multi-type recurrent event
data, while accounting for the dependence among those event processes. The motivation for
this work comes from the clinical trial data collected to study the efficacy of a nutritional
supplement of selenium in the prevention of nonmelanoma skin cancers, including basal cell
carcinoma (BCC) and squamous cell carcinoma (SCC) (Duffield-Lillico et al. 2002, and
Duffield-Lillico et al. 2003). The analysis aims to describe the features of the marginal pro-
cesses, examine covariate effects on the risks of different types of recurrent events, investigate
the dependence of within-subject events, and evaluate the correlation among recurrences of
different event types. We use copula-frailty models to describe the multi-type recurrent event
data, which use the frailty approach to model the dependence of within-subject events of
the same type, and use copula to model the dependence of events among different types.

In literature, multivariate frailties/random effects are incorporated into models to accom-
modate for within-subject event dependence and the dependence among different types of
events. A common assumption is that the distribution of frailties/random effects belongs to
some parametric family, and the normal distribution is used most of the time for modeling
random effects (e.g., Zeng et al. 2014, Bedair et al. 2016, and Lin et al. 2017). In addition,
the gamma distribution is the most common one for modeling frailties of bivariate survival
times (e.g., Duchateau and Janssen 2008). Copula models are also used in some cases as
alternatives to model bivariate survival data (e.g., Shih and Louis 1995). Chatterjee and Roy
(2018) used a copula-based approach to estimate the survival functions of two alternating
recurrent events.

We choose to use the copula approach based on the following considerations. Copula
models involve many multivariate distributions as special cases, which allow the frailty (or
random effect) distribution to have more complex features than the symmetric normal den-
sity. The multivariate normal distribution can be obtained using the Gaussian copula with
normal marginal distributions. Bedair et al. (2016) used a multivariate normal distribution

to model multi-type recurrent event data. Tawiah, McLachlan, and Ng (2020) also used mul-



tivariate normal distribution to model recurrent events with dependent censoring and cure
fraction. However, copula models provide a flexible way to model the dependence structure
beside the multivariate normal distribution. Practitioners can have more options in choosing
models for describing multi-type recurrent event data.

For the modeling of the baseline intensity function for the frailty model, Rondeau et al.
(2007) used restricted cubic splines for modeling baseline intensity functions. Mazroui et al.
(2016) used parametric piecewise and spline baseline intensity functions. Lin et al. (2017)
also used parametric piecewise intensity functions. Li, Guo, and Kim (2020) considered non-
parametric Bayesian framework in recurrent event applications. In this paper, the baseline
intensity functions are left unspecified. That is, the cumulative baseline function is a step
function with jumps only at the observed recurrent event times for each type of event. The
unspecified baseline intensity function introduces a layer of difficulty in parameter estima-
tion. However, it can be an attractive feature to practitioners, as often in practice, the shape
of the baseline intensity function is unknown.

The parameter estimation of multivariate frailty models can be challenging. A vari-
ety of numerical methods have been used to assess the complex integral. Commonly used
approaches are the Laplace approximation (e.g., Cook et al. 2010), and the Gaussian quadra-
ture methods (e.g., Liu and Huang 2008). The Laplace approximation is challenging to im-
plement, especially when the baseline intensity functions are left unspecified because there
will be nonparametric terms in the integrands. The quadrature method is hard to scale up
to applications with the number of event types being larger than two, which is the bottle-
neck why most existing multivariate methods only address two types of events. To overcome
those difficulties, we use the Monte Carlo expectation-maximization (MCEM) technique for
parameter estimation, which can scale up to more than three types of events. Lee and Cook
(2019) proposed a joint model for multi-type recurrent events using the composite likelihood
to approximate the exact likelihood function. We directly handle the full likelihood through
the MCEM algorithm.

As discussed above, we aim to develop copula-frailty models with unspecified baseline
functions for analyzing multi-type recurrent event data, which have several unique features
as compared to existing work in multi-type recurrent event modeling. We use flexible copula
models to describe multivariate correlated frailties, which can provide a better fit than
existing models. An MCEM algorithm is tailored for estimating parameters, which can
handle a relatively large (i.e., three or more) number of event types while existing methods
typically handle two types of events. Besides, we provide estimates of fixed effects for
each event type, variance components, and the corresponding standard errors for parameter
estimators. The dependence of within-subject events and the dependence structure among
the marginal processes are obtained.

The remainder of this paper is organized as follows. Section 2 introduces some notation



for the data and models. Section 3 introduces copula functions and marginal distributions.
Section 4 provides details on the estimation methods using the MCEM algorithms. Extensive
simulation studies are conducted to evaluate the performance of the proposed methods in
Section 5. Section 6 presents an application to the skin cancer data. Section 7 contains some

conclusions and areas for future research.

2 Data Setup and Modeling

2.1 Data Setup

Let n be the number of subjects, and each subject is with a p x 1 vector of covariates
x; = (xi1,...,x;)". Subject ¢ is observed over the time interval [0, 7;], where the time is
measured from a defined starting point for that subject. Here 7; is the last follow-up time
for subject ¢, which is the censoring time. Individuals may experience any of m different
types of recurrent events. Let ¢;; be the k™ event time of event type j for subject i, where
0 < tjr < 7. For subject i, we record d;j, = (tijx, 1, ),k = 1,...,n;;, where the “1”
in d;;;, is an indicator for an event, and n,; is the number of events of type j from subject
i. We also include the censoring time information as d;j ,;+1) = (73,0, 2%)", where the
“0” is an indicator for the censoring time. We then organize our data into matrices. Let
Di; = (dij1, - - ., dij(n;+1)) be the observed (n;; + 1) X (p + 2) data matrix of event type j
for subject 4, and D; = (D};,..., D))" is used to represent the observed data for subject i

over all m recurrent event types.

2.2 Multi-type Intensity Model

The counting processes are denoted by N;;(t),7 = 1,...,n, and j = 1,...,m. We use
AN;;(t) = Ny;(t + At) — N;j(t) to denote the number of events occurring in the interval
[t, t + At). The event history of subject i by time ¢ is denoted as H;(t) = {z;, N;;(s),i =
1,...,n, 7=1,...,m, 0 <s < t}. The intensity function of event type j for subject i can

be expressed as,

_ o PrlANG () = 1Hi(1)]
)\ij [t‘H@(t)] = Altlinoo At .
We formulate the multivariate frailty model for intensity functions A;;(¢;;x) of recurrent

events as

Aij (tijilwig) = Aoj(tije) wij exp(xB;), (1)
where A\g;(-) is a nonparametric baseline intensity function for the event type j. We refer to
the model in (1) as the frailty model. Here, 3,=(8;1, ..., 3;p)" is a vector for the fixed effects
associated with covariates x; for event type j, and exp(x;3;) models the effect of covariate

;.



Note that in (1), we use an intensity-based model to describe recurrent events data, and
we incorporate the effects of covariates through the term exp(z;3,). As the intensity can
be viewed as a measure of the risk for an individual to have events, exp(3;;) gives the ratio
of risks if there is one unit increase in the [th covariate given other covariates fixed. In this
way, exp(f;;) is usually referred to as the relative risk.

We denote the subject-specific frailty for the j™ event type by w;;, and denote the
subject-specific multivariate frailties by w; = (w;1, ..., ws,)". The frailties within subject
i are correlated. Note that the regression parameter 3; has conditional interpretation due
to the presence of the random variable w;;. The baseline cumulative intensity function is

defined as Ag;(t) = fot Aoj(s) ds. The cumulative intensity function can be expressed as,
Aij(t) = Noij(t) wij exp(x;B;).
The intensity function in (1) can be rewritten as
Aij(tijrlwig) = Xoj(tije) exp(xiB; + bij), (2)

where b;; = log(w;;) is considered to be the random effect for the j recurrent event type
from the " subject. We refer to the model in (2) as the random effects model. Both the

frailty and random effects models allow for correlations within subjects.

3 Copula Frailties/Random Effects Modeling

3.1 Modeling Multivariate Frailties

Copula functions (e.g., Nelsen 1999) are used to model unobserved multivariate frailties
and multivariate random effects. That is to model the distribution of frailty vector w; =
(w1, W)

the method, henceforward, mainly focuses on the frailty model in (1), with some minor

" and random effects vector b; = (by,...,b,)". Although our description of

modifications, the methods can be applied to the random effects model in (2).

In copula modeling, a transformation is made to each marginal variable, w;, and then
each transformed marginal variable follows a uniform(0,1) distribution. The dependence
structure is expressed by a multivariate distribution on the transformed uniform random
variables. The copula function C[F;(w,), ..., F,,(w,,)] is a joint distribution function such

that the joint cumulative distribution function (cdf) can be expressed as
F(wy,...,wy) = C[Fi(w),. .., Fnw)],

with marginal distribution functions Fj(-). For simplicity, we denote u; = Fj(w;). The
copula density function is defined by
am

= mC(Ul, .,Um).

C(ulv s 7um)

)



The multivariate probability density function (pdf) of the frailty vector (wy,...,wy,)" is

g(wl,...,wm):c(ul,...,um)ng(wj). (3)
j=1
The result in (3) shows that it is always possible to specify a multivariate pdf g(ws, ..., wy,)

by specifying the marginal pdf g;(w;) and a copula density function c(-).

All information concerning dependence among marginals is contained in the association
parameters. The two most frequently used copula families are the elliptical and Archimedean
copulas, which can be conveniently used for modeling multivariate frailties. Some convenient
distributions such as gamma and inverse Gaussian can be used to model marginal frailties,
while symmetric distributions such as the normal can be used to model marginal random
effects. We briefly introduce the Gaussian and Clayton copulas, and marginal distributions

used in copula modeling in the following sections.

3.2 Gaussian and Clayton Copula
The multivariate Gaussian copula is given by
Clur, ... um) = @[ (wr), ..., 2 Hum)],

where ®@,,(-) and ®(-) are the cdf of a multivariate normal distribution MVN(0, R,,) with a
correlation matrix R,,, and the standard univariate normal distribution N(0, 1), respectively.
The pdf of the normal copula is given by

1 1 _
c(ug, ..., uy) = |Rn| "2 exp —Eq;(le—Im)qi ,

where the correlation matrix R, has m(m — 1)/2 unique elements to parameterize the
dependence of frailties. Here, w = (u1,...,un)’, ¢ = (q1,...,qm)" is a vector of normal
scores ¢;= ®*(u;), and I, is the m-dimensional identity matrix. The multivariate pdf for
the frailty can be obtained by g(wy, ..., w,,) as in (3).

The one-parameter Clayton copula with the generator function ¢ (u;) = u;

;=1 (e,
Y71(s) = (14 s)71/*) has the following form,

C’(ul,...,um):(uf“—f—...—ku;ﬁ—m—kl)*é,a20.

Here « is the copula parameter that controls the degree of dependence. When a = 0, there
is no dependence, and when o = oo there is perfect dependence. The Kendall’s tau can be

used as a measurement for the association by 7 = a/(a + 2), which takes values over the

interval [0, 1]. The multivariate pdf for (wy,...,w,,)" based on a Clayton copula is
m—1 1 m —é—m m

g, ) = (—)” [H (-3- j)] (Z e —m 1) [H u;a—lgij)] .
=0 j=1 j=1



3.3 Marginal Distributions
For the gamma frailty model, the frailty w, is distributed with gamma(1/c;, a;) with mean
one and variance o, and the pdf is

1/a;—1
w](- /2 )exp(—wj/aj)

D(1/a)a

For the lognormal frailty model, w; = exp(b;), and b; ~ N(0, ¢;) is normally distributed

gj(w;) =

with mean zero and variance «;. That is, w; has the lognormal distribution. The mean
and variance of the frailty are E(w;) = exp(«a;/2) and Var(w;) = exp(q;)[exp(a;) — 1],

respectively.

4 Statistical Inference

4.1 The Log-likelihood Function

Let B = (B),...,8,) and a = (a1, ...,Qm,al) be the parameter vectors. Here a, de-
notes the parameter(s) in the Copula function. For the Clayton copula, e, = «. For
the Gaussian copula, «. denotes the parameters in the correlation matrix R,,. The cu-
mulative baseline function is specified as a step function with jumps only at the observed

recurrent event times for each of the m types of events. The ordered distinct event times

are denoted by Z;q),...,tju,;), where k; is the number of distinct event times from type
j for all subjects. The corresponding baseline intensity functions can be represented as

i = { N[t -5 Ao [tj(kj)]}/. We then denote the unspecified baseline intensity func-
tions as Ag = (Agy, .-+, Agm)- The vector of unknown parameters to be estimated in the

model is € = (', Ap, ).
We denote the data for subject ¢ by D; and frailty terms by w;. The multivariate pdf
of the frailty terms w; is g(w;|a) = g(wj1, ... ,w;y,). Given data D; and w;, one can write

down the i*" subject’s contribution to the likelihood function as,

Ligw) = H[ﬁA ”k]exp[ Ay ()] g(wil ). (4)

7=1 =

By substituting \;(;;x) and A;(7;) as in (1) and taking the logarithm over all subjects, we
can obtain the complete log-likelihood as £(&,w) = > 7 log[L;(€, w;)]. In particular,

ZZ <Z { log [Aoj(tiji)] + log(w;) + x;8; } Noj(1;)w;j exp(x;3, ))

’L].jl

Z log [g(w;|a)], (5)



where w = (w,...,w!)" is the frailty vector all over w;. The marginal likelihood of the

observed data over all subjects is

1O =11/ Ligw)dw, (6)

i=1 Y Wi
In most cases, this integration does not have a closed-form expression. The likelihood func-
tion in (6) has two challenges in obtaining the inference of £. First, it depends on the
high dimensional nonparametric baseline intensity function. Second, it is usually a multi-

dimensional integration. We use the MCEM technique to overcome those two difficulties.

4.2 Monte Carlo EM Algorithm

In the MCEM algorithm, the expectation in the E-step is computed using Monte Carlo simu-
lations. The MCEM algorithm includes two steps: the computing of conditional expectations
for the log of the complete likelihood (E-step) and the maximization of the conditional ex-
pectations with respect to all parameters (M-step). With initial values, the algorithm does
iterations between the two steps. As indicated in Booth and Hobert (1999), the algorithm

converges to a stationary point under certain regularity conditions.

4.2.1 E-step
In the E-step, the pdf of w; conditional on observed data is

Di, i Lz , Wiq
Guw, D, (wil§) = g(w;|§) = f ;ED“”ILﬂvz))dwz - I(f(g )7

where f(D;, w;) is the joint density of the data and frailty, L;(&,w;) is defined in (4), and

L;(&) is the marginal likelihood for the i** subject. In the E-step, since there is no closed-form

(7)

for the density guw,p,(w;|§), the Metropolis-Hastings algorithm is used to generate random
samples of w; with the conditional distribution in (7). A description to the Metropolis-
Hastings algorithm is given in Appendix A. For each subject i, we generate random samples
(after the burn-in and thinning) w'? g=1,...,ns. Then the expectations of functions of

1 )
w; conditional on the observed data are computed by averaging of the n, samples. That is,

Ns

1 & 1
E(w;;) = - Zwi(]?)’ and E[log(wij)] = — Z [log(wg]))],
5 q=1 s g=1

4.2.2 M-step

The EM algorithm requires Q(&), which is the expectation of the log-likelihood in (5) condi-
tional on all the data and current parameter estimates. In particular, Q(&) can be expressed

as

Q(€) = Q1(B, Ao) + Q2(av),

8



where

n

Q1(B, o) = Z Z log[Aoj(tij)] + Ellog(wi;)] + ;3; (8)

=YD Ao (m)E(wy) exp(@iB;),

i=1 j=1

and Q2(a) = > E{log[g(w;|a)]}.

The regression parameters are updated by maximizing the expected partial likelihood.

M5

3 <

In particular,

k

ElLpariat(B)] =YY S B, + Ellog(wi;)] —log | > E(wy)exp(iB,)| ¢,  (9)

j=1 1=1 ’iER(tj(l))

[y

where R(t;)) is the at risk group of event type j at time ¢;). Note that the E[Lpqria(8)]
function is separable for 3;’s. Thus the maximization of E[ﬁpamal (B)] can be done separable
for each j, which can reduce the complexity of the optimization problem and allows for a
relatively large number of types of events. The cumulative intensity functions Ag;(-) for the

recurrent events can be updated by

o N;(tim)
Ao]<t>—w;, > E(wy)exp(x;B;)’ "

ER(tj(l))

where N;(t;q)) is the total number of events of type j at time ;).

The estimation of copula parameter a can be obtained by maximizing Qs(c), where

Qq(a) =E{loglg(wj1, ..., wi,)]} =E {log [ (Uit - - - Uim H (wy; ] }
Q

)
=E{log[c(ui, ..., uim)]} + Y E{log[g;(wy)]} = Qs(ce) + > Qulay).
j=1 j=1

Here, Q3(a.) and Q4(c;) denote the expectation of the log-likelihood of the copula and the
marginal distributions, respectively. The estimation of « can be achieved by maximizing
Q2(a). In particular, the forms of the expected log-likelihood for Gaussian and Clayton
copula with gamma marginals and their score equations are derived in Appendix B. For the
estimation of the parameters in the copula function and marginal distributions, we apply
a two-stage estimation method as commonly used in literature for copula models (e.g., Joe
and Xu 1996, and Joe 2005), which estimates the marginal distribution parameters «;’s in
the first step by maximizing Q4(c;), and then estimates the copula association parameter o,
by maximizing ()s3(c.) given @;’s. As a result, the first and second derivatives with respect

to o have been taken to the related likelihood Q4(c;), which is independent from Qs(cx.).

9



Algorithm: 1 Monte Carlo EM algorithm for copula-frailty model.

(0
1. Initialize £( ' At iteration (s+1),
2. E-step:

(a) Generate w = (w),...,w)) ~ Guw,D; (wilg(s)) via a Markov chain Monte Carlo
(MCMC) algorithm.

(b) Compute the required conditional expectations E { G, |Ds [wilg(s)]} of the frailty

terms.
~(s+1
3. M-step: Maximize the expected complete log-likelihood Q(&) to obtain £( i ).

4. Repeat Steps 2 and 3 until the convergence is declared.

One advantage of the two-stage method is that it reduces the complexity of the optimization
problem, allowing to estimate parameters for models with more than three types of events.
As a summary, the MCEM algorithm is outlined in Algorithm 1.

The algorithm is stopped and the convergence is declared at the (s + 1)th step if

gt _ )
max ‘(1/\(5)7(1‘ < 0o,
d £ — 01

where the maximum is taken over all the coordinates of parameter vector &, &; is the d**
coordinate of €, and d;, 0o are pre-specified small values (e.g.,0; = 0.01, 6 = 0.003) as
suggested in Booth and Hobert (1999). In practice, such criteria can be at the risk of
terminating too early, as it may be obtained only because of Monte Carlo error in the updates.
To avoid this implication, the algorithm is terminated after such criterion is achieved for
three consecutive iterations. Graphical tools such as the trace plots can be used to check
the convergence.

For the MCEM algorithm, the Louis formula (Louis 1982) is needed to provide the

-~

information matrix, I(&), which is given as follows,

~ 0*L - oL oL
1© - (<5 ) -2 (Geie

w,Z) . (11)

The expectations are computed by averaging over the terms involving samples from MCMC.
Theorem 3 of Parner et al. (1998) showed that the variance of B, a, and XOJ‘ can be
consistently estimated by using the discrete information matrix, which is the negative of the
Hessian matrix. The negative Hessian matrix is obtained by taking second derivatives with

respect to parameters (3 and o) and the jumps Ao;(t;0))-

10



5 Simulation Studies

In this section, we use extensive simulations to study the performance of the proposed

methods.

5.1 Simulation Setting and Data Generation

Here we discuss our simulation settings. Table 1 gives the list of copula functions and
marginal distributions under consideration. Note that when the Gaussian (normal) distri-
bution is used as the marginal distribution, it is more convenient to specify it in the random
effects model. As shown in the table, we consider four distribution settings, namely, the Cg,
CG, Gg, and GG models. We consider three types of events (i.e., m = 3) in the simulation,
which is general enough to show the scalability of our methods. Our methods can be easily
applied to cases where the number of event types is more than three, because of the separa-
bility of 3,’s in the partial likelihood function and the two-stage estimation method for the
copula parameters.

We set the Clayton copula parameter to be 0.1, 1.333, and 8, which is equivalent to
the Kendall’s tau as 0.05, 0.4, and 0.8, respectively. For the Gaussian copula, there are
three parameters we can set when m = 3. To simplify the setting, we set the correlation
parameters to be identical. That is, we set p = p12 = p13 = p23. In the simulation, the value
of the Gaussian copula parameter is set as p = 0,0.4, and 0.8 to achieve different degrees of
correlation. Although we set the true values of the correlations to be identical, this is not a
constraint on the parameter estimates. That is, we still estimate the three correlations (i.e.
P12, P13, and pog) in the estimation procedure.

For the marginal distributions, we consider two choices, the gamma distribution and the
Gaussian (normal) distribution. For the gamma distribution, it is typically used in the frailty
model, that is w;; ~ I'(1/¢;, ;). For the Gaussian distribution, it is typically used in the
random effects model, that is b;; ~ N(0, a;). We set o = as = a3 = 1 in the simulation.

For simplicity, the true baseline hazard functions are set as Ayj(t) = 1, The baseline
hazard functions, however, are estimated nonparametrically. We consider the treatment
variable as the covariate (i.e., we set 0 as the placebo and 1 as the treatment) for simplicity
for not losing insights. Our estimation method is general and works for the situation that
x; is a vector. The effects of covariate are 5, = 1, 5o = 0.8, and B3 = 0.4 for different
types of events. We carry out simulation studies for sample size n = 200 and 400 subjects.
Between 29% and 33% of the simulated subjects were censored without developing events of
any types. For each setting, 1000 simulated samples were generated to calculate the results.
All computing for the simulation studies was conducted in R.

In summary, we use the following steps to generate the multi-type recurrent event data.

11



Table 1: List of copula functions and marginal distributions under consideration. Note that
when the Gaussian (normal) distribution is used as the marginal distribution, it is more

convenient to specify it in the random effects model.

Model Label Copula Function Marginal Distribution

Cg Clayton gamma frailty
CG Clayton Gaussian random effect
Gg Gaussian gamma frailty
GG Gaussian Gaussian random effect
1. For subject i, where i = 1,...,n, we generate the frailty w; (or the random effect b;)

according to the chosen copula model.
2. The subjects are randomly assigned to the treatment group with equal probability.
3. The maximum follow up time was set at C' =1,1=1,--- n.

4. Set 7; as the censored time for subject i'", where 7; = min {C},C} and the random

censoring time C} is assumed to be exponentially distributed with rate 0.5.

5. For each event type j, generate gap times z;; from the exponential distribution with
Aoj(t) = 1. The rate parameter is set as [Ao;(t)w;; exp(z3;)]" for the model in (1),
and is set as [Ag;(¢) exp(x}B; + b;;)] " for the model in (2).

6. Set yijx = > zij and let the event time be t;;; = min{7;, yijx}, with the first start

time set to be zero.

5.2 Simulation Results

In the simulation results, the bias is measured as the mean of the parameter estimates
(based on 1000 repeats) minus the true value, and the variance is the sampling variance
of the parameter estimates. The MSE represents the empirical mean squared errors of the
corresponding parameter estimates over all 1000 repeats. We also compute the empirical
coverage probabilities (CP) of the corresponding 95% confidence intervals. Tables 2, 3, 4,
and 5 present the simulation results for the Cg, CG, Gg, and GG models, respectively.

We focus on discussing the results in Table 2 first. From the results in Table 2, we observe

the following:

1. As expected, the MSE of all parameter estimates is generally decreasing as the number
of subjects increases. A similar pattern is observed for the bias and the variance as we

increase the number of subjects.

12



Table 2: Empirical results from simulation studies examining the properties of the estimators
of treatment effects, variances, and copula parameter for the Cg model (i.e., Clayton copula

with gamma marginal distribution.)

Param. Value Mean Bias Var MSE Ccp

# of subjects 200 400 200 400 200 400 200 400 200 400

Setting I
51 1 0.959 1.047 —0.041 0.047 0.120 0.003 0.122 0.005 0.964 0.951
B2 0.8 0.869 0.795 0.069 —0.005 0.116 0.074 0.121 0.074 0.939 0.943
53 04 0.449 0.449 0.049 0.049 0.099 0.057 0.101 0.060 0.941 0.945

ay 1 0.951 0.963 —0.049 —0.037 0.090 0.060 0.092 0.061 0.933 0.953

Qo 1 0.978 0.977 —-0.022 —-0.023 0.082 0.039 0.083 0.039 0.962 0.941

as 1 0.975 0.960 —0.025 —0.040 0.096 0.020 0.096 0.021 0.941 0.942

@ 0.1 0.217 0.106 0.117 0.006 0.107 0.026 0.121 0.026 0.920 0.934
Setting 1T

51 1 1.002 1.011 0.002 0.011 0.126 0.092 0.126 0.092 0.933 0.949

Ba 0.8 0.812 0.842 0.012 0.042 0.125 0.038 0.125 0.040 0.937 0.946
B3 0.4 0.426 0.433 0.026 0.033 0.058 0.028 0.059 0.029 0.943 0.945

o1 1 0.998 0.980 —0.002 —0.020 0.088 0.042 0.088 0.042 0.932 0.948
o9 1 1.006 0.976 0.006 —0.024 0.118 0.087 0.118 0.088 0.943 0.951
o3 1 1.011 1.045 0.011 0.045 0.037 0.032 0.037 0.034 0.945 0.949

o 1.333 1.370 1.406 0.037 0.073 0.026 0.023 0.027 0.029 0.945 0.946

Setting III

b1 1 1.057 0.970 0.057 —0.030 0.102 0.052 0.105 0.0563 0.939 0.956
Ba 0.8 0.830 0.777 0.030 —0.023 0.016 0.009 0.017 0.010 0.941 0.947
B3 0.4 0.461 0.439 0.061 0.039 0.063 0.032 0.067 0.033 0.946 0.949
o1 1 0.972 1.047 —0.028 0.047 0.136 0.093 0.137 0.095 0.947 0.954
o9 1 1.039 0.970 0.039 —-0.030 0.093 0.062 0.094 0.063 0.956 0.956
o3 1 0.952 1.024 —0.048 0.024 0.092 0.025 0.094 0.026 0.941 0.951
o 8 8.736 7.719 0.736 —0.281 0.078 0.026 0.620 0.105 0.936 0.943
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Table 3: Empirical results from simulation studies examining the properties of the estimators
of treatment effects, variances, and copula parameter for the CG model (i.e., Clayton copula

with Gaussian marginal distributions).

Param. Value Mean Bias Var MSE CP

# of subjects 200 400 200 400 200 400 200 400 200 400

Setting I
51 1 0.963 1.048 —0.037 0.048 0.105 0.050 0.106 0.052 0.939 0.946
B2 0.8 0.791 0.845 —0.009 0.045 0.118 0.070 0.118 0.072 0.943 0.949
53 04 0.424 0.424 0.024 0.024 0.094 0.020 0.094 0.021 0.968 0.953

o 1 0.961 0.977 —0.039 —0.023 0.093 0.087 0.095 0.087 0.969 0.948

Qo 1 1.053 0.967 0.053 —0.033 0.090 0.008 0.092 0.009 0.949 0.950

as 1 0.961 0.961 —0.039 —0.039 0.082 0.064 0.083 0.065 0.930 0.946

@ 0.1 0.131 0.113 0.031 0.013 0.097 0.038 0.098 0.038 0.946 0.944
Setting 1T

51 1 1.068 0.981 0.068 —0.019 0.132 0.031 0.136 0.032 0.940 0.946

Ba 0.8 0.790 0.827 —0.010 0.027 0.127 0.035 0.127 0.035 0.950 0.953
B3 0.4 0.432 0.429 0.032 0.029 0.082 0.038 0.083 0.038 0.950 0.951

o1 1 0.931 0971 —-0.069 —-0.039 0.082 0.028 0.087 0.030 0.935 0.957
o9 1 0.984 0.952 —-0.016 —0.048 0.093 0.079 0.094 0.082 0.955 0.965
o3 1 0.957 0970 —-0.043 -0.030 0.059 0.014 0.061 0.015 0.949 0.951

o 1.333 1.557 1.484 0.224 0.151 0.049 0.027 0.099 0.050 0.941 0.945

Setting III

b1 1 1.059 1.018 0.059 0.018 0.122 0.051 0.125 0.051 0.940 0.951
Ba 0.8 0.814 0.823 0.014 0.023 0.123 0.044 0.123 0.045 0.945 0.959
B3 0.4 0.420 0.430 0.020 0.030 0.107 0.017 0.108 0.018 0.944 0.954
o1 1 1.012 1.048 0.012 0.048 0.134 0.102 0.134 0.104 0.931 0.960
o9 1 0.987 0978 —-0.013 —-0.022 0.129 0.057 0.129 0.058 0.933 0.953
o3 1 0.939 1.046 —0.061 0.046 0.114 0.095 0.118 0.097 0.954 0.955
o 8 7.004 8.278 —0.996 0.278 0.101 0.124 1.093 0.201 0.938 0.947

2. Higher correlations cases of frailties tend to have a higher MSE for the variance com-
ponents and the copula parameter. However, the MSE of the regression coefficients is

not affected by the increase of the association parameter.

3. The performance of the CP is around the 0.95 nominal level, and it is getting closer
to 0.95 when the number of subjects increases. A slight bias is noted for the estimate

of copula parameter with improvements for cases with a larger number of subjects.

For the additional simulation results for the CG, Gg, and GG models, similar conclusions
can be reached for those three cases with negligible bias for the estimator of the copula
parameter and the CP of the intervals. In summary, the simulation results show that our

procedure works well in terms of parameter estimation and statistical inference.
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Table 4: Empirical results from simulation studies examining the properties of the estimators
of treatment effects, variances, and copula parameter for the Gg model (i.e., Gaussian copula

with gamma marginal distributions).

Param. Value Mean Bias Var MSE CpP
# of subjects 200 400 200 400 200 400 200 400 200 400
Setting I
51 1 1.033 0.965 0.033 —0.035 0.091 0.031 0.092 0.032 0.956 0.959
B 0.8 0.809 0.847 0.009 0.047 0.124 0.017 0.124 0.019 0.947 0.951
33 0.4 0.464 0.363 0.064 —0.037 0.087 0.015 0.092 0.016 0.955 0.961
o 1 0.937 0.996 —-0.063 —0.004 0.062 0.065 0.066 0.065 0.946 0.954
9 1 0.978 0.960 —0.022 —0.040 0.033 0.019 0.033 0.020 0.950 0.949
a3 1 1.026 1.028 0.026 0.028 0.095 0.021 0.096 0.022 0.945 0.955
P12 0 0.054 0.037 0.054 0.037 0.062 0.059 0.065 0.060 0.941 0.944
P13 0 0.004 0.009 0.004 0.009 0.082 0.059 0.083 0.059 0.944 0.952
P23 0 0.056 0.020 0.056 0.020 0.101 0.054 0.104 0.055 0.946 0.951
Setting 1T
51 1 1.066 1.043 0.066 0.043 0.082 0.006 0.087 0.008 0.950 0.956

Ba 0.8 0.822 0.849 0.022 0.049 0.106 0.084 0.106 0.086 0.945 0.956
B3 0.4 0.413 0.433 0.013 0.033 0.134 0.094 0.135 0.095 0.950 0.966

o1 1 1.068 1.022 0.068 0.022 0.060 0.050 0.064 0.050 0.949 0.958
o9 1 1.062 1.019 0.062 0.019 0.019 0.003 0.023 0.003 0.947 0.953
o3 1 0.944 0.989 —-0.056 —0.011 0.118 0.095 0.121 0.095 0.946 0.958

P12 0.4 0.484 0.375 0.084 —-0.025 0.032 0.035 0.038 0.036 0.947 0.957
P13 0.4 0.426 0.434 0.026 0.034 0.071 0.045 0.071 0.046 0.950 0.954
P23 0.4 0.452 0.437 0.052 0.037 0.153 0.124 0.156 0.126 0.948 0.949

Setting III
51 1 1.044 1.005 0.044 0.005 0.008 0.009 0.010 0.009 0.948 0.952
Ba 0.8 0.801 0.841 0.001 0.041 0.066 0.009 0.066 0.010 0.956 0.958
03 0.4 0.423 0.401 0.023 0.001 0.108 0.099 0.108 0.099 0.953 0.956

o1 1 1.067 1.016 0.067 0.016 0.117 0.054 0.122 0.054 0.948 0.952
o9 1 1.006 1.022 0.006 0.022 0.032 0.028 0.032 0.029 0.950 0.954
o3 1 1.041 1.026 0.041 0.025 0.135 0.058 0.136 0.059 0.946 0.962

P12 0.8 0.873 0.851 0.073 0.050 0.141 0.115 0.146 0.118 0.946 0.954
P13 0.8 0.887 0.803 0.087 0.003 0.093 0.018 0.100 0.018 0.940 0.958
P23 0.8 0.711 0.793 —-0.089 —-0.007 0.146 0.011 0.154 0.011 0.949 0.951
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Table 5: Empirical results from simulation studies examining the properties of the estimators
of treatment effects, variances, and copula parameter for the GG model (i.e., Gaussian copula

with Gaussian marginal distributions).

Param. Value Mean Bias Var MSE CpP
# of subjects 200 400 200 400 200 400 200 400 200 400
Setting I
51 1 0.958 0.964 —0.042 —0.036 0.057 0.015 0.059 0.016 0.956 0.957
B 0.8 0.746 0.776 —0.054 —0.024 0.095 0.033 0.098 0.034 0.953 0.958
33 0.4 0.426 0.424 0.026 0.024 0.098 0.055 0.099 0.055 0.946 0.956
o 1 1.054 1.001 0.053 0.001 0.080 0.031 0.082 0.031 0.949 0.959
9 1 0.991 0.956 —0.009 —0.044 0.018 0.007 0.019 0.008 0.947 0.950
a3 1 1.006 1.029 0.006 0.029 0.041 0.039 0.041 0.040 0.952 0.955
P12 0 0.141 0.051 0.141 0.051 0.077 0.049 0.097 0.052 0.933 0.955
P13 0 0.093 0.042 0.093 0.042 0.125 0.058 0.134 0.060 0.933 0.956
P23 0 0.077 0.056 0.077 0.056 0.086 0.088 0.092 0.091 0.940 0.944
Setting 1T
51 1 0.935 0.987 —-0.065 —0.013 0.048 0.009 0.053 0.009 0.959 0.959

Ba 0.8 0.786 0.841 —0.014 0.041 0.115 0.113 0.115 0.114 0.949 0.960
B3 0.4 0.455 0.449 0.055 0.049 0.069 0.011 0.072 0.013 0.952 0.965

o1 1 1.002 1.025 0.002 0.025 0.041 0.012 0.041 0.013 0.950 0.955
o9 1 0.980 0.966 —0.020 —0.034 0.098 0.000 0.098 0.001 0.948 0.949
o3 1 0.964 1.006 —0.036 0.005 0.116 0.098 0.117 0.098 0.945 0.953

P12 0.4 0.494 0.430 0.094 0.030 0.101 0.044 0.110 0.045 0.941 0.957
P13 0.4 0.489 0.437 0.089 0.037 0.072 0.018 0.080 0.020 0.947 0.949
P23 0.4 0.494 0.430 0.094 0.030 0.101 0.044 0.110 0.045 0.941 0.957

Setting III
51 1 0.975 1.013 —0.025 0.013 0.149 0.069 0.149 0.069 0.959 0.952
Ba 0.8 0.840 0.848 0.040 0.048 0.139 0.038 0.140 0.041 0.951 0.957
B3 04 0.357 0.449 —0.043 0.049 0.074 0.007 0.076 0.009 0.952 0.962

o1 1 1.016 1.010 0.016 0.009 0.032 0.031 0.032 0.031 0.950 0.956
o9 1 1.012 1.019 0.012 0.019 0.085 0.066 0.085 0.067 0.952 0.958
o3 1 0.950 1.020 —0.050 0.020 0.028 0.017 0.031 0.018 0.946 0.954

P12 0.8 0.848 0.834 0.048 0.034 0.120 0.039 0.123 0.040 0.944 0.951
P13 0.8 0.825 0.801 0.025 0.001 0.131 0.100 0.132 0.100 0.942 0.957
P23 0.8 0.872 0.792 0.072 —0.008 0.052 0.052 0.057 0.052 0.942 0.948
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Figure 1: The event plot for subjects 600 to 615.

6 Application to a Skin Cancer Dataset

The Nutritional Prevention of Cancer (NPC) study was a randomized, double-blinded,
placebo-controlled clinical trial. The goal of the NPC study was to evaluate the efficacy
of selenium in preventing the recurrence of nonmelanoma skin cancers. There were 1312
individuals from the Eastern United States in the study. Full details of the study design
and major results are available in Duffield-Lillico et al. (2002), and Duffield-Lillico et al.
(2003). Participants were recruited from seven dermatology practices located in cities in
low-selenium areas. Participants had a history of two or more BCCs or one SCC of the skin,
with one of these developed within the year before the study enrollment.

Subjects were randomized in a double-blinded fashion to either 200 pg/day of selenium
in 0.5-gram high selenium baker’s yeast or a placebo. Recruitment was between 1983 and
1991. Only subjects with valid baseline plasma selenium values collected on the day of
randomization, plus or minus four days, were included. Sixty-two participants whose initial
blood draws were not drawn within four days of the randomization date, and an additional 58
subjects who were found to have incomplete follow-up data are excluded from the analysis.
As a result, our study was based on data from the 1192 participants with valid baseline
selenium values (i.e., there are 606 participants in the selenium group and 586 participants
in the placebo group).

The follow up extended from the date of randomization through to February 1, 1996.
The mean follow-up time was 7.4 years. The total number of BCCs and SCCs are 1582
and 351 for the placebo group, and 1871 and 408 for the selenium group, respectively. The
average number of BCCs per subject by the treatment group (selenium vs placebo) are 2.699
and 3.087. The average number of SCCs per subject by the treatment group are 0.599 and
0.673. There were 25.9% and 66.7% of the participants who did not develop new BCC or
SCC, respectively, during the study. The length of the follow-up and the recurrent times of
the BCC and SCC for a sample of 15 patients are depicted in Figure 1.

This study intends to estimate the effects of selenium supplementation on the recurrence

17



of BCC and SCC cancer types. Because the correlation between two processes is of key
interest, it is necessary to use a multi-type recurrent event model. Another important point
of interest is to study whether the subjects who are at higher risk of BCC tend to have a
higher or lower risk of SCC. This approach allows us to assess the association between the
recurrence of BCCs and SCCs, and the dependence of within-subject events. The models
presented in Section 2 were applied to this skin cancer dataset. There is one treatment
covariate with two levels at z; = 1 and x; = 0 (i.e., selenium group vs placebo group,
respectively). Regression coefficients for the selenium effects on BCC and SCC are f; and
B2 , respectively. Variance components of frailties (ay, az), and the copula parameter («)
are estimated.

We consider the four copula models as listed in Table 1. Table 6 gives the model parameter
estimates. Here we discuss the results from each model.

e Based on the Clayton copula and gamma frailty model (Model Cg), it is suggested
that the intensity of BCC increases in the selenium group compared to the placebo group
with a relative risk (RR) of 1.088. The selenium’s group is associated with a higher risk of
SCC recurrence (RR = 1.119). The estimated variances (a; and ay) are 1.045 and 2.686,
respectively. This implies that the within-subject correlation of SCC recurrent times is
stronger than the recurrent times of BCC. However, the between-subject variation of SCC
times is higher than the between-subject variation of BCC times. A moderate correlation
between the event times for BCC and SCC was observed (Kendall’s tau equals 0.3). The
positive estimates of the correlation between the two processes indicate that a higher event
rate of BCC tends to occur with a higher event rate of SCC.

e Based on the Clayton copula and Gaussian random effects model (Model CG), it shows
that selenium supplementation was associated with an increase in recurrence of both BCC
and SCC with RR as 1.093 and 1.131, respectively. The estimated variances and Kendall’s
tau are 1.001, 1.978, and 0.345, respectively.

e Based on the Gaussian copula and gamma frailties model (Model Gg), the rate of the
BCC is higher in the selenium group than the placebo group (RR = 1.090), and the incidence
rate is higher (RR = 1.124) in the selenium group compared to the placebo group for SCC
type. There is a significant heterogeneity for both the BCC and SCC event types with a; =
1.057 and s = 2.798. The correlation coefficient between the two event types is estimated
at 0.296.

e Based on the Gaussian copula and Gaussian random effects model (Model GG). The
rate of recurrence of BCC (RR = 1.111) and SCC (RR = 1.163) is increased with the selenium
group relative to the placebo group. The positive values of ay = 1.027, ap = 2.044, and o =
0.315 indicate dependence within the subject event times and between the two cancer types.

In summary, results from all models in Tables 6 show that the variance of the random

effects and frailties for SCC event times within-subject is, however, much larger than that
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Table 6: Parameter estimates for the multi-type recurrent events models.

Parametor Model Cg Model CG
EST. S.E. RR p-value | EST. S.E. RR p-value
B4 0.085 0.072 1.088 0.239 | 0.091 0.076 1.093 0.242
5o 0.113 0.103 1.119 0.273 | 0.124 0.112 1.131 0.269
aq 1.045 0.076 <0.001 | 1.001 0.069 <0.001
Qg 2.686 0.153 <0.001 | 1.978 0.135 <0.001
! 0.856 0.098 <0.001 | 1.076 0.096 <0.001
Kendall’s tau | 0.300 0.345
Model Gg Model GG
EST. S.E. RR p-value | EST. S.E. RR p-value
b1 0.084 0.070 1.090 0.219 | 0.088 0.072 1.111 0.221
5o 0.117 0.106 1.124 0.120 | 0.122 0.128 1.163 0.340
aq 1.057 0.074 <0.001 | 1.027 0.072 <0.001
Qo 2.798 0.125 <0.001 | 2.044 0.089 <0.001
« 0.296 0.089 <0.001 | 0.315 0.080 <0.001

Table 7: Deviance residuals for the fitted multi-type recurrent events models.

Type Model Cg Model CG Model Gg Model GG

BCC 355 400 349 394
SCC 307 326 300 333
Total 662 726 649 727

for BCC. The correlation coefficient a and Kendall’s tau are also significantly different from
zero, indicating a moderate association between the risk of BCC and SCC recurrences. Based
on the calculated sum of squared deviance residuals (e.g., Therneau and Grambsch 2000) in
Table 7, Model Gg fits the skin cancer data better than other models (Cg, CG, GG). The
Gaussian copula describes symmetric dependence between the subject frailties of BCC and
SCC cancer types with less tail dependence. Gamma marginals confirm a heavy lower tail
and relatively high density for subjects with large frailties of the two cancer types. It is clear
that assuming different models of frailties/random effects tends not to have a considerable
effect on the inference of model parameters in Table 6.

The Nelson-Aalen estimates of the cumulative baseline intensity functions for both BCC
and SCC obtained from a separate analysis using Cox models and multi-type recurrent event
models are shown in Figure 2. It shows that the cumulative baseline intensity for BCC is
higher than the cumulative function for SCC. In addition, the estimated baseline cumulative
intensity functions for gamma frailty are higher than that for Gaussian random effects for
both Clayton and Gaussian copulas. However, the cumulative intensity functions in Figure 2
are sensitive to the selection of the model of frailties/random effects (e.g., Cook, Lawless,
and Lee 2010).
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Figure 2: Cumulative intensity functions for the BCC and SCC tumor types.

7 Conclusions and Areas for Future Work

In this paper, we propose copula-frailty models for multi-type recurrent event data. We use
copulas to characterize complicated dependence structures of multivariate frailties, which
provides flexibility in modeling recurrent events with multi-types. Maximum likelihood es-
timates of treatment effects, variance components, and nonparametric cumulative baseline
intensity functions are obtained. We implement the MCEM algorithms in the E-step and
numerical maximization methods in the M-step. We apply the developed method to analyze
the skin cancer data.

Although we only consider two copula functions (i.e., Gaussian and Clayton) and two
marginal distributions (i.e., the Gaussian and gamma distributions) in this paper, it is rela-
tively straightforward to extend the same estimation method to other copula functions and
marginal distributions. Expanding the frailty model in (1) to accommodate random slopes
needs further research, and it is interesting to investigate this in future research.

Automated MCEM algorithms (e.g., Booth and Hobert 1999) can be used for the current
model to study the efficacy of different routines to minimize the computing expenses. We
assume time-constant coefficients in the proposed models in (1) and (2). It is interesting to
evaluate the long-term effects of risk factors that could vary with time. We are currently
extending the developed model and estimation procedure to accommodate for potential time

varying-covariate effects and for nonparametric covariates as well.
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Algorithm: 2 A Metropolis-Hastings algorithm for the E-step in the MCEM algorithm.

1. Initialize w© = (wgo)', o ,'wglo)/)

' At iteration ¢, (¢ =1,...,n,),
2. Sample w; , for the " component of w from a proposed distribution w; ~
. -1
g(w;|wi).

3. Compute an acceptance ratio (probability)

* -1 *
Gunp, (w[€) g(w! "V |w?)

 Gup, (WY€) g(wiwl V)

(4

4. Sample v ~ uniform (0,1). Set wgq) to w} if w < r and to w Vifu>r.

5. Repeat steps 2 to 4 for generating n, random samples w® . wmd),
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A Metropolis-Hastings Algorithm

In this section, we briefly describe the Metropolis-Hastings algorithm. Our approach involves
generating random samples w; from the exact conditional distribution of the frailty terms
(given the data) by MCMC sampling. From (7), the conditional distribution of w;|D; can

be expressed as
Guw, D, (wil§) o< Li(§, w;).

There are several approaches to select proposed functions, resulting in specific types of
Metropolis-Hastings algorithms. We use a random-walk Metropolis-Hastings algorithm. For
the density distribution of the candidates, we use copula density functions that match copula
densities for the frailty terms w; to propose candidate samples for w?. For example, Gaus-
sian and Clayton copulas and Gaussian marginal distributions with some proposed copula

parameter values are used. The Metropolis-Hastings algorithm is described in Algorithm 2.
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B Expected Log-likelihood of Gaussian and Clayton

Copula with Gamma Marginals

In this section, we derive the expected log-likelihood @Q2(ax) for Gaussian and Clayton copula

with gamma marginal distributions. For instance, when frailty terms are Gaussian copula,

Qg(ac) is

Qsle) = —5lo8(Rul) ~ 3B [ al(R,! ~ T)a)]

_ _% log(|R|) — %tr[(R;l - Im)E(Qqu)]

Note that E(-) is the expectation of the frailty conditional distribution. In such case when

we consider a Clayton copula, @3(c.) can be expressed as

Qs(a.) = i {(—1/a — m)E[log(i u —m+ 1)} + iE[log(u;a_l)} }

i=1 j=1 Jj=1

+nlog{<—a>mﬁ<—§—j>}.

For example, a bivariate Clayton copula, Q3(a.) is

g(win, wiz) = Z {(—1/a — 2)E[log(u;;" + u* — 1)] + (—a — 1)E[log(ui1) + log(u,-g)]}
+ nllog(1 + «)].

For marginal distributions, when w;; are gamma(l/c;, o) distributed with mean 1 and

variance «;, Q4(c;) can be in the form

Qu(ay) = i { (a% - 1) E[log(w;;)] — &E(wzj)} —n {10g [F (5) ] + aijlog(aj)} :

i=1 J J
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