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ABSTRACT

Scenario-based model predictive control (MPC) methods introduce recourse into optimal control and can
thus reduce the conservativeness inherent to open-loop robust MPC. However, the uncertainty scenar-
ios are often generated offline using worst-case uncertainty bounds quantified a priori, limiting the po-
tential gains in control performance. This paper presents a learning-based multistage MPC (msMPC) for
systems with hard-to-model dynamics and time-varying plant-model mismatch. Gaussian Processes (GP)
are used to learn state- and input-dependent plant-model mismatch in real-time and accordingly adapt
the scenario tree online. Due to the increased computational complexity associated with incorporating
the GP predictions into the optimal control problem, the learning-based msMPC (LB-msMPC) law is ap-
proximated by a deep neural network (DNN) that is cheap-to-evaluate online and has a small memory
footprint, which makes it suitable for embedded applications. In addition, we present a novel algorithm
for training the DNN-based controller that uses a GP description of the plant-model mismatch to generate
closed-loop simulation data, which ensures the LB-msMPC law is evaluated in regions of the state space
most relevant to closed-loop operation. The proposed LB-msMPC strategy is demonstrated on a cold at-
mospheric plasma jet with applications in (bio)materials processing. The simulation results indicate the
promise of the approximate LB-msMPC strategy for control of hard-to-model systems with fast dynamics
on millisecond timescales.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is widely used for the con-
trol of multivariable and constrained systems (Mayne, 2014). The
performance of MPC hinges on the availability of accurate and
inexpensive system models. Learning-based MPC (LB-MPC) aims
to leverage machine learning and statistical learning tools to en-
able control of systems with complex and hard-to-model dynam-
ics, where purely model-based control approaches exhibit limited
effectiveness (Aswani et al., 2013). LB-MPC has shown promise in
various control applications, such as pH neutralization processes
(Kocijan et al., 2004), gas-liquid separation processes (Likar and
Kocijan, 2007), non-thermal plasma processing (Bonzanini and
Mesbah, 2020), robot path tracking (Ostafew et al., 2014), and un-
manned vehicles (Hewing et al., 2019).

However, using machine learning algorithms to augment - or
even completely substitute — the model does not inherently equip
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the MPC controller with the ability to systematically account for
uncertainty Bemporad and Morari (1999); Mesbah (2016, 2018).
In particular, the presence of uncertainties may lead to undesired
constraint violation and/or MPC performance deterioration. A pop-
ular approach to robustify MPC involves representing system un-
certainties using a scenario tree in the optimal control problem
(Bernardini and Bemporad, 2009). Scenario-based MPC methods,
such as multi-stage MPC (msMPC) (Lucia et al., 2013), can mitigate
the inherent conservativeness associated with robust MPC by in-
troducing recourse into the optimal control problem. However, an
important drawback of msMPC is the fact that scenarios are gener-
ated based on offline-characterized worst-case uncertainty descrip-
tions that must hold throughout the entire state space. This ne-
glects the potential time-varying and/or state-dependent nature of
the uncertainty that, when unaccounted for, can lead to significant
losses in control performance.

Adaptive approaches to msMPC have recently been proposed to
improve knowledge about an uncertain system via online estima-
tion of uncertainties and accordingly adapting the scenario tree
(Subramanian et al., 2015; Holtorf et al., 2019; Thangavel et al.,
2020). Although various disturbance estimators have been used
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for scenario tree adaptation, they typically assume either a spe-
cific structure of the model, or a generic constant disturbance pre-
diction, which may not capture structural plant-model mismatch
adequately. Alternatively, state- and input-dependent descriptions
of system uncertainty have shown to be useful for capturing the
time-varying and state-dependent nature of structural model un-
certainty (i.e., plant-model mismatch) (Bonzanini et al., 2020; Bon-
zanini and Mesbah, 2020; Hewing et al., 2019; Ostafew et al., 2014;
Soloperto et al., 2018).

In this paper, we present a learning-based msMPC (LB-msMPC)
strategy for hard-to-model dynamic systems in the presence of
plant-model mismatch. The first contribution of this work is a
learning-based paradigm for msMPC with adaptive scenario tree
whereby Gaussian Processes (GP) (Rasmussen and Williams, 2006)
are used to learn a data-driven description of the plant-model mis-
match. The main advantages of using a GP uncertainty model are
its ability to: (i) learn a description of any arbitrary functions as a
result of its non-parametric form and (ii) quantify the uncertainty
in the prediction of the plant-model mismatch that can be incor-
porated into robust MPC schemes. For online adaptation of the sce-
nario tree, the GP is embedded into the predictions of the msMPC
such that the scenarios (derived from either random sampling or
some quadrature rule) depend on the current and predicted state
and input values. Although online adaptation of the scenario tree
in msMPC has been implemented using recursive Bayesian weight-
ing (Krishnamoorthy et al., 2019b) and sigma point-based uncer-
tainty propagation (Thangavel et al.,, 2020), this is the first work
that uses GP to perform scenario tree adaptation.

However, GP-based adaption of the scenario tree further in-
creases the computational complexity of msMPC that can make
it impractical to implement in real-time, especially for systems
with fast dynamics. This is mainly because the number of deci-
sion variables grows exponentially with the prediction horizon due
to the branching of the scenario tree in addition to the calcula-
tion of each scenario requiring a Cholesky decomposition of the
covariance matrix predicted by the GP uncertainty model. Since
the LB-msMPC problem cannot be solved exactly offline using ex-
plicit/multiparametric MPC methods (Bemporad et al., 2002) due
to the nonlinear nature of the GP, we propose to approximate the
implicit LB-msMPC law in terms of a cheap-to-evaluate control law.
There has recently been increased interest in approximate MPC
strategies to yield an explicit expression for the controller using
data generated from offline solution of an MPC problem. Previ-
ous works have used various function approximators, such as poly-
nomials (Chakrabarty et al., 2016), radial basis functions (Csekd
et al., 2015), and deep neural networks (DNNs) (Parisini and Zop-
poli, 1995; Karg and Lucia, 2018; Chen et al., 2018) to derive ap-
proximate control laws. In particular, DNNs have been shown to
be useful for approximating MPC laws due to their ability to cap-
ture the piecewise nature of the control law (Karg and Lucia, 2018;
Bonzanini et al., 2020a; Paulson and Mesbah, 2020). The second
contribution of this work is a novel framework for training fast ap-
proximate LB-msMPC using DNNs. In contrast to existing approxi-
mate MPC approaches that base their training on open-loop data,
we demonstrate the advantages of training the DNN with closed-
loop data, which yields an effective approximation of the control
law in state-space regions relevant to closed-loop control. In addi-
tion, we show how Bayesian optimization methods (Shahriari et al.,
2016) can be used to systematically and efficiently select hyperpa-
rameters of the DNN.

The proposed LB-msMPC strategy is demonstrated on a sim-
ulation case study of an atmospheric pressure plasma jet (APPJ)
with prototypical applications in (bio)materials processing and
plasma medicine. We explore the tradeoff between computational
cost and performance for different update rules of the GP uncer-
tainty model. Specifically, we compare LB-msMPC, whereby the
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GP is propagated in prediction, and a so-called adaptive msMPC,
whereby the GP is updated at each sampling time and thus is ex-
ternal to the controller. In addition, we demonstrate the effects of
training data and hyperparameter optimization on the performance
of the DNN-based approximate control laws.

The structure of this paper is as follows. The problem formula-
tion and standard worst-case msMPC are summarized in Section 2.
Section 3 presents the proposed LB-msMPC strategy and discusses
various schemes for scenario selection. This is followed by the ap-
proximation of LB-msMPC using DNNs in Section 4, with focus on
generating closed-loop training data and hyperparameter selection
using Bayesian optimization. In Section 5, the proposed methods
are demonstrated on a simulation case study of a cold atmospheric
plasma jet with prototypical applications in plasma medicine and
biomaterials processing (Gidon et al., 2018). We benchmark the
proposed LB-msMPC strategy against worst-case msMPC for con-
trol of nonlinear plasma dose delivery, and demonstrate that the
approximate LB-msMPC law can be evaluated in the millisecond
range.

2. Preliminaries
2.1. Problem formulation

Consider an uncertain discrete-time nonlinear system of the
form

Xt = f(x,u) +w, (1)

where x € R™ is the current state, x* is the successor state at the
next time instant, u € R™ is the control input, and w e R™ is a
vector of unknown disturbances. The disturbance sequence {wy}y-o
is assumed to be a realization of a stochastic process that satisfies
the following assumption.

Assumption 1. w;, for k =0, 1,... are independent and identically
distributed (i.i.d.) random variables with known probability density
function py(w) and bounded support W c R™,

Assumption 1 is made initially to derive a theoretically con-
sistent scenario-based approximation to an underlying closed-loop
stochastic MPC problem, which will be relaxed in the subsequent
sections. The system (1) is subject to state and input constraints
given by

(x,u) e zZ, (2)

where Z = {(x,u) : h(x,u) <0} is a known set specified by the
constraint function h : R™ x R™ — R". Note that (2) implicitly de-
fines a set of state constraints

X = PrOjRnX (Z), (3)

where Projy(S) ={xeX:3JyeY st (x,y)eS} is the orthogonal
projection of the set S c X x Y onto the space X. We aim to solve
the following finite-horizon closed-loop MPC problem under un-
certainty

ml_}n](x, IM) :=Ew %Z(Xk, (X)) + L7 (xXn) ¢ (4a)
StXy1 = f (X T (X)) + Wy, (4b)
(k. T (X)) € 2, (4c)
Xo=x,YweWN, Vke{o,....N—1), (4d)

where the decision variables are defined by the control policy I1 =
{mo(), ..., mn_1(-)} that is composed of a sequence of control laws
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7, : R™ — R™ over the prediction horizon N > 0. The objective
function is defined in terms of the expected value Ew{-} with re-
spect to the disturbance sequence w = (wg, ..., Wy_1). £(x,u) and
£p(xy) denote the stage cost and terminal cost, respectively. The
objective function directly takes advantage of distributional in-
formation of the disturbances. The constraints, however, are en-
forced with respect to the worst-case realization of the distur-
bances. In principle, the hard constraints (2) could be replaced
with chance constraints; however, this would complicate the analy-
sis when Assumption 1 is relaxed due to the fact that the p,, could
vary with time or the state. As such, we choose to enforce con-
straints in a worst-case sense, which is consistent with the stan-
dard formulation of multistage MPC (Lucia et al., 2013).

2.2. Multistage MPC

The closed-loop MPC problem (4) is not solvable directly due to
the infinite dimensional nature of the control policy IT. However,
even a finite parametrization of the control laws, e.g., m(x;) =
KXy + vy, results in (4) taking the form of a semi-infinite opti-
mization problem since the uncertainty set W c R™ is generally
uncountable. A tractable approximation to (4) can be derived in
the general nonlinear setting by considering a sample-based ap-
proximation of py, i.e.,

pw(W) ~ py(w) :=Y5 ; p's(w—w), (5)

where wi and p' denote the location and probability of the ith
sample, respectively, and s is the total number of samples in
the approximation. This implies that the support of the distur-
bance distribution is approximated by W~ W = {w!,...,ws}. In
this case, the future evolution of the uncertainty over the predic-
tion horizon can be represented by a scenario tree (Fig. 1), where a
scenario represents a path from the root node to a given leaf node.
A key challenge in scenario tree approximations is that the size of
the scenario tree grows exponentially with the prediction horizon.

The so-called multistage MPC (msMPC) formulation (Lucia et al.,
2013) avoids branching after a certain number of time steps, called
the robust horizon Ny, after which the disturbances are assumed
constant. Consequently, the total number of scenarios is given by
S =sNr. The resulting optimal control problem can be formulated
as

Jmin Y35 @[30 € ) + (o) ] (6a)
X1 = f (X j U ) + W j, (6b)
(Xk.j» Uk j) € Z, (60)
Y Eju; =0, (6d)
X0;j=xVjefl,....S}, Vke{0,....N—1}, (6e)

where the subscript (-); ; denotes the jth scenario at sample time
k, wj is the probability of occurrence of the disturbance sequence
wj = (Wpj,...,Wn_q ;) that is equal to the products of conditional
probabilities (an element of {p!,..., p}) along the path of sce-
nario j, and (6d) enforces the non-anticipativity constraints that en-
sure the states that branch from the same parent node have the
same control input (i.e., current decisions cannot anticipate the fu-
ture). Here, the vector u; = (ug j,...,Uy_1 j) € R™N denotes the se-
quence of optimal control inputs for the jth scenario and the ma-
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Fig. 1. Two equivalent scenario tree representations for s = N, = 2.

trix I::j is given by Klintberg et al. (2016)

Eip  —Ei2
F Ey3  —Ez3
B . ’ (7)
o Es 15 —Esas
=i E ... Es. K
where
In, 0 ... 0
Ej,j+l= . (8)
In o ... O

u

The dimensions of these matrices are defined in terms of
N, (j.j+1)» Which denotes the number of common nodes between
consecutive scenarios j and j+ 1. That is, E; j;; € R™™N and E; e

nyN _ _ S—1 .
RI*MN where 1 = nyn, ¢ j41) and q = ny 2521 Mo (j.j1)-

Remark 1. Formulating the non-anticipativity constraints using
the chain-like structure exhibited by the matrices {E j}§:1 results
in highly sparse structures that can be exploited by many solvers,
as discussed in Klintberg et al. (2016). This structure can also
be straightforwardly handled by both primal and dual distributed
optimization algorithms, which has recently been explored in
Krishnamoorthy et al. (2019a).

Remark 2. When N; = N, constraints (6¢) will be a direct enforce-
ment of worst-case constraints under the approximated distribu-
tion (5) since the state and input evolution is required to stay
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within the constraints for all possible realizations of disturbances.
For linear systems f(x,u) = Ax + Bu with a polytopic disturbance
support, these constraints exactly enforce worst-case constraint
sanctification as long as the extreme values of W are included in
WKarg et al. (2019).

The design of a suitable scenario tree is a tradeoff between cov-
erage of the uncertainty space and computational cost. One of the
most commonly used methods for scenario tree construction is to
select the combination of the minimum, nominal, and maximum
values in each disturbance dimension, leading to s =3"w. Thus,
the tree grows exponentially with respect to the number of con-
sidered uncertainties, indicating that the choice of scenarios is of
paramount importance for tractability. Alternative methods for the
construction of sparse scenario trees is discussed in more detail in
Section 3.3.

3. Learning-based multistage MPC
3.1. Learning plant-model mismatch with Gaussian processes

The msMPC problem (6) treats the uncertainty scenarios W
as perfectly known a priori, which can be a valid choice under
Assumption 1. However, there are a variety of systems that do not
satisfy this assumption, including those that exhibit a significant
degree of time-varying uncertainty. One such example is plant-
model mismatch, which corresponds to the case that the true un-
derlying dynamics are unknown. We can represent this situation
by

x* = f(x,u) + By (g(x, u) +v), 9)

where v € R™ is a process noise that is assumed to be normally
distributed, i.e., v ~ N (0, V) with a diagonal covariance matrix
V= diag([alz,...,a,fd]). The model (9) is composed of a known
nominal function f:R™ x R™ — R™ and an initially unknown
function g : R™ x R™ — R™ to be learned from data, which is as-
sumed to lie in the subspace spanned by the matrix B; € R™*Md,
For example, in the case that all states have unmodeled dynamics,
then ny = ny and B, = Ip,. We can interpret this representation of
plant-model mismatch as a special case of (1), where the distur-
bance w = B, (g(x, u) + v) is now state- and-input dependent.

In this work, we choose to model the noisy vector-valued func-
tion g using Gaussian process (GP) regression (Rasmussen and
Williams, 2006). Assuming that we have M > 0 training points in
the form of previously collected measurements of the states and
inputs, we can evaluate the mismatch term as

i =Bl (xj1 — f(xj.u)) = gxj.u)) +v;, (10)

for all je{1,..., M}, where BE denotes the Moore-Penrose pseu-
doinverse of By. Letting z; = (x;,u;), we can define the training
dataset as

D={y=1[y1.....yml" z=1z1,....2m]"}. (11)
An important note about GP regression is that the evaluation
at a new point, which involves the computation of the covariance
matrix, becomes more expensive as more training data are used.
In applications where there is a need for fast GP evaluations, one
can conveniently populate the training set using optimal sampling
techniques (Burbidge et al., 2007; Willett et al., 2006). Although
this is beyond the scope of this work, it is an interesting future re-
search direction. For simplicity, it is assumed that each dimension
of g can be learned separately. First, we must specify a GP prior on
each element a € {1,..., ny} of g, with known mean function m?(-)
and covariance kernel k?(-,-). Then, by conditioning on the train-
ing data D, a Gaussian posterior distribution can be derived at any
selected test point z = (x, u) with the mean and covariance

1q(2) = m* (@) + K (Kg, + 07D~ ([y].a — my), (12a)
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28 (2) = K, — KG (Kg, + 021 'K, (12b)

where K is the Gram matrix that is composed of the terms
[ng],] = ka(z,-,zj), [ng]j = ka(Zj,Z), Kzaz = (K;Z)T, ng = ka(z, Z),
and [mg]; = m®(z;). Many choices exist for the kernel function, one
of the most popular being the squared exponential kernel
1 _

5@-2)"L @ 2). (13)
where oj? o« Is the signal variance and Lq is a positive diagonal
length-scale matrix (Rasmussen and Williams, 2006). The result-

ing state- and input-dependent GP approximation of the unknown
function g(x, u) is then given by

d(x,u) ~ N (ulx, u), 2¢x, u)), (14)

k*(z;, zj) = 0} €xp (—

where the mean /Ld(-)=[,u‘{’(-),...,//vﬁd(-)]T and covariance

24() = diag([Z4 (), ..., Eﬂd ()]7) are concatenated from the indi-
vidual output predictions in (12).

Remark 3. The assumption that each dimension of g is learned
separately is common in literature, e.g., see Hewing et al. (2019).
Firstly, assuming independence of the outputs reduces computa-
tional complexity and makes the derivation of confidence intervals
more straightforward. Secondly, although vector forms of GP do ex-
ist, it is not clear if they provide a noticeable improvement in pre-
dictions. The proposed LB-msMPC strategy can accommodate any
number of outputs learned with a single GP regression.

Remark 4. We choose to model the unknown dynamics using
the additive term w = B;(g(x,u) +v) in (9) because it provides
an intuitive structure that separates the known part from the un-
modeled dynamics. Since w is itself a nonlinear function, the dy-
namics in (9) can be expressed as a new nonlinear function, say,
frot(x, u,d), where d is defined in (14). When the uncertainty is
not additive, the derivation of the scenarios requires an additional
optimization step, i.e., maximizing fio (X, u,d) over d.

3.2. GP-based formulation of msMPC

Under the GP approximation of g(x, u) in (14), the effective dis-
turbance in (1) becomes w = B;(d(x,u) +v). Due to the depen-
dence on the state and input, the disturbance does not satisfy
Assumption 1 and the msMPC problem (6) must be modified to
explicitly account for plant-model mismatch. A key observation is
that wy|wy_q, ..., Wo = Wy |xg, Uy is Gaussian such that

Wie|Xpe, U ~ N (e (X, ), 2% (X, Uge))s (15)

where " (x,u) = Bguu?(x, u) is the mean function and %W (x, u) =
By %4 (x.u)B] + B4XVB] is the covariance matrix function. We can
equivalently represent (15) via an affine transformation of standard
Gaussian random variables &, ~ N (0, I, ), namely

WielXpe, Uy = 1% (g, ) + T (g, we) &, (16)

where (-)1/2 denotes any matrix square root such as the Cholesky
decomposition. We can model the random process {&;};-o as
a collection of iid. random variables - a main requirement of
Assumption 1 - such that the same basic msMPC formulation in
Section 2 can be applied in this transformed space, i.e.,

ulkm,{kl Y Vj[zg;(} E( o g ) + L (xn ) . (17a)
SR

StXpp1j = Xy jo Ug j) + Wi js (17b)
Wi j = WY e g g ) + 2V R e ) 26 (17¢)
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(Xp j» Ur,j) € 2, (17d)
Y5 Euy =0, (17e)

Xoj=xVje{l.....S}. Vke{0.....N-1}, (17f)
where & ; € {1, ..., &%} denote the scenarios at each stage in the

transformed space and {y; ?:1 denote the effective probability of
each scenario over time. We refer to formulation (17) as learning-
based msMPC (LB-msMPC) due to the fact that the learned GP
model is embedded in the predictions (17c), which is the main dif-
ference between problems (6) and (17).

Let U*(x) = {uj(®). ..., ut(x)} denote the optimal solution to
(17) that is a function of the measured state value x. The LB-
msMPC control law is implicitly defined in terms of this solution
by

Kip (%) = ug 1 (%), (18)

where the first input in the sequence is equal for all scenar-
ios according to the non-anticipativity constraints, i.e., uj,(x) =
”6,2(") =...= “6,5(")- Let 2}, € R™ be the domain of attraction
of the LB-msMPC controller, which denotes the set of initial states
such that (17) has a feasible solution. To ensure a feasible solution
always exists in practice, i.e., 2j, = R™, the constraints (17d) can
be softened using an exact penalty function method as discussed
in Kerrigan and Maciejowski (2000).

Remark 5. There may be additional parameters € that appear in
the cost or constraint functions in the MPC problem (e.g., setpoint
values). In such cases, the control law (18) will depend on these
parameters i, (X, 6).

Due to the GP model used to approximate plant-model mis-
match, the bounded disturbance assumption is no longer satisfied
by the support W = R™. Instead of trying to enforce constraints
for all possible values of uncertainty in this case, we look to use
confidence intervals to characterize the expected range of uncer-
tainty. These confidence intervals can be straightforwardly com-
puted from the GP model as

W u) = {w: [lw— @& 1) [ < @)}, (19)

where r(-) is the quantile function for the chi-squared distribution
with n degrees of freedom (Xﬁd (a)) and « € (0, 1) is the desired
probability level. The choice of « is a tuning parameter, with larger
values representing less confidence in our knowledge of the func-
tion g(x, u). The ellipsoidal confidence region (19) can be used to
select the minimum, nominal, and maximum values in each of the
principal axes by selecting the samples of £ in each dimension to
be {-r12(a),0,r 12(a)}.

Remark 6. Even though the affine transformation (16) is valid at
each individual test point, this does not directly imply that the se-
quence {&;}o satisfies the i.i.d. assumption. This is a valid repre-
sentation under a stochastic interpretation of the GP in which dif-
ferent outputs can be predicted for evaluations at the exact same
state value. The so-called scenario viewpoint results in every ran-
dom GP sample being a deterministic function, which is a more re-
alistic representation of plant-model mismatch. Interested readers
are referred to Umlauft et al. (2018) for a more detailed discussion
on these two methods that will be the subject of our future work.

Remark 7. The LB-msMPC problem does not guarantee closed-
loop constraint satisfaction by design. One way to recover this
property for systems with state- and input-dependent uncertainty
was recently proposed in Bonzanini et al. (2020b), wherein the
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optimal input «y,(x) is projected onto a safety set of states S C
Projgn, (2), i.e,,

us(x) = argmin [|u — K, ()|,
ueS, (x)

where
Sux) ={u:{fx,u)}ewkxu) cS, xu)ecz}

is the set of inputs that guarantee the system stays within the
safe set S for all possible disturbances, with A@® B denoting the
Minkowski set addition of two sets A, B c R". By selecting S to be
a robust control invariant (RCI) set for the system x* = f(x,u) +w
and constraints (2) and (19), a feasible backup controller is guar-
anteed to exist due to the fact that S,(x) # @ for all x € S. A dis-
cussion on RCI set computation for a variety of systems (ranging
from linear to nonlinear) is provided in Rakovic et al. (2006). It is
important to note that RCI set construction is generally a challeng-
ing task, especially as ny increases, and remains an active area of
research.

3.3. Sparse scenario tree construction methods

There are two main alternatives for deriving sample-based ap-
proximations to the distribution pg, which can both be interpreted
as approximations to the expectation operator in the closed-loop
MPC problem (4). The first approach is often referred to as sam-
ple average approximation (SAA) (Kleywegt et al., 2002), which
applies Monte Carlo (MC) sampling to obtain realizations of the
random disturbance &. The convergence rate of MC is O(s~1/2)
Caflisch (1998), which is independent of the number of uncertain-
ties ny; however, it is often slow in practice, implying a large num-
ber of samples may be needed to achieve an acceptable level of er-
ror. Numerical quadrature, on the other hand, looks to approximate
the expected value operator as a sum over a finite set of samples
as follows

E¢(F(§))} = [F(E)p: (§)dE ~ i p'F(&D), (20)
where F(§) is some arbitrary function. The quadrature nodes
{Ei}fzl then correspond to the uncertainty realizations, whereas
the quadrature weights {p'}$ . represent their associated probabil-
ities.

Gaussian quadrature rules are known to be highly efficient since
they can exactly integrate polynomial functions up to order 2s
using only s nodes (for s even) for univariate problems ny, = 1.
The extension to n, > 1, in the form of a tensor product of all
combination of univariate quadrature points, still suffers from the
curse-of-dimensionality. Sparse grid quadrature is a popular alter-
native to Gaussian quadrature for high-dimensional integration, as
it can significantly reduce the number of nodes in the full ten-
sor grid without sacrificing accuracy (Gerstner and Griebel, 2003).
This approach has been successfully demonstrated in the context
of msMPC in Leidereiter et al. (2014).

In addition to sparse grid quadrature, optimization-based meth-
ods can be used to systematically locate nodes and weights in
(20) so that the approximation error is minimized. This includes
moment-matching optimization methods (Ryu and Boyd, 2015),
which are a natural extension of Gaussian quadrature to the
multivariate case, and optimized stochastic collocation methods
(Sinsbeck and Nowak, 2015) that are a quasi-optimal procedure
for minimizing the quadrature operator’s error norm. Promising re-
sults have been demonstrated with these methods in, e.g., Paulson
and Mesbah (2018b,a); Paulson et al. (2019), which motivate their
potential use in msMPC.

s
i=1

Remark 8. Although MC or quadrature can be used to approxi-
mate the expectation, they may not provide an adequate approx-
imation of the worst-case uncertainty value that can be impor-
tant for guaranteeing closed-loop constraint satisfaction. In such
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cases, a hybrid approach that retains two separate sets of scenar-
ios for the objective and constraints can be useful, as discussed in
Rooney and Biegler (2003) for multiperiod design problems. Such
a strategy, however, may result in significant online cost due to the
complexity in locating the worst-case value of the uncertainty. One
way to overcome this challenge is to apply a sensitivity-based pre-
diction of the worst-case uncertainty value that has been shown
to substantially reduce the size of the scenario tree in msMPC
Holtorf et al. (2019).

4. Approximate LB-msMPC using deep learning
4.1. Neural network approximation of the control law

Even though there have been significant advances in algo-
rithms and hardware over the past decade, solving the LB-msMPC
problem defined in (17) in real time can be computationally
challenging. This is further compounded by the inclusion of the
GP prediction (17c), which requires the Cholesky decomposition
=Y (X s ukvj)l/z to be computed at every node of the scenario tree
- known to scale cubically with respect to the number of training
points. To avoid the real-time solution of non-convex optimization
problems, we instead look to develop a data-driven approximation
of the implicit feedback control law (18). Neural network approx-
imation of nonlinear MPC was originally proposed in Parisini and
Zoppoli (1995), which used shallow networks with only one hid-
den layer that, according to the universal function approximation
theorem, can approximate any function to any desired accuracy
level under fairly mild conditions.

In this work, we focus on deep neural networks (DNNs) - with
several hidden layers - as function approximators due to their en-
hanced approximation capabilities, as demonstrated in several re-
cent works (Chen et al., 2018; Bonzanini et al., 2020a; Paulson and
Mesbah, 2020; Zhang et al., 2019; Hertneck et al., 2018). Further-
more, recent theoretical results show that a DNN with a given
size can exactly represent the MPC law for linear time-invariant
systems (Karg and Lucia, 2018). The LB-msMPC problem (17) is a
multiparametric optimization problem that depends on the cur-
rent measured state (and potentially other parameters as noted in
Remark 5). To construct a DNN approximation, a finite number of
N;s feasible state samples x e 2 are selected and then Ns individ-
ual optimization problems are solved to obtain the corresponding
optimal inputs ki, (x) = ual(x"). The training dataset can then be
represented as

T ={(x" k(") ... (&, Ky (xM))). (21)

A standard feed-forward DNN with fully connected layers is de-
fined as a function of the form

z/V(X;)\-):aL+lOﬂLOaLO...Oﬂ]Oal(X), (22)

where L is the number of hidden layers, ag(x) = Wpx + bg is an
affine transformation of the input, o (§,_1) = W)§,_; + b; (with & ¢
RH and H denotes the number of nodes per hidden layer) are affine
transformations of the hidden layers for all [ € {1,...,L}, B;(-) de-
notes the nonlinear activation functions for [ € {0,...,L — 1}, and
A ={Wy,bg.....,W., b} denotes the collection of all unknown pa-
rameters in the network that consists of the weights W, and biases
b, of the affine functions in each of the layers. Common choices for
the activation function are rectified linear units (ReLU) and the sig-
moid (hyperbolic tangent) function. Here we use ReLU activations
due to their popularity in regression-based tasks.

For fixed values of the network dimensions L and H, the best
approximation of the LB-msMPC control law (18) is defined as
the one that minimizes a given loss function, such as the mean
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squared error (MSE), over the given training set 7
1 X . )
A= argminﬁ D ke () = (5 1) |12 (23)
A S =1

The resulting deep learning-based LB-msMPC control law is de-
noted by rgy, (%) = A4 (x; A*), which depends on H and L, as well
as other “hyperparameters” in the training algorithm that must be
selected before A* can be computed. A systematic approach for se-
lecting these hyperparameters is described next.

4.2. Bayesian optimization for neural network hyperparameter
selection

The goal of hyperparameter tuning in deep learning is to find
the structure and training-related parameters of a DNN such that
some loss function is minimized. In general, the network structure
involves the number of layers and nodes, the activation function
choice, and the various connections between layers. Examples of
training-related parameters include the batch size, learning rate,
and/or the decay rate.

One of the most commonly used approaches for selecting the
hyperparameters is grid search wherein a separate network is
trained by solving (23) for all possible hyperparameter values in a
predefined set of options, e.g., Bergstra et al. (2011). This approach
generally scales poorly with respect to the number of considered
hyperparameters and thus is limited to a relatively small set of
possibilities. A more sophisticated approach that is gaining popu-
larity in machine learning is to tackle the hyperparameter selection
problem using derivative-free optimization methods. In particular,
Bayesian optimization (BO) (Snoek et al., 2012) has been shown
to effectively minimize a given loss function, such as the MSE in
(23), using a small number of objective function evaluations, and
can straightforwardly handle a mixture of continuous and integer
variables that often occur in training of DNNs.

The general notion underpinning BO is to approximate the ob-
jective function using a GP that is initially constructed from a
small experimental design. The current GP is then used to decide
which combination of hyperparameters is most promising by opti-
mizing an acquisition function that balances exploration (search-
ing the unknown parts of the function) and exploitation (eval-
uating near points that minimize the loss predicted by the GP)
(Jalali et al., 2012). A new DNN is trained for the optimally cho-
sen hyperparameter set to evaluate the loss function and this new
data point is incorporated into the GP training data set. The GP
is then updated given this new data point and the procedure re-
peats until some convergence criteria is met (or a maximum num-
ber of function evaluations is reached). The BO algorithm is illus-
trated in Fig. 2. A variety of acquisition functions can be used, in-
cluding: (i) expected improvement, (ii) probability of improvement,
and (iii) lower confidence bound. Interested readers are referred to
Martinez-Cantin (2014) for additional details on the BO procedure.

4.3. Control-oriented generation of training data

The training dataset (21) must be generated before we can se-
lect the DNN weights and biases A using (23) and the hyperpa-
rameters using BO. Ideally, the training samples {x"}fﬁ] should be
selected such that Ns is as small as possible, while a desired ac-
curacy level in the approximation of the control law is achieved.
This requires defining the space over which the controller will be
approximated - denoted by .2°. We can generate samples in 2" us-
ing a variety of approaches, including MC sampling, quasi-random
space filling sampling, and grid-based methods.

A natural choice for 2" is the working region of the controller
21, but this requires knowledge of the domain of attraction of
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Fig. 2. Illustration of the Bayesian optimization procedure for selection of DNN hy-
perparameters. Top figure in the loop shows a Gaussian process and corresponding
acquisition functions, representing the concept of searching for the optimum, as de-
scribed in Schneider et al. (2017).

the LB-msMPC that is difficult to obtain for general nonlinear sys-
tems. Furthermore, the set 2}, is unbounded whenever the oper-
ational constraints are softened, which is commonly done in prac-
tice to avoid infeasible optimization solutions. Assuming Z in (2) is
a compact set, then an alternative is to select .2 = X to be the set
of states that are allowable during operation defined in (3). How-
ever, this assumes that the closed-loop system can be anywhere
in the (potentially large) state constraint set, including values that
are highly unlikely to be observed during closed-loop operation.
This approach has been the focus of much of the recent work on
DNN-based MPC, e.g., Chen et al. (2018); Bonzanini et al. (2020a);
Paulson and Mesbah (2020); Hertneck et al. (2018), which we refer
to as open-loop training since it neglects any potentially relevant
information on the intended application of the controller.

Here, we propose an alternative method that looks to define a
control-oriented representation of 27, so that the generated sam-
ples of the state are much more likely to be observed in actual
closed-loop control implementations. The main idea is to focus on
a subset of the state constraint space to learn a simpler DNN repre-
sentation of ky, using significantly less training data. In particular,
we propose to define the set 2" in terms of the following closed-
loop tube of trajectories

2 =ULeX:. (24)

where X; denotes the reachable set of states at time step i and T
denotes the total number of time steps of interest. The reachable
state sets can be defined as

Xir1 = fXi k(X)) & WX, k1p (X7)), (25)

for all i € {0,..., T — 1} given an initial set of states Xj.

The key idea in the proposed approach is that 2" is defined
by closed-loop simulations using the uncertain model x* = f(x, u) +
B4 (d(x,u) + v) as the best representation of the unknown true sys-
tem (9). This serves as a proxy for the actual closed-loop system

X" = f(x, k(%)) + Bg(g(x, kb (X)) + V), (26)

that cannot be realized in practice because the LB-msMPC law is
too expensive to evaluate in real-time. In other words, although it
would be preferred to gather data from actual closed-loop control
runs (26), this is not possible due to real-time limitations and in-
stead we rely on an emulator of the system defined in terms of
a GP model of the plant-model mismatch. It is important to note
that the GP (14) is an explicit function of the system measure-
ments at M different (x,u) pairs such that the simulated closed-
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loop tube (24) will approach the unknown tube defined in terms
of (26) as M — oc.

Even using the GP-based uncertainty description, we still can-
not explicitly compute 2" in (24) due to the underlying nonlinear
dynamics. Instead, we generate random samples within 2" using
the procedure summarized in Algorithm 1. First, an initial state is

Algorithm 1 Control-oriented learning of DNN-based LB-msMPC
with closed-loop simulation data.

Input: Nominal dynamics f, GP model of the uncertainty (15),
number of simulations Nj;;,,, set of initial states X, number of time
steps T, and target set Xtarget.

Output: Training set 7.

1: for i =1 to Ny, do

2: X < sample from the set~Xj

3: for j=1to T do

4: U < Kpp x)

5: T« Tu{(x,u)}

6: Use GP to evaluate u"(x,u) and X% (x, u)
7: w < sample from~N(u" (x, u), W (x,u))
8: Project w into level set W(x, u)

9: X< f(x,u)+w

10: if x € Xiarget then

break

—_
jary

sampled from the pre-specified set Xy. The LB-msMPC law is then
evaluated at this initial state by solving (17) numerically. A real-
ization from the GP model is then drawn according to (16) that
is projected onto the level set (19) to ensure the system evolution
remains bounded. The control input and random disturbance val-
ues are then used to update the state of the system and the over-
all process is repeated until either the final time T or a target set
Xtarget 1s reached. The target set is incorporated into the algorithm
to account for the fact that one may want to stop a given simu-
lation once a certain goal has been met (e.g., a setpoint has been
reached). Furthermore, note that 2" ¢ X since constraint satisfac-
tion has not been guaranteed in the design of «y;, (see Remark 7).
This can be mitigated by incorporating explicit backoffs into the
design of the LB-msMPC law. Interested readers are referred to
Paulson and Mesbah (2018a) for more a detailed discussion on ex-
plicit backoffs in the context of nonlinear MPC.

The set Xy plays a key role in Algorithm 1. We generally ex-
pect that larger Xy results in a larger 2° such that the controller
must be approximated in a larger region. Thus, from a training
point-of-view, it is desired to limit the size of X, as much as pos-
sible, which implies strong benefits are likely to be observed for
batch, startup, and changeover control problems that consider a
fairly limited window of initial states. In addition, the level sets
(19) influence the growth of the tube over time - increasing o« im-
plies more uncertainty and thus increases the size of .2". This pro-
vides a mechanism to encode our belief in the GP prediction of the
plant-model mismatch term that directly influences the size of the
closed-loop tube 2°. Lastly, we note that an important advantage
of Algorithm 1 over open-loop training is that we can take advan-
tage of warm starting to accelerate convergence of «j, evaluations
fori=1,...,T, as long as the successor state does not move sig-
nificantly far away from the current state.

Remark 9. Algorithm 1 uses the nominal model, along with the
GP-based uncertainty predictions, to perform closed-loop simu-
lations. This control-relevant model can be straightforwardly re-
placed with any (potentially black-box) high-fidelity simulation of
the process. The use of high-fidelity models for closed-loop vali-
dation and tuning of nonlinear MPC is discussed in Paulson and
Mesbah (2018b).
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5. Case study: atmospheric pressure plasma jet for biomaterials
processing

We apply the proposed LB-msMPC and approximate LB-msMPC
strategies for predictive control of a RF-excited atmospheric pres-
sure plasma jet (APPJ) in Argon Gidon et al. (2018, 2019). AP-
PJs are a class of widely used cold atmospheric plasma devices
for surface processing and biomedical applications (Laroussi et al.,
2012; Metelmann et al., 2018; Mani et al,, 2015; Morent, 2013).
A major challenge in model-based control of APPJs arises from
the complex and nonlinear nature of the plasma dynamics, which
generally cannot be described by first-principles models that are
amenable to real-time computations (Gidon et al., 2017). Most
model-based control strategies for APPJs rely on linear system
identification models that inevitably exhibit a large plant-model
mismatch (Gidon et al, 2018; 2019). This motivates the use of
learning-based control such as the proposed LB-msMPC to enable
safe and effective operation of APPJs, in particular for safety-critical
applications in plasma medicine. In addition, the fast dynamics of
plasmas necessitate fast control implementations on the millisec-
ond timescale.

5.1. Problem formulation

A high-fidelity model of the RF-excited APPJ in Argon is used
here as the plant model, which is described by a differential-
algebraic system of equations (see Gidon et al., 2017 for details).
Similarly to Gidon et al. (2018), we use subspace identification to
obtain a control-relevant model suitable for describing the plasma
dynamics within the operating range of interest. In particular, we
apply a sequence of inputs to generate plant data, from which we
identified a linear time-invariant (LTI) model

|:Tsi|+ 3 [ 0.42 0.68i| [Ts} [1.58 —1.02} I:Pi| 27
T,| =|-006 o026||1,|T|073 003 ||q]

where the states correspond to surface temperature Ts and gas
temperature T, while the inputs correspond to the flowrate of Ar-
gon q and the applied power to the plasma P. The LTI model (27) is
then augmented with the following nonlinear expression for the
thermal dose delivered to the target surface measured in terms of
cumulative equivalent minutes (CEM) (Gidon et al., 2017; Dewhirst
et al., 2003)

CEM" = CEM + K“3~H)§¢, (28)
where K is given by

0.5, if T; > 35 °C
K= {0, otherwise. (29)
Note that the thermal dose CEM has the unit of minutes (min).
As such, the control-relevant states and inputs are given by x =
[Ts, Ty, CEM]T and u =[P, q]", respectively. Using the simulated
data obtained from the high-fidelity plant model, we learn a GP
model of the plant-model mismatch by using M = 100 measure-
ments of the form (10), with additive noise v ~ N (0, 0.4%,).
The control objective is to achieve a specified thermal dose
CEMsp, which implies the following choice of stage and terminal
costs

¢(x,u) =0, ¢(xy) = (CEMy — CEM;p)?. (30)

In addition, the state and input are constrained to the follow-
ing regions to ensure both safety of the APP] during operation and
reasonable accuracy of the model

25°C] [T, 425 °C
[20 oc] = [Tg] = [ 80 °C } (31)
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Fig. 3. Closed-loop simulations of different multi-stage MPC strategies: Worst-case
msMPC (blue), Adaptive msMPC (purple), and LB-msMPC (red). (a—c) State profiles:
Thermal dose CEM, surface temperature T, and gas temperature T;. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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5.2. LB-msMPC for thermal dose delivery

We now demonstrate the effectiveness of the proposed LB-
msMPC strategy described in Section 3, which is compared to two
alternative formulations. The first is worst-case msMPC that uses
fixed bounds derived offline according to the minimum and maxi-
mum values of W(x, u) in each dimension for all states and inputs
satisfying (31), i.e.,, outer-bounding hyper-rectangle for the state-
and input-dependent disturbance set. The second is a heuristic ap-
proach that we refer to as adaptive msMPC (A-msMPC) that avoids
embedding the GP model within the optimal control problem, but
instead updates the set of scenarios based on the most recent state
and previous input values. This is similar to the idea recently pro-
posed in Thombre et al. (2019) to update the scenario tree online
using recent measurements.

All MPC problems are solved in Matlab using CasADi
Andersson et al. (2019) and IPOPT Wachter and Biegler (2006) with
a prediction horizon N =5, robust horizon N, =1, i.e. 2 predic-
tion steps, and maximum plasma treatment time of 60 s. A set of
32 =9 uncertainty scenarios are considered in each MPC formu-
lation, as discussed in more detail below. The treatment must be
stopped as soon as the target CEM value, ie., CEMsp = 10 min is
reached. It is desired to deliver the target CEM as fast as possible,
leading to a shorter treatment time. The performance of the three
control strategies is summarized in Fig. 3.

We first examine worst-case msMPC as this is the baseline for
our comparison. In this case, the scenarios correspond to all pos-
sible combinations of minimum, nominal, and maximum values
{IWminli, O, [Wmax]i}f:], as estimated from the level sets W(x, u).
The consideration of the full uncertainty range at every time step
makes the controller conservative, as evidenced by the tempera-
ture trajectory staying well below its upper limit. This greatly re-
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Table 1

Optimal hyperparameters of the DNN and corresponding
ranges considered in the Bayesian optimization.

Hyperparameter ~ Range Optimal value
L [1,6] 3

H [3,20] 18

nw [10-4,1071] 4x 1072

r 5x[1073,10°1] 32x 10!

stricts the growth of the CEM dose, which fails to reach the desired
target by the end of the treatment time. This overly conservative
performance is a direct consequence of the conservative estimates
of the uncertainty bounds. The proposed LB-msMPC strategy, on
the other hand, consistently updates the prediction of the uncer-
tainty according to the GP model (14). Hence, the branching at
each stage is given by (16) with [£,]; € {—r~1/2(a), 0, 1/2(a)} for
o = 0.99. Since the scenario tree now explicitly captures the state-
and input-dependence of the uncertainty, we observe a significant
reduction in conservatism in Fig. 3. For example, the temperature
trajectory is now able to push closer to its bound, which results
in a faster increase in the delivered thermal dose CEM and thus
a shorter treatment time. It is important to note that this faster
treatment time did not come at the expense of constraint viola-
tions, as the LB-msMPC provides an accurate characterization of
the plant-model mismatch through the GP model.

Lastly, we consider the A-msMPC strategy as a heuristic sim-
plification of the LB-msMPC controller, which considers scenarios
of the form {[wy minli. O, [wkvrmx],-},?:1 that are estimated at every
time step k using the GP model. In particular, the most recent state
measurement and a best guess for the current control input are
substituted into the GP model to estimate the uncertainty bounds
that are held constant over the prediction horizon. As such, A-
msMPC has an online cost similar to worst-case msMPC, but some
ability to account for state- and input-dependent plant-model mis-
match. As shown in Fig. 3, although A-msMPC exhibits a con-
siderably better closed-loop performance compared to msMPC, it
fails to reach the desired CEM target within the maximum plasma
treatment time of 60 s.

5.3. DNN-based approximation of LB-msMPC

The analysis in the previous section indicates that the LB-
msMPC strategy offers the best closed-loop performance in terms
of thermal dose delivery while respecting state constraints. We
now construct a DNN approximation of the LB-msMPC control law,
as discussed in Section 4. Closed-loop training data are generated
according to Algorithm 1, with T = 60 s, N, = 120, and Xp = {xo},
where xg =[37 °C, 58.87°C, 0 min]'. The Bayesian optimization
(BO) loop, shown in Fig. 2, is used to select the hyperparameters
of the DNN. In this case, we treat four hyperparameters as deci-
sion variables: the number of nodes H, the number of layers L,
the adaptation parameter w, and the initial rate of decrease of the
adaptation parameter i, in the Levenberg-Marquardt training al-
gorithm (Hagan and Menhaj, 1994). The optimal hyperparameter
values and their corresponding bounds are shown in Table 1. Note
that an MSE loss function and ReLU activation functions were cho-
sen, and the BO was performed using bayesopt in Matlab. We
avoid using a very large number of layers and nodes for two rea-
sons. First, smaller neural networks have smaller memory require-
ments and, as a result, are more practical for embedded applica-
tions (Bonzanini et al.,, 2020a). Second, less complex networks al-
leviate overfitting. Fig. 4 depicts the best MSE error achieved dur-
ing the BO iterations when using a total of 6000 training sam-
ples. The BO converges after 41 iterations. We expect that perform-
ing a grid search for selecting the hyperparameters, as commonly
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Fig. 4. Best mean squared error (MSE) loss of the kg,, control law approximation
achieved in the Bayesian hyperparameter optimization. The green circles represent
the actual loss evaluations (objective function), while the purple squares represent
the estimated loss based on the GP surrogate model. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of
this article.)

Table 2
Average performance of LB-msMPC and
DNN-based LB-msMPC under different
uncertainty realizations.
Kib Kdnn
Online cost (ms) 1775 403
Mean absolute error - 0.1017

done, would require many more iterations. The DNN training con-
verges after 132 epochs, in approximately 17 s on a MacBook with
a 2.4 GHz Intel Core i9 CPU. The best performance was observed
at epoch 92, where the validation MSE is 0.0182. We note that the
training is rather fast since the DNN has a relatively simple struc-
ture, meaning it is not too deep.

Fig. 5 compares the performance of the approximate control
law k4n, to that of the LB-msMPC law «j,. We superimpose the
results of 10 closed-loop simulations, each of which correspond-
ing to different noise realizations. We observe that the closed-loop
thermal dose CEM profile and the state profiles of the LB-msMPC
controller and the DNN-based approximation are nearly identical.
This can be attributed to training the DNN using closed-loop data.
By examining the optimal input sequences, it is evident that kg,
closely matches that of «y,, with minor discrepancies that can be
attributed to the DNN approximation error. It should be noted that
this error propagates to future control actions. In other words, a
slight difference on the first control action taken by the DNN con-
troller leads to different measurements when applied to the sys-
tem, and, subsequently, different control actions in the next step.
As shown in the inset in Fig. 5b, neither the LB-msMPC controller
nor its DNN-based approximation violate the surface temperature
constraint, which suggests that both controllers can push the sys-
tem to operate near its constraint. To evaluate the ability of «y,,
in approximating the LB-msMPC law kj, throughout the relevant
state space, 27, we run 50 closed-loop validation simulations over
a course of Ny, = 120 steps, which yields a total of 6000 eval-
uations of the control law. Table 2 lists the mean average error
(MAE) of the DNN-based control law «g4,,. As expected, the MAE
estimated via the closed-loop simulations is consistent with the
MSE of the DNN, as reported in Fig. 4. Fig. 5 suggests that the
greatest discrepancy between the two control laws is observed for
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Fig. 5. Closed-loop simulations of LB-msMPC (red) and DNN-based approximate LB-msMPC (blue). (a-c) State profiles: Thermal dose CEM, surface temperature T, and gas
temperature T,. (d-e) Input profiles: Applied power P and Argon flow rate q. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

the flow rate at time instants where CEM experiences the most
abrupt changes as it gets close to the setpoint and, thus, the rate of
change needs to abruptly decrease. Nevertheless, «4,, can be eval-
uated more than 4 times faster than «j, (see Table 2). The compu-
tation time reported for ky;, is the evaluation time of the OCP (17),
which includes the adaptation of the scenario tree in prediction us-
ing the GP. On the other hand, the computation time reported for
K4nn includes the evaluation of the DNN, which has already been
trained offline using closed-loop data. It should also be noted that
the average computation time of LB-msMPC is expected to increase
substantially with the problem complexity, whereas the computa-
tion time of the DNN-based control law mainly depends on the
complexity of the DNN structure (Bonzanini et al., 2020a).

6. Conclusions and future work

We presented a learning-based multistage MPC strategy for un-
certain nonlinear systems with hard-to-model and time-varying
dynamics. The LB-msMPC strategy uses Gaussian processes to learn
a state- and input-dependent description of plant-model mismatch
and accordingly adapt the scenario tree in real-time. To address the
rapid scaling of the computational complexity of the LB-msMPC
with the number of branches and prediction horizon, the control
law was approximated using DNNs to obtain a cheap-to-evaluate
explicit control law. We presented an algorithm that uses a Gaus-
sian process representation of plant-model mismatch to generate
closed-loop data for training the DNN-based control law in the
state-space regions most relevant to control. The effectiveness of
the proposed LB-msMPC and approximate LB-msMPC strategies
was demonstrated on a simulated cold atmospheric plasma sys-
tem used for (bio)materials processing. We showed that the LB-
msMPC strategy can effectively reduce conservativeness of worst-
case msMPC. Furthermore, the DNN-based approximation of the
LB-msMPC law can significantly reduce the online computational
cost of control, while exhibiting an almost indistinguishable per-
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formance from that of the LB-msMPC strategy. Future work will
focus on deploying such approximate learning-based MPC laws in
resource-limited embedded systems, and provide constraint satis-
faction guarantees using projected neural networks (Paulson and
Mesbah, 2020).
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