
Learning-based SMPC for Reference Tracking under State-dependent
Uncertainty: An Application to Atmospheric Pressure Plasma Jets for

Plasma Medicine

Angelo D. Bonzanini, David B. Graves, and Ali Mesbah

Abstract— The increasing complexity of modern technical
systems can exacerbate model uncertainty in model-based
control, posing a great challenge to safe and effective sys-
tem operation under closed-loop. Online learning of model
uncertainty can enhance control performance by reducing
plant-model mismatch. This paper presents a learning-based
stochastic model predictive control (LB-SMPC) strategy for
reference tracking of stochastic linear systems with additive
state-dependent uncertainty. The LB-SMPC strategy adapts
the state-dependent uncertainty model online to reduce plant-
model mismatch for control performance optimization. Stan-
dard reachability and statistical tools are leveraged along with
the state-dependent uncertainty model to develop a chance
constraint-tightening approach, which ensures state constraint
satisfaction in probability. The stability and recursive feasibility
of the LB-SMPC strategy are established for tracking time-
varying targets, without the need to redesign the controller
every time the target is changed. The performance of the LB-
SMPC strategy is experimentally demonstrated on an atmo-
spheric pressure plasma jet (APPJ) testbed with prototypical
applications in plasma medicine and materials processing.
Real-time control comparisons with learning-based MPC with
no uncertainty handling and offset-free MPC showcase the
usefulness of LB-SMPC for predictive control of safety-critical
systems with hard-to-model and/or time-varying dynamics.

I. INTRODUCTION

Atmospheric pressure plasma jets (APPJs) are a class
of non-equilibrium plasma devices used for treatment of
complex surfaces in applications such as processing of
(bio)materials [1] and plasma medicine, for example, to com-
bat antibiotic-resistant bacteria [2], shrink cancerous tumors
[3], and accelerate healing of chronic wounds [4]. In APPJs,
the plasma is typically generated by applying an electric field
to a noble gas (usually Argon or Helium) that flows in a
dielectric tube [5]. The observed therapeutic effects of the
plasma are postulated to result from the synergy between
a multitude of effects such as short-lived reactive chemical
species, UV photons, and electric and thermal effects [6],
[7].

Despite their promise, harnessing the medical potential of
plasmas in a systematic and reproducible manner remains a
challenge. APPJs are typically hand-held devices. Therefore,
their operation relies on user expertise to judge treatment
effectiveness, while avoiding undesirable consequences. This

This work was supported by the National Science Foundation under Grant
1839527.

A. D. Bonzanini, David B. Graves, and Ali Mesbah are with the
Department of Chemical and Biomolecular Engineering, University of Cal-
ifornia, Berkeley, CA 94720, USA (email: {adbonzanini, graves,
mesbah}@berkeley.edu).

inexact mode of operation is exacerbated by the intrinsic
variability and nonlinear behavior of the plasma. Specifically,
APPJs suffer from run-to-run variations, even when the oper-
ating conditions are nearly identical [8], while also exhibiting
sharp radial and axial gradients in both temperature and
concentration of reactive species [9]. Thus, APPJs are overly
sensitive to exogenous disturbances, such as tip-to-surface
separation distance or variations in the properties of the target
surface.

Recently, Gidon et al. demonstrated the effectiveness of
model predictive control (MPC) strategies for controlling the
delivery of plasma effects to a surface [10], [11]. However,
these works did not account for system uncertainty, which
is particularly important given the safety-critical nature of
APPJ applications in plasma medicine. Although nominal
MPC can provide some degree of robustness due to its
receding-horizon implementation, it cannot guarantee robust
feasibility (i.e., robust constraint satisfaction and recursive
feasibility) of the controller in the presence of uncertainties
[12]. In addition, the reported MPC strategies for APPJs
are based on relatively simple physics-based or data-driven
models. Such models are generally incapable of capturing
(i) the complex and hard-to-model dynamics of plasma and
plasma-surface interactions and (ii) the time-varying nature
of surface properties, such as the electrical, thermal, and
chemical properties of biological tissues during a plasma
treatment [13], [14], [15], [16].

This paper aims to investigate learning-based MPC (LB-
MPC) of APPJs. Learning-based control [17], [18] holds
promise for reducing the discrepancy between “simple”
control-relevant models and the actual complex and not
well-understood dynamics of plasmas in real-time [14]. The
promise of LB-MPC has been demonstrated in various
applications, such as pH neutralization processes [19], gas-
liquid separation plants [20], and robot path tracking [21].
The notion of LB-MPC with robustness guarantees was
first introduced in [22]. The key idea is that safety and
performance are decoupled by using two models of the
system: an approximate model with bounds on uncertainty
and a second model that is updated online using statistical
methods. The rationale behind this decoupling is to use the
first model to establish safety and robustness guarantees
offline using reachability tools, and the second model for
improving control performance online. This idea was further
investigated in [23] using a non-parametric machine learning
technique, where LB-MPC approaches with guaranteed sta-

bility by design were proposed. Recently, Gaussian process
(GP) regression [24] has proven to be particularly well-suited
for LB-MPC since its non-parametric form lends itself well
for modeling the mismatch between the nominal system
model and the real dynamics, which is generally hard to
parametrize. This can be done, for example, by learning a
state- and input-dependent uncertainty term from the data
[25]. In particular, the case of LB-MPC using GP with
robustness guarantees was recently investigated in [26], [27],
where GP regression is used to correct for model uncertainty.
In [26], the GP model is used exclusively offline to derive
tightened constraints, which provide robustness guarantees
of the MPC. In [27], additional approximations are used for
efficient computation of the GP online, which is used both for
tightening the chance constraints online (using the state mean
and covariance propagation equations) and for performance
optimization (by correcting the model predictions). LB-MPC
using GP regression has also been investigated in the context
of scenario-tree MPC, whereby the GP model is used to adapt
the scenarios online, therefore reducing the conservativeness
associated with standard scenario-based MPC approaches
[28]. For a recent review on LB-MPC with a focus on safe
learning, the reader is referred to [25].

Motivated by challenges in predictive control of APPJs for
treatment of complex surfaces with time-varying properties,
this paper presents a learning-based stochastic MPC (LB-
SMPC) strategy for reference tracking of stochastic linear
systems with state-dependent uncertainty. Leveraging the
framework established in [22], we use two models of the
system, i.e., an approximate model with bounds on the
uncertainty and a second model that is updated online, to
extend the provably safe and robust LB-MPC strategy [22]
to chance-constrained stochastic linear systems with addi-
tive state-dependent uncertainty. Specifically, the theoretical
contributions of this work include: (i) we combine standard
reachability tools from tube-based MPC with the learned
state-dependent uncertainty model to extend the constraint
tightening method presented in [26] to guarantee chance
constraint satisfaction under state-dependent uncertainty; (ii)
we extend the LB-SMPC approach to enable reference
tracking of reachable targets without the need to redesign
the controller every time the target is changed, which also
enlarges the region of attraction (ROA) of the controller [29];
and (iii) we prove stability and recursive feasibility for the
LB-SMPC strategy for reference tracking.

In addition, we experimentally test the proposed LB-
SMPC strategy on a medically-motivated APPJ case study
in which we leverage the GP model to effectively control
the plasma treatment properties when surface characteristics
are changed. Such cases arise, for example, due to the
intrinsic variabilities of biological tissues, or the surfaces
changes induced as a result of the plasma treatment. We
experimentally demonstrate the improvement in closed-loop
performance due to the learning of plant-model mismatch,
while guaranteeing state constraint satisfaction that is critical
for safety-critical applications. Furthermore, online learning
of the state-dependent uncertainty is explored to mimic a

situation in which there is no historical data on the patient
undergoing plasma treatment.

The paper is organized as follows. Section II introduces
the APPJ testbed and defines the problem setup. Section III
consolidates existing contributions in the tube-based MPC
literature to develop the proposed state-dependent chance-
constraint tightening approach for guaranteeing constraint
satisfaction up to a pre-defined probability level. Section IV
formulates the LB-SMPC problem for reference tracking and
presents the stability and recursive feasibility results. Section
V discusses the results of closed-loop simulations and real-
time control experiments. Finally, section VI concludes the
paper.

Notation. The set of real numbers is denoted by R, while
the set of (positive) integers as (Z+) Z. The quadratic norm
of x with respect to Q = Q> � 0 is defined as ||x||2Q =

x>Qx. A vector-valued variable x ∼ N (µ,Σ) represents a
normally distributed variable with mean E[x] = µ, where E[·]
denotes the expectation operator, and covariance Σ. Nominal
state predictions are denoted by x̃, whereas measured states
are denoted by x. The probability of an event A occurring
is denoted as P[A]. When a constraint set X is tightened, it
is written as X.

II. PROBLEM STATEMENT

In this section, we present the APPJ testbed and a control-
oriented model for plasma treatment of surfaces. We also
describe the formulation of the control problem.

A. APPJ Testbed

The kHz-excited APPJ in Helium (He) consists of a
copper ring electrode wrapped around a dielectric quartz
tube, as shown in Fig. 1. To generate the plasma, a sinusoidal
high-voltage electric field is applied to the copper ring
electrode. He flows through the tube and is directed towards
a grounded, glass-covered metal plate, 4 mm below the tip
of the tube. The surface can be changed by removing the
glass cover, thereby exposing the metal surface underneath

Fig. 1: Schematic of the kHz-excited APPJ in He. Red
dotted lines indicate measured outputs (surface temperature
and optical plasma intensity). Green dotted lines indicate the
manipulated inputs (He flow rate and applied power).

it. Changing the target surface markedly affects the plasma-
surface interactions due to the vast difference in conductivity
between glass and metal.

The manipulated inputs of the APPJ include the flow rate
of He q (slm) and the applied power P (W). A microcon-
troller (Arduino UNO) coupled with a controllable function
generator (XR-2602CP) is used to generate a sinusoidal
waveform at a given frequency. This signal is amplified
through an amplifier (TREK). The flow rate is manipulated
through a mass flow controller. Measured outputs of the
APPJ include the maximum surface temperature T (◦C) and
optical plasma intensity incident on the surface I (a.u.).
Surface temperature is measured through a thermal camera
(FIR Lepton), while the optical plasma intensity is measured
through a fiber optic cable connected to an optical emission
spectrometer (OES). Thermal images are processed on a
single-board computer (Raspberry Pi 3) to determine the
maximum surface temperature. The entire data acquisition
process is coordinated in Python. Measurements are taken at
relatively fast timescales (≈ 1 s). Sensor failures occasion-
ally occur due to communication or synchronization errors
between the hardware and the software. Such measurements
are removed and replaced with an average of the previous
and next measurements.

B. Control-relevant APPJ Modeling

APPJs are notoriously hard to model, since they ex-
hibit nonlinear dynamics that are distributed across multiple
length- and time-scales. This modeling challenge is further
exacerbated by the plasma’s intrinsic variability and the
APPJ’s sensitivity to exogenous disturbances, such as tip-to-
surface separation distance. Moreover, real-time solution of
first-principles models of plasmas, which generally consist
of a set of multi-dimensional partial differential equations
[30], is not practical for online control of the plasma effects
on complex surfaces that typically occur on milliseconds to
seconds timescales.

Here, we resort to data-driven modeling of the APPJ
shown in Fig. 1. Multi-step tests were performed on a
glass surface around the desired nominal operating condition,
which is defined to be T s = 38.5 ◦C, Is = 100 a.u.,
P s = 3.0 W, and qs = 3.0 slm; superscript s denotes the
nominal (steady-state) condition [5]. The input-output data
were used for subspace identification of a linear multi-input
multi-output model [31]. The state-space model takes the
form

xk+1 = Axk +Buk (1a)
yk = Cxk +Duk, (1b)

with states x ∈ Rnx , inputs u ∈ Rnu , controlled variables
y ∈ Rny , and time-step k ∈ N. The state-space model is
defined in terms of deviation variables around the nominal
operating point, i.e., y = [T − T s, 0.1(I − Iss)]

> and u =
[q − qs, P − P s]>. We consider an observable canonical
form of (1) with C = I and D = 0. The subspace
identification was performed in MATLAB using the n4sid

function. The state-space matrices are reported in Appendix
A.

To account for the mismatch between the linear state-
space model (1) and the nonlinear and time-varying plasma
dynamics that mainly arise from variations in electrical
properties of the surface in the considered case study, we
describe the APPJ dynamics by

xk+1 = Axk +Buk +Bd (g(xk) + wk) , (2)

where Bd ∈ Rnx×nw , wk ∈ Rnw is a process noise that is
assumed to be normally distributed, i.e., wk ∼ N (0,Σw),
and g(x) : Rnx → Rnw is a state-dependent, vector-valued
function that describes the unmodeled system dynamics. g(x)
is to be learned from data. For ease of notation, we define the
overall system uncertainty as a stochastic variable ṽ(x) :=
Bd(g(x) + w).

Remark 1: System description (2) provides an advanta-
geous model structure because it offers the flexibility of
learning the general (possibly nonlinear) uncertainty descrip-
tion g(x) from data while it incorporates a linear state-space
model as a nominal system model. This structure enables
decoupling safety and robustness aspects of the controller
design from performance [22]. The simple linear structure
of the nominal model allows using well-known reachability
tools to provide guarantees for safety and robustness, while
the additive uncertainty term g(x) is learned from data to
update the model for performance optimization.

We use the previously collected M > 0 data points in
subspace identification to learn a model for g(x) using GP
regression [24]. This enables quantifying the uncertainty of
model predictions in the form a covariance matrix, from
which confidence intervals for model uncertainty can be
derived. To generate the training dataset, we evaluate the
mismatch term as

ymis
i = B†d (xi+1 − (Axi +Bui)) = g(xi) + wi, (3)

∀i = 1, . . . ,M , where B†d is the Moore-Penrose pseudoin-
verse of Bd. Then, the training dataset becomes

D =
{
y =

[
ymis

1 , . . . , ymis
M

]>
,x = [x0, . . . , xM−1]

>
}
.

For notational convenience, it is assumed that each dimen-
sion of g(x) is learned separately.

Furthermore, we introduce the stochastic variable d(x),
which aims to model g(x). To construct the GP model d(x),
we first specify a prior on each element a = 1, . . . , nw of
g(x) with a known mean function ma(x), which is typically
assumed to be zero in the absence of any other information,
and covariance kernel ka(xi, xj). The Gaussian posterior
distribution can be derived by conditioning on the dataset D
at any specified test point x. Since the posterior distribution
is Gaussian, it suffices to specify the conditional mean and
covariance as

µda(x) = ma(x) +Ka
xx

(
Ka

xx + σ2
aI
)−1

([y]a −ma
x) (4a)

Σda(x) = Ka
xx −Ka

xx

(
Ka

xx + σ2
aI
)−1

Ka
xx, (4b)

where K is the Gram matrix that is composed of the terms
[Ka

xx]i,j = ka(xi, xj), [Ka
xx]i = ka(xi, x), Ka

xx = (Ka
xx)>,

[Ka
xx] = ka(x, x), [ma

x]i = ma(xi), and σa is the ath

component of the diagonal of Σw, which is known.
Remark 2: Non-Markov processes can also be modeled

by keeping track of a larger number of GP inputs and
outputs. Accordingly, the training dataset becomes D =
{[yk−`, . . . ,yk−1], [xk−`, . . . ,xk−1]} , where ` is the lag,
i.e., how many previous time steps we are using to make
the prediction at time k.

A popular choice for the kernel function is the squared
exponential kernel

ka(xi, xj) = σ2
f,aexp

(
−1

2
(xi − xj)>L−1

a (xi − xj)
)
,

where σ2
f,a is the signal variance and La is a positive diag-

onal length-scale matrix [24]. The resulting state-dependent
model of the unknown function g(x) is given by

d(x) ∼ N
(
µd(x),Σd(x)

)
, (5)

where the individual predictions in (4) are concate-
nated as µd(x) =

[
µd1(x), . . . , µdnw

(x)
]>

and Σd(x) =

diag
([

Σd1(x), . . . ,Σdnw
(x)
]>)

. We define the overall pre-
dicted source of uncertainty as

w̃(x) : = Bd (d(x) + w) ∼ N
(
µw̃(x),Σw̃(x)

)
, (6)

where µw̃(x) = Bd
(
µd(x) + 0

)
and Σw̃(x) =

Bd
(
Σd(x) + Σw

)
B>d .

We assume that the distribution of w̃(x) has a bounded
support, i.e., w̃(x) ∈ W̃(x), where W̃(x) is a compact state-
dependent set. However, due to the GP approximation of
g(x) in combination with the Gaussian distributed process
noise w, the bounded support assumption of W̃(x) is not
automatically satisfied. We use confidence intervals to define
a practical bounded range for the overall uncertainty, which
can be computed as

W̃(x) :=
{
w̃ : ||w̃ − µw̃(xk)||2Σw̃(x) ≤ r(ϑ)

}
, (7)

where r(·) is the quantile function of a chi-squared distribu-
tion with nw degrees of freedom, χ2

nd
(ϑ), and ϑ ∈ (0, 1)

is the desired probability level. In this work, we choose
a practical bound ϑ = 0.99. The prediction d(x) of the
unmodeled dynamics g(x) is validated against a previously
unseen dataset, as shown in Appendix A.

Remark 3: The proposed method for modeling the plant-
model mismatch assumes that successive GP function evalua-
tions are independent. Therefore, it does not take into account
the potential correlation of successive GP function evalua-
tions, as discussed in [32] and [33]. This interpretation corre-
sponds to considering the overall uncertainty ṽ(x) as process
noise [33]. Considering successive GP function evaluations
to be independent reduces the computational complexity and
enables evaluating the GP model in prediction.

C. Control Problem for the APPJ

We aim to design a LB-SMPC controller for the APPJ
described by (2), where the state-dependent system uncer-
tainty is modeled by (6). The control objective is to track a
reference trajectory in the surface temperature T and plasma
optical intensity I in the presence of significant plant-model
mismatch that arises from the time-varying nature of the
target surface. The time-varying surface properties mimic
treatment of patients with different tissue properties, or
even treatment of the same patient but on different/changing
tissues due to plasma treatment. Hence, the LB-SMPC is
intended to mitigate the plant-model mismatch by adapting
the model of the state-dependent uncertainty g(x) using real-
time data.

The LB-SMPC strategy must ensure adherence to input
and state constraint satisfaction under model uncertainty.
For example, in plasma medicine, an important constraint
is that of surface temperature, since it is closely related to
thermal dose accumulation on the surface [11]. Exceeding
pre-specified surface temperature constraints can compro-
mise patient safety by irreversibly damaging cells, while also
deteriorating patient comfort during the treatment. We define
state and input constraints as polytopic sets, denoted by X
and U, respectively, i.e.,

x ∈ X, (8a)
u ∈ U. (8b)

For compactness of notation, we define Z = X × U. In
addition, we impose individual chance constraints (ICCs) on
states as

P[h>i xk+1 ≤ 1] ≥ 1− εi, i = 1 . . . , nc, (9)

where εi is the probability of constraint violation of the
ith chance constraint, hi is a vector of constants, and nc
is the total number of ICCs. Notice that, since the state-
space model (1) is identified in the observable canonical
form where C = I and D = 0, it follows that yk =
xk and therefore state constraints are equivalent to output
constraints.

In the next section, we introduce the relevant theory
needed to develop the state-dependent constraint tightening
approach for the proposed LB-SMPC strategy.

III. CONSTRAINT TIGHTENING FOR LINEAR SYSTEMS
WITH STOCHASTIC STATE-DEPENDENT UNCERTAINTY

This section first summarizes existing results on charac-
terization of steady states for reference tracking and dual
mode prediction for constraint handling. This is followed
by an extension of the robust constraint tightening method
presented in [26] to allow for handling of chance constraints
for linear systems with state-dependent uncertainty. The
following assumptions are made for the remainder of the
paper.

Assumption 1:
i) The pair (A,B) is controllable.

ii) Sets X, U, and W̃ = ∪x∈XW̃(x) contain the origin in
their interior.

iii) Sets U and W̃ are compact and convex.
iv) The system state xk is measured.

A. Characterization of Steady States

One of the control objectives is to track reference trajec-
tories that may change over time. At steady state, there is no
dynamic evolution of the nominal system

x̃k+1 = Ax̃k +Buk,

i.e., x̃k+1 = x̃k = x̃. Therefore, every pair of steady states
and inputs z̃s = [x̃s, ũs]

> must be a solution of the following
set of linear equations[

A− In B
] [x̃s
ũs

]
= 0,

and thus an element of the null space of matrix
[
A− In B

]
[34]. Since (A,B) is controllable by Assumption 1, the
dimension of this null space is m. Consequently, there exists
a matrix Mθ ∈ R(nx+nu)×ny such that

z̃s = Mθ θ̃, (10a)

ỹs = Nθ θ̃, (10b)

for any θ ∈ Rny and Nθ = [C D]Mθ. Since we have
identified the APPJ model such that yk = xk, Nθ serves the
purpose of selecting the appropriate elements that correspond
to the steady-states of x, i.e., ỹs = x̃s = Nθ θ̃. The goal of
parametrization (10) is to enlarge the terminal invariant set
for tracking when compared to regulation to a fixed target
[34]. As a result, the controller will exhibit a larger region
of attraction (ROA), ensuring feasibility when targets change
[29]. A detailed method for computing matrices Mθ and Nθ
is presented in [35].

B. Dual Mode Prediction

The dual mode prediction paradigm ensures that state
constraints are satisfied for an infinite prediction horizon,
while convergence properties of the controller are guaran-
teed. Predictions of system (2) at time k are represented by

xj+1|k = Axj|k +Buj|k + w̃(xj|k), (11)

where w̃(xj|k) denotes the predicted state-dependent uncer-
tainty as defined in (6).

We aim to define a terminal feedback controller such that
it drives the system as close as possible to a desired target
uj|k = ũsk + K

(
xj|k − x̃sk

)
, where K can be chosen as

the infinite-horizon linear quadratic regulator (LQR) gain.
Using the steady-state characterization (10), a control law
parametrization can be devised as1

uj|k = π(xj|k, cj|k) = Kxj|k + Lθ̃k + cj|k, (12)

where cj|k are the nuN decision variables, N is the pre-
diction horizon, and L = [−K Im]Mθ is a known matrix

1A linear feedback parametrization is typically chosen because of its
simplicity and computational tractability, although, other parametrizations
are equally valid.

[29]. Substituting the parametrized control law (12) into (11)
yields the prediction of the closed-loop dynamics

xj+1|k = AKxj|k +B
(
Lθ̃k + cj|k

)
+ w̃(xj|k), (13)

where AK = A + BK, with eigenvalues strictly inside
the unit circle. Furthermore, we define the nominal closed-
loop system predictions by neglecting the state-dependent
uncertainty in (13)

x̃j|k = AK x̃j|k +B
(
Lθ̃k + cj|k

)
. (14)

Accordingly, we modify the constraint set Z in (8) to[
x>k c>k

]> ∈ Zπ. (15)

The idea behind dual mode prediction is to switch between
a receding-horizon controller and a local linear controller de-
pending on whether the state is inside or outside the terminal
region [36]. In mode 1, which includes steps k ∈ [0, N − 1],
the decision variables cj|k are free to vary. In mode 2, which
includes k ∈ [N,∞), cj|k is set to 0, effectively switching
to a linear controller of the form uj|k = usk +K(xj|k−xsk).
In mode 2, constraints are enforced by ensuring that the
system is within the terminal region Xf [37]. By definition,
the terminal set is constructed such that when the system
converges to xN ∈ Xf , the closed-loop dynamics under the
terminal control law are guaranteed to stay within Xf , i.e.,

xk ∈ Xf ⇒ xk+1 = AKxk +BLθ̃k + w̃(xk) ∈ Xf .

C. Chance Constraint Tightening Under State-dependent
Uncertainty

The idea behind recursive constraint tightening is to ensure
that if the nominal system (14) lies within tighter state and
input constraint sets Xj and Uj , then the closed-loop system
is guaranteed to satisfy the original constraints X and U
in (8) [38]. Here, we look to modify the state-dependent
robust constraint tightening approach presented in [26] to
ensure chance constraint satisfaction (9). The main difference
between the proposed chance constraint tightening method
and the robust constraint tightening method presented in [26]
lies in the construction of the first tightened constraint set X1.
In principle, ICCs (9) can be reformulated into deterministic
constraints by defining a new set X∗ as [39]

X∗ =
{
x ∈ Rn : h>i x ≤ 1− γ∗i (x)

}
, (16)

where γ∗i (x) = min γi

s.t. P[h>i ṽ(x) ≤ γi] ≥ 1− εi,

where i = 1, . . . , nc, ṽ(x) = Bd(g(x) + w), and γ∗i (x) are
state-dependent backoff parameters. The goal is to use these
backoff parameters in combination with the state-dependent
uncertainty ṽ(x) to recursively tighten the constraint set X∗.

We denote j-step ahead tightened constraint sets by Xj .
To generate the tightened constraint sets Xj offline, we
first compute the initial set X1 = X∗ by determining the
backoff parameters γ∗i (x). Since the probability distribution
of ṽ(x) is not known, we use the empirical cumulative
distribution function (ECDF) of ṽ(x) (through its samples)

Fig. 2: Schematic of backwards reachable set computation.

to construct the initial tightened constraint set X∗ [40].
From (16), it is apparent that any γi(x), say, γ̂i(x), will
satisfy γ̂i(x) ≥ γ∗i (x), since γi(x) is a minimum. An
estimate of γ̂i can be obtained from the ECDF of ṽ(x).
Consider Ns = Nx

s × Nv
s normalized uncertainty sam-

ples h>i Ṽ :=
{
h>i ṽ(x1), h>i ṽ(x2), . . . , h>i ṽ(xNx

s
)
}

, where
ṽ(xj) denotes a collection of samples of ṽ(xj), i.e., ṽ(xj) :={
ṽ1(xj), ṽ2(xj), . . . , ṽNv

s
(xj)

}
. That is, we sample the state-

space into Ns different samples and obtain an empirical
probability distribution at each state xi. The ECDF of the
stochastic process h>i Ṽ can be defined as

F̂h>i Ṽ
(q, x) =

1

Nv
s

Nv
s∑

p=1

1
(
h>i ṽp(x) ≤ q

)
,

where 1
(
h>i ṽp(x) ≤ q

)
=

{
1, if h>i ṽp(x) ≤ q,
0, otherwise.

Thus, the backoff γ∗i (x) can be estimated from

γ∗i (x) ≤ γ̂i(x) = F̂−1

h>i Ṽ
(1− ε, x). (17)

Then, the constraint tightening can be implemented as de-
scribed in [26], whereby the state-space is partitioned into
subsets, which are either conserved or discarded according
to the uncertainty propagation of the samples xi within
them. This allows for computing the initial tightened state
constraint set as

X∗ = X1 =
{
x ∈ Rn : h>i x ≤ 1− γ̂i(x)

}
, (18)

for i = 1, . . . , nc. Note that the initial constraint tightening
step based on the ECDF of ṽ(x) can be used even when the
random variables are correlated [41]. Furthermore, the model
of ṽ(x), i.e., w̃(x), need not be used at all in this first step,
as long as there is data available for ṽ(x).

After constructing X1 according to (18), existing robust
constraint tightening methods can be used to tighten the
subsequent constraint sets. In this work, we make use of
the state-dependent constraint tightening method presented
in [26]. First, we provide a brief outline of this method. The
key idea is to compute backwards reachable sets H−j(x),
for all states x ∈ X, for N time instances. Then, we can
estimate the maximum admissible uncertainty by considering
the worst-case uncertainty propagation from the backward
reachable sets using the state-dependent uncertainty model

(6), i.e., max∀x∈H−j(x){w̃(x)}. If the state-dependent worst-
case system evolution results in a state outside of the pre-
vious tightened constraint set Xj−1, xi is discarded, further
tightening the constraint set Xj . The main difference in the
chance-constrained setting is that we start from X∗ = X1,
rather than X.

Since computing backwards reachable sets for all the
individual states is prohibitively expensive, the state-space
can be partitioned into subsets Am, m = 1, . . . , nA. A
useful practical approximation is to describe X1 with a
union of polytopes. This will remove any curvature along
the edges and will make the set computations easier since
one can work exclusively with polytopes, for which efficient
toolboxes exist, e.g., [42]. After partitioning the state-space
into subsets Am, the computation of backwards reachable
sets can be performed for all subsets Am (or a discrete
sample of states within subset Am), instead of all states
x. Then, it is straightforward to maximize the uncertainty
within H−j(Am) since we have an expression for w̃(x) from
the GP model (6). This is summarized in Algorithm 1 in
[26], and a conceptual schematic is shown in Fig. 2. Note
that maxx∈H−j(Am){w̃(x)} ≤ maxx∈X{w̃(x)}, which leads
to less conservative constraint tightening than assuming a
constant (worst-case) uncertainty over the entire state-space.

Finally, to tighten the hard input constraints (8b), a similar
procedure can be followed. Given that uj|k = ũsk+K(xj|k−
x̃sk), we can generate the tightened input constraints by
determining whether the parametrized control input, which
corresponds to the state-dependent worst-case state evolution,
lies outside the previous tightened constraint set Uj−1.

Remark 4: There is a trade-off between reducing conser-
vativeness in the state-dependent constraint tightening and
the offline computational cost: the smaller the partitions,
the better the description of the uncertainty. The offline
computational cost scales as O(nxnA), where nA is the
total number of partitions Am. A practical way to reduce
computational complexity stems from the fact that subsets
Am need not be of equal size. Thus, one can define an “inner”
region, where the subsets are relatively large, thus avoiding
numerous unnecessary iterations over subsets that are highly
unlikely to be discarded. This approach is particularly useful
for speeding up computations. Nevertheless, a drawback of
this approach is that the definition of the inner regions
is arbitrary. Wrong judgments can lead to large parts of
the state-space being discarded, thus making the approach
more conservative than it would be if the sets were equally
partitioned throughout the state-space.

Remark 5: The sets Xj resulting from Algorithm 1 in [26]
may not be convex, even if the starting partitions Am are
chosen to be convex. Hence, an inner approximation of Xj
may be constructed and used instead of the original set.
This way, the convexity of the optimal control problem is
preserved at the expense of additional conservativeness.

IV. LEARNING-BASED SMPC WITH CHANCE
CONSTRAINTS FOR REFERENCE TRACKING

This section presents the LB-SMPC problem with chance
constraints for system (2) under a stochastic state-dependent
uncertainty. To improve control performance, the state-
dependent uncertainty model (6) is updated at every sam-
pling time to correct for plant-model mismatch. The chance
constraint tightening approach presented in Section III-C
is employed to guarantee state constraint satisfaction to a
pre-specified probability level, thus ensuring safe system
operation. The steady-state parametrization (10) results in
an enlargement of the working space (i.e., ROA) of the
controller, while circumventing the need to redesign the
terminal set every time the reference trajectory is changed.

A. Optimal Control Problem

To steer the system to a desired target, we define the cost
function as

VN (ck, θ̃k, xk, x
t
k) =

N−1∑
j=0

`(xj|k, cj|k, θ̃k) (19)

+ `N (xN |k, θ̃k) + Vo
(
x̃sk − xtk

)
,

where ck := {c0|k, ..., cN−1|k} is the vector of decision
variables (of dimension nuN); ` is the stage cost; `N is the
terminal cost; (x̃sk, ũ

s
k) = Mθ θ̃k is defined as in (10); and

xtk is the desired target. To ensure convergence toward xtk,
an offset cost Vo is added to the cost function. This serves
the purpose of penalizing deviations between the artificial
reference and the desired target. Here, we choose the stage,
terminal, and offset costs according to [29], i.e.,

`(xj|k, cj|k, θ̃k) =
∣∣∣∣xj|k − xsk∣∣∣∣2Q +

∣∣∣∣uj|k − usk∣∣∣∣2R ,
`N (xN |k, θ̃k) =

∣∣∣∣xN |k − xsk∣∣∣∣2P ,
where P solves the discrete Lyapunov equation (see Ap-
pendix C) and Vo has the properties defined in Assumption
3.

Given the measured state xk at sampling time k, the
optimal control problem (OCP) is formulated as

V ∗N (xk, x
t
k) = min

ck,θ̃k

VN (ck, θ̃k, xk, x
t
k) (20a)

s.t. x̃j+1|k = Ax̃j|k +Bũj|k, (20b)

xj+1|k = Axj|k +Bũj|k + µw̃(xj|k), (20c)

ũj|k = Kxj|k + Lθ̃k + cj|k (20d)

x̃j|k ∈ Xj , j = 1, . . . , N, (20e)

ũj|k ∈ Uj , j = 0, . . . , N − 1, (20f)[
x̃>N |k, θ̃

>
k

]>
∈ Ωat , (20g)

x̃0|k = xk, x0|k = xk, (20h)

where Ωat is the augmented terminal set, which is defined
in (23), and µw̃(xj|k) is obtained through (6). Preserving
the convexity of the OCP can be achieved by using an
inner approximation of the tightened constraints Xj and Uj ,
according to Remark 5. The optimal solution to the OCP is

denoted by c∗k := {c∗0|k, ..., c
∗
N−1|k}. At each sampling time

k, the control law (12) takes the form

u∗k = Kxk + Lθ̃∗k + c∗0|k (21)

due to the receding-horizon control.
Remark 6: Two models are used in the OCP (20). The

first model (20b) represents the nominal predictions. This is
also the model used to ensure constraint satisfaction. The
second model (20c) represents the predictions of system (2),
that is, predictions of the nominal dynamics corrected by the
state-dependent uncertainty model (6). Thus, model (20c) is
used in the computation of the cost VN (ck, θ̃k, xk, x

t
k) to

improve performance.
Remark 7: The cost VN (ck, θ̃k, xk, x

t
k) is a function of

the states resulting from the learned model (20c), which uses
(6) to update the nominal model. Nevertheless, the stability
and robustness properties follow from those of the nominal
system (see [22] Remark 1).

The choice of the terminal set Ωat is essential for ensuring
recursive feasibility of the OCP (20). A necessary condition
for recursive feasibility is[
x̃N|k, θ̃k

]
∈ Ωa

t ⇒
[
x̃N|k+1, θ̃k+1

]
∈ Ωa

t , ∀w̃(xk) ∈ W̃(xk),

Furthermore, the nominal predictions at time k+1 are related
to those at time k via [29][

x̃N |k+1

θ̃k+1

]
=

[
AK BL
0 I

] [
x̃N |k
θ̃k

]
+

[
ANK
0

]
w̃(xk). (22)

Thus, any admissible RPI set for system (22) can be chosen
as Ωat , provided that it satisfies the tightened constraints
x̃N |k ∈ XN and Kx̃N |k + Lθ̃k ∈ UN .

Assumption 2: The terminal set satisfies

Ωat ⊆
{

(x, θ) : x ∈ XN , Kx+ Lθ ∈ UN
}

and[
AK BL
0 I

]
Ωat ⊕

[
ANK
0

]
W̃(x) ⊆ Ωat .

Remark 8: Ideally, the terminal set can be defined as the
maximal RPI (MRPI) set, which contains all other invariant
sets [34]. Specifically, the MRPI set is defined as the infinite
set of states and inputs resulting from the nominal system
evolution under mode 2, such that the real system does not
violate the original constraints. This can be written as

Ωat ⊆ O∞ =
{
xa : Aiaxa ∈ XaN+i ∀i ≥ 0

}
, (23)

where Aa =

[
AK BL
0 I

]
and

XaN+i =
{
xa = [x, θ]

>
: x ∈ XN+i, Kx+ Lθ ∈ UN+i

}
.

For algorithms to construct such sets, the reader is referred
to [43], [44].

B. Stability and Recursive Feasibility

We first introduce the following definitions.
Definition 1: Define the set Rj as the set of uncertainty

values that can be reached in j steps from the origin as

Rj =

j−1⊕
i=0

AiKW̃.

As i → ∞, Rj converges to a limit R∞ as long as the
eigenvalues of AK are inside the unit disc. R∞ is commonly
referred to as the minimal robust positively invariant (mRPI)
set.

Definition 2: The ROA of the controller is defined as
the set of initial states that can be driven to the terminal
set within the prediction horizon N , while adhering to the
constraints for all possible uncertainty realizations

XROA =
{
xk ∈ Rnx : ∃ ck, θ̃k s.t. (20) is feasible

}
.

To prove the recursive feasibility, stability, and conver-
gence properties of the LB-SMPC strategy for trajectory
tracking, the following assumptions are made.

Assumption 3:
i) Ψ = Ψ> � 0 is a symmetric positive definite matrix.

ii) The eigenvalues of AK = A+BK are inside the unit
disk.

iii) The set Ωat is non-empty.
iv) The offset cost Vo(·) : Rnx → R is positive definite,

convex, sub-differential function with Vo(0) = 0.
Theorem 1 summarizes the recursive feasibility, stability,

and convergence properties of the LB-SMPC.
Theorem 1: If Assumptions 1-3 hold and the target xtk is

asymptotically constant, the closed-loop system

xk+1 = AKxk +B
(
Lθ̃∗k + c∗0|k

)
+ ṽ(xk) (24)

under the control law (21) satisfies:
i) For all targets xtk and initial states x ∈ XROA, the

evolution of system (24) is robustly feasible. That is,
xk ∈ XROA, ∀k ≥ 1. Furthermore, system (24) satisfies
chance constraints (9) and hard input constraints (8b)
for all admissible uncertainties.

ii) limk→∞ c∗0|k(xk, x
t
k) = 0.

iii) Assuming that the asymptotic target is reachable, i.e.,
xt∞ ∈ Xt, then the controlled variable xk converges to
the set {xt∞} ⊕R∞ with probability one.

iv) Assuming that the asymptotic target is not reach-
able, i.e., xt∞ /∈ Xt, then the controlled variable
xk converges to the set {x̃s} ⊕ R∞ with probability
one, where x̃s is the reachable nominal steady state
controlled variable that minimizes the offset cost. That
is,

x̃s = arg min
x∈Xt

Vo
(
x− xt∞

)
.

Proof: See Appendix C.

V. RESULTS AND DISCUSSION: APPLICATION TO APPJ
This section presents the results of closed-loop simulations

and real-time control experiments of the LB-SMPC applied
to the APPJ in Fig. 1. We first discuss the constraint tighten-
ing approach of Section III-C, followed by the construction
of the terminal set for tracking. Next, Monte Carlo simula-
tions of the closed-loop system are presented to discuss the
chance constraint handling, followed by the real-time control
experiments. Lastly, online training of the GP model of the
system uncertainty is discussed to mimic a situation in which
no data on plant-model mismatch is available a priori, for

Fig. 3: Recursively tightened constraint sets. Darkest shade
represents the original constraints that progressively become
lighter with increasing tightening steps.

example, in plasma treatments of a new patient or even on
different tissues on the same patient.

The LB-SMPC controller is implemented in Python using
the CasADi toolbox for nonlinear optimization [45]. Data
acquisition is carried out in Python, while polyhedron set
operations for constraint tightening are performed offline in
MATLAB using the MPT3 toolbox [42] and the invariant
set toolbox [44]. In the APPJ testbed, measurements be-
come available every 1.3 s. Thus, we balance computational
tractability with prediction quality of the GP by choosing
N = 4 and ` = 1 with 200 input-output samples for offline
training of the GP model (6).

A. Design of Tightened Constraints and Terminal Set

Due to the close relationship of surface temperature and
thermal dose accumulation on the target surface [10], we aim
to achieve guaranteed satisfaction of the surface temperature
constraints. We define the deviation variables x1 = T − T s,
x2 = I − Is, u1 = q − qs, and u2 = P − P s. We consider
the following constraints for the APPJ

P[x1 ≤ 5] ≥ 1− ε, P[−x1 ≤ 5] ≥ 1− ε, (25a)
x ∈ X = {x | −15 ≤ x2 ≤ 20} , (25b)
u ∈ U = {u | −1.5 ≤ u1 ≤ 7, −2.5 ≤ u2 ≤ 2} , (25c)

where x1 is measured in ◦C, x2 in a.u., u1 in slm, and u2

in W. Here, we choose ε = 0.2. State-dependent chance
constraint tightening of the temperature constraints (x1 =
T − T s) is carried out offline, as described in Section III-C.
First, we use data of the plant-model mismatch ymis in (3)
to obtain the ECDF of ṽ(x) and accordingly determine γ̂i.2

Then, we iterate over partitions Am and follow Algorithm 1
in [26] to choose whether to keep or discard each Am. The
final tightened and convexified constraints are shown in Fig.

2Alternatively, one could use the learned model of w̃(x) in (6) to
analytically obtain the CDF of w̃(x). These two approaches should, in
principle, provide equivalent results.

Fig. 4: Terminal set for tracking (gray) compared to that
for regulation to a fixed target (dark gray). The original
constraint set X0 is shown in light gray.

3. The darkest shade represents k = 0, whereas the lightest
k = 3.

Next, we compute the terminal set to ensure stability and
recursive feasibility of the LB-SMPC for reference tracking;
see Section IV. Fig. 4 shows the projection of the terminal
set for tracking onto the state-space in comparison with the
terminal set for regulation to a fixed target. Clearly, the
terminal set for tracking is larger than the one for regulation,
providing additional feasibility for tracking different targets
without the need to redesign the terminal set. In addition,
this added flexibility enlarges the domain of attraction of the
controller, as discussed in the next subsection.

B. Closed-loop Simulations

One of the main objectives of this work is to enable pre-
dictive control of plasma treatment of surfaces with different
electrical and thermal properties; for example, in plasma
treatment of tissues with spatially varying properties. To
mimic such a scenario, plasma operation begins by tracking a
target (T t = 40 ◦C, It = 110 a.u.) on an insulating surface,
which is the “expected” operating surface. That is, the
insulating surface is the one on which the linear state-
space model (1) has been identified. At t = 120 s, the
surface is changed to a conductive surface through automated
movement of the jet away from the cover slip. In addition,
to test whether the controller can guarantee state chance
constraint satisfaction, a target change on the conductive
surface is introduced at t = 260 s to drive the temperature
close to its upper constraint (T t = 42.5 ◦C, It = 110 a.u.).
The intensity target is kept constant and far enough from its
constraint.

Fig. 5 illustrates 100 Monte Carlo (MC) runs for two
probabilities of constraint violation, i.e., 20% (green) and
0% (red). In both cases, the target T t = 40 ◦C is tracked
fairly well on the insulating as well as the conductive surface,
as shown by the the root mean squared errors (RMSEs)

50 100 150 200 250 300 350
Time (s)

35

40

45

Te
m

pe
ra

tu
re

 (°
C

)

Insulating Conductive

50 100 150 200 250 300 350
Time (s)

0

50

100

150

200

250

In
te

ns
ity

 (a
.u

.)

Insulating Conductive

 = 0.2
 = 0

Target
Constraints

Substrate Change

Fig. 5: Closed-loop state profiles for LB-SMPC under 100
different uncertainty realizations. Green profiles correspond
to 20% allowed constraint violation (ε = 0.2), whereas red
profiles correspond to 0% allowed constraint violation (ε =
0). The plasma treatment undergoes a drastic change at t =
120 s by changing the surface from insulating to conductive.

in Table I. This implies that the GP model of the state-
dependent uncertainty ṽ(x) can adequately predict the plant-
model mismatch arising from a change in the surface. As
a result, both controllers yield good control performance up
until the target is changed.

However, once the target is changed from T t = 40 ◦C to
T t = 42 ◦C at time t = 260 s, the controller with ε = 0
undershoots the target on average, but does not violate the
temperature constraint, except for very few time instances.
This occurs because we have truncated the distribution of
w̃(x) to lie in W̃(x), which has a finite support according
to (7) based on the 99% confidence interval of the GP
prediction. Consequently, in 1% of the MC simulations, there
might be an uncertainty realization that drives the system
outside of the constraints. Table I also indicate a larger error
in the trajectory of x1 for the controller ε = 0 compared
to the controller with ε = 0.2. Note that the RMSEs for
x2 are fairly similar because there is no operation close to
the constraints. As expected, increasing the value of ε to 0.2
results in a better tracking performance on average at the
expense of violating the constraint. The observed level of
constraint violation (Table I) is 19.1%, which is close to the
specified upper bound of 20%. This suggests that the chance

TABLE I: Results of 100 closed-loop simulations of LB-
SMPC for two levels of acceptable constraint violation, ε, in
the chance constraint.

ε = 0 ε = 0.2
T (◦C) I (a.u.) T (◦C) I (a.u.)

RMSE 1.4 1.4 1.0 1.5
Constraint Violation ≤ 1% - 19.1% -

Fig. 6: Phase plot of the average of 50 Monte Carlo state pro-
files (blue line) starting at the edge of the region of attraction
(ROA) and tracking two reference targets (black dots). The
light gray area illustrates the enlarged ROA, resulting from
the SMPC with chance constraints for reference tracking.
Constraints are shown as dotted lines (X0). mRPI sets are
shaded in darker gray (R∞). The terminal set is colored in
charcoal gray (Xf).

constraint tightening is not conservative.
Fig. 6 shows a phase plot with the the average trajectory

of the LB-SMPC with ε = 0.2 over 50 MC simulations. The
LB-SMPC for tracking can smoothly handle target changes
while also enlarging the ROA. Since the chance-constrained
formulation of the LB-SMPC allows for some constraint
violation, the controller can start from a point outside the
original constraint set and still converge to the terminal set
while staying below the constraint violation threshold. In
contrast, this is not allowed when ε = 0. In the latter
case, any starting point outside the original constraint is
by definition considered infeasible for the OCP. In addition,
the enlarged terminal set for tracking compared to that for
regulation allows further increase in the size of the ROA,
since there are more allowable points to which the controller
has to drive the system at the end of the prediction horizon.

As shown in Fig. 6, after each target change, the system
converges to its respective mRPI set, while the closed-loop
mean (blue) converges to the desired target. Due to the non-
linear nature of the APPJ system (2), the mRPI sets change
in shape and size. This occurs because the linear system is
identified around one operating point. Therefore switching
to another operating point would result in a different linear
system identification.

C. Real-time Control Experiments

1) Offset-Free MPC versus LB-MPC: The performance
of learning-based MPC using GP regression (LB-MPC) is
compared to that of offset-free MPC (OF-MPC) [46] via
real-time control experiments on the APPJ testbed. Note that
the constraints in LPB-MPC are not tightened. The state and

50 100 150 200 250 300 350
Time (s)

35

40

45

Te
m

pe
ra

tu
re

 (°
C

)

(a)

Insulating Conductive

50 100 150 200 250 300 350
Time (s)

0

50

100

150

200

In
te

ns
ity

 (a
.u

.)

Insulating Conductive

OF-MPC
LB-MPC
Target

Constraints
Substrate Change

50 100 150 200 250 300 350
Time (s)

0

2

4

6

H
e

Fl
ow

ra
te

 (s
lm

)

(b)

Insulating Conductive

OF-MPC
LB-MPC

Constraints
Substrate Change

50 100 150 200 250 300 350
Time (s)

0

2

4

6

Ap
pl

ie
d

Po
w

er
 (W

)

Insulating Conductive

Fig. 7: Real-time control experiments comparing the perfor-
mance of offset-free MPC (OF-MPC) with learning-based
MPC (LB-MPC), i.e., without constraint tightening. (a) State
profiles. (b) Input profiles. The plasma treatment undergoes
a drastic change at t = 120 s by changing the surface from
insulating to conductive. At t = 235 s, the target for surface
temperature T changes from 39 ◦C to 43 ◦C.

input profiles are shown in Fig. 7. The performance of OF-
MPC on the insulating surface is comparable to that of LB-
MPC, with the exception of an initial overshoot. At t = 120
s, when the surface is changed from insulating to conductive,
the OF-MPC exhibits a more-oscillatory behavior, while the
LB-MPC is able to settle to the desired target relatively
faster. This is because the OF-MPC is estimating the plant-
model mismatch and then correcting the target accordingly.
However, because of the plant-model mismatch, the OF-
MPC can overcompensate. That is, once the OF-MPC has
determined the error and calculated the artificial target, it
takes action based on the erroneous model and consequently
overshoots the desired target. This, in turn, leads to a new
estimation of the error in the opposite direction, and so on.
This is exacerbated after the surface change from insulating
to conductive, when the OF-MPC controller is driven at the
verge of instability.

In contrast, the LB-MPC uses the current state (and

TABLE II: Closed-loop performance of OF-MPC, LB-MPC (no constraint tightening), and LB-SMPC with ε = 0, quantified
through the root mean squared error (RMSE) and constraint violation fraction in real-time control experiments.

OF-MPC LB-MPC LB-SMPC with ε = 0
T / ◦C I / a.u. T / ◦C I / a.u. T / ◦C I / a.u.

RMSE 1.6 18.2 1.2 12.2 0.8 9.9
Constraint Violation 10% - 5% - 0% -

previous error) to predict the GP correction term in the
next step, i.e., w̃(x) in (6). Therefore, the first control input
is chosen with a partially corrected model, which leads to
smoother and less oscillatory behavior. The accuracy of the
prediction is heavily dependent on the quantity and quality
of the data used for training the GP model. The performance
of both controllers is summarized in Table II. In spite of the
better performance of LB-MPC compared to OF-MPC, the
constraint is still violated in both cases shortly after the target
is changed.

2) LB-MPC versus LB-SMPC: In real-time control ex-
periments, we now compare the performance of LB-MPC
to the proposed LB-SMPC with ε = 0 in the chance
constraint. The state and input profiles are shown in Fig.
8. The two controllers exhibit comparable performance on
the insulating surface. In the region of operation close to
the temperature constraint, however, the LB-MPC exhibits
damped oscillations around the desired target, whereas the
LB-SMPC overshoots it once and then consistently remains
below it. This happens because the constraints are tightened
in such a way that the target T t = 42 ◦C cannot be
reached. Instead, the LB-SMPC settles to a value just below
the target, which corresponds to the maximum temperature
allowable by the tightened constraint design. This illustrates
the trade-off between controller performance and robustness.
More importantly, in case of the LB-SMPC, the temperature
constraint is not violated since ε was set to 0. This is
particularly important in safety-critical applications of APPJ,
where exceeding the specified limitations may harm the
patient and reduce the therapeutic effects of the plasma.

D. Online versus Offline Model Learning

Thus far, we have used data collected from plasma treat-
ment of insulating and conductive surfaces to train the GP
model (5). In practice, however, the user may not know
a priori that there will be a change in surface properties.
Here, we compare online versus offline training of the GP
model (5). We opt to track a surface temperature target far
from the constraint when there is a transition from treating
an insulating surface to a conductive surface. We use 30
training samples to train the GP model, since this allows re-
training the model online within the specified sampling time
of 1.3 s. We continuously update the dataset to include the
sample collected from the latest time step, while eliminating
the sample collected in the oldest time step, to keep the
size of the datasets constant. The data structure is shown
in Appendix D.

Fig. 9 shows the closed-loop surface temperature profile
for the LB-MPC controllers when the GP model (5) is trained

offline (red) and online (blue). Since a limited dataset is used
for training of the GP model (30 samples), the LB-MPC
trained offline exhibits an offset in tracking the target. This
is expected since there is no offset-free formulation enabling
offset elimination, while the predictions that are supposed to
correct the nominal model are inaccurate. On the other hand,
the LB-MPC trained online gradually learns the plant-model
mismatch as it collects more samples relevant to its region of
operation. Even though those samples are no longer relevant

50 100 150 200 250 300 350
Time (s)

35

40

45

Te
m

pe
ra

tu
re

 (°
C

)

(a)

Insulating Conductive

50 100 150 200 250 300 350
Time (s)

0

50

100

150

200

In
te

ns
ity

 (a
.u

.)

Insulating Conductive

LB-SMPC (=0)
LB-MPC
Target

Constraints
Substrate Change

50 100 150 200 250 300 350
Time (s)

0

2

4

6

H
e

Fl
ow

ra
te

 (s
lm

)

(b)

Insulating Conductive

LB-SMPC (=0)
LB-MPC

Constraints
Substrate Change

50 100 150 200 250 300 350
Time (s)

0

2

4

6

Ap
pl

ie
d

Po
w

er
 (W

)

Insulating Conductive

Fig. 8: Real-time control experiments comparing the per-
formance of learning-based MPC (LB-MPC), i.e., without
constraint tightening, with learning-based stochastic MPC
(LB-SMPC), i.e., with ε = 0. (a) State profiles. (b) Input
profiles. The plasma treatment undergoes a drastic change
at t = 120 s by changing the surface from insulating to
conductive. At t = 235 s, the target for surface temperature
T changes from 39 ◦C to 43 ◦C.

0 20 40 60 80 100 120 140 160
Time/ s

34

36

38

40

42

44

46

48
Te

m
pe

ra
tu

re
/ °

C

Insulating Conductive

LB-MPC Trained Online
LB-MPC Trained Offline
Target
Substrate Change

Fig. 9: Closed-loop surface temperature under LB-MPC for
the cases in which the Gaussian process model that corrects
for plant-model mismatch is trained online (blue) and offline
(red). The plasma treatment undergoes a drastic change at
t = 120 s by changing the surface from insulating to
conductive.

after the surface is changed at t = 120 s, the controller keeps
adding training points collected from the metal surface and
once again manages to drive the system close to the desired
target.

The RMSE of the LB-MPC trained online is 1.2 ◦C,
whereas the RMSE of the LB-MPC trained offline is 1.6 ◦C.
Although the LB-MPC trained online does consistently bet-
ter, it exhibits a much larger undershoot when the surface is
changed due to the specialized nature of the training points
involved, i.e., the training points are all from the insulating
surface, so they are no longer applicable to the conductive
surface. The LB-MPC trained offline uses samples from
different surfaces, whereas the controller trained online only
relies on samples pertinent to operation on the insulating sur-
face at t = 120 s. Thus, when the surface transition occurs,
the LB-MPC trained online cannot quickly accommodate the
surface change, but eventually adapts and reaches the desired
target.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a learning-based stochastic MPC
strategy for reference tracking. The proposed formulation
is experimentally tested on an atmospheric pressure plasma
jet with prototypical applications in plasma medicine. The
promise of the LB-SMPC approach for plasma jets is demon-
strated by using Gaussian process regression to capture
the state-dependent plant-model mismatch that results from
plasma treatment of surfaces with vastly different electrical
and thermal properties. Closed-loop simulations and real-
time control experiments indicate the superior performance
of LB-SMPC to that of offset-free MPC and LB-MPC with
no robustness guarantees. Future work will investigate the
extension of the proposed LB-SMPC strategy to the output

feedback case. In addition, online adaptation of the tightened
constraint sets will be investigated to fully leverage the
learning of a state-dependent uncertainty for learning-based
control with safety guarantees.

REFERENCES

[1] J. Jeong, S. Babayan, V. Tu, J. Park, I. Henins, R. Hicks, and
G. Selwyn, “Etching materials with an atmospheric-pressure plasma
jet,” Plasma Sources Science and Technology, vol. 7, no. 3, p. 282,
1998.

[2] J. Heinlin, G. Isbary, W. Stolz, G. Morfill, M. Landthaler, T. Shimizu,
B. Steffes, T. Nosenko, J. Zimmermann, and S. Karrer, “Plasma
applications in medicine with a special focus on dermatology,” Journal
of the European Academy of Dermatology and Venereology, vol. 25,
no. 1, pp. 1–11, 2011.

[3] H.-R. Metelmann, D. S. Nedrelow, C. Seebauer, M. Schuster, T. von
Woedtke, K. D. Weltmann, S. Kindler, P. H. Metelmann, S. E.
Finkelstein, D. D. Von Hoff, and F. Podmelle, “Head and neck cancer
treatment and physical plasma,” Clinical Plasma Medicine, vol. 3,
no. 1, pp. 17–23, 2015.

[4] G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets,
and A. Fridman, “Applied plasma medicine,” Plasma Processes and
Polymers, vol. 5, no. 6, pp. 503–533, 2008.

[5] D. Gidon, B. Curtis, J. A. Paulson, D. B. Graves, and A. Mesbah,
“Model-Based Feedback Control of a kHz-Excited Atmospheric Pres-
sure Plasma Jet,” IEEE Transactions on Radiation and Plasma Medical
Sciences, vol. 2, no. 2, pp. 129–137, 2018.

[6] M. Laroussi, M. Kong, G. Morfill, and W. Stolz, Plasma medicine:
applications of low-temperature gas plasmas in medicine and biology.
Cambridge University Press, 2012.

[7] K. D. Weltmann and T. von Woedtke, “Plasma medicine – current state
of research and medical application,” Plasma Physics and Controlled
Fusion, vol. 59, no. 1, p. 014031, 2016.

[8] J. Shin and L. L. Raja, “Run-to-run variations, asymmetric pulses, and
long time-scale transient phenomena in dielectric-barrier atmospheric
pressure glow discharges,” Journal of Physics D: Applied Physics,
vol. 40, no. 10, pp. 3145–3154, 2007.

[9] M. Dünnbier, A. Schmidt-Bleker, J. Winter, M. Wolfram, R. Hippler,
K. D. Weltmann, and S. Reuter, “Ambient air particle transport into the
effluent of a cold atmospheric-pressure argon plasma jet investigated
by molecular beam mass spectrometry,” Journal of Physics D: Applied
Physics, vol. 46, no. 43, p. 435203, 2013.

[10] D. Gidon, D. B. Graves, and A. Mesbah, “Effective dose delivery
in atmospheric pressure plasma jets for plasma medicine: a model
predictive control approach,” Plasma Sources Science and Technology,
vol. 26, no. 8, p. 085005, 2017.

[11] D. Gidon, D. B. Graves, and A. Mesbah, “Predictive control of 2D
spatial thermal dose delivery in atmospheric pressure plasma jets,”
Plasma Sources Science and Technology, vol. 28, no. 8, p. 085001,
2019.

[12] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[13] S. Wu, Z. Wand, Q. Huang, X. Lu, and Y. Pan, “Study on a room-
temperature air plasma for biomedical application,” IEEE Transactions
on Plasma Science, vol. 39, no. 6, pp. 1489–1495, 2011.

[14] A. Mesbah and D. B. Graves, “Machine learning for modeling, diag-
nostics, and control of non-equilibrium plasmas,” Journal of Physics
D: Applied Physics, vol. 52, no. 30, p. 30LT02, 2019.

[15] D. Breden and L. L. Raja, “Computational study of the interaction of
cold atmospheric helium plasma jets with surfaces,” Plasma Sources
Science and Technology, vol. 23, no. 6, p. 065020, 2014.

[16] L. Ji, W. Yan, Y. Xia, and D. Liu, “The effect of target materials on the
propagation of atmospheric-pressure plasma jets,” Journal of Applied
Physics, vol. 123, no. 18, p. 183302, 2018.

[17] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, 2018.

[18] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,” Journal of Robotic systems, vol. 1, no. 2, pp.
123–140, 1984.

[19] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian Process Model Based Predictive Control,” in Proceedings
of the 2004 American Control Conference, 2004, pp. 2214–2219.

[20] B. Likar and J. Kocijan, “Predictive control of a gas–liquid separation
plant based on a gaussian process model,” Computers & Chemical
Engineering, vol. 31, no. 3, pp. 142–152, 2007.

[21] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based non-
linear model predictive control to improve vision-based mobile robot
path-tracking in challenging outdoor environments,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
2014, pp. 4029–4036.

[22] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[23] D. Limon, J. Calliess, and J. M. Maciejowski, “Learning-based non-
linear model predictive control,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 7769–7776, 2017.

[24] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for
machine learning. MIT Press, 2006.

[25] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 3, pp. 10.1–10.28, 2019.

[26] R. Soloperto, M. A. Müller, S. Trimpe, and F. Allgöwer, “Learning-
based robust model predictive control with state-dependent uncer-
tainty,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 442–447, 2018.

[27] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using gaussian process regression,” IEEE Transactions on
Control Systems Technology, 2019.

[28] A. D. Bonzanini, J. A. Paulson, and A. Mesbah, “Safe learning-based
model predictive control under state-and input-dependent uncertainty
using scenario trees,” in Proceedings of the IEEE Conference on
Decision and Control. Jeju Island, Republic of Korea. Accepted, 2020.

[29] J. Paulson, T. Santos, and A. Mesbah, “Mixed stochastic-deterministic
tube mpc for offset-free tracking in the presence of plant-model
mismatch,” Journal of Process Control, vol. 83, pp. 102–120, 2019.

[30] D. Breden, K. Miki, and L. Raja, “Self-consistent two-dimensional
modeling of cold atmospheric-pressure plasma jets/bullets,” Plasma
Sources Science and Technology, vol. 21, no. 3, p. 034011, 2012.

[31] P. Van Overschee and B. De Moor, Subspace identification for linear
systems: TheoryImplementationApplications. Springer Science &
Business Media, 2012.

[32] J. Umlauft, T. Beckers, and S. Hirche, “Scenario-based optimal control
for gaussian process state space models,” in Proceedings of the
European Control Conference, 2018, pp. 1386–1392.

[33] L. Hewing, E. Arcari, L. P. Fröhlich, and M. N. Zeilinger, “On
simulation and trajectory prediction with gaussian process dynamics,”
in Proceedings of Machine Learning Research, 2020, pp. 424–434.

[34] D. Limón, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for
tracking piecewise constant references for constrained linear systems,”
Automatica, vol. 44, pp. 2382–2387, 2008.

[35] M. Balandat, “Constrained robust optimal trajectory tracking: Model
predictive control approaches,” in Control Systems Technology. Darm-
stadt University of Technology, 2010.

[36] H. Michalska and D. Q. Mayne, “Robust receding horizon control
of constrained nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 38, pp. 1623–1633, 1993.

[37] B. Kouvaritakis, M. Cannon, S. V. Rakovic, and Q. Cheng, “Explicit
use of probabilistic distributions in linear predictive control,” 2010.

[38] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent dis-
turbances: predictive control with restricted constraints,” Automatica,
vol. 37, pp. 1019–1028, 2001.

[39] T. A. N. Heirung, J. A. Paulson, J. O‘Leary, and A. Mesbah,
“Stochastic model predictive control–how does it work?” Computers
& Chemical Engineering, pp. 158–170, 2018.

[40] T. L. M. Santos, A. D. Bonzanini, and A. Mesbah, “A constraint-
tightening approach to nonlinear model predictive control with chance
constraints for stochastic systems,” in Proceedings of the American
Control Conference, Philadelphia, PA, USA, 2019, submitted.

[41] D. Azriel and A. Schwartzman, “The empirical distribution of a large
number of correlated normal variables,” Journal of the American
Statistical Association, vol. 110, pp. 1217–1228, 2015.

[42] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proceedings of the European Control Conference,
Zürich, Switzerland, 2013, pp. 502–510.

[43] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of dis-
turbance invariant sets for discrete-time linear systems,” Mathematical
Problems in Engineering, vol. 4, no. 4, pp. 317–367, 1998.

[44] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and
predictive control,” Ph.D. dissertation, University of Cambridge, 2001.

[45] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[46] G. Pannocchia and J. B. Rawlings, “Disturbance models for offset-free
model-predictive control,” AIChE journal, vol. 49, no. 2, pp. 426–437,
2003.

[47] A. Ferramosca, D. Limon, A. H. González, I. Alvarado, and E. F.
Camacho, “Robust mpc for tracking zone regions based on nominal
predictions,” Journal of Process Control, vol. 22, no. 10, pp. 1966–
1974, 2012.

APPENDIX

A. APPJ Model Parameters

The APPJ model is summarized in Table III. The valida-
tion data for the GP model is shown in Fig. 10.

B. Proof of Theorem 1

1) Proof of Recursive Feasibility: Recursive feasibility
is proven through a similar procedure as in [29]. That is,
we seek to demonstrate that, given a solution at time k,
an explicit candidate solution will satisfy the constraints
at time k + 1. Note that throughout the proof, we assume
that |ṽ(x)| ≤ |w̃(x)| ∈ W̃(x), i.e., the state-dependent
uncertainty model w̃(x) is at least as large as the real
underlying uncertainty.

To begin with, recall that the arguments of the mini-
mization of the OCP (20) at time k are denoted by c∗k =
[c∗0|k, c

∗
1|k, . . . , c

∗
N−1|k] and θ̃∗k. The nominal state predictions

are then given by

x̃∗j+1|k = AK x̃
∗
j|k +BLθ̃∗k +Bc∗j|k, x̃∗0|k = xk.

The candidate solutions at time k+1 are defined as cck+1 =

[c∗1|k, c
∗
2|k, . . . , c

∗
N−1|k, 0] and θ̃ck+1 = θ̃∗k. In addition, we

denote the nominal state predictions corresponding to the
initial state x̃c0|k+1 = xk+1 as x̃cj|k+1, j ≥ 0.

Fig. 10: Validation Data. (a) Temperature correction valida-
tion; (b) Inset of (a); (c) Intensity correction validation; (d)
Inset of (c). Predictions are shown in red and real data is
shown in blue. The 99% confidence interval is shaded in
light gray.

TABLE III: Model and MPC Parameters

Problem characteristic Specification

Deviation variables y =

[
T − 38 ◦C

0.1(I − 100) a.u.

]
, u =

[
q − 3.0 slm
P − 3.0 W

]
APPJ Model A =

[
0.9418 0.0821
−0.0552 0.0080

]
, B =

[
−0.2970 −0.0180
1.6664 3.3180

]
, C = I2, d(x)← from GP

Hard constraints x1 ∈ [−5, 5], x2 ∈ [−15, 20] u1 ∈ [−1.5, 7], u2 ∈ [−2.5, 2]
Time-related parameters N = 4, l = 1
Training Data Noffline training = 200, Nonline training = 30

Having established these definitions and notational con-
ventions, we can proceed to relate x̃c0|k+1 to x̃∗1|k. Using (2)
and (6), we can write

x̃c0|k+1 = xk+1 = Axk +Buk + w̃(xk).

Substituting uk = ũ∗0|k = Kxk + Lθ̃∗k + c∗0|k, we obtain

x̃c0|k+1 = Axk +B
(
Kxk + Lθ̃∗k + c∗0|k

)
+ w̃(xk) =

= (A+BK)xk +BLθ̃∗k +Bc∗0|k + w̃(xk) =

= AKxk +BLθ̃∗k +Bc∗0|k + w̃(xk) =

= x̃∗1|k + w̃(xk).

By definition, x̃c1|k+1 = AK x̃
c
0|k+1 +BLθ̃ck+1 +Bcc0|k+1.

However, from the control sequences, it is apparent that
cc0|k+1 = c∗1|k. In addition, as it has already been pointed
out, θ̃ck+1 = θ̃∗k. Thus, making these substitutions yields

x̃c1|k+1 = AK

(
x̃∗1|k + w̃(xk)

)
+BLθ̃∗k +Bc∗1|k =

=
(
AK x̃

∗
1|k +BLθ̃∗k +Bc∗1|k

)
+AKw̃(xk) =

= x̃∗2|k +AKw̃(xk).

We can generalize the above by induction to obtain

x̃cj|k+1 = x̃∗j+1|k +AjKw̃(xk), ∀j ∈ N[0,N−1]. (26)

Similarly, the candidate input can be re-written as

ũcj|k+1 = Kxcj|k+1 + Lθ̃ck+1 + ccj|k+1

= K
(
x̃∗j+1|k +AjKw̃(xk)

)
+ Lθ̃∗k + c∗j+1|k =

=
(
Kx̃∗j+1|k + Lθ̃∗k + c∗j+1|k

)
+KAjKw̃(xk),

which yields

ũcj|k+1 = ũ∗j+1|k +KAjKw̃(xk), ∀j ∈ N[0,N−1]. (27)

At this point, we will focus on two separate cases: (i)
when 1 ≤ j < N , and (ii) when j = N .

i) 1 ≤ j < N .
From (26) and (27), we can set j ← j − 1 to obtain

x̃cj−1|k+1 = x̃∗j|k +Aj−1
K w̃(xk), (28)

ũcj−1|k+1 = ũ∗j|k +KAj−1
K w̃(xk). (29)

By construction of the sets Xj (see Algorithm 1 in
[26]), we know that for a region Am
x̃j|k ∈ Am ⊆ Xj ⇒ Am ⊕Aj−1

K Ŵ−j (Am) ⊆ Xj−1,
(30)

where Ŵ−j(Am) :=
⋃
x∈H−j(Am) W̃(x).

Recall that the uncertainty set W̃(xk) can be overesti-
mated by

W̃(xk) ⊆ Ŵ−j (Am) ,

which means that w̃(xk) ∈ Ŵ−j (Am). This, in com-
bination with (28) and (30), leads to the conclusion
that

x̃∗j|k ∈ Xj ⇒ x̃cj−1|k+1 ∈ Xj−1, ∀j ∈ N0,N−1,

and, similarly,

ũ∗j|k ∈ Uj ⇒ ũcj−1|k+1 ∈ Uj−1, ∀j ∈ N0,N−2.

ii) j = N . Here, we show that the terminal constraint is
respected at time k + 1. We first show that at j = N

x̃cN |k+1 = Ax̃cN−1|k+1 +BũcN−1|k+1 =

= A
(
x̃∗N |k +AN−1

K w̃(xk)
)

+B
(
Kx∗N |k + Lθ̃∗k + 0 +KAN−1

K w̃(xk)
)

=

= AK

(
x̃∗N |k +AN−1

K w̃(xk)
)

+BLθ̃∗k =

= AK x̃
∗
N |k +BLθ̃∗k +ANKw̃(xk).

Recall that the terminal set satisfies Ωat ⊆{
(x, θ) : x ∈ XN , Kx+ Lθ ∈ UN

}
and[

AK BL
0 I

]
Ωat ⊕

[
ANK
0

]
W̃(xk) ⊆ Ωat .

Since (x̃∗N |k, θ̃
∗
k) ∈ Ωat , and[

x̃cN |k+1

θ̃ck+1

]
=

[
AK BL
0 I

] [
x̃∗N |k
θ̃∗k

]
+

[
ANK
0

]
w̃(xk),

it follows that the successor state must remain in the
terminal set, i.e., (x̃cN |k+1, θ̃

c
k+1) ∈ Ωat . Therefore,

the candidate solution is necessarily feasible for all
constraints in the OCP (20). Thus, xk ∈ XN ⇒
xk+1 ∈ XN for all admissible disturbances w̃k ∈
W̃(xk), which completes the proof of (i).

2) Proof of Stability and Convergence: By the dual mode
prediction paradigm and the construction of the terminal
invariant set (23), it follows that the state-dependent un-
certainty in mode 2 (i.e., after the states have entered the
terminal set) does not have to be accounted for. Therefore,
it suffices to prove stability by considering w̃(xj|k) = 0. To

this end, we can follow the method in [29] Appendix A.2
with minor modifications.

The cost function (19) can be related to the infinite horizon
nominal cost as

VN (ck, θ̃k, xk, x
t
k) = Ṽ (ck, xk) + Vo(x̃

s
k, x

t
k),

where

Ṽ (ck, xk) =
∞∑
j=0

||xj|k − x̃sk||2Q + ||ũj|k − ũsk||2R.

The infinite horizon nominal cost, in turn, can be related to
the cost of control perturbations

∑N−1
j=0 ||cj|k||2Ψ as follows

Ṽ (ck, xk) =
∞∑
j=0

||xj|k − x̃sk||2Q + ||ũj|k − ũsk||2R

=
N−1∑
j=0

||cj|k||2Ψ + ||xk − x̃sk||2P ,

where Ψ = R + B>PB and P solves the discrete-time
Lyapunov equation P −A>KPAK = Q+K>RK [29], [47].
Since the last term is a constant, minimizing the sum of the
control perturbations is equivalent to minimizing the infinite-
horizon nominal cost whenever Ψ = R+B>PB.

To demonstrate stability and convergence, we define the
optimal cost function

Jk := V ∗N (xk, x
t
k) =

N−1∑
j=0

||c∗j|k||
2
Ψ + Vo(Nθ θ̃

∗
k − xtk).

Then, we can write

V cN (xk+1, x
t
k+1) =

N−1∑
j=0

||ccj|k+1||
2
Ψ + Vo(Nθ θ̃

c
k+1 − xtk)

=
N−1∑
j=1

||c∗j|k||
2
Ψ + Vo(Nθ θ̃

∗
k − xtk)

= Jk − ||c∗0|k||
2
Ψ.

Since this is merely a candidate solution, the opti-
mal solution will yield a cost that is less or equal than
V cN (xk+1, x

t
k+1), i.e., Jk+1 ≤ V cN (xk+1, x

t
k+1). Therefore,

Jk+1 − Jk ≤ −||c∗0|k||
2
Ψ.

Thus, {Jk}k≥0 is a non-negative, montonically non-
increasing sequence, which must converge to J∞ < ∞ as
k → ∞. Summing the difference above from 0 to infinity,
we obtain

0 ≤
∞∑
k=0

||c∗0|k||
2
Ψ ≤ J0 − J∞ <∞⇒ lim

k→∞
c∗>0|kΨc∗0|k = 0.

Since Ψ > 0, this implies that limk→∞ c∗0|k = 0, which
proves (ii).

Define the optimal steady states and inputs as
(x̃s,∗k , ũs,∗k) = Mθ θ̃

∗
k. Then, uk = K(xk− x̃s,∗k)+ ũs,∗k +c∗0|k.

We also define deviation variables as x̄ = xk − x̃s,∗k and

ū = uk − ũs,∗k . Substituting into the dynamics equation (2),
we obtain

x̄k+1 = Ax̄k +Būk + w̃(xk)

= AK x̄k +Bc∗0|k + w̃(xk).

In addition, we can use the superposition principle as
follows

lim
k→∞

x̄k

= lim
k→∞

AkK x̄0 +
k∑
j=1

Aj−1
K Bc∗0|k−j +

k∑
j=1

Aj−1
K w̃(xk−j)


= lim
k→∞

 k∑
j=1

Aj−1
K w̃(xk−j)

 .
Then, from the definition of the reachable sets, we have

lim
k→∞

xk ∈ lim
k→∞

{
x̃s,∗k

}
⊕R∞

lim
k→∞

uk ∈ lim
k→∞

{
ũs,∗k

}
⊕KR∞

The control actions cj|k = 0, ∀j ∈ N[0,N−1] are feasible
as k → ∞ for any feasible artificial target, since uk
converges to the desired control law inside the terminal set.

As shown above, the optimal cost function Jk consists
of two parts: the aggregate contribution from the control
actions cj|k and the offset cost Vo(·). Since limk→∞ c∗k = 0
is the global optimum minimizer for the first part of the
cost function, it follows that limk→∞ θ̃∗k = θ̃min, where θ̃min

minimizes the offset cost Vo(Nθ θ̃ − xt∞). That is,

θ̃min = arg min
θ̃
Vo(Nθ θ̃ − xt∞).

Consequently, this proves (iv). Then, (iii) follows directly
from (iv), since whenever the target is reachable the offset
cost can be driven to zero by choosing x̄s = xt∞.

C. Online Training

Initially, the structure of the training data is as follows

xk =


x11 x12

x21 x22

...
...

xk−1,1 xk−1,2

 , yk =


ymis

21 ymis
22

ymis
31 ymis

32
...

...
ymis
k,1 ymis

k,2

 .
After data from time step k + 1 becomes available, that is
introduced accordingly into x and y, and the oldest data
point is removed in order to keep the size of the datasets
constant. Therefore, the new datasets become

xk+1 =


x21 x22

x31 x32

...
...

xk,1 xk,2

 , yk+1 =


ymis

31 ymis
32

ymis
41 ymis

42
...

...
ymis
k+1,1 ymis

k+1,2

 ,
and the GP regression is re-trained before solving the OCP
for the next time step.

View publication statsView publication stats

https://www.researchgate.net/publication/350779029

	IEEE_TCST_2021_1

