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Safe Learning-based Model Predictive Control under State- and
Input-dependent Uncertainty using Scenario Trees
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Abstract— The complex and uncertain dynamics of emerg-
ing systems pose several unique challenges that need to be
overcome in order to design high-performance controllers. A
key challenge is that safety is often achieved at the expense
of closed-loop performance. This is particularly important
when the uncertainty description is provided in the form of
a bounded set that is estimated offline from limited data.
Replacing this bounded set with a learned state- and input-
dependent uncertainty enables representing the the variation
of uncertainty in the model throughout the state space, thus
improving closed-loop performance. Gaussian process (GP)
models are a good candidate for learning such a representation;
however, they produce a nonlinear and nonconvex description of
the uncertainty set that is difficult to incorporate into currently
available robust model predictive control (MPC) frameworks.
In this work, we present a learning- and scenario-based MPC
(L-sMPC) strategy that systematically accounts for feedback
in the prediction using a state- and input-dependent scenario
tree computed from a GP uncertainty model. To ensure that
the closed-loop system evolution remains safe, we also propose
a projection-based safety certification scheme that ensures
the control inputs keep the system within an appropriately
defined invariant set. The advantages of the proposed L-sMPC
method in terms of improved performance and an enlarged
feasible region are illustrated on a benchmark double integrator
problem.

I. INTRODUCTION

Learning-based control methods have been shown to be
particularly effective for control of complex systems operat-
ing in uncertain and hard-to-model environments, especially
when purely model-based control methods have limited
effectiveness [1]. Learning-based model predictive control
(L-MPC) is one of the most popular approaches when the
underlying system is constrained and has multiple inputs
and outputs [2], [3]. While learning the system uncertainty
can improve control performance, the statistical nature of
learning-based approaches introduces important challenges
in guaranteeing robust constraint satisfaction. This is par-
ticularly important in L-MPC of safety-critical systems with
hard-to-model dynamics, such as biomedical systems [4] and
autonomous driving applications [5].

The notion of L-MPC with robustness guarantees was
first introduced in [6], where two models of the system are
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used in order to decouple safety and performance: (i) an
approximate model with bounded uncertainty, which is used
offline to establish the stability and robustness properties via
reachability analysis tools; and (ii) a model that is contin-
uously updated online by using data-driven approaches and
thus is employed for performance optimization. However,
when the uncertainty is represented in the form of worst-
case bounds, which are often conservatively estimated offline
from limited data, the desired safety objective is typically
achieved at the expense of closed-loop performance. Thus,
several recent works have focused on replacing the bounded
uncertainty with a state- and input-dependent uncertainty that
can account for the fact that the degree of uncertainty in the
model (or environment) may differ throughout the state space
[4], [7], [8]. Although Gaussian process (GP) regression has
proven to be an effective data-driven modeling approach for
learning state- and input-dependent uncertainty representa-
tions [7], [9], [10], it naturally yields a nonlinear description
of the uncertainty. This nonlinearity can produce highly
nonconvex uncertainty sets that are difficult to incorporate
into available L-MPC methods that can provide a theoretical
guarantee of robust constraint satisfaction. This is because
such L-MPC methods generally rely on offline tightening of
the constraints in terms of a worst-case description of the
uncertainty that can significantly reduce the feasible region
of the controller.

In this work, we present a learning- and scenario-based
model predictive control (L-sMPC) strategy that learns a
GP representation of the unmodeled system dynamics while
systematically accounting for feedback in the predictions
by using a scenario tree structure. Scenario-based MPC
enables the inclusion of recourse in the optimization, thus
reducing the conservativeness that arises when optimizing
over open-loop control actions as opposed to more general
feedback policies [11], [12], [13]. Here, instead of bounding
the uncertainty offline and constructing a scenario tree based
on an unrealistically conservative worst-case scenario, we
use GP regression to obtain a state- and input-dependent
uncertainty model that allows the scenario tree to be adapted
online. While online adaptation of the scenario tree can
enhance closed-loop performance, the resulting controller
does not guarantee constraint satisfaction by design as only a
finite number of scenarios are considered. Thus, we leverage
the notion of robust control invariant (RCI) sets [14], [15],
[16], [17] to establish an online safety certificate for the
L-sMPC strategy. To this end, we present an algorithm for
constructing (maximal) RCI sets given the GP description of
the state- and input-dependent uncertainty. The advantages
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of the proposed safe L-sMPC approach in terms of an
enlarged safety region with guaranteed constraint satisfaction
and improved performance are demonstrated on a benchmark
double integrator problem.

Notation. The set of non-negative integers is denoted by
N. The ith element of a vector is denoted by [z];. Given a ma-
trix M, the ij entry is denoted by [M]; ; and the ith column
and row are denoted by [M]. ; and [M]; ., respectively. The
weighted Euclidean norm is given by ||z|2%, :== 2T M ~1x.
E{X} denotes the expected value of a random vector X and
X ~ N (u,X) denotes a normally distributed random vector
with mean p and covariance X. Given two sets A C R”
and B C R", the set difference between A and B is
A\ B:={a€ A|a¢ B} and the Minkowski set addition
of Aand Bis A@ B :={a+b|a € A,be B}. Given a set
S C X xY, the orthogonal projection of the set S onto X is
defined as Proj (S) :=={r € X |y €Y s.t. (x,y) € S}.

II. PROBLEM STATEMENT

Consider an uncertain discrete-time system of the form
a® = f(z,u) + Ba(g(z,u) +w), (D

where © € X := R"= is the current state, =T is the state
at the next time instant, u € U := R™ is the control input,
and w € W := R™ is a process noise that is assumed to
be normally distributed, i.e., w ~ A (0, X"). The model is
composed of a known nominal part f : X x U — X and
an additive term g : X x U — W that describes initially
unknown system dynamics that are to be learned from data
and lie in the subspace spanned by the matrix By € R"=*"d,
The state and input are required to satisfy the following set
of mixed constraints

(x,u) e Y C X x U. )

In this work, we choose to model the noisy vector-valued
function g (referred to as a state- and input-dependent uncer-
tainty) using GP regression [18]. We use M € N, training
points in the form of previously collected measurements of
the states and inputs

yi = Bl (@i = f(aj,u5)) = glaj ug) +wy, ()

forall j =1,..., M, where le denotes the Moore-Penrose
pseudoinverse of By. Letting z; = (x;,u;), the training data
set can be defined as

D={y=[y,... e} @

To simplify presentation, we assume that each dimension of
g is learned separately. By specifying a GP prior on each
element a € {1,...,nq} of g with mean function m®(-)
and kernel k*(-,-) and conditioning on the training data D,
we obtain a Gaussian posterior distribution at any given test
point z = (z,u) with mean and covariance

]z = [z

pi(z) = m®(2) + K&(Kg, + 021) N (ly]..a —my), (52)
S(z) = K2, — K& (Kg, +021) ' Kg.., (5b)

where K is the Gram matrix that is composed of the
following terms [KZ,];; = k%(zi,25), [K3,]; = k%(z4,2),
K, = (K&)T, K& = k*(z,2), and [mg]; = m®(z;).
There are many possible choices for the kernel function, one
of the most popular being the squared exponential kernel

1
ka(zi,zj) = O'%a exXp (—2(21' — Zj)TL(;l(Zi - Zj)> 5 (6)
where 0]20,“ is the signal variance and L, is a positive
diagonal length-scale matrix [18]. The resulting state- and
input-dependent GP approximation of the unknown function
g(x,u) is then given by

d(z,u) ~ N (p(z,u), 5% (z, u)), )

where the mean p(-) = [pf(-),..., pd (-)]" and covariance
() = diag([Z{(+),..., 3¢ ()]") are concatenated from
the individual output predictions in (5).

In this paper, we aim to solve a closed-loop MPC problem
for system (1) under the GP representation d of the unknown
function g. At each time instant, the GP model evaluates to
a stochastic distribution that is added to the process noise
and then propagated forward through the prediction model.
The resulting closed-loop MPC problem is formulated as

N-1
rrhin J(z,10) ::E{;E(xi,ui)+ﬁf(m]v)}7 (8a)
S.t. Tip1 = f(ﬂ?i, ui) + Bd(d(xi,ui) + wi), (8b)
u; = m(x;), (8¢)
(z4,u;) € Y, (8d)
2o=x, Vi=0,...,N—1, (8¢)

where the decision variables are defined by a control policy
II = {mo(-),...,mn—1(-)} that is a sequence of control laws
m;(x) over the prediction horizon N. The objective function
is composed of a scalar stage cost £(z,u) and a terminal
cost function ¢;(x). The expected value operator E{-} is
defined with respect to the random vector sequence w =
{Wo, ..., WN—1}, Where w; := d(x;,u;) + w; is the overall
source of uncertainty at the predicted time step .

The closed-loop MPC problem (8) is not directly solvable
since one cannot readily optimize over the generic functions
defining the feedback policy II. This is often addressed by re-
stricting the elements of II to be from a class of parametrized
feedback controllers such as 7;(x;) = K;z; + v;. Although
this can improve tractability of the problem, it is a suboptimal
choice that may lead to a large growth in the predicted
uncertainty over time [19], [20]. Scenario trees, on the other
hand, represent the evolution of the uncertainty in terms of
a tree of discrete uncertainty realizations [12], [13]. Since
the feedback structure is not restricted to be affine in the
scenario tree, this can lead to improved performance relative
to other robust control approaches such as tube-based MPC.
The standard formulations of scenario-based MPC consider
only exogenous sources of uncertainty that are independent
of predicted state and input sequences, implying that the
scenario tree can be straightforwardly generated offline.
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The first contribution of this work is to present a scenario-
based MPC strategy that explicitly incorporates the state-
and input-dependent uncertainty in the form of the learned
GP model (7), such that the scenario tree can be adapted
online in a computationally efficient manner. The proposed
learning- and scenario-based MPC (L-sMPC) strategy is
presented in Section III. Since scenario-based MPC only
enforces constraints at a discrete number of uncertainty
realizations, the resulting closed-loop system may not satisfy
(2) under the full uncertainty description. Therefore, our
second contribution is to introduce a framework for providing
a real-time safety certificate by projecting the optimal inputs
into a “safe” set that can be derived offline using invariant
set theory, as discussed in Section IV.

III. SCENARIO-BASED MODEL PREDICTIVE CONTROL
UNDER GAUSSIAN PROCESS UNCERTAINTY MODELS

The design of a suitable scenario tree is a tradeoff between
coverage of the uncertainty space and computational cost.
One systematic approach to scenario generation is to use
quadrature rules [21], with the main goal of deriving an
accurate approximation of the expectation integral in terms
of a relatively small number of samples of the uncertainty.
We look to extend this idea to the case of state- and input-
dependent uncertainty by rewriting the cost function (8a) in
terms of conditional expectations

J(x, 1) = £(z0,u0) + Eo{ﬁ(xl,ul) +E1{£(x2,u2) 9)
+"'+EN72{£(33N—17UN—1)
+Exalton}) -}

where Ei{-} = Eg, |5, ,,....a,1-} is the conditional expecta-
tion with respect to the uncertainty at time step ¢ given all
previous uncertainty values. Since the current state can be
inferred from knowledge of the previous uncertainties, we
know that @;|W;_1, ..., Wy = W;|x;, u; is Gaussian

ﬁ)2|$27u2 NN(H’w(xlvul)azw(xuuz))a (10
where 1% (z,u) = p?(z,u) and X (z,u) = L4 (2, u) + L.
Applying quadrature rules with respect to (10) would require
the points and their associated weights to be generated
online (at every step of the optimization) since they are
dependent on the evolution of the state and input throughout
the prediction horizon. This procedure can quickly become
intractable and thus we instead look to leverage the fact that
W;|x;,u; is Gaussian in order to move much of this cost
offline. This is done by transforming w;|x;, u; into a standard
normal random variable & ~ N(0, 1), i.e.,

1/2

Wilws,ui = p® (w5, us) + (5% (xi,w)) &G (D

5
3 @
(ks
u"{,‘”‘u‘

5 (3, uf), 2 ut, i (x} uf) 5

o uf)

Fig. 1: Scenario tree representation of the state- and input-
dependent uncertainty evolution in L-sMPC for an example
case in which s = 3 and N = 2. The scenario tree
is adapted at each iteration due to the state- and input-
dependent description of uncertainty, which can be visualized
as the nodes moving up and down.

We can now approximate the conditional expectation for
some arbitrary function h(z;,u;,w;) as follows

Eu{h(xs, ui, @)} = / B s, 0)p (s, w)dis, (12)

= /h(%uia@i(&))]?(fi)d& ~ P, s, Wi (1)),
n=1

where s is the number of sample points, {£]'}7_; are sample
point locations, {p* }5_, are the weights associated with each
sample point, and @; (') = ™ (z;,w;) + (7 (24, u;))/2E0.
The computational cost of the multivariate integral approxi-
mation in (12) is largely dependent on the number of sample
points s, which, therefore, should be as small as possible.
A wide variety of integration rules over multidimensional
spaces have been proposed, the most common being tensor
and sparse grid [22], randomized [23], and optimization-
based methods such as moment matching [24].

Once the conditional probability distributions are dis-
cretized, the state- and input-dependent scenario tree can be
constructed, as illustrated in Fig. 1. The root node corre-
sponds to the known initial state g = z. The uncertainty
at each subsequent layer is approximated with s quadrature
points, which grows over time. Each node represents a
possible uncertainty and input trajectory, and is assigned a
set of state and input variables {z,u?} with ¢ =0,..., N
and n € A(i) where .4 (i) is the set of nodes at level ¢
in the tree. Then, &' is the realization that defines the node
state vector from some common parent node

oy = fa ul) + By},
o~ ’ ’ ~ !’ ! 1/2
= @y )+ (S0 a)) e
Node(i,n’") = Parent(Node(i + 1,n)).

13)

The probability of any given node being visited is equal to
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the product of the conditional probabilities (the quadrature
weights p?' in this case) along the path to that node, which
is denoted by P;" and should satisty 3, ,) P = 1.
The fact that all control inputs that branch from the same
parent node are equal in (13) describes the real-time decision
problem (i.e., current decisions cannot anticipate the future),
which is a direct enforcement of the non-anticipativity con-
straints.

It is important to note that a key difference in (13)
compared to traditional scenario-based MPC [12], [13] is
that the location of the scenarios can move in response
to the predicted state and input values based on the GP
model, which is illustrated in Fig. 1. This can significantly
reduce conservatism of the controller since, by definition,
the magnitude of the state- and input-dependent uncertainties
must be less than or equal to the worst-case realization. Given
the measured state x, the proposed L-sMPC problem can be
formulated as a large-scale optimization problem

mUin J(z,U), (14a)

stafyy = f(a7 ) + Bawf, (14b)
_ ~ ’ ’ 1/2

= () + (20 ) e (140

Node(i n’) = Parent(Node(i + 1,n)), (144)

( Li z) € y (146)

ry=x, Yi=1,...,N, ¥Yn € ¥ (i), (14f)

where U = {ul’ | i =1,...,N, n € 4(i)} is the vector of
all decision variables and the objective function is given by

o)=Y Y P

=0 neAN (3)

+Z

neN (N

15)

The solution to (14) is denoted by U*(z) and the resulting
L-sMPC law is defined as the first element of this vector
= uy* ().

Rsmpe \ T ( ) (16)

Remark 1: To avoid the exponential growth of the sce-
nario tree size with respect to prediction horizon N, a usual
additional simplifying assumption is to consider branching
in the tree only up until a certain stage, often referred
to as the robust horizon N,. The rationale behind this is
that branching in the far future is less important than the
imminent layers, since the corresponding state trajectories
and control variables will be heavily altered by the time that
branching stage is reached.

Remark 2: In principle, adaptation of the scenario tree is
achieved whether the GP model (7) is trained offline and
deployed online, or re-trained at each sampling instant. Re-
training the GP model (7) online can enhance controller
performance even further due to the additional data collected
during operation, at the expense of increased computational
cost due to the re-training step.

IV. NON-CONSERVATIVE REAL-TIME SAFETY
CERTIFICATION IN THE PRESENCE OF STATE- AND
INPUT-DEPENDENT UNCERTAINTY

Given that the L-sMPC controller xsmp. does not guarantee
satisfaction of the constraints (2), we aim to derive a set of
states S for which a feasible backup control strategy up
exists such that (2) can be satisfied at all future times. As
such, Kxsmpc can be applied as long as it does not result
in the system leaving S; otherwise, the backup controller
must be applied to keep the system safe. The notion of a
safety controller has been formally defined in a variety of
works, e.g., [1], [25], which we look to extend to the case
of a GP model (7) of the structural plant-model mismatch.
Since both the GP and process noise models have infinite
support, constraints cannot be enforced for all possible values
of the uncertainty. Instead, we use confidence intervals to
characterize the actual expected range of the uncertainties,
which can be straightforwardly computed from the GP model

Wiayu) = {w | w =5 (@, 0)l[3a ) <35, (@)}
a7

where x2(:) is the quantile function for the chi-squared
distribution with n degrees of freedom and a € (0,1) is
the desired probability level. The choice of « is a tuning
parameter, with larger values representing less confidence
in the knowledge of function g. We make the following
assumption in order to provide theoretical guarantees.

Assumption 1: The state- and input-dependent uncertainty
set (17) is found through offline learning and g(x(k), u(k))+
w(k) € W(z(k),u(k)) for all k> 0.

Under the GP model (7), Assumption 1 does not formally
hold; however, it is useful in practice since Gaussian uncer-
tainty models are already an approximation of reality wherein
unbounded disturbances do not naturally occur. In other
words, this assumption will almost surely hold for o values
sufficiently close to one. Combining system constraints (2)
with the disturbance constraint (17), we let

T = {(z,u,®) | (z,u) €Y and & € W(z,u)}  (I8)

denote the subset of the graph W(.) where the state and
input constraints are satisfied such that J) = Projy, (7).
The state-dependent set of admissible control inputs is then

U(z) :={u]| (xz,u) € Y}, (19)
such that the admissible state set becomes
X :={z|3ust (z,u) € Y} =Projx(¥). (20)

Given these definitions, we now recall the notion of robust
control invariant sets [14], which are known to fulfill the
requirements of a safety set [1], [25].

Definition 1: A given set S C X is robust control invari-
ant (RCI) for system 27 = f(z,u) + Bgw and constraints
T if, for any « € X, there exists a uw € U(x) such that
f(z,u) + Bgw € S for all w € W(z,u).

An RCI set C is said to be maximal in X if all other
RCI sets in X are contained in Co,. By definition, the
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maximal RCI set is the largest possible region of the state
space in which an admissible control law exists that ensures
state constraint satisfaction for all times and all possible
disturbance sequences. This implies S = C is ideal, though
any RCI set is a valid safety set. For any RCI set S, we define
the following set-valued map for each element x € S

Su(x) == {uecU(z)| f(x,u) ® ByNV(x,u) CS}. (21)

The backup controller up can make any selection from
Su(x), ie., ug(x) € Sy(x) for all z € S. In particular,
we propose to project the L-sMPC solution into the set (21),
so that the inputs supplied to the system are as close as
possible to L-sMPC while keeping the system safe. This can
be formulated in terms of the following optimization

us(x) = argmin HU - ﬁsmpC(x)H'
uESu('L)

(22)

Implementing s in place of ksmp. provides a direct certifi-
cate of safety, which can be formalized into our main result.
Theorem 1: Let Assumption 1 hold. Then, the closed-loop
system 2V = f(z,us(z)) + Ba(g(x,us(x)) + w) satisfies
constraints (2) for all times and all possible disturbances.
Proof: The result follows from [26, Theorem 1] since
Su(z) # 0 for any z € S and the effective disturbance
satisfies g(z,u) +w € W(z,u) from Assumption 1. [ |
RCI sets can be calculated recursively from some appro-
priately specified target set Xy C X
Xi+1 = PI‘C(XZ‘), Xo = Xf, (23)
where
Pre(Q?) = {z |3u € U(z) such that
f(z,u) + Bgw € Q, Yo € W(z,u)}

(24)

denotes the predecessor set of a given set {). Two choices
of Xy are particularly relevant in this work. For X; = X,
it can be shown that X;;; C X, for all i € N and C, C
(;en Xi. Furthermore, Co, = X; for some i € N if and
only if X;; = X;. An alternative is to select X to be any
(potentially small) RCI set, as it is known that X; will be
RCI for all ¢ € N (interested readers are referred to, e.g.,
[14], [27] for further details). Although the latter method
may lead to a smaller safety set S, it has the advantage that
the algorithm can be stopped at any iteration.

It is clear that the key result needed to derive the safety
set is the computation of the predecessor set (24). This can
be done with set algebra as summarized next.

Theorem 2: The set of states that are one-step robustly
controllable to €2 is given by

Pre(2) = Proj (%), (25)
where ¥ is given by
=Y\ Projy,y(T\ ),

and @ := f-1(Q) = {(z,u, ) | f(z,u) + Baw € Q}.
Proof: See [28, Theorem 1] for a graphical proof. W
The conceptual steps in Theorem 2 are difficult to execute
for general nonlinear systems, as the set objects can have

(26)

arbitrarily complex shapes. In fact, the set T will usually
be non-convex since W(z,u) is large in regions lacking
training data and small near the training points. We would
like to evaluate Pre(-) using computational geometry, as
quantifier elimination methods with polynomial complexity
are known to exist. Standard computational geometry tools
rely on the efficient manipulation of polytopes, which can be
extended to handle non-convex polygon set representations
using polyhedral covers (i.e., union of polytopes). We are not
aware of similar strategies for working with the non-convex
union of ellipsoids, such as (17), so we must first construct
a polyhedral cover outer approximation for T, i.e.,

Npe
TC Y= U{U = (v,u,w) | Hiv < gi},

i=1

27

where V. is the number of regions used to construct the
polyhedral cover. A simple procedure for deriving this outer
approximation is shown in Algorithm 1. Line 3 requires a
global optimization problem to be solved using, e.g., branch
and bound. Note that selecting N, = 1 results in a worst-
case formulation, which corresponds to neglecting the state-
and input-dependence of the disturbance.

Algorithm 1 Outer polyhedral constraint approximation

Require: Polyhedral partition for J = Ui\f:pl Vi

I: for i =1,2,..., Ny do

2. for j=1,2,...,nq do

3 Calculate minimum [@!"]; and maximum [@P*];
of the j element of the disturbance subject to the
constraints (z,u) € V; and ¥ € W(z, u)

4:  end for

5. Get Y; by combining Y; and {0 | ﬁ)?’i“ <o < WMy

6: end for

Given polyhedral cover representations of the sets  and T
and nominal dynamics f(-) that are linear or piecewise affine,
the computation of inner approximations for Pre(£2) and ¥
can be achieved using standard polytope manipulations with,
e.g., MPT3 [29]. The required steps can be summarized as

1) Compute the inverse map: ® = f-*(Q).

2) Compute the set difference: A = T \ .

3) Compute the projection: ¥ = Projy . (A).

4) Compute the set difference: ¥ = Y\ V.

5) Compute the projection: Projy (X) C Pre(f2).

An inner RCI approximation S to the RCI set S, defined
by the recursion (23), can be obtained by repeating the above
steps with Q < Proj . (X). The approximation S converges
to S as V. — o0 since T — T according to Algorithm 1. It
is important to note that set difference between two polygons
is also a polygon, which implies the iterates toward S will
also be polygons. The polyhedral cover representation can
be derived from the set difference of all combinations of
the sets defining the polyhedral cover of the two polygons
(see, e.g., [28, Appendix II]). Computational requirements
can be substantially reduced by removing all empty sets
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in the polyhedral cover as well as removing any redundant
inequalities describing the non-empty polyhedral sets.
Remark 3: Given a polyhedral cover representation of
the RCI safety set S, the projection problem (22) can be
formulated as a mixed-integer quadratic program (MIQP)
using the big-M reformulation and can be solved efficiently
using state-of-the-art solvers (e.g., Gurobi or CPLEX).

V. NUMERICAL EXAMPLE

The proposed L-sMPC strategy is demonstrated on a
modified version of the benchmark double integrator problem
from [30]. The system dynamics are of the form (1) with

Flz,u) = [é ﬂ o+ m "

glx,u) =2 (1 — oS (%[xh)) ,

By =[1,0]" and % = 0 (i.e., no measurement error). The
constraints (2) are given by

V=XxU={z|xrec[-10,10°} x {u| -5 <u < 5}.

The stage cost is given by /(z,u) = ||z — z||* + 0.01|lu —
usp||2, where g, and ug, are the desired setpoints for the
state and input, respectively, and the terminal cost is £;(x) =
0. The quadrature rule (12) is used to approximate the
conditional expectations using s = 5 scenarios. The GP
model is trained using UQLab [31] in Matlab using M =5
training samples that were randomly sampled from a uniform
distribution defined over the support ). All necessary set
operations were performed in the MPT3 toolbox [29] and
the L-sMPC optimization problem (14) was solved using
CasADi [32] with IPOPT [33].

Given the trained GP model, we specify the set W(x, )
according to (17) with a = 0.99, implying a 99% confidence
level. Since this set is a nonlinear function of (z,u), we
can apply Algorithm 1 to derive a polyhedral cover outer
approximation to the uncertainty. The results are shown
in Fig. 2 for N, = 20, where each of the rectangles
denotes {w | W™ < @ < WM™} for ¢ = 1,..., Ny
projected onto the [x]; space. We can clearly see that the
quality of the outer approximation depends on the number
of boxes, so that N, should be carefully chosen to tradeoff
between conservativeness and computational cost. Given T
from Algorithm 1, a close approximation to the maximal RCI
set can be computed via the recursion (23) with Xy = X,
which converges in ¢ = 4 steps in this problem. We aim

to track two setpoints: g, = [10,0]" for k = 0,...,10
and g, = [0,0]" for k = 11,...,20. The initial state
2(0) = [~10,—4.5]T is chosen to be at the boundary of

the maximal RCI set S = C.

The closed-loop state trajectories of the proposed L-sMPC
strategy are shown in Fig. 3. For comparison purposes,
results are also shown for a scenario-based MPC strategy
that uses a fixed scenario tree derived from the worst-case
uncertainty bounds. We first note that both control strategies
are able to guarantee robust constraint satisfaction, even
though the initial desired setpoint is unreachable. This is

I I I I 1

-10 -5 0 5 10

Fig. 2: The learned GP model of the uncertainty with 99%
confidence regions shown by red lines. The polytope union
is constructed according to Algorithm 1 and projected onto
the [z]; space.

due to the fact that both controllers use the projection-based
safety certification scheme in (22); however, it is clear that
the proposed L-sMPC strategy outperforms the worst-case
scenario-based MPC, as it is able to push the system closer
to the constraint. This is a direct consequence of the fact
that L-sMPC accounts for the state- and input-dependence of
the uncertainty, such that it is aware that it can more safely
operate the system near the constraint (even without exactly
knowing the unmodeled dynamics). This, in turn, leads to a
larger feasible region, as shown in Fig. 3. Moreover, when
the setpoint is shifted to the origin at time k& = 11, the L-
SMPC strategy is able to steer the system very close to the
origin, as the uncertainty is mostly concentrated near zero,
as opposed to being spread out as in the worst-case scenario-
based MPC.

VI. CONCLUSIONS

This paper presents a learning- and scenario-based MPC
strategy that uses Gaussian process regression to learn a
state- and input-dependent system uncertainty, which en-
ables the online adaptation of the scenario tree. While
incorporation of feedback in the prediction yields improved
control performance, robust constraint satisfaction cannot be
guaranteed by design. Thus, we also present a projection-
based safety certification scheme that ensures the control
inputs keep the system within a robust invariant set designed
to account for the state- and input-dependence of the un-
certainty. Future work will focus on analyzing the stability
properties of the proposed strategy, as well as exploring ways
to further reduce the cost of online scenario tree construction
via sparse forms of the Gaussian process model predictions.
In addition, we will investigate embedded implementation
of the proposed strategy for safety-critical systems with fast
sampling times.
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Fig. 3: Closed-loop state trajectories of the L-sMPC strategy
based on state-dependent uncertainty (blue) and worst-case
scenario-based MPC (sMPC) whereby the scenario tree is
fixed a priori by considering the worst-case uncertainty
bounds (red). The enlargement of the RCI set computed
based on the state-dependent uncertainty description is su-

perimposed. The initial state is marked by o

99 99

, whereas the

setpoints are marked by 7x”.
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