
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334522808

Population Genetics of Host-Associated Microbiomes

Article  in  Current Molecular Biology Reports · September 2019

DOI: 10.1007/s40610-019-00122-y

CITATIONS

5
READS

322

2 authors:

Some of the authors of this publication are also working on these related projects:

Evolution of Chi motifs in Proteobacteria View project

PhD Dissertation View project

Louis-Marie Bobay

University of North Carolina at Greensboro

53 PUBLICATIONS   968 CITATIONS   

SEE PROFILE

Kasie Raymann

University of North Carolina at Greensboro

60 PUBLICATIONS   1,225 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Kasie Raymann on 31 July 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/334522808_Population_Genetics_of_Host-Associated_Microbiomes?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334522808_Population_Genetics_of_Host-Associated_Microbiomes?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Evolution-of-Chi-motifs-in-Proteobacteria?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhD-Dissertation-360?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Louis-Marie-Bobay?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Louis-Marie-Bobay?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_North_Carolina_at_Greensboro?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Louis-Marie-Bobay?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kasie-Raymann?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kasie-Raymann?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_North_Carolina_at_Greensboro?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kasie-Raymann?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kasie-Raymann?enrichId=rgreq-59a675fd580275f8b662f8353c6db13e-XXX&enrichSource=Y292ZXJQYWdlOzMzNDUyMjgwODtBUzo3ODY2OTA2MjA4MDkyMThAMTU2NDU3MzA2ODg0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


POPULATION GENETICS (E LEWALLEN AND C BONIN, SECTION EDITORS)

Population Genetics of Host-Associated Microbiomes

Louis-Marie Bobay1 & Kasie Raymann1

# Springer Nature Switzerland AG 2019

Abstract
Purpose of Review Host-associated microbiomes can play key roles in the health of animals and plants, but fundamental aspects
of the dynamics and evolution of microbial communities are not fully understood.
Recent Findings Several recent studies have sequenced and analyzed the entire diversity of microbial species and strains in
different host-associated microbiomes. These studies analyze the population genetics of host-associated microbes, yet many
questions remain unanswered.
Summary In this review, we describe the key insights that have been gained by recent microbiome population genetics studies
and how they have contributed to our understanding of the fundamental mechanisms that alter the population dynamics of entire
microbial communities. We further discuss the technical limitations of current approaches and how new methods and model
systems would allow for better genetic characterization of host-associated microbiome populations.

Keywords Microbiome . Population genetics . Metagenomics . Prokaryotes . Evolution . Host-associatedmicrobes

Introduction

The study ofmicrobial evolution and ecology has been rapidly
changing in recent years. The continuous improvement of
molecular and sequencing techniques is providing new tools
to address fundamental questions regarding the evolution and
population biology of prokaryotes. In less than two decades,
techniques evolved from gel electrophoresis of several pro-
teins of single microbial isolates to metagenomic sequencing
of natural communities. These technological advancements
have greatly enhanced our understanding of microbial popu-
lations. In particular, it is now possible to analyze the popula-
tion dynamics of whole communities allowing even unculti-
vable species to be analyzed in their natural environment.
Despite these improvements, many fundamental questions re-
garding the dynamics of microbial populations remain to be
answered. Thus far, the application of metagenomic

approaches has been heavily focused on host-associated com-
munities, because these microorganisms can impact the health
and biology of their hosts, including humans. Many studies
have focused on understanding the potential influence of these
microbes on their hosts with only a limited number of studies
concentrating on the dynamics of the microbes themselves.
However, understanding host-associated microbiomes will re-
veal fundamental aspects of the population dynamics of mi-
crobial species. In this review, we summarize and discuss
recent findings on the population genetics of host-associated
microbiomes.

Population Genetics and Prokaryotes

Population genetics has a long history and represents the the-
oretical framework upon which most evolutionary models are
based. However, population genetics paradigms are rooted in
theories that have been developed for sexual organisms, par-
ticularly animals and plants. Therefore, the direct application
of population genetics models to prokaryotes is not always
straightforward.

One common assumption of population genetics models is
that individuals undergo sexual reproduction through meiosis
at each generation. Therefore, modeling the rates of homolo-
gous recombination is comparatively easy for sexual
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organisms. In contrast, understanding the impact of occasional
recombination on prokaryote evolution has proven difficult
[1, 2]. Prokaryotes reproduce by binary fission, a process that
does not involve the exchange of genetic material, and were
originally thought to evolve clonally with the occasional in-
troduction of mutations [1]. In recent years, there has been
growing evidence that many prokaryote species frequently
engage in homologous recombination [3, 4]. However, the
rates at which different prokaryotes engage in recombination
vary and most species appear neither strictly clonal nor strictly
sexual [3]. The lack of a generation-dependent process, like
meiosis, makes recombination more difficult to calibrate in
prokaryotes. Indeed, recombination rates vary over time due
to population structure, selection, and contingency. Therefore,
the overall impact of recombination on prokaryote evolution
is unclear.

Perhaps the most important limitation to the application of
population genetics theory to prokaryotes is the assumption that
neutral evolution represents a null hypothesis of evolution.
Microbial organisms can reach gigantic populations and large
effective population sizes (Ne) enhance the effectiveness of
selection [5, 6]. For these reasons, it has been questioned
whether neutral or nearly neutral models of evolution are per-
tinent to describe microbial evolution [7, 8]. Multiple lines of
evidence suggest that synonymous codon positions are substan-
tially affected by selection due to strong codon usage prefer-
ence and nucleotide composition (i.e., GC content) [9]. One
study has shown that adaptive evolution—rather than drift—
is responsible for the fixation of at least 50% of amino acid
substitutions since the divergence of two closely related spe-
cies: Escherichia coli and Salmonella enterica [10]. These re-
sults and other observations have motivated researchers to
question whether neutrality constitutes a reasonable assumption
for microbes, even at seemingly non-functional positions [8].
For instance, demography inference, which is based on neutral
models of evolution, has been shown to be systematically bi-
ased in bacteria [8]. In summary, the development of more solid
population genetics foundations is needed for the appropriate
investigation of microbial organisms and populations.

The Prokaryotic Species Problem

One obvious problem when analyzing populations is the def-
inition of what constitutes the population under study. Species
definitions aim to delimit cohesive populations that share a
common history and—to some extent—common traits, but
defining species is a challenging and highly debated task in
prokaryotes [4]. Again, this is a lesser concern in sexual or-
ganisms where species are usually defined as groups of ran-
domly mating individuals. Approaches used to define species
in prokaryotes rely on implicit assumptions of their population
dynamics. For instance, the stable ecotype model (SEM)

assumes that each prokaryotic species represents an ecological
species adapted to a specific niche [11]. Under this model, the
genetic cohesion of the species is maintained by periodic se-
lection: a new variant acquires a beneficial mutation and
sweeps through the population (through “genome sweep”).
This process would result in strong recurrent bottlenecks,
where the loss of most variants would maintain the genetic
cohesion of the species. The SEM suffers several shortcom-
ings: (i) it does not easily account for the high variability in
gene content observed in most prokaryotic species (see
“Assessing strain diversity” below) and (ii) the theoretical
framework of the SEM is best suited for clonal populations,
but recent works have pointed out the central role of gene flow
for an increasing number of prokaryotic species [2, 3]. The
SEM constitutes an ecology-centered view of species, which
is extremely difficult—if even possible—to characterize. In
fact, each species might occupy a specific niche, where strains
and other subpopulations could occupy sub-niches [12].
Currently, our lack of knowledge regarding the ecology of
prokaryotes precludes the development of a solid ecology-
centered species definition for prokaryotes.

Several studies suggest that gene flow could constitute a
force that maintains genetic cohesion in prokaryotic species,
creating the possibility to define microbial species in a similar
way as used for sexual organisms, i.e., the biological species
concept (BSC) [2, 13–16]. The BSC not only offers a theoret-
ical framework to classify microbial species but also provides
concrete metrics to assess species borders from genomic data.
Although the BSC cannot be applied to strictly clonal species,
recent evidence suggests that only a minority of prokaryotes
are truly clonal [2]. Despite these advantages, a BSC-anchored
definition of prokaryotic species remains challenging, since
prokaryotes exhibit various degrees of gene flow [3]. Also,
the extent to which microbial species remain “sexually” iso-
lated from one another remains to be precisely identified.
Nevertheless, the accumulation of recent results indicates
growing support for a key role of gene flow in maintaining
cohesive populations in prokaryotes.

In order to circumvent the species definition issue, it has
become standard practice to delimit species borders based on
sequence thresholds. Two strains are usually considered mem-
bers of the same species if their genomes differ by less than
5% sequence identity [17]. This convenient threshold is based
on empirical observations rather than theory and offers a way
to define prokaryotic species under a unique and simple
framework. However, it should be stressed that this practice
potentially introduces important biases when studying popu-
lation dynamics and evolution. Some have argued that uneven
evolutionary rates across prokaryote lineages do not seem
compatible with the application of a single sequence identity
threshold [18]. Defining species borders without a foundation
of population genetics is problematic when studying prokary-
otic organisms.
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Prokaryotic Population Structure

Analyzing the spatial and temporal dynamics of prokaryotes is
notoriously difficult. One common limitation is the potential
presence of strains that remain hidden at low—or very low
frequency—in a given area, thereby remaining undetected by
most methods. It is nearly impossible to prove that a given
strain is absent from a geographic location due to sampling
and sequencing limitations. As a result, it is challenging to
determine whether the strains of a population have been ac-
quired bymigration or whether they result from the increase in
frequency of a cryptic strain. Additionally, it is difficult to
delimit strict geographical areas and niches for microbes and
the homogeneity of defined areas can always be questioned
[19]. Microbes are often associated with particles; therefore,
even a simple puddle of water could represent a complex
environment structured into thousands of niches. It is possible
to sample a habitat at different depths and at different loca-
tions, but from a microbial perspective, sampling a bacterial
strain in a puddle of water could be equivalent to sampling a
single fish from the entire ocean. Despite the vastness of geo-
graphical areas on Earth, several studies reported that mi-
crobes can be highly cohesive over global ranges [20–22],
suggesting that geography might have limited impact on pop-
ulation structure. Nevertheless, modeling studies have sug-
gested that geographic distribution can be an important force
driving genetic structure in bacteria [23], especially for species
engaging in recombination. Conversely, populations living in
the same location might remain physically isolated due to the
presence of sub-habitats, a process named mosaic sympatry
[4, 19]. Overall, these results give a paradoxical picture of
population structure in microbes, where populations separated
by thousands of kilometers can appear surprisingly similar,
but other population members found in the exact same sample
can be very diverse. Understanding the evolutionary and eco-
logical forces responsible for these patterns remains challeng-
ing, but new methodologies and new study systems can shed
new lights into these questions.

Methods for Evaluating Prokaryotic Strain
Diversity in Microbiomes

Although the definition of prokaryotic species is questionable
due to the abovementioned reasons, they appear much more
diverse than eukaryotes. Sexual organisms typically differ by
<2% nucleotide divergence [24], whereas prokaryotes often
display higher levels of divergence [25]. However, the most
dramatic variations in prokaryote strain diversity do not come
from sequence divergence but from variations in gene content.
Indeed, different strains comprising the same species typically
only share 50–60% of their genes with other members of the
species (i.e., the core genome) [25]. This implies that different

strains contain diverse sets of genes, and while many of these
genes might actually correspond to mobile elements, a sub-
stantial number of accessory genes appears involved in vari-
ous functions that range from metabolic enzymes to warfare
systems mediating strain competition [26–28]. These obser-
vations highlight that different strains belonging to the same
species can display diverse metabolisms; therefore, it is im-
portant to characterize strain diversity in order to understand
prokaryotic population dynamics and their impact on their
host or their environment.

The methods and tools used to characterize prokaryotic
populations have been rapidly evolving. Originally, strains
were characterized with molecular markers (multilocus en-
zyme electrophoresis (MLEE) and multilocus strain typing
(MLST)), which consists of characterizing the sequence of a
handful of protein coding in individual isolates [29, 30].
Profiles or sequences are then used to classify strains into
sequence types (STs). These approaches allow for the charac-
terization of strains based on several housekeeping genes that
are part of the core genome but do not provide information
regarding the diversity of accessory genes that can vary dras-
tically across strains. Since the cost of sequencing has de-
creased, these techniques are less frequently used and whole
genome sequencing (WGS) has started to replace these prac-
tices. WGS provides a more accurate description of strain
diversity and this approach is now used routinely to charac-
terize entire genomes. The only limitation of WGS is that it
requires isolation and cultivation of each strain. Cultivation
can be circumvented by single-cell sequencing, but this meth-
od also has limitations: single-cell sequencing often results in
contaminated and incomplete genome assemblies [31].

Metagenomic approaches allow for the sequencing of en-
tire communities in their natural environment. This opens the
possibility to assess populations of prokaryotic species that
cannot be cultivated in the laboratory. The most popular ap-
plication of metagenomics consists of 16S rRNA amplicon
sequencing. Because this gene is universal across prokaryotes
and has a slow evolution rate, a single pair of primers can be
used to assess virtually all prokaryotic diversity in a sample.
Unfortunately, the slow rate of evolution of 16S rRNA pre-
vents analysis of strain-level diversity within natural popula-
tions. As a result, this method has provided little insight on the
population genetics of prokaryotes. Shotgun metagenomics,
on the other hand, consists of sequencing all the genomes in a
given sample. This approach is more expensive because it
requires deep coverage to capture all genomes but has the
potential to capture strain diversity in a community.
Recently, much effort has been dedicated to the development
of algorithms that can reconstruct strain genotypes from the
large bulk of reads produced by metagenomic sequencing
[32•, 33, 34, 35••, 36, 37, 33–]. Specificities of these tools
are detailed in Table 1. Most methods require a database of
reference genomes to identify variants, which are typically
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assigned to the same genotype when found at the same fre-
quency. As a result, most of current methods perform better
when analyzing a large number of samples with high genome
coverage. The recent development of algorithms capable of
reconstructing entire strain genotypes from metagenomic data
has led to key insights regarding the population dynamic of
host-associated microbiomes.

Population Genetics of the Human Gut
Microbiome

Many population genetics studies have concentrated on gas-
tric bacterial pathogens of humans, such as Clostridium
difficile [38–41], Vibrio cholerae [42], Helicobacter pylori
[43–46], and E. coli [47–53]. In terms of population genetics
of commensal organisms, in addition to the development of
the methods cited above (Table 1), other recent large-scale
studies have been conducted with the specific goal of studying
the population genetics of the human gut microbiome [54••,
55••, 56••, 57••, 58•, 59, 60•, 61–64]. Consistently, human gut
population genetics studies have shown that individual hosts
are more similar in microbial species and strain compositions
over time than host-to-host comparisons [35, 54••, 55••, 58•,
62–67], suggesting that microbial populations persist within
hosts for at least one year (most longitudinal studies are lim-
ited to one year). Despite the recent increase in strain-level
analyses of human gut microbes, studies examining popula-
tion genetics of microbiomes are limited.

One of the most interesting recent findings is the ob-
servation of within-host adaptation and diversification
(i.e., microevolution) in some gut microbiome species
[54••, 55••, 56••]. Garud et al. [55••] followed the evolu-
tion of 40 prevalent species of the human gut microbiome
using metagenomics and found evidence that gut bacteria
can evolve over short timescales and as well as evidence
for microbiome-wide signatures of adaptive evolution.
Unique to this study, the authors investigated the role of
recombination in the evolution of gut bacterial strains and
demonstrated that recombination and mutations are com-
mon drivers of population dynamics over short time-
scales, but replacement events dominate on multidecade
time-scales [55••]. One major limitation of this study is
that a large amount of data was discarded in an attempt to
reduce false positives: a common practice to ensure that
the inferred variants do not result from sequencing errors.
Discarding bulk data prevents the analysis of low-
frequency variants and hinders the ability to understand
evolutionary events occurring within the population.

Consistent with Garud et al. [55••], Zhao et al. [54••] found
evidence for within-host adaptation of Bacteroides fragilis in
the human gut microbiome using isolate sequencing and
metagenomics. This large-scale and in-depth study consisted

of culturing and sequencing 602 B. fragilis isolates from 30
fecal samples and metagenomic sequencing of 319 fecal sam-
ples (longitudinal samples from seven individuals spanning
two years and single samples for five subjects). In addition,
the authors complemented their analysis by searching for
adaptive mutations in B. fragilis in over 1000 publicly avail-
able metagenomes from multiple geographic locations. Aside
from the finding of rapid evolution of B. fragilis within hosts,
the authors found evidence for parallel evolution in sixteen
genes, several of which are involved in polysaccharide utili-
zation and cell-envelope biosynthesis. Interestingly, one adap-
tive mutation common in their 12 US-derived samples was
found to be frequent only in Western microbiomes [54••].
Taken together, these results suggest that B. fragilis popula-
tions diversify within an individual host to form co-existing
sublineages that acquire beneficial de novo mutations in the
absence of obvious selective pressure (e.g., antibiotics) [54••].
This groundbreaking study was limited to a single species, so
it is unclear if these results can be generalized to all gut com-
mensals. However, the metagenomic study of Garud et al.
[55••] suggests that this phenomenon of rapid adaptive evolu-
tion might occur in many other gut species.

Another study found evidence for within-host microevolu-
tion of commensal E. coli [68••]. Ghalayini et al. [68••] inves-
tigated the evolution ofE. coli in the human gut by sequencing
24 isolates sampled at three different time points within a
single individual over a year. It was predicted that the annual
mutation rate of E. coli strain ED1a is 6.90 × 10−7 [68••],
which is three times higher than what has been found
in vitro during long-term evolution experiments (LTEEs)
[69]. Despite rapid evolution of E. coli within a single host,
the authors did not find evidence for selection, suggesting that
E. coli ED1a evolution is neutral in the gut [68••]. Because
E. coli is predicted to have a small effective population within
human gut microbiomes, genetic drift could have a stronger
influence on the evolution of this species [68••]. This finding
indicates that the population dynamics of different members
of the human gut microbiome can vary greatly from one spe-
cies to another.

Very recently, Poyet et al. isolated and sequenced a very
large collection of > 3500 strains from the human gut
microbiome [56]. Their study demonstrated that many more
gut bacteria can be cultivated in lab conditions than previously
thought. Using longitudinal sampling of the same individuals,
they were able to retrieve more accurate information
concerning the composition of gut microbial communities
and how they evolve within individuals [56]. Some species
appeared to be same stable over time and composed of the
same strain(s), while others experienced strain turnover.
Interestingly, they found multiple drivers of microbiome com-
position: amino acids levels seemed to the be the main factor
driving within host variation, whereas differences among in-
dividuals appeared primarily driven by bile acid levels [56].

Curr Mol Bio Rep
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Limitations of Studying Population Genetics
in Complex Host-Associated Microbial
Communities

Most insights on the population genetics of host-associated
microbiomes have been obtained by shotgun metagenomic
sequencing followed by strain genotype reconstruction.
However, there are several limitations to these approaches.
One major issue is the ability to resolve (or “phase”) the
different reads in order to ascribe alleles and accessory
genes to each strain genotype of the community.
Moreover, these analyses are computationally expensive
and require high coverage to robustly infer genotypes. As
a result, rare variants of the community are overlooked,
and, unless the coverage is extremely deep, only a picture
of the dominant members of the is obtained. Let us assume
a simple hypothetical community composed of two species
A and B found at a 1:100 ratio, and within each of these
hypothetical species, multiple strains co-exist, with some
present at low frequencies. The presence of a rare variant at
1% frequency in the minor species would require a se-
quencing depth of 10,000× of this simple community to
ob t a i n a cove r a g e o f 1× o f t h e r a r e v a r i a n t .
Characterizing the complete genome of all the strains of
each species would therefore require unrealistically deep
sequencing to reconstruct the complete genomes of low
frequency strains and species, especially for complex com-
munities, like the human and mouse gut microbiomes, that
contain hundreds of species. For these reasons, shotgun
metagenomic sequencing only provides a picture of the
most common strains of the most abundant species in the
population and the associated costs usually prevent the
analysis of large numbers of samples. These limitations
raise major concerns about the results of human, or other
complex microbiome, studies. Many cryptic strains are po-
tentially overlooked, and it is possible that the observed
gain or transfer of a strain might in fact be the result of
the rise in frequency of a cryptic strain. These limitations
also apply to the detection of de novo mutations in
metagenomic samples. Determining how much cryptic
strain diversity remains hidden in host-associated
microbiomes and how they contribute to microbiome evo-
lution is an important issue that cannot be easily addressed
with shotgun metagenomic approaches.

In order to characterize low-frequency strains in micro-
bial communities, we [70•] and others [71–73] have recent-
ly used a more targeted approach, which we will hereafter
refer to as metagenomic amplicon strain typing (MAST).
This approach combines MLST and metagenomic ap-
proaches but differs from other metagenomic MLST-like
approaches, such as MetaPhlAn2 [74], metaMLST [34••],
StrainPhlAn [35], mOTUs2 [37], in that it does not use
shotgun metagenomic data but instead consists of ampliconT
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sequencing of variable regions in protein-coding genes spe-
cific to each species. Protein-coding genes present more
variations than the 16S rRNA gene, and this offers a higher
resolution to characterize strain diversity. By deep sequenc-
ing only a few protein coding gene markers, it is possible to
assess strain diversity and capture rare variants (e.g.,
50,000× for each species) [70•]. MAST has two obvious
limitations: (i) it does not provide any information regard-
ing the overall gene content of each strain; (ii) it requires
designing a set of primers for each species, precluding the
analysis of complex communities and species without ref-
erence genomes. For these reasons, MAST is best suited for
following individual species or simple communities.
Despite these limitations, MAST provides a cost-effective
method for uncovering a more accurate picture of strain
dynamics in host-associated microbiomes across many
samples and experimental conditions.

Aside from technical issues (methods and cost), there are
other problems with using complex communities to study

the population genetics of prokaryotes. One key problem is
a lack of reference genomes for all members of the commu-
nity. Despite the recent generation of thousands of refer-
ence genomes from the human gut microbiome, approxi-
mately 20% of the microbiome can still not be mapped to
reference genomes [75]. In some studies, de novo assembly
of entire communities has been conducted [76•], but the
computational cost of these approaches is rather dissuasive
and usually provides incomplete assemblies. Although ge-
nomic sequencing can provide a lot of information, there is
still a need to cultivate organisms to perform controlled
experiments. Over 1000 uncultured organisms were recent-
ly identified in metagenomic datasets of the human gut
microbiome [77]. Lack of cultivated community members
is not only a problem for the human microbiome, but for all
complex microbiome systems and models, like the mouse.
Mammalian models are also costly to maintain and have
long generation times, resulting in a low experimental
tractability.

Fig. 1 Comparison of the most
commonly used model organisms
for microbiome research based on
the eight characteristics desirable
for population genetics studies.
Color gradients represent the
degree to which each model
system fulfills the listed
characteristic, with white
representing the characteristic is
fully present. Created with
BioRender (https://biorender.
com/)

Curr Mol Bio Rep

https://biorender.com/
https://biorender.com/


Model Systems for Microbial Population
Genetics

Here, we argue that there are eight desirable characteristics
that contribute to the usefulness of a model system for study-
ing microbiome population genetics: (1) low complexity; (2)
temporal stability; (3) inter-host conservation (i.e., a set of
species shared across all individuals); (4) host-specialization;
(5) the ability to cultivate all members; (6) the existence of
reference genomes for all members; (7) the experimental trac-
tability of the host organism (ability to manipulate the host
organism, use large sample sizes, and replicate experiments
over short time-scales); and (8) low cost associated with main-
taining and working with the host organism. Two common
mammalian model systems that are used to study the
microbiomes are mice and piglets (Fig. 1 [78–81]). It is argued
that mammalian models are more accurate for studying the
human gut microbiome because of their close relationship
and similarities. For example, many of the same prokaryotic
taxa are somewhat conserved across mammals [81, 82] and
human gut microbes are capable of colonizing mice and pig-
lets [78]. In fact, many human microbiome studies are con-
ducted using axenicmice colonized with humanmicrobes [78,
80, 81]. Although colonizing mice or other mammals with
human microbes might be helpful for understanding how the
microbiome contributes to human health, the population ge-
netics of prokaryotes cannot accurately be studied when these
microbes are not in their natural host environment. In addition,
these models also have very complex natural microbiomes
that have not been well characterized (reference genomes
and cultivated microbes are limited) and, like humans, their
microbiome composition can vary over time and across indi-
viduals [81]. Mice and piglets are comparatively costly to
maintain and manipulate, particularly over the course of lon-
ger experiments. To gain a more detailed understanding of the
population dynamics of host-associated microbiomes, simpler
model systems are needed. Indeed, many fundamental ques-
tions regarding the population genetics of host-associated
microbiomes could be answered by using model organisms
with less complex and more stable communities.

Non-mammalian model systems frequently used to
study host-associated microbes include: zebrafish [83],
fruit flies [84], mosquitoes [85], honey bees [86•], and
nematodes [87] (Fig. 1). All these systems have been uti-
lized due to their tractability and simplicity. However, the
natural microbiome of zebrafish [88], mosquitoes [89], and
nematodes [90] are complex, with many different species
and low conservation across individuals. On the other
hand, honey bees and fruit flies have been reported to pos-
sess less than 10 species of bacteria in their gut, and their
microbiomes have been very well characterized [84, 86•].
Both fruit flies and honey bees are experimentally tractable
and cost effective [84, 86•] , but fl ies lack host-

specialization, temporal stability, and conservation across
individuals [91].

In contrast to fruit files, the honey bee gut microbiome
consists of five core species (found in all bees worldwide) that
make up approximately 90% of the total population, their
microbiome is stable over time and across individuals, the
community members are host-specialized (not found in the
environment or in other hosts), all members (even the few
non-core species) can be cultivated and multiple strains of
each species have been sequenced [86•, 92–94]. For these
reasons, the honey bee is a particularly well-suited model
system for microbiome research [86], especially to study
microbiome population genetics [70•]. In fact, we previously
showed that using an MAST approach, we could track strain
dynamics of two of the most dominant core species following
antibiotic exposure [70]. Using this approach, we were able to
provide an accurate picture of the fine-scale dynamics of mi-
crobial communities over time. In addition, several other stud-
ies have looked at strain-level diversity of the bee gut
microbiome using shotgun metagenomics [95, 96••, 97••],
metabolomics [98•], marker gene sequencing [71], and
isolate-based approaches [99–106]. From these studies, an
extensive amount of strain-level diversity has been observed
within each of the five core bee gut species, which present
different functional capabilities [107]. Due to its overall sim-
plicity and stability, the honey bee gut microbiome—as a
whole—is perhaps one of the most accurately understood
host-associated microbiomes. Thus, future studies on popula-
tion genetics of microbiomes could greatly benefit from this
model system.

Conclusions

Recent advances, mostly coming from shotgun metagenomic
sequencing, have contributed to a better understanding of the
population dynamics of host-associated microbiomes. These
works have been mainly directed toward the human and
mouse gut microbiomes. However, using shotgun
metagenomic sequencing in complex systems is far from ideal
when studying fundamental population processes inherent to
microbial communities. We argue that more targeted ap-
proaches, like MAST, and simpler model systems, like the
honey bee, potentially offer best-suited tools to study host-
associated microbiomes in experimental settings.
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