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Abstract

A key challenge in estimating epidemiological parameters for a pandemic such as the

initial COVID-19 outbreak in Wuhan is the discrepancy between the officially reported

number of infections and the true number of infections. A common approach to tackling

the challenge is to use the number of infections exported from the originating city

to infer the true number. This approach can only provide a static estimate of the

epidemiological parameters before city lockdown because there are almost no exported

cases thereafter. We propose a Bayesian estimation method that dynamically estimates

the epidemiological parameters by recovering true numbers of infections from day-to-

day official numbers. To illustrate the use of this method, we provide a comprehensive

retrospection on how the COVID-19 had progressed in Wuhan from January 19 to March

5, 2020. Particularly, we estimate that the outbreak sizes by January 23 and March 5

were 11,239 [95% CI 4,794–22,372] and 124,506 [95% CI 69,526–265,113], respectively.

The effective reproduction number attained its maximum on January 24 (3.42 [95% CI

3.34–3.50]) and became less than 1 from February 7 (0.76 [95% CI 0.65–0.92]). We also

estimate the effects of two major government interventions on the spread of COVID-

19 in Wuhan and affirm the importance and effectiveness of government interventions

(e.g., transportation suspension and large scale hospitalization) for effective mitigation

of COVID-19 community spread.

Keywords: COVID-19, Epidemiological parameter, Government intervention, Bayesian

estimation method

Significance for public health

In fighting global pandemic such as COVID-19, an important early task for understanding the spread

is to closely monitor the infection size and assess the disease epidemiological parameters. The in-

sights gained from the epidemiological parameter estimation enable public health practitioners to

dynamically monitor the temporal spread trend and to quantitatively analyze the effectiveness of new

public health policies. In this paper, we aim to address a key technical challenge potentially arising

from the under-reporting issues in pandemic early periods, and critically re-examine the COVID-19

situation at the initial epicenter Wuhan city as a practically relevant case study. Methodological

development for modeling dynamic evolution involving parameter estimation therefore has impor-

tant public health applications and is expected to have significant impact on modeling practice for

understanding future epidemic events well beyond COVID-19.
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Background

A novel coronavirus has quickly spread across the world since December 20191. To combat

this global public health crisis, an essential early step to contain or slow the outbreak of

COVID-19 (i.e., the disease caused by the novel coronavirus) is to uncover its epidemiological

parameters over time so that we can analyze the effect of different interventions on its spread 2;

methodology progress from this perspective also has important impact and is generally appli-

cable in guiding public health response for future epidemic events beyond COVID-19. Toward

that end, a number of studies have attempted to estimate its epidemiological parameters such

as the number of infected cases and the reproduction number1,3,4,5,6,7,8. A key challenge for

these studies is that the officially reported number of infections (hereafter referred to as the

official number) could be much lower than the true number of infections. In this paper, we use

the early period of the COVID-19 pandemic at the epicenter in China, the city of Wuhan9,

as our main illustrative case study of such challenge. This under-reporting problem could be

attributed to many factors, such as insufficient amount of virus test kits and the shortage of

hospital beds.

In particular, a common approach to tackling the under-reporting problem is to use the

official number of infected cases exported from Wuhan to infer the true number of infec-

tions within Wuhan, assuming that, outside the city, the official number is close to the true

number3,4,6. For example, Wu et al. 4 use the number of cases exported from Wuhan inter-

nationally to infer the true number of infections in Wuhan whereas Cao et al. 3 employ the

official number of cases exported from Wuhan domestically. This approach can only provide a

static estimate of the epidemiological parameters before January 23, 2020, because there are

almost no exported cases from Wuhan after the Wuhan lockdown effective January 23, 2020 10.

However, the epidemiological parameters of the COVID-19 are dynamic, partly because of

various interventions over time. It is therefore imperative to estimate the epidemiological

parameters of the COVID-19 outbreak dynamically and beyond January 23, 2020.

We solve the under-reporting problem from a distinctive perspective. Rather than re-

lying on cases exported from Wuhan, we propose a method to dynamically estimate the

epidemiological parameters of the COVID-19 outbreak in Wuhan over time by transforming

day-do-day official numbers of infections. Specifically, we propose a general Bayesian estima-

tion method that seamlessly integrates a epidemic model characterizing the spread mechanism

of the disease and a salient transformation approach, coupled with prior knowledge on key

parameters of the epidemic model. Our proposed method has the following distinguishing

features compared to existing methods. First, we tackle the under-reporting problem by

proposing a straightforward yet effective transformation approach to adjust for potential dis-

crepancies between official and true numbers to give better overall picture for the scope of

the COVID-19 outbreak, thereby more reliably quantifying its key epidemiological parame-

ters. Second, our approach conveniently incorporates the fast evolving knowledge from new

COVID-19 literature to generate well-justified and more refined parameter estimation results

with uncertainty quantification. Furthermore, the temporal dynamic estimation over time

keeps track of the evolving disease spread in response to interventions and holds the promise

of objectively monitoring and evaluating effectiveness of various containment measures. Our

retrospective analysis uncovers and demonstrates the evolution of the COVID-19 outbreak

in Wuhan from January 19, 2020 to March 5, 2020. In particular, for every day in this pe-

riod, we apply the proposed method to estimate the effective reproduction number as well as

true numbers of infections, such as the cumulative number of infected cases and the number

of actively infected but not quarantined cases. Our proposed method also produces daily

under-reporting factors, which indicate the degree of discrepancies between official and true
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numbers. Finally, using the dynamic epidemiological parameters estimated by our analysis,

we evaluate the effects of two major interventions on the spread of COVID-19 in Wuhan.

Methods

Data

We obtained data about the COVID-19 outbreak in Wuhan from official reports released by

the Chinese Center for Disease Control and Prevention (CCDC) between January 18, 2020

and March 5, 2020. CCDC provides daily cumulative number of infected cases and removed

cases (i.e., recovery and death). Let Co
t denote the cumulative number of infected cases by

day t and Ro
t be the cumulative number of removed cases by day t, both officially released by

CCDC. Assuming that all the officially confirmed infections have been effectively quarantined

(e.g., hospitalized), we have

Qo
t = Co

t −Ro
t , (1)

where Qo
t is the official number of actively infected and quarantined cases by day t.

It is worth noting that daily number of newly infected cases dramatically increased to

13,436 on February 12, 2020 from 1,104 the day before, according to CCDC. This surge was

attributed to the change of government criteria for confirming infections. Before February

12, 2020, only those tested positive by test kits were considered as infected. Starting from

February 12, 2020, an infection was confirmed either based on positive testing result or

through clinical diagnosis using computed tomography (CT) scans. As a result, suspected

infections by CT scans before February 12, 2020 were relabeled as confirmed infections on

February 12, 2020. It is therefore necessary to adjust the number of newly infected cases on

February 12, 2020 (i.e., 13,436) by reallocating this number to days prior to and including

February 12, 2020, proportional to the number of daily suspected cases in these days. Our

analysis uses only publicly available data for secondary data analysis that involves neither

human subjects research nor making data individually identifiable.

Method Overview

We assume that the diffusion of COVID-19 in Wuhan follows an epidemic model whose

underlying time-dependent state variables ~Yt = (St, It, Qt, Rt) are from a dynamic system

with system parameters ΘH = (β, µ, γ). These state variables and system parameters are

summarized in Table 1; their meanings and the epidemic model will be elaborated in the next

subsection. In particular, Qt represents the number of actively infected and quarantined cases

by day t and Rt represents the cumulative number of removed cases by day t.

Ideally, we can obtain data about actual diffusion of COVID-19 over time. That is, ideally,

we can have stochastically realized true values of Qt and Rt for t = 1, 2, 3, · · · , denoted as

Qe
t and Re

t . In general, if the realized true values of all state variables were known, we

could estimate system parameters ΘH using well-developed statistical methods (e.g.,11,12,13

from frequentist perspectives). In reality, we only observe a subset of state variables with

their officially reported numbers Qo
t and Ro

t . Due to the under-reporting problem, these

official numbers, Qo
t and Ro

t , could be much lower than Qe
t and Re

t , respectively. As a result,

directly applying an existing method to Qo
t and Ro

t may not generate or reliably uncover the

epidemiological parameters of COVID-19. To address this issue, we propose transformation

functions that aim to recover Qe
t and Re

t from observed Qo
t and Ro

t with some (unknown)

transformation parameters Θf .
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Table 1: Notation for the SIQR model.

Notation Description

N population size
St number of susceptible cases at day t
It number of actively infected but not quarantined cases by day t
Qt number of actively infected and quarantined cases by day t
Rt cumulative number of removed cases by day t
β adequate contact rate
µ rate at which an infected case gets quarantined
γ rate at which a quarantined case becomes removed

With the aforementioned framework, we need to estimate parameters ΘH and Θf . Instead

of using the frequentest approaches (such as maximum likelihood estimation or MLE), we

develop an Bayesian approach for our problem because of the following considerations. First,

the Bayesian approach allows us to incorporate existing knowledge on COVID-19 to give a

guided estimation of ΘH through well-informed prior selection, while the MLE approach would

have to largely ignore the valuable information from prior literature. Second, the posterior

distribution, given our proposed modeling strategy and prior, has clear interpretation and can

provide straightforward uncertainty quantification. To our knowledge, the MLE approach for

our specified model settings has no well-developed inference theory for the estimators. Third,

from a practical perspective, our Bayesian sampling scheme (described in the subsection

of Parameter Estimation) for the posterior distributions is straightforward to derive and

implement, while the MLE estimator is more computationally involved and difficult to obtain.

For explicit overview summary, we include all the essential components of our Bayesian
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modeling scheme for an epidemic model with transformation functions proposed above in Fig.

1, whose technical details will be described in the following subsections.

Epidemic Model

Recent evidences have shown that non-symptomatic infected cases and infected cases in their

latent period can spread COVID-19 with high efficiency, e.g., Chang et al. 14 . In alignment

with these findings, we adopt a Susceptible-Infective-Quarantined-Removed (SIQR) compart-

mental model to characterize the diffusion of COVID-1915. The susceptible compartment of

the model consists of those who can be infected. The infective compartment is composed of

those who are actively infected but not quarantined, with or without symptoms. Those who

are actively infected and quarantined are in the quarantined compartment. The removed

compartment consists of those who recover or die from the disease. The state variables

of the epidemic model, St, It, Qt, and Rt, are defined in Table 1, and the population size

N = St + It +Qt +Rt
16. The SIQR model is defined using the following ordinary differential

equations (ODE):

dSt

dt
= −β ItSt

N
dIt
dt

= β
ItSt

N
− µIt

dQt

dt
= µIt − γQt

dRt

dt
= γQt

(2)

In these ODEs, β is the adequate contact rate, where adequate contacts refer to contacts

sufficient for transmission17. µ is the rate at which an infected case gets quarantined, and γ

is the rate at which a quarantined case becomes removed. In the SIQR model, the effective

reproduction number R and the cumulative number Mt of infected cases by day t are given

by15,18

R =
β

µ
, (3)

Mt = It +Qt +Rt. (4)

Transformation Functions

Let ∆Qe
t = Qe

t − Qe
t−1 be the true daily increased number of infected and quarantined cases

at day t. Similarly, let ∆Qo
t = Qo

t − Qo
t−1 be the officially reported daily increased number

of infected and quarantined cases at day t, i.e., the official counterpart of ∆Qe
t . Due to

the underreporting problem, ∆Qo
t tends to be smaller than ∆Qe

t . Assuming that the daily

increased number of infected and quarantined cases is underreported in a consistent manner

within a short time window, we model the relationship between ∆Qo
t and ∆Qe

t as

∆Qo
t = a∆Qe

t , (5)

where 0 < a ≤ 1 is the underreporting factor of quarantined cases. Clearly, the greater the

value of a, the closer the official number ∆Qo
t to the true number ∆Qe

t . By (5), we derive Qe
t

as

Qe
t = Qe

1 +
1

a
(Qo

t −Qo
1). (6)
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Let ∆Re
t = Re

t − Re
t−1 denote the true daily increased number of removed cases at day t

and ∆Ro
t = Ro

t −Ro
t−1 be the official counterpart of ∆Re

t . Similarly, we model the relationship

between ∆Ro
t and ∆Re

t in a short time window as

∆Ro
t = b∆Re

t , (7)

where 0 < b ≤ 1 is the underreporting factor of removed cases. By (7), we derive Re
t as

Re
t = Re

1 +
1

b
(Ro

t −Ro
1). (8)

Although both (5) and (7) have seemingly simple formats, they catch the relationships be-

tween true and official numbers well as demonstrated in our empirical analysis. Moreover,

our method is flexible and using other alternative functional forms to model the relationships

between true and official numbers dose not affect the general framework of our method.

Parameter Estimation

Having defined the general framework of the epidemic model with transformation functions,

we next show how to learn its associated parameters, Θ = ΘH ∪ Θf = (β, µ, γ, a, b). Specifi-

cally, we impose a prior distribution P (Θ) on Θ by resorting to existing knowledge on COVID-

19 and obtain the posterior distribution of Θ given the reported discrete trajectory of official

numbers [Qo
t , R

o
t ]
T+1
t=1 , where the short time window is from t = 1 to t = T + 1. Accordingly,

we obtain the unnormalized posterior distribution q(Θ | [Qo
t , R

o
t ]
T+1
t=1 ) as

P (Θ | [Qo
t , R

o
t ]
T+1
t=1 ) ∝ P ([Qo

t , R
o
t ]
T+1
t=2 |Θ, Qo

1, R
o
1)P (Θ) =: q(Θ | [Qo

t , R
o
t ]
T+1
t=1 )

=P ([Qo
t , R

o
t ]
T+1
t=2 |Θ, Qo

1, R
o
1, [Qt, Rt]

T+1
t=1 )P (β)P (µ)P (γ)P (a)P (b),

(9)

where expanding the condition set in the last equality from {Θ, Qo
1, R

o
1} to {Θ, Qo

1, R
o
1, [Qt, Rt]

T+1
t=1 }

adds no new information because given (Qo
1, R

o
1) and Θ, [Qt, Rt]

T+1
t=1 can be deterministically

derived using the SIQR model (with initial state variables explained in the next subsection).

Also, we use independent priors P (Θ) = P (β)P (µ)P (γ)P (a)P (b).

To find appropriate priors, we note from Sun et al. 19 that the median incubation period

of COVID-19 is estimated to be 4.5 days with interquartile range (IQR) 3.0-5.5 days, and

the median delay between symptom onset and seeking care is 2 days with IQR 0-5 days in

mainland China after January 18, 2020, the starting date of our analysis. Therefore the

infectious period of COVID-19 ranges from 3 to 10.5 days. Accordingly, we set parameter µ

to be uniformly distributed over ( 1
10.5

, 1
3
).

In addition, to the best of our knowledge, there is no literature on the duration from

quarantine to removal for COVID-19 infected cases. Therefore, we collect data about 32 death

cases and 22 cured cases in Wuhan from local newspapers. Details of these cases are given

in Supplementary Table 2. Among the death cases, the minimum duration of hospitalization

is 1 day and the maximum is 40 days. The range of hospitalization for cured cases is from

6 to 30 days. For COVID-19 infected cases in Wuhan, the percentage ratios of death and

cure are 5.8% and 94.2%, respectively20. Accordingly, we roughly estimate the duration from

quarantine to removal in the SIQR model to have range from 5.7 to 30.6 days using weighted

averages, and we set parameter γ to be uniformly distributed over ( 1
30.6

, 1
5.7

). Non-informative

flat priors are adopted for the rest parameters.

We further assume that for t = 2, · · · , T + 1, true numbers Qe
t and Re

t follow a Poisson

distributions with means Qt and Rt, respectively. In together with the relation between true
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numbers (Qe
t , R

e
t ) and official numbers (Qo

t , R
o
t ) from (6) and (8), we use

P (Qo
t |Qt, Q

e
1, Q

o
1, a) =

Q
Qo
t−(Qo

1−aQe
1)

a
t exp(−Qt)

Qo
t−(Qo

1−aQe
1)

a
!

, P (Ro
t |Rt, R

e
1, R

o
1, b) =

R
Ro
t−(Ro

1−bQe
1)

b
t exp(−Rt)

Ro
t−(Ro

1−bRe
1)

b
!

.

By the following conditional independence, we compute the unnormalized posterior through

q(Θ | [Qo
t , R

o
t ]
T+1
t=1 ) =

(T+1∏
t=2

P (Qo
t |Qt, Q

e
1, Q

o
1, a)P (Ro

t |Rt, R
e
1, R

o
1, b)

)
P (β)P (µ)P (γ)P (a)P (b),

(10)

where [Qt, Rt]
T+1
t=2 are generated from model (2) given Θ, Qo

1 and Ro
1. Following the Metropo-

lis–Hastings algorithm (e.g., Geyer and Thompson 21), we obtain the estimation of parameters

by employing the Markov chain Monte Carlo (MCMC) sampling from (10). Specifically, sup-

pose Θ(k−1) is the current state of the Markov chain, and let J(Θ |Θ(k−1)) be the jumping

distribution chosen to be independent normals with mean Θ(k−1) and elementwise variance

c2, where c is a scale parameter for rejection rate adjustment. The MCMC sampling proposes

Θ∗ from J(Θ |Θ(k−1)) and computes

r =
q(Θ∗ | [Qo

t , R
o
t ]
T+1
t=1 )

q(Θ(k−1) | [Qo
t , R

o
t ]
T+1
t=1 )

.

The next state is then set to be Θ(k) = Θ∗Z+Θ(k−1)(1−Z), where Z has Bernoulli distribution

with probability parameter min(1, r). If {Θ(l)}l=1,...,K is the MCMC sample obtained after a

“burn-in” period, the posterior mean estimator is approximated as Θ̂ = 1
K

ΣK
l=1Θ

(l).

Dynamic Parameter Estimation Over Time

Since the Chinese government responds with evolving containment and mitigation actions

towards the development of COVID-19, to obtain updated information on the parameters Θ,

we adopt a rolling window approach to estimate Θ for each short time period [t, t+1, ..., t+T ],

where the window size is T days and t = 1, 2, 3, · · · . In this study, we use a 10-day time

window, i.e., T = 10; also the first day with t = 1 in our analysis corresponds to January 18,

2020. For each time period starting at t, we denote Θt = Θ as the parameters of interests.

The posterior P (Θt | [Qo
i , R

o
i ]
t+T
i=t ) is learned using the reported discrete trajectory of official

numbers [Qo
i , R

o
i ]
t+T
i=t in the window of [t, t + 1, ..., t + T ]. While the trajectory of official

numbers [Qo
i , R

o
i ]
t+T
i=t can be observed, we need to set the initial true numbers (Qe

t , R
e
t ).

Besides, noting that to complete our Bayesian estimation scheme, we need to set initial

values for the epidemic model. Correspondingly, for t = 1, we set (Q1, R1) as Q1 = Qe
1 = 1

a1
Qo

1

and R1 = Re
1 = 1

b1
Ro

1, which implies that

I1 = M1 −Q1 −R1, S1 = N −M1

where a1 and b1 are the corresponding under-reporting factors for the time period of [1, 2, ..., T+

1], and M1 represents the true cumulative number of infections by day 1 or January 18, 2020.

Using the number of infected cases exported from Wuhan internationally, Imai et al. 22 esti-

mate that the cumulative number of infections in Wuhan by January 18, 2020 is 4,000 with

a 95% confidence interval [1,700-7,800] in the baseline scenario. Additionally, to account for

2 million people leaving Wuhan due to Wuhan lockdown on January 23, 2020, we set the

population size N to be 11 million (i.e., regular population size in Wuhan23) before January
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23, 2020 and adjust it to 9 million after January 23, 202024. With the above setting and

the observed official numbers [Qo
i , R

o
i ]
T+1
i=1 , we can estimate parameters Θ1 = (β1, µ1, γ1, a1, b1)

and compute [Si, Ii, Qi, Ri]
T+1
i=1 . Subsequently, the computed (S2, I2, Q2, R2) can serve as the

initial values for the second time window [2, 3, ..., T + 2], and we continue this strategy as the

rolling window moves forward. Consequently, the proposed dynamic parameter estimation

procedure is expected to track the trend of the epidemiological parameters of COVID-19 and

dynamically assesses temporally evolving situations.

Results

Outbreak Size in Wuhan

Using our approach detailed in the Method section, we estimated the true cumulative number

of infections in Wuhan by each day for the period between January 19, 2020 and March 5,

2020. The input to our method is the cumulative number of infections in Wuhan by January

18, 2020 estimated in Imai et al. 22 , whose baseline estimate is 4,000 with a 95% confidence

interval [1,700–7,800]. Fig. 2 plots the true cumulative number of infections estimated by

our method in a dotted blue line, in comparison to its respective official number reported by

the government (solid blue line). As shown, the gap between these two curves is significant,

especially at the beginning of the observation period measured by percentage. Such marked

difference is partly attributable to the lack of testing and treatment capacities, especially at

the beginning of the outbreak. In particular, we estimated that the true cumulative numbers

of infections in Wuhan by January 23, 2020 (date of Wuhan lockdown) and March 5, 2020

were 11,239 [95% CI 4,794–22,372] and 124,506 [95% CI 69,526–265,113], respectively. In

comparison, their respective official numbers were 495 and 49,797. We also provide our

estimated true cumulative number of infections in Wuhan by each day in the observation

period (Supplementary Table 1).

Fig. 2 also presents the estimated true number of actively infected and quarantined cases

by each day in the observation period (dotted red line) and its respective official number (solid
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red line). The former is computed by our method, which estimates the actual number of ac-

tively infected cases who are quarantined effectively, whereas the latter typically counts those

actively infected and currently quarantined at hospitals. By March 5, 2020, our estimated

true number of actively infected and quarantined cases was 44,778 [95% CI 24,049–112,697]

whereas its official counterpart was 20,049. The gap between these two curves represents the

number of actively infected people who are effectively quarantined but fail to be included

in the government statistics. Many of these infected people could not be tested or officially

admitted to hospital, but nevertheless conducted effective self-quarantine at home or other

isolated places.

The last curve in the figure shows the estimated true number of actively infected but not

quarantined cases by each day in the observation period (dotted black line). It refers to the

number of actively infected people who are not quarantined at all (e.g., non-symptomatic

infected cases14) or not quarantined effectively (i.e., still being able to infect others). These

infected people were not recorded by government reports either. Hence, we do not have the

official number of actively infected but not quarantined cases. As shown, the estimated true

number of actively infected but not quarantined cases peaked on February 7, 2020 (55,139

[95% CI 24,204–118,273]) and then started to decline. This decline was due to the operation

of a number of new hospitals and a major COVID-19 testing facility25. As a result, many of

those actively infected but not quarantined got tested and hospitalized.

Evolution of the Effective Reproduction Number

Fig. 3 plots the evolution of the effective reproduction number R in Wuhan from January

19, 2020 to February 24, 2020, with the shaded area representing the 95% credible interval.

As discussed in the Method section, R is estimated using a rolling-window approach with

10-day window size. Therefore, R of day t indicates the transmissibility of COVID-19 in

Wuhan over the time window of [t, t + 10]. Three major government measures illustrated in

the figure include Wuhan lockdown effective January 23, 2020, which stopped all inner-city

and inter-city public transportations, vehicle ban effective January 26, 2020, which suspended

all non-essential taxi, ride-hailing operation and private vehicle services, and large scale hos-

pitalization beginning on February 5, 2020, which tested and hospitalized a large number of

infected people due to added testing and treatment capacities. As shown in the figure, R of

January 19, 2020 was 3.11 [95% CI 2.93–3.40]. It then climbed up and attained its maxi-

mum on January 24, 2020, which was 3.42 [95% CI 3.34–3.50]. This initial surge could be

partly attributed to increased gathering and friend visiting during the period of the Chinese

Spring Festival. The effective reproduction number R declined from January 24, 2020. This

could be due to the two government measures that suspended transportation in Wuhan and

subsequently reduced the average contact rate among Wuhan residents. The large scale hos-

pitalization started on February 5 further reduced R and it became less than 1 from February

7, 2020 (0.76 [95% CI 0.65–0.92]).

Under-reporting Factor

A key feature of our method is an attempt to recover true numbers of infections from their

respective official numbers reported by the government. This is done by introducing transfor-

mation functions with under-reporting factors, and calibrating them via a Bayesian estimation

approach, which is discussed in detail in the Method section. Fig. 4 shows the dynamics of

the under-reporting factor a for the period between January 19, 2020 and February 24, 2020.

Note that a is the ratio of the official daily increased number of infected and quarantined cases
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to its respective true number. Like R, a is also estimated using a rolling-window approach

and a of day t denotes the under-reporting ratio over the time window of [t, t+ 10].

Fig. 4 plots a of Wuhan in a solid black line, with the shaded area representing the 95%

credible interval. As shown, a of January 19, 2020 was 0.28 [95% CI 0.14–0.73], indicating

that official daily increased numbers of infected and quarantined cases over the window of

January 19, 2020 to January 29, 2020 were on average 28% of their respective true numbers.

The under-reporting factor of Wuhan gradually increased over time. For example, the under-

reporting ratio over the window of January 29, 2020 to February 8, 2020 was 0.55 [95% CI

0.20–0.99] and that over the window of February 15, 2020 to February 25, 2020 was 0.94 [95%

CI 0.43–0.99]. The evolution of a in Wuhan is in alignment with the reality. Due to insufficient

testing and treatment capacities at the beginning of the observation period, many infected

people were not tested or hospitalized hence not on government statistics. Through the
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addition of testing and treatment facilities, more infected people got tested and hospitalized,

thereby increasing the under-reporting factor. Fig. 4 also presents the under-reporting factor

of Shanghai and Beijing in a solid blue line and a solid green line, respectively. Clearly, all

three cities underreported the actual number of quarantined cases at the beginning. While

Shanghai and Beijing improved the reporting accuracy quickly, Wuhan did not catch up until

the end of period. This result is consistent with the fact that Wuhan experienced explosive

number of COVID-19 infections in contrast to the other two cities. But it did not have

sufficient medical resources and hospital capacity to test and treat all the infected cases.

The discrepancies between true and official numbers of infections in Fig. 4 imply that a

data transformation approach, such as the one proposed in this paper, is necessary before

estimating the epidemiological parameters of the COVID-19 outbreak in Wuhan.

Effects of Interventions

We analyze the effects of two major government interventions on the spread of COVID-19 in

Wuhan: transportation suspension and large scale hospitalization. On January 23, 2020, the

municipal government suspended all public transportation services, including buses, ferries,

and subways. On January 26, 2020, the government further banned taxis, ride-hailing, and

private vehicle operations. These two measures constitute the intervention of transportation

suspension in Wuhan, which essentially shut down the transportations in the city. It is noted

that our analysis here is distinct from the study in Chinazzi et al. 6 : the former analyzes the

effect of transportation suspension in Wuhan on the spread of COVID-19 in the city, while the

latter studies the effect of the transportation restrictions from and to Wuhan on the spread

of COVID-19 nationally and internationally.

To evaluate the effect of transportation suspension, we focused on the period between

January 26, 2020 and February 4, 2020, during which the only major intervention is trans-

portation suspension. Fig. 5 (A) plots the true cumulative number of infected cases estimated

by our method during the period in a solid blue line, with the shaded area representing the

95% credible interval. Note that these numbers reflect the spread of COVID-19 in Wuhan

under the intervention of transportation suspension. To simulate the hypothetical scenario

that this intervention were not imposed, we used the SIQR model parameters estimated by

our method for the window period between January 21, 2020 and January 26, 2020 when

no intervention effect from transportation suspension was involved. We then ran the SIQR

model for the evaluation period, with the estimated infective number on January 26, 2020

as the initial state, and computed the cumulative numbers of infected cases without the in-

tervention. Fig. 5 (A) plots the computed cumulative numbers of infected cases without the

intervention (dotted green line). In particular, by February 4, 2020, in the absence of the

intervention, the number of infections would be expected to climb up to 117,842 [95% CI

55,098–238,212]. Using this number as the benchmark, the number of infections saved by

the intervention during the evaluation period was 33,719, resulting in 29% reduction from

the scenario of no intervention. Wuhan is a metropolitan area with an average of 8 million

passengers using the city’s public and private transportations daily26,27. Shutting down the

transportations reduced the average contact rate among the city residents. As a result, the

adequate contact rate β was decreased28 and the number of infections was reduced. See also

the Method section for the parameter details.

The other intervention is large scale hospitalization started on February 5, 2020. To

investigate the effect of the intervention, we studied the period between February 5, 2020 and

February 14, 2020, within which large scale hospitalization is the only major intervention.

To quantitatively evaluate what would have occurred without the intervention, we used the
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SIQR parameters estimated by our method for the window between January 31, 2020 and

February 5, 2020 to exclude any intervention effect of large scale hospitalization. We then

ran the SIQR model to compute the hypothetical trajectory of the cumulative numbers of

infected cases for the evaluation period, with the estimated number of infections on February

5, 2020 as the initial state. In Fig. 5 (B), the trajectories are plotted in a dotted red line, in

comparison to the estimated true cumulative numbers of infected cases under the intervention

(solid blue line), with the shaded areas representing the 95% credible interval. During the

evaluation period, if the intervention of large scale hospitalization had not been imposed, the

number of infections would be expected to be 207,123 [95% CI 90,436–446,456] by February

14, 2020. With this benchmark number, the number of infections that had been prevented

was 90,072, giving 43% reduction from the scenario of no intervention. The implementation

of this intervention relied on the establishment and operation of two emergency specialty

field hospitals, the Vulcan Mountain Hospital and the Thunder Mountain Hospital, sixteen

temporary makeshift hospitals29, as well as the Fire Eye Lab that enabled massive nucleic acid

detection25. These hospitals in total had roughly 15,000 beds, which significantly increased

the quarantine and treatment capacity of the public health system30. The added testing and

treatment capacities due to the intervention allowed more timely identification and isolation

of infected people, thereby reducing the number of infections.

Discussion

Our study aims to characterize the evolution of the initial COVID-19 outbreak in Wuhan and

reveal the effects of major government interventions on its spread. The underlying challenge

in studying the pandemic dynamics lies in the potential discrepancy between the officially

reported number of infected cases and the actual number of infections, together with the lack

of reliable data sources after the city’s complete lockdown (e.g., some existing work focuses

on static estimation before the lockdown on January 23, 2020 and often relies on exported

case numbers3,4,9) . To address the data discrepancy issue, we employ a straightforward

yet effective data transformation approach under a Bayesian dynamic epidemic modeling

framework, which leads to important implications in understanding the evolution of Wuhan’s

outbreak. First, using prior literature knowledge on COVID-19, we adjust for the reported

data to estimate and gauge the actual outbreak sizes, which is shown to be substantially larger
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than those from official reports particularly in early periods. Second, taking into account the

adjusted numbers, the resulting trajectory for effective reproduction numbers serves as more

accurate reflection of disease spread trends and the temporal changes in response to official

intervention policies. Third, our study results are crucially equipped with under-reporting

factors that, to some extent, reflect the difficulty level in recording the actual infective numbers

and the stress of COVID-19 on medical resources. In particular, by comparison with two other

major cities in China, our results from the under-reporting factors are in alignment with the

reality that Wuhan as the epicenter experienced the longest periods of high stress on health

care system while the numbers outside Wuhan tend to be generally trustworthy at smaller

outbreak scale with better medical preparedness.

Although our study uncovers some convincing approximation on the dynamic progression

patterns of COVID-19 in Wuhan, there remain some limitations. Here we assume that all

recovered patients become totally immune to the novel coronavirus infection. If recovered pa-

tients are still susceptible, an extension from SIQR to SIQRS (that is, Susceptible-Infective-

Quarantined-Removed-Susceptible) may be employed, while the general framework of our

method remains largely applicable. In addition, the removed compartment in our model con-

tains both death and cured cases, which prevents us from estimating the time-varying case

fatality rates. Consequently, our assessment of large scale hospitalization does not reflect its

effectiveness in death toll reduction, although literature has shown that promptly hospital-

izing infected people could reduce the fatality rate for older adults and even for those with

mild symptoms31,32,33,34,35. Future studies may investigate the trajectory of fatality rates by

treating death and cured cases separately.

Conclusions

In summary, based on the proposed general method with under-reporting adjustment, our

findings using the initial COVID-19 cases observed in Wuhan provide a quantitative illustra-

tion that the scale of infection size can be multi-fold higher than officially reported numbers

and partially explains the excessive stress often experienced by frontline medical workers

despite seemingly modest case number increases reported during late January of 2020. This

work thus gives a cautionary tale for drawing immediate public health conclusions solely based

on unadjusted official case numbers that do not necessarily give a complete overall picture

for pandemic situation in outbreak early periods. In addition, by examining the temporal

trajectory of effective reproduction numbers, we can clearly see the gradual control effects

of COVID-19 in Wuhan soon after the implementation of city-wide lockdown and suspen-

sion of all non-essential vehicle operation to reduce the contact rate among Wuhan residents;

the aggressive increase of testing and hospital capacity further brought down the effective

reproduction number rapidly by shortening infectious period of positive carriers and reducing

new cross-infection cases from close family and community contacts. This important case

study by our proposed method affirms the believed importance and effectiveness of imposing

tight non-essential travel restrictions (which may also include, e.g., the shelter-in-place and

stay-at-home orders) early on, as well as swiftly addressing the testing shortage issues and

avoiding hospital overcrowding for effective mitigation of COVID-19 community spread.
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Supplementary Tables

Supplementary Table 1. Estimated true cumulative number of infected cases in

Wuhan. We estimated the true cumulative number of infections in Wuhan or the outbreak

size by each day for the period between January 19, 2020 and March 5, 2020. The input to

our method is the cumulative number of infections in Wuhan by January 18, 2020 estimated

in Imai et al. 1 , whose baseline estimate is 4,000 with a 95% confidence interval [1,700–7,800].

Date
Estimated True Cumulative Number

of Infected Cases

Lower Bound

95% CI

Upper Bound

95% CI

1/19/20 4,932 2,045 9,579

1/20/20 6,120 2,552 11,931

1/21/20 7,510 3,166 14,798

1/22/20 9,151 3,875 18,095

1/23/20 11,239 4,794 22,372

1/24/20 13,921 5,956 28,064

1/25/20 17,394 7,501 35,474

1/26/20 21,665 9,375 44,570

1/27/20 26,785 11,611 55,254

1/28/20 33,034 14,293 69,331

1/29/20 40,244 17,466 85,412

1/30/20 47,671 20,885 101,725

1/31/20 55,146 24,093 117,964

2/1/20 61,674 26,998 132,278

2/2/20 68,939 30,248 148,255

2/3/20 76,279 33,780 164,095

2/4/20 84,122 37,568 180,687

2/5/20 92,158 41,492 197,990

2/6/20 99,676 45,329 213,730

2/7/20 105,347 48,842 225,268

2/8/20 109,658 51,955 233,031

2/9/20 112,622 54,666 238,526

2/10/20 114,270 57,075 241,236

2/11/20 114,900 59,480 241,997

2/12/20 115,723 61,262 243,384

2/13/20 116,636 62,810 244,251

2/14/20 117,050 64,004 245,014

2/15/20 117,862 65,038 245,292

2/16/20 118,302 65,956 245,454

2/17/20 118,920 66,697 245,748

2/18/20 119,135 67,211 245,877

2/19/20 119,299 67,422 246,021

2/20/20 119,571 67,433 246,232

2/21/20 120,098 67,578 246,622

2/22/20 120,787 67,834 247,289

2/23/20 120,953 68,080 248,483

2/24/20 121,651 68,295 249,819

2/25/20 122,481 68,508 251,638

2/26/20 122,784 68,692 253,385
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2/27/20 123,063 68,853 255,063

2/28/20 123,320 68,994 256,674

2/29/20 123,557 69,119 258,221

3/1/20 123,777 69,223 259,708

3/2/20 123,980 69,314 261,141

3/3/20 124,168 69,393 262,523

3/4/20 124,344 69,465 263,851

3/5/20 124,506 69,526 265,113
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Supplementary Table 2. Death and cured COVID-19 cases from Wuhan local

news. This table presents information of death or cured COVID-19 cases that are publicly

available in Wuhan local news reports2,3,4,5,6,7,8. For cases 37-54, the local news report8 only

provide overall descriptive statistics.

Case

Number

Discharge

Status

Hospitalization

Date

Discharge

Date

Days Between

Hospitalization

and Discharge

1 Death 1/27/20 2/9/20 13

2 Death 1/3/20 1/15/20 12

3 Death 1/8/20 1/18/20 10

4 Death 1/13/20 1/19/20 6

5 Death 1/16/20 1/20/20 4

6 Death 1/11/20 1/20/20 9

7 Death 12/11/19 1/20/20 40

8 Death 1/14/20 1/21/20 7

9 Death 12/31/19 1/21/20 21

10 Death 1/18/20 1/22/20 4

11 Death 1/6/20 1/22/20 16

12 Death 1/11/20 1/21/20 10

13 Death 1/18/20 1/22/20 4

14 Death 1/13/20 1/21/20 8

15 Death 1/9/20 1/21/20 12

16 Death 1/13/20 1/21/20 8

17 Death 1/9/20 1/22/20 13

18 Death 1/19/20 1/23/20 4

19 Death 1/18/20 1/24/20 6

20 Death 1/18/20 1/23/20 5

21 Death 1/17/20 1/24/20 7

22 Death 1/19/20 1/24/20 5

23 Death 1/19/20 1/23/20 4

24 Death 1/19/20 1/21/20 2

25 Death 1/18/20 1/24/20 6

26 Death 1/11/20 1/21/20 10

27 Death 1/23/20 1/24/20 1

28 Death 1/16/20 1/23/20 7

29 Death 1/15/20 1/24/20 9

30 Death 1/1/20 1/23/20 22

31 Death 1/12/20 1/23/20 11

32 Death 1/17/20 1/23/20 6

33 Cured 1/21/20 2/4/20 14

34 Cured 2/5/20 2/22/20 17

35 Cured 1/29/20 2/28/20 30

36 Cured 1/19/20 1/30/20 11

37-54 Cured - -

Mean 12

Min 6

Max 18
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