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Abstract: Active fluids consume fuel at the microscopic scale, converting this energy into forces
that can drive macroscopic motions over scales far larger than their microscopic constituents. In some
cases, the mechanisms that give rise to this phenomenon have been well characterized, and can ex-
plain experimentally observed behaviors in both bulk fluids and those confined in simple stationary
geometries. More recently, active fluids have been encapsulated in viscous drops or elastic shells so
as to interact with an outer environment or a deformable boundary. Such systems are not as well un-
derstood. In this work, we examine the behavior of droplets of an active nematic fluid. We study their
linear stability about the isotropic equilibrium over a wide range of parameters, identifying regions in
which di erent modes of instability dominate. Simulations of their full dynamics are used to iden-
tify their nonlinear behavior within each region. When a single mode dominates, the droplets behave
simply: as rotors, swimmers, or extensors. When parameters are tuned so that multiple modes have
nearly the same growth rate, a pantheon of modes appears, including zigzaggers, washing machines,
wanderers, and pulsators.
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1. Introduction

Suspensions of active particles in viscous fluids have been extensively studied and the mechanisms
that give rise to the dramatic instabilities that occur in these fluids have been sought and sometimes
characterized [1-4]. The behavior of these fluids in confined geometries is less well understood than
in bulk, but basic phenomena have been explained, including the generation of vortical flows and edge
currents in suspensions of motile pushers [5-8], the appearance of globally aligned states and tra c¢
jams in dilute suspensions of fore-aft asymmetric swimmers [7], and the transition from roiling to
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stable flows in toroidal and racetrack geometries [9,10]. Such suspensions of microscopic particles that
exert stresses on the surrounding fluid are commonly called “active fluids”. The emergent macroscopic
behavior of these fluids, which depends on the details of those microscopic particles, has been the topic
of intense theoretical and experimental study over the past decade.

Although various active fluid models simulated within drops or membranes have been used as sim-
plified mimics for crawling cells [11, 12], especially in the thin-film geometry [13—17], the basic be-
havior and instabilities of model active fluids confined within deforming geometries has not been fully
categorized. Simulations of droplets containing active gels or liquid crystals have revealed undulatory
instabilities [18], as well as swimming, meandering, and rotational behaviors [19-21], while linear
stability analysis has identified critical activity parameters in certain geometries [22]. The kind of
comprehensive theory required to allow parameter selection and guide experimentation, such as that
developed for rigid squirmers [23-25], is still nascent.

In this work, we examine the behavior of droplets confining semi-dilute suspensions of non-motile
extensile or contractile active particles. This suspension is assumed to be immiscible with an outer
fluid, and confined to two dimensions, a geometry similar to several other previous studies [20,21]. We
characterize the linear stability of such drops near an isotropic steady state to azimuthal perturbations
of the nematic field. For active fluids whose microscopic constituents are extensile dipoles , we show
that the behavior is dominated by a few low wavenumber modes, which correspond to several of
the previously revealed states: an axisymmetric rotating configuration (a rotor), a motile, ballistic
swimming configuration (a swimmer), and a nonmotile ellipsoidal droplet that drives an extensional
flow along its axis of elongation and internal nematic alignment (an extensor). We present a detailed
overview of how parameter changes alter which of these modes (or what mixture of modes) is preferred
by the system. We then present the results of nonlinear simulations, when only one mode is unstable.
Such droplets, initialized with low-wavenumber random perturbations, are robustly attracted to steady
states qualitatively similar to the unstable eigenmodes predicted by the linear theory. When multiple
modes are unstable the behavior of the droplet is more complex, and simulations reveal nontrivial
time dependent trajectories, including previously observed states, such as the zigzagger and washing
machine observed in [20], as well as other states, including wanderers, with behavior reminiscent
of run-and-tumble dynamics, as well as drops with apparently chaotic behavior. We finally examine
contractile fluids, which have subtly di erent linear stablity properties, and give rise to other novel
behaviors, including swimmers with a time-dependent velocity, which we term pulsators.

The model active fluid that we use is derived with clear assumptions and identifiable parameters that
can be related, in principle, to control parameters for several widely used experimental systems, includ-
ing suspensions of tripartite rods [26], or suspensions composed of microtubules, depletent molecules,
and molecular motors [27,28]. These systems are well characterized, with parameters that can be
tuned by adjusting ATP and depletent concentrations [29], or in real time by adjusting the intensity
of incident light [30]. The results presented here provide guidance for constructing experimental sys-
tems constructed of multiple (or many) interacting active droplets, each with a rich set of accessible
behaviors.

This paper is organized as follows. In Section 2 we outline a previously developed coarse-grained
model for a suspension of active nematic particles [20], and provide an appropriate formulation for

For brevity we will refer to active fluids driven by extensile dipoles or contractile dipoles as extensile fluids and contractile fluids,
respectively.
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the problem studied here: an active suspension confined within a droplet. In Section 3, we show that
axisymmetric configurations do not drive exterior flows when the only source of frictional dissipation
is the coupling to the fluid surrounding the droplet. When a bottom drag is added a counter-rotating
boundary layer appears, and an exterior flow is driven, as shown in Appendix A. In Section 4 we
analyze the linear stability of the system to azimuthal perturbations of the dipolar tensor, identifying
in the extensile case three dominant modes of instability corresponding to states that we term rofors,
swimmers, and extensors. In Section 5, we analyze the nonlinear dynamics for parameter sets where
only one of these modes is unstable, and show that the nonlinear behavior is robustly predicted by
the linear theory. We then examine active drops whose parameters yield multiple unstable modes, and
show how these give rise to more complex behaviors, first for extensile fluids, in Section 6, and then for
contractile fluids, in Section 7. Finally in Section 8 we conclude and discuss possible future directions.

2. Formulation

We consider a drop of active fluid immersed in a Newtonian viscous fluid, as illustrated in Figure 1.
The ‘active fluid’ is a suspension of elongated, immotile yet mobile microscopic particles that exert

a< 0, extensile stress

D~ x> 1s
contra

=
p
a>0, ctile stress

Figure 1. A droplet of active fluid. The active fluid is confined to 4, and separated from
a viscous fluid in g by an interface , that supports a constant surface tension. The purple
bars inside the drop indicate the alignment direction of the dipolar field. The microscopic
constituents of the active fluid can generate stresses that are either extensile ( 0) or
contractile ( 0). A sketch of the microscopic flows generated by each kind of particle is
shown on the right. These stresses, along with the forces generated by the deformed interface,
drive a velocity field both inside and outside the droplet, shown in blue. In this sketch the
drop acts as an active swimmer, generating a flow field in the surrounding viscous fluid over
a larger lengthscale, and with a di erent far-field signature, than those flows which would be
independently generated by the microscopic constituents which power the drops activity.

dipolar stresses upon the surrounding fluid. These stresses arise from axisymmetric active extensional
or contractile flows along their axis of elongation; See Figure 1. These active dipoles are confined to
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the domain 4(#) by a deformable boundary ; which supports a surface tension. The number density
of active dipoles at time ¢ with position x and orientation vector p (p  1; along the elongation axis)
is given by (x p 1). Its zeroth, second, and fourth orientational moments, defined respectively by the
following integrals over the surface of the unit p-sphere [31]:

(x 1) ds (xprn D1 dspp xp1 Sxi dSpppp xpon (2.1

N N N

arise naturally in our theory. Here is particle concentration, D is the unnormalized tensor order
parameter, while Q D is the nematic tensor order parameter. For brevity, we will refer to D as the
“dipolar tensor”; this tensor provides a local measure of how aligned the microscopic particles within
the suspension are. In a system made dimensionless as in [32] , the distribution function  satisfies
the Fokker-Planck equation with associated conformational fluxes:

- ) , ®) (2.2a)
X u dr In (2.2b)
p I pp) (u 2D) p dg ,In (2.2¢)

where dr and dy are non-dimensional rotational and translational di usion coe cients. Particle align-
ment via steric interactions are modeled via a phenomenological Maier-Saupe theory [33] which intro-
duces an e ective parameter . The coarse-grained velocity u and pressure field , satisfy the Stokes
equations

u (2.3a)
u O (2.3b)

driven by an extra stress
D S:E 2 (DD S:D) (2.4)

This stress is composed of an active stress, D, that arises due to the extensile or contractile stresses
the microscopic particles exert on the fluid; constraint stress S : E, arising due to particle rigidity; and
steric stress 2 (D D S : D) arising due to particle-particle collisions. The activity parameter is
negative for extensile particles and positive for contractile particles. The constraint and steric stresses
are both proportional to , the e ective volume fraction of the microscopic particles. This parameter
is often taken to be 0, giving the dilute limit, e.g., in [34]. Finally, E ( u u ) 2 is the symmetric
strain-rate tensor. The relationship between the non-dimensional parameters , , , dg, and dr, and
physical parameters describing the properties of the fluid and its embedded microstructure, are given
in detail in [32], and summarized in Tables 1 and 2.

Working with the full kinetic theory is computationally expensive, even in two spatial dimensions
as depends upon three independent variables (two spatial, and one orientational) plus time. Instead,
we find an evolution equation for the second-moment tensor D by integrating pp against Eq (2.2a) over
the unit p-sphere, and making use of the conformational fluxes Eqs (2.2b) and (2.2¢) [32] to find:

D 2E:S 4 DD D:S) dr D 2ddg(D 14 (2.5)

The system is made adimensional by rescaling on the lengthscale b , the characteristic velocity scale u, of active axial flows, and
the stress scale uo b; see Table 1 for a description of parameters.
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Here d is the dimension of the system (d 2 throughout this paper) and D denotes the upper-convected
derivative:

D D u D uD D u (2.6)

with ( w);; x;W;. Itis a feature of this system that if  is initially uniform it will remain so, and we
will make this assumption henceforth (indeed, for nonmotile dipole suspensions, unlike motile ones,
concentration fluctuations are damped [32]). The fact that the fourth moment tensor S arises in this
necessitates a closure assumption. Here we use the Bingham closure [35,36], in which S is replaced
by Sg, defined as:

Sp(x 1) dSpppp X p 1) (2.7)
S

with  the Bingham distribution. This distribution takes the functional form z(x 1) A(x £)eB&x VPP,
where the constant A and the symmetric tensor B are determined by enforcing that the zeroth and
second orientational moments of p(x 7) are and D(x ?), respectively.

Table 1. Physical parameters for the system described in Section 2. See [32] for more details.

« activity level Dy particle rotational di usion
viscosity Dy particle translational di usion
uy particle surface flow speed n particle number density per unit volume
[ particle length 0 surface tension
b  particle diameter r | b particle aspect ratio
o particle-particle interaction potential nbl> e ective volume fraction

Table 2. Non-dimensional parameters for the system described in Section 2. See [32] and
Table 1 for more details.

s activity level
uo [
uoolz steric alignment strength
oo e ective volume fraction
dr WDT translational di usivity
dr zo Dy rotational di usivity
Ca — capillary number

0

The bulk flow and stability properties of such an active suspension are well understood ( [2,32] and
references therein). In this work, we consider the dynamics of immiscible droplets of such an active
fluid in an infinite bath of another viscous, Newtonian fluid as shown in Figure 1. For this enlarged
system, the equations in each domain are:

u u 0 in 4(t) (2.82)
T u 0 u 0 in g0 (2.8b)

where the active domain is denoted by 4(¢f) and the complementary exterior domain is  g(t).
Throughout this paper, we consider the simplest case where there is no viscosity contrast between
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the interior and exterior fluids, except in Figure 3(a) and the associated discussion in Section 4.1.
Continuity of velocity and stress balance at the drop interface gives rise to the boundary conditions

[u] O (2.9a)
[ @l m Ca' n (2.9b)
where Ca uy o is the capillary number with ( the surface tension coe cient, is the local

curvature of ,, and n is the outward unit normal. Some special cases, such as at a planar interface
[22,37] or when the inner and outer fluids are miscible [38]) have been previously analyzed. The
left-hand side of Eq (2.9b) gives the jump in the total stress across ,, and [ ] is given explicitly as:

[l ¢ T 22K, I 2E ), (2.10)

where f . and f , denote exterior and interior (active) limits, respectively. The droplet interface
moves with the local fluid velocity, 1.e., dX df u(X) for X ;. A boundary condition for D can be

derived by requiring that the active particle number inside the drop is conserved (% O (x ndx 0),
leadington D 0.

A uniform, isotropically arranged suspension within a circular droplet, havingu 0 and 12,
is easily verified to be a steady-state solution to the equations in two spatial dimensions ( 14 in

three spatial dimensions). For this steady state, landD TId.

Finally, visualization of the dipolar tensor D can be challenging, especially when the nematic field is
nearly isotropic. It is useful to define a scalar nematic order parameter as 2 1, where is the largest
eigenvalue of D. When the suspension is isotropic, this order parameter is 0, when sharply aligned,
it is 1. The dipolar tensor field D can be e ectively visualized by plotting bars that align with the
direction of maximal alignment (given by the eigenvector corresponding to the maximal eigenvalue),
overlaid by a pseudocolor plot whose colors are determined by the scalar nematic order parameter.

3. Behavior of rotationally symmetric drops

In two dimensions, when D and u are rotationally symmetric, active drops drive no external flow.
This surprising fact can easily be verified. In the interior of the drop, momentum balance reduces to:

1 (2E, r)
[ CE )] -—-—I[rQE, N — 0 (3.1
ror r
which has a solution 2E, , r 2. Because the stress has to be regular at the origin » 0, we
conclude that
2FE, 0 (3.2)

To satisfy far field boundary conditions, the exterior flow must be of the formu (A r)e , with an
associated strain rate tensor E, A r?. Since tangential stresses must balance on , (see Equa-
tion (2.9b)), we conclude that A 0, and thus the exterior flow is quiescent. Note that this does
not imply that the velocity u inside the droplet is zero. This is verified by nonlinear simulations, see
Section 5, where the interior flow fields and dipolar tensor at steady-state are also shown.

In experiments, it has been found that bacteria inside a viscous drop induce a rotational flow both
inside and outside the drop [8]. Although the details di er-in that experiment the underlying activity
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is induced by swimmers, rather than immotile dipoles-we show in Appendix A that friction due to the
vertical confinement can give rise to both a exterior rotational flow and a counter-rotating boundary
layer, as observed in [5, 6, 8].

4. Linear stability of the isotropic state

A two-dimensional circular drop (of unperturbed radius 1) has a no-flow isotropic equilibrium with
u 0, o 12,Dy T2, and (Sp); ik ji i jk ij k& S. Letting the perturbed dipolar
tensor, fourth-moment tensor, velocity field, and interface radius be given by D D, D, S
Ss S,u w w,andr() 1 h( ), respectively, and plugging these perturbed variables
into Eqgs (2.3), (2.4), and (2.5) yields the following linearized evolution equations for the perturbation
variables D and h:

2 JE D 4 D 4dD (@.1)
7
2 a0 eO) (42)

once quadratic and higher order terms in are dropped. Here e, is the unit radial vector and u is slaved
to D:

1 3 u 5 D a 0 4.3)

The terms proportional to in Eq (4.3) arise due to the constraint stresses and di er in constants

from the linearized system in [32] due to the di erent spatial dimensionality of the respective systems.
Since the dipolar tensor must be symmetric and with unit trace, the perturbation D must satisfy ; D;;
0 and D, j D ;i The last term on the right hand side of Eq (4.3) is the only contribution which arises
due to S, and is rewritten in terms of D via the closure-independent identity S:D, D 2. For
the remainder of the discussion of the linearized problem, we will drop the explicit bar notation for the
perturbations.

Together with the associated boundary conditions for u and D, Eqs (4.1)—(4.3) are converted to
an eigenvalue problem by assuming that the perturbations are separable with a time dependence of
e ', where the real part of the eigenvalue corresponds to the growth rate. To proceed we expand the
dipolar tensor D and the streamfunction in Fourier series in the azimuthal angle . For a non-negative
integer m the mth mode of the streamfunction is explicitly denoted as

| m
=(r ) ap(rycosm  b,(r)sinm u, -—  u  — “4.4)
r r

The exterior Stokes flow is also expanded in the Fourier series [39], and the coe cients for each
mode can be expressed in terms of the stream function, its gradient, and D evaluated on the boundary.

When m 0, the velocity field is rotational, and the general solution to the eigenvalue problem
associated with Eqs (4.1)—(4.3) is:

D, D 0 h O 4.5)
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D,  Jy(ror) (4.6)
2 Jo(ror)  Ji(ro) ,
4,
o T3 o 2y .7
1 2
2 - = 4 4,
T ) dr (4.8)

where J; is the ith Bessel function of the first kind. The vanishing tangential velocity at the boundary
of an axisymmetric drop (see 3) is used to derive the general solution of ( in Eq (4.7). Satisfying
the remaining boundary condition that e, D 0 requires that J;(rg)  J3(rp), which has multiple
solutions that can be computed numerically. The smallest such solution r( corresponds to the largest
eigenvalue , which is given explicitly by

4dg 4(1—5) 9 32836dr 4.9)

For general non-zero values of m, the linear system is solved numerically by first extending the r
interval from r [0 1]Jtor [ 1 1] and choosing the Chebyshev collocation points to remove the
singularity at » 0. Boundary conditions are enforced using tau-correction [40] and parity conditions
[41] are used to filter for physically admissible eigenvector eigenvalue pairs.

The choice to expand D and  in Fourier series in the azimuthal angle is not arbitrary: the associated
modes correspond to simple behaviors of the active droplet system. To demonstrate this, we choose
one set of parameters: 4, 02, 01,dr O01,dr O1,and Ca 1. In Figure 2, we show
the flow field constructed from the eigenfunctions for the m 0, m 1, and m 2 modes (panels
(a), (b), and (c), respectively). For the m 0 mode (the rotor), the interior flow is axisymmetric and
the exterior flow is quiescent, consistent with the proof in 3 (as is must be). For the m 1 mode (the
swimmer), the drop translates at a constant velocity, and the interior flow is dipolar in the co-moving
frame. For the m 2 mode (the extensor), the drop is stationary, with an interior quadrupolar flow
corresponding to an exterior extensional flow coaligned with the axis of nematic alignment.

4.1. Extensile systems ( 0)

We first examine the behavior of drops that confine an extensile active fluid (i.e., 0) . Changes
in parameter values can alter not just the linear growth rates of di erent angular modes, but which
of those modes are dominant. To illustrate these e ects, we examine the growth rates as a function
of angular wave number m for several choices of parameters in Figure 3. In panel (a), we alter the
viscosity contrast —, holding all other parameters fixed. The most unstable mode switches fromm 0
when the viscosity contrast is neutral (— 1) to m 1 when the viscosity contrast is lowered to
~ 0005 (that is, the solvent viscosity inside the drop is two hundred times more viscous than the
viscosity of the exterior fluid). We note that in all other results presented throughout this paper, ~ will
be fixed to 1. In panel (b), we alter the capillary number, again holding all other parameters fixed.
When Ca 0 1, the surface tension is high (surface tension is given by Ca ,andthem O 1, and
2 modes have nearly equal growth rates. When the surface tension is decreased so that Ca 1, the
extensor mode (m  2) becomes dominant over the m 0 and m 1 modes. This result is physically

Note that this does not imply that the behavior of the drop is extensile, although it may be: the flow fields shown in Figure 2 all
correspond to a droplet that confines an extensile fluid, yet only the flow field associated with the m 2 mode is extensile.
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-0.5

dm 0 em 1 ®Om 2

Figure 2. Reconstructed eigenfunctions associated with the m O (panels a, d), m 1
(panels b, e), and m 2 (panels c, f) modes for 4, 02, 01,dp O01,dy 01,
and Ca 1. Panels (a—c) show the flow fields, panels (d—f) show the nematic field. White
lines give the orientation of the director field; color scale shows the scalar nematic order
parameter.
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intuitive: the flows created by the extensor mode generate surface deformation (see Figure 2c), thus
this mode is damped relative to the other modes as the surface tension (capillary number) is increased
(decreased).

—

. = 0.005
0.8 for =
[0] [0]
So6! ©
< <
204 3
()] [e)]
02"
° Y

(a) Varying — (b) Varying Ca
Figure 3. E ect of viscosity contrast — and surface tension Ca on the linear growth rate.
Panel (a): Growth rate for —, 1 (circles) and — 0 005 (stars) with 1, 1, 1,
dr 001,dr 005,and Ca 1. Panel (b): Growth rate for Ca 1 (stars) and Ca 01
(circles) with 55, 1, 15dr 011,dp 008,and~ 1.

As we will show in Sections 5 and 6, the mixture of dominant linear modes is predictive of the full
nonlinear behavior of droplets. As this non-dimensional system has seven parameters ( , , ,dr, dg,
Ca, and ), a full parameter sweep, while computationally feasible, 1s impossible to present. Instead,
we focus on understanding how the behavior changes as a function of several important parameters.
In Section 4.1.1, we vary the activity parameter and the Maier-Saupe parameter that governs how
strongly the microstructure aligns itself in the absence of flow, and in Section 4.1.2, we examine the
behavior as the rotational and translational di usion dy and d; are varied.

4.1.1. Distribution of unstable modes in the () plane

Analysis of the behavior of this system is complicated by the fact that for many parameter choices,
multiple linear modes are unstable. This leads to rich behaviors, as we shall see in Section 6, when we
examine the behavior of the full nonlinear system in such mixed-mode regimes, yet it makes extracting
information from the linear theory complicated. The simplest analysis is to examine the dominant
mode, i.e., the linearly unstable mode that is largest.

Figure 4 shows the dominant mode, as a function of and , whend; dr 01 and 1,
for two di erent capillary numbers: Ca 1 in panel (a), and Ca 0 05 in panel (b). The isotropic
homogeneous steady base state is linearly stable in the purple region (at the top left of both panels).
The dash-dotted line shows the critical value of .  4dy that corresponds to the isotropic-nematic
transition of the homogeneous base state in a bulk fluid. The isotropic state is stable when di 4;
a nematically aligned state is stable when dr 4, see [32]. Regions of the phase space where the
growth rate associated with the m 0 (rotor) mode is positive and larger than the growth rate associated
with any other mode are shown in blue, regions defined analogously for the m 1 (swimmer) and

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2849-2881.
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Increasing Activity /* 4
oy

4
4

g i
~Lem

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
¢ ¢

(@ Ca 1 (b)Ca 005

Figure 4. Regions where di erent azimuthal modes dominate in the () plane at two dif-

ferent capillary numbers. The dominant mode number is labeled when any mode is unstable.

No azimuthal mode is unstable in the purple region. For both panels,dr 01,dg 01, and
0 2. Capillary numbers are indicated in the subcaptions.

m 2 (extensor) modes are shown in green and yellow, respectively.

The nematic field associated with the extensor mode is typically well aligned, with a large scalar
order parameter, similar to the nematic state in bulk fluids when dg 4. It is thus unsurprising that
this mode is dominant in the region where is relatively small and is su ciently large to destabi-
lize the isotropic state, i.e., the upper right corner in both panels. In fact, when 0, the stability
boundary in these drops agrees exactly with the bulk theory. As the extensile activity level increases
( becomes more negative), flow-driven alignment provides an additional mechanism for instability,
and the boundary that delineates dominance of the extensor mode shifts left. Continuing to increase
the activity level leads to an instability in the aligned nematic field (see Section 5), typically with the
appearance of a defect which breaks symmetry and leads to the dominance of the m 1 (swimmer)
mode. As activity is further increased, a stable, symmetric defect located at the center of the drop is
most preferential, and the m 0 (rotor) mode becomes dominant. The boundary that separates where
the region where the homogeneous state is stable and those regions where only the m Oandm 1
modes are unstable is una ected by the capillary number, as these modes do not deform the interface.
Instead, the primary a ect of decreasing Ca (increasing the surface tension) is to desensitize the modal
distribution to

Figure 5 shows how the eigenfunctions depend on the level of activity ( ) and nematic parameter
( ) along the thin line with symbols in Figure 4(a) that separates the region where the homogeneous
state is stable and the region where the extensor mode is unstable and dominant. The growth rate is

0 012 at each location marked with a colored circle, all of which lie just inside the region where
the extensor mode is dominant. The eigenfunctions are scaled so that the maximum of D,, is unity for
di erent parameters. The perturbation to D,,, along with its corresponding streamfunction, are shown
in Figure 5(a) and (b), respectively. The magnitude of the streamfunction increases with the activity
level, as expected, since the active stress scales with . As the active flows strengthen, so too does the
corresponding spatial inhomogeneity in the nematic field D,,.

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2849-2881.
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Figure 5. Radial dependence of the eigenfunction for the extensor mode, with 01,
dr 01,dr 01,Ca 1,and 0 2. D,, is shown in panel (a) and the streamfunction
is shown in panel (b).

The analysis presented thus far looks only at which mode is most dominant. While useful, this
doesn’t tell the whole story: information regarding the relative importance of modes when more than
one mode is active is lost. We now introduce a way to visualize the mixture of active modes for a
given set of parameters. We first observe that in Figure 4, there are only four regions: those dominated
by the rotor, swimmer, and extensor modes, and the region where no mode is unstable. In fact, this
is the case for all parameter values that we have examined (but it is not true for contractile systems,
where there are regions in which the m 3 mode is dominant, see 4.2). First, define the growth rate
associated with a given mode to be ry, for k0, 1, and 2, and define 7 to be the maximum over &, i.e..
¥ max rgr| . When r 0, we may then define s,  r, r. We then let s, s;, and s, define
the channels in a red yellow blue colorspace, respectively. Points in the parameter space with only the
rotor (m  0) mode unstable appear purely red, points with only the swimmer (m 1) mode unstable
appear purely yellow, and points with only the extensor (m  2) mode unstable appear purely blue.
Points with mixed active modes are represented by intermediate colors, accordingly. Points where the
homogeneous state is stable are shown in white. A reference triangle is shown in Figure 6 which can
be used to help interperet these visualizations.

In panels (a) and (c) of Figure 7, we show the same plots as in Figure 4, but in the color scheme
as described above and shown in the reference triangle in Figure 6. As is clear now, it is relatively
rare for only one mode to be active, with these “pure” modes clustered near the stability boundary.
As the system moves further away from the region of stability, multiple modes tend to mix, with the
rotor mode predominant when the fluid is highly active and the extensor mode predominant when the
fluid is less active and when the microstructure tends to self-align even in the absence of flow (large ).
When both and are large, all three modes are active (and relatively equally mixed), which results
in complex dynamics, as we shall see in Section 6. Reducing the capillary number (increasing the
surface tension) should damp the extensor mode, and indeed leads to mixtures of active modes which

Indeed, higher-order modes thanthe m 0, m 1, and m 2 modes may also be active, although these never dominate the
dynamics.
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0:0:1

:1:1

1:1:0 0:1:0°

1:

Figure 6. Reference triangle for interpreting the colors in the mixed-mode representation of
linear stability (for example, as in Figure 7). Points on the graph are labeled as sy : 51 © 52,
where 5; denotes the normalized growth rate of the kth angular mode. For example, the point
denoted with 1 : 1 : 0 (in the orange region of the graph) signifies that the Oth and 1st modes
are unstable with the same growth rate, while the 2nd mode is stable.

are more heavily weighted to the rotor and swimmer modes across the phase space. In panel (b), we
show the total growth rate across the first three modes (i.e., Y;_, i) associated with the phase space
shown in panel (a). Near the stability boundary where pure modes arise, growth rates are typically far
lower than in the regions where mixed modes arise.
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(a)Ca=1 (b) Total growth rate ic) Ca = 0.05

Figure 7. Mixture of unstable modes on the (o, {) plane at two different capillary numbers:
Ca = 1 for panel (a), and Ca = 0.05 for panel (c) with dr = 0.1, dg = 0.1, and B = 0.2
in both panels. See Figure 6 to interpet the color scale. Panel (b) shows the total growth
rate (¥7_, ;) over the first three azimuthal modes. The markers on panel (a) correspond to
simulations described in Section 5.

4.1.2. Distribution of dominant unstable modes in (dg, dr) plane

We now examine the effect of both spatial and rotational diffusivity on the stability of the system.
Figure 8 shows how the mixture of unstable modes changes as a function of d; and dy, for three
different values of the activity parameter @, with @ = —1, -2, and —4 in panels (a), (b), and (c)
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Figure 8. Mixture of unstable modes in the (dr dr) plane at three di erent values of the
activity parameter: 1 for panel (a), 2 for panel (b), and 4 for panel (c), with

02, 01,and Ca 1 in all panels. See Figure 6 to interpet the color scale. Note the
increased limits for both the x and y axes in panel (c).

respectively. In all panels, 02, 01, and Ca 1. As expected, increasing the activity
parameter destabilizes the system across the board, but perhaps surprisingly, the mixture of dominant
modes shifts across the (dr dr) plane with little change in its shape or composition. Again, the region
where pure modes dominate lies near the stability boundary, while mixed modes persist away from the
boundary. The rotor mode dominates when translational di usion is small but rotational di usion is
large, and the extensor mode dominates the opposite limit, when translational di usion is large and
rotational di usion is small. The swimmer mode again dominates in only a small region of parameter
space, where the translational and rotational di usivities are similar in scale. When both di usion
coe cients are small, multiple modes of the system are active, with the exact balance dependent on
the ratio of dx to dr.

Results in Figure 8 are for a fixed capillary number Ca 1, with the activity parameter varying
across panels. In Figure 9, we hold the activity parameter constant at 4, and show how the
distribution of unstable modes changes as the surface tension is varied: in panel (a), Ca 10, in panel
(b) Ca 1,andinpanel (c) Ca 0 0I. Recall that the capillary number Ca is inversely proportional to
the surface tension, so that the surface tension in panel (c) is 1000 times higher than the surface tension
in panel (a). In all panels, 02 and 0 1. Since 0 1, the isotropic to nematic transition in the
bulk fluid occurs when dg 4 0025. As the activity level is strong, we see that the extensor state
persists to higher values of d, significantly so when the surface tension is weak. As the surface tension
is increased, the extensor mode is damped, with reduction of the blue hue across much of the plane.
In particular, the portion of the plane where the swimmer mode dominates (or where the swimmer and
extensor mode are well mixed) increases in size. Little change occurs outside of the region where dr
is large and df is small, as the extensor mode is irrelevant regardless of the surface tension.

4.2. Contractile system 0

We now examine the linear stability of the isotropic state in the contractile case where 0. In
figure 10(a) we show the dominant mode over the ( , ) plane for 01,dr 0005,d; 001,
and Ca 0 1. Unlike the extensile system, where only the m 0, 1, and 2 modes dominate over
the ranges of parameters we have investigated, we find that the m 3 mode can be the most unstable
mode in a contractile system, albeit in a relatively small region of the phase space. Figure 10(b) shows
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Figure 9. Mixture of unstable modes in the (dr dr) plane at three di erent values of the
capillary number: Ca 10 for panel (a), Ca 1 for panel (b), and Ca 0 01 for panel (c),
with 4, 02, and 0 1 in all panels. Note that the decreasing capillary number
from panel (a) to panel (c) corresponds to an increase in the surface tension. See Figure 6 to
interpet the color scale.
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Figure 10. Stability of a contractile drop with 01,dr 0005,dr 00l,andCa O1.
Panel (a) shows the dominant modes (as labeled) over the () plane. The small region
where the homogeneous base state is stable is shown in purple. Panel (b) shows the growth
rate as a function of the azimuthal wave number m for two sets of parameters. The black
dash-dotted line has 372 and 1 6, with all other parameters as in panel (a), and
corresponds to the black dot on that plot. Panel (c) shows the e ect of surface tension on the
linear growth rate. Here 1, 01, 02,dr 001,anddr 002. The blue curve
corresponds to Ca 1, the black curve Ca 0 1, and the red curve Ca 0 01. The black
and red curves are nearly co-located, since Ca 01 provides an interface that is already
quite sti  relative to the forces that the active fluid can generate.
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two parameter combinations where the m 3 mode is most unstable; the black dash-dotted curve
corresponds to the black dot in panel (a).

Figure 10(c) shows the e ect of surface tension on the growth rate when 10, 01, 02,
dr 001 and dg 002. As expected, the growth rate for the m 0 and m 1 modes does not
depend on Ca, since they do not perturb the interface. As surface tension increases (Ca decreases from
Ca 1toCa OlandCa 001),the growthrateatm 2 3 4 increases slightly. The direction of
the dependence between the growth rate for modes m 2 and the capillary number is opposite to that
which exists for the extensile system, where the growth rate decreases with decreasing Ca form 2.

5. Nonlinear dynamics of pure modes in an extensile drop

In this section we examine the behavior of the full non-linear system for “pure-mode” extensile
droplets, that is, for droplets with parameter combinations for which the linear theory predicts that
only one azimuthal mode is unstable. Parameter sets are selected from Figure 7(a) by choosing values
of and that lie within regions where one of the modes is clearly dominant (the solidly red, yellow,
and blue regions, for rotor, swimmer, and extensor modes, respectively), and each parameter location
is marked on Figure 7(a). To be precise, we let 02,dg 01,dr O1,and Ca 10, and vary

and : form O, 10, 00, marked witha ;form 1, 45, 0 2, marked with
a ;andform 2, 10, 0 4, marked with a . The linear growth rates predicted for these
sets of parameters are shown in Figure 11. For all simulations, the initial configuration at # 0 is the

growth rate

Figure 11. Predicted linear growth rates for the three “pure mode” droplets. All three
droplets have 02,dp 01,dr 01, and Ca 10, as in Figure 7(a). For the red
curve 575 and 00, and only the m 0 mode is stable. For the solid yellow curve,
45 and 02, and only the m 1 mode is unstable. For the blue curve, 10,
04, and only the m 2 mode is unstable. The dashed yellow curve corresponds to

49, 0 135, with only the m 1 mode unstable.

same small, low wave-number perturbation of the homogeneous state, shown in panel (a) of Figure 12.
The steady-state for each droplet is shown in Figure 12(b—d). The blue arrows indicate the velocity
field. The white bars inside the drop denote the orientation of the dipole field. The contours are for
the scalar order parameter, the di erence between the maximum and minimum of the two eigenvalues
of D. Defined as such, the scalar order parameter is between zero and one. A topological defect
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is associated with scalar order parameter equal (or close) to zero, where there is not a well-defined
dipolar orientation.

The rotor, with only the m 0 mode unstable, shown in panel (b), has nematic and flow fields
qualitatively similar to those predicted by the linear theory for m 0 instabilities (see Figure 2) . As
in the linear eigenmode, the boundary remains perfectly circular, and the exterior fluid is quiescent up
to numerical discretization error (see Section 4). The swimmer, with only the m 1 mode unstable,
shown in panel (c), drives an interior dipolar flow, and indeed translates at a constant velocity through
the fluid. Because the initial data is random, so is the ultimate swimming direction. Note that this
swimmer does not have an interior defect, unlike the eigenfunction shown in Figure 2. This is typical
of swimmers whose m 2 mode is less strongly damped, which tend to be elongated along their
swimming axis. Changing the parameters slightly to 49 and 0 135 yields a swimmer
with subtly di erent behavior. This parameter set is marked on Figure 7(a) with a , and the linear
growth rates are shown as the dashed yellow curve in Figure 11. When swimmers’ m 2 modes are
more strongly damped, as this one is, interior defects are typical, and the swimmer acquires a teardrop
shape, wider along its leading than its trailing edge. Finally, the extensor, with only the m 2 mode
unstable, shown in panel (d), drives a quadrupolar flow in its interior, and a far-field dipolar flow that is
extensile along the drops axis of elongation, as suggested by the linear theory. Boundary deformation is
pronounced, and becoming more so if is increased, although increasing su ciently, while holding
all other parameters fixed, will also excite the m 1 mode.

For each of the pure-mode droplets, the qualitative steady-state behavior is predicted by the lin-
ear theory, even when initial data is random. Although exceptions exist close to the boundaries that
delineate pure-mode regions from regions where multiple modes are active, parameter combinations
that yield only one unstable mode typically act as robust attractors to steady, nonlinear states whose
qualitative behavior is a rotator, swimmer, or extensor, for parameters whose unstable mode is m 0,
m l,andm 2, respectively.

6. Nonlinear dynamics of mixed modes in an extensile drop ( 0)

Although parameter regimes with pure modes do exist, they are somewhat atypical and dominate
the dynamics only near the stability boundary. Farther from this boundary, multiple modes are typically
active, and the dynamics of the nonlinear system are more complicated, with behavior that cannot be
so simply classified as in Section 5. In this section, we catalogue some of the many behaviors that
can emerge when multiple modes are active. We first examine in detail particular combinations of
modes: in Section 6.1, the case where the swimmer and extensor modes dominate; in Section 6.2 the
case where the rotor and extensor modes dominate; and in Section 6.3 the case where the rotor and
swimmer modes dominate.

To further aid in understanding the droplet behavior, we define two additional quantities. The first
of these is the drop deformation number, which characterizes how deformed the boundary is, and is
definedasd (L S) (L §), where L and S are the longest and shortest distances, respectively,
between the drop boundary , and the droplet center , ! X(s)ds. The second is the absolute
Fourier amplitude P,, of the vorticity, where P, m, the diécrete Fourier transform of the interior

Note that the parameters used for the simulations shown in Figure 12 are not the same as those that were used when computing the
eigenfunctions shown in Figure 2. Nevertheless, m 0, m 1,and m 2 modes are typically similar in nature.
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Figure 12. Steady state configuration for three di erent “pure mode” droplets with di erent
parameters but the same random initial data, shown in panel (a). The steady state for the
rotor, swimmer, and extensor droplets are shown in panels (b), (c), and (d), respectively.
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limit of the fluid vorticity evaluated at the boundary. This quantity is used to characterize the internal
behavior of the droplet as a function of time, and for the linear eigenstates (such as those shown in
Figure 2), P,, is nonzero only for the associated eigenmode.

0 t=0

growth rate

0.8
-6 1 = 400) l
-1

0 1 2 3 4 -6 -4 -2 0

m x

(a) Growth rates (b) Center of mass (¢) Swimming mode (d) Extensor mode

Figure 13. Nonlinear dynamics for a drop withthe m 1 and m 2 modes unstable. Here

4, 1, 056,dr O01,dp O16and Ca O01. Panel (a) shows the linear
growth rate as a function of the azimuthal wavenumber m. Panel (b) shows the trajectory of
the drop center from ¢t Otot 400. Panels (c¢) and (d) show the scalar order parameter
(contour plot) and the flow field at di erent points in time. Panel (c) is at ¢+ 250, during
the “swim” phase, and the drop dynamics are dominated by the m 1 mode; panel (d) is
att 290, in an asymmetric extensor mode, with the drop dynamics dominated by m 2
mode.

6.1. Zigzaggers: m landm 2

To examine the nonlinear coupling between multiple unstable modes we simulate the long-time
dynamics of a drop that the linear theory predicts will have only the azimuthal modes m 1 and
m 2 unstable, with parameter values ( dr dp Ca) (4105601016 01)). The linear
growth rates of the associated eigenfunctions are plotted in Figure 13(a) as a function of the azimuthal
wavenumber m. For this set of parameters the growth rates of the two unstable m 1l andm 2
modes are very nearly identical. For initial conditions, we choose the m 1 eigenfunction, seeded as
a small perturbation to the isotropic case. The position of the center of mass of the droplet is shown in
Figure 13(b). As this perturbation grows, the drop begins to swim in a constant direction, much as the
m 1 drop discussed in Section 5. Initially, this motion is in the ¥y direction, dictated by the initial
condition. The scalar order parameter and associated flow field associated with this configuration are
shown in Figure 13(c). As time progresses, the drop slows, and stops, elongating along the axis it
was once swimming along, and appears qualitatively similar to the pure m 2 mode droplet shown in
Figure 12(d), but with pronounced asymmetry; see Figure 13(d). As the droplet continues to elongate,
a defect appears, and the droplet transitions back toward the m 1 state with motion now in the X
direction. This swim-elongate-turn-swim pattern continues indefinitely.

The drop deformation number and center of mass speed are shown in Figure 14(a) and (b), and
show a periodic behavior. The seeded m 1 mode induces a translational mode, with motion that
slows as the m 2 mode begins to dominate. When the drop deformation reaches its peak, the drop
speed reaches a minimum and we observe that the m 2 mode is maximized in the absolute Fourier
amplitude ( P,, ) of the fluid vorticity along the interface, shown in Figure 13(c). As the drop comes to
a nearly full stop, the m 1 mode begins to grow again and the drop moves in the orthogonal direction
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Figure 14. Nonlinear dynamics for a drop withthe m 1 and m 2 modes unstable. Here

4, 1, 056,dr O01,dy O016and Ca O01. Panel (a) shows the drop
deformation number d as a function of time. Panel (b) shows the speed of the drop center of
mass as a function of time. Panel (c) shows a contour plot of P, (absolute Fourier amplitude
of the vorticity along the drop interface).

as shown in Figure 14(c). Initializing the simulation with a small, low-wavenumber perturbation to D
(as in Figure 12(a)), with the resultant direction of the zigzag pattern in a random direction.

Such meandering behavior of an active drop is also reported by Gao & Li [20] (red curve in their
Figure 4(a)), although the underlying mechanisms for such dynamics are not reported. We propose that
this state appears whenthe m 1 andm 2 modes are the only linearly unstable modes (or at least,
are highly dominant among unstable modes), and the meandering behavior is driven by the periodic
transitioning between these two modes.
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Figure 15. Nonlinear dynamics for a wobbling washing machine. Here 24, 02,

0123,dy 005,dg 005,Ca 1 and initial drop radius 1 75. Panel (a): oscillation
of drop deformation that corresponds to the wobbling. Panel (b): the fluid velocity field and
the nematic order parameter. Panel (c): a contour plot of P,, (the absolute Fourier amplitude
of the vorticity along the interface).

6.2. Washing machines: m Oandm 2

Gao and Li also reported a rotating active drop with two topological defects that circle around
each other, inducing a vortical flow inside the drop [20]. These drops do not translate as they rotate
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and deform (wobble), much like an unbalanced washing machine during its spin-cycle, and we will
henceforth refer to these kinds of droplets as washing machines. As the primary behavior of such a
drop is rotational, but with an elliptical boundary deformation and well-aligned structure reminiscent
of extensors, we expect we may find such a mode by locating regions where the m O and m 2
modes are most dominant. No such state exists when the drop is small and the capillary number is
small, as in Figure 8(a). As the capillary number or droplet size increase, such states appear, see for
example purple regions in Figure 9(a). Here we let 24, 02, 0123, dr dg 005,
Ca 1, but with a larger drop radius: » 1 75. At these parameter values, the drop initially attempts
to form a steady rotor, but the central defect splits into two defects that circle around each other, as
shown in Figure 15(b), at ¢+  200. This configuration induces an internal vortical flow, and drives
rotation of the droplet. Although the droplet behavior is primarily rotational, the exterior flow is not
quiescent, as it is for pure rotors. Shortly after the defect splits, the boundary is nearly stable, even as
the defects orbit each other. As time progresses, the droplet undergoes successive cycles of increasing
and decreasing deformation, shown in Figure 15(a). As the droplet elongates, its rotation rate begins
to increase, and then as the rotation further increases, the elongation relaxes, repeating in sequence as
can be seen in the modal decomposition shown in Figure 15(c).
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Figure 16. Nonlinear dynamics foram 2 dominant drop seeded with a rotational (m  0)
mode. Here 55, 1, 15,dr 011,dr 008 and Ca 1. Panel (a) shows
the drop deformation number d as a function of time, and the insert shows the growth rate.
Panel (b) shows the fluid velocity field and the scalar order parameter. Panel (c) is a contour
plot of P,, (absolute Fourier amplitude of the vorticity on the drop interface).

When r 1 and the fluid parameters are 55, 1, 15,dr 011,dr 008 and
Ca 1, many azimuthal modes are unstable, with the m 2 mode the most unstable, as shown in
Figure 16. Simulations with these parameter values that are initialized with random initial data do not
tend towards washing machine behavior. However, when initialized from the m 0 eigenmode, the
washing-machine dynamics develop. In this case the droplet tends towards a steady conformation, with
a boundary deformation that is independent of time, as shown in Figure 16(b). After # 60, the drop
remains in this quasi-steady state, rotating at a constant angular velocity as the internal defects orbit
each other. Althoughthe m 1andm 2 modes both have higher growth rates than the m 0 mode,
the modal decomposition shown in Figure 16(c) clearly shows the m 0 mode dominating, with some
power inthe m 2 (and higher harmonics), but none in the m 1 mode. Although this does state does
not appear robustly at these parameters, it illustrates how in this complex system, certain preparations
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or perturbations may lead to quasi-stable nonlinear dynamics not immediately apparent from analyzing
the linear theory.

6.3. Wanderers: m Qandm 1

Flagellated bacteria, such as Escherichia coli, conduct random walks via a run-and-tumble mecha-
nism [42]: they ‘run’ in relatively straight lines when their flagella are bundled together, and ‘tumble’,
randomly reorienting their bodies and the consequent direction of their next run, when their flagella
rotate separately. Here, we ask if we can mimic these dynamics by having droplets that transition
between the m 0 mode, where they reorient themselves (i.e., ‘tumble’) and the m 1 mode, where
they swim ballistically (i.e., ‘run’).
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Figure 17. Dynamics of an active droplet with coupling between dominantm Oandm 1
modes with ( ) (260201)and(dy dg Ca) (005 005 1). (a) Trajectory of the
droplet center. (b) Drop deformation number d as a function of time. (c) A contour plot of
P,, (absolute Fourier amplitude of the vorticity along ;).

To explore this, we first choose parameters for which the rotor and swimmer modes dominate the
linear behavior: 26, 02, 01,dr 005,dy 005,and Ca 1. The linear growth rates
are shown in Figure 18(c); although the extensor mode is unstable, the rotor and swimmer modes have
substantially larger growth rates. Figure 17(a) shows the trajectory of the droplet center color-coded by
dominant mode — that is, the value of m that maximizes P,, . The drop periodically transitions between
a tumbling behavior, where it primarily rotates with small center-of mass motion, similar to the m 0
rotor, and a running behavior, where it moves nearly ballistically, before again tumbling. The droplet
deformation as a function of time is shown in Figure 17(b). During the tumbling phase, where the
droplet is dominated by the rotor mode, the drop deformation number is small. As the drop transitions
to the swimmer mode, the deformation grows, and the drop briefly becomes dominated by the extensor
mode as it transitions from the run phase back to the tumbling phase. Such alternating dynamics
between running and tumbling shown in Figure 17(a) correlate with the oscillation in deformation
shown in panel (b) and the magnitude of the vorticity spectra along the interface shown in panel (c),
where we clearly observe a particular repetition of dominant modes: 0 1 2 0 1 2, etc.

Since the drop deformation number increases as the drop transitions into the run mode, we hypothe-
size that we can control the relative importance of the run vs. the tumble states by varying the capillary
number. In Figure 18, we show the trajectories from several di erent simulations, at all the same pa-
rameter values as for the simulation shown in Figure 17. Panel (a) shows close-up trajectories for two
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Figure 18. (a) Trajectories of the droplet center color-coded by the dominant mode, at two
capillary numbers. (b) Trajectories of the droplet color-coded by the drop deformation num-
ber d. Filled red circles are the initial positions of droplet center. Panel (c) shows the growth
rates for the rotor im  0), swimmer (m 1), and extensor (im  2) modes, for each di erent
simulation shown in panel (b).

di erent cases, colored by the dominant mode, while panel (b) shows trajectories for a wider set of
cases, colored by the deformation. When the capillary number is smallest, the drop deformation stays
small, runs are short, and the drop never transitions, even briefly, into the extensor mode. As the cap-
illary number is increased, drop deformation also increases, and the drop spends a greater percentage
of time in the run phase before tumbling. Panel (c) shows the growth rates at each di erent capillary
number. The growth rates for the rotor and swimmer modes, shown as dashed horizontal lines, are
una ected by the capillary number since these modes do not deform the surface at linear order. As the
capillary number is increased, the growth rate for the extensor mode increases significantly, by 47%
from Ca 0125to Ca 1, although it stays significantly smaller than either the rotor or swimmer
modes.

The type of motion observed here is not run-and-tumble, but rather a deterministic analog, pro-
ducing a motion closer to the zigzagger (albeit through a di erent mechanism) than the more familiar
chaotic trajectories of run-and-tumble swimmers, in which randomness occurs due both to a non-
deterministic tumbling process as well as variations in the length of runs. One possible source of
randomness could come from thermal fluctuations in the underlying active particles, which could lead
to variations in the tumbling rate (and hence run direction), as well as run length and velocity. The
methods used throughout this paper do not lend themselves to studying this. Instead, we search pa-
rameters near to the run-and-tumble state shown in Figure 17 to find parameter combinations that
yield seemingly chaotic behavior. One such parameter combination is 29, 012, 02,
dr 005,dr 005,and Ca 10. The center of mass trajectory is shown in Figure 19. For this sim-
ulation, the direction of the swimmer following tumbles is no longer deterministic, but the run length
is constant, or nearly so (in contrast to traditional run-and-tumble dynamics).

6.4. Nonlinear behavior over the () plane

Having isolated a rich (but certainly non-exhaustive) set of behaviors that an extensile active drop
can take, we now sweep over the ( , ) plane and classify the qualitative behavior for full nonlinear
simulations across a wide range of parameters. Here 02,dp 005,dr 005, and Ca 10,
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Figure 19. Center of mass trajectory for a wanderer with 29, 012, 02,
dp 005,dy 005,and Ca 1 0. Numerical simulations reveal behavior that is similar to
run-and-tumble dynamics.

and the initial data is a small-amplitude and low wave-number perturbation to the isotropic steady
state. The results of this sweep are shown in Figure 20, where white and red markers indicating the
behavior of the nonlinear simulation are superimposed over the predictions made by the linear theory.
In the lower left corner, where is large and is small, the m 0 mode is predicted to dominate the
modal distribution, and simulations converge to steady state rotors, qualitatively similar to the drop
shown in Figure 12(b). As is increased, m 1 modes mix with the m 0 modes, and the steady
rotors transition to wanderers (denoted with solid circles), qualitatively similar to the drops explored in
Section 6.3 which have run-and-tumble like dynamics. In the upper right corner, where is small and
is large, the extensional m 2 mode dominates, and simulations converge to steady extensors, denoted
with open ellipses. As the activity level is increased, the droplets instead converge to zigzaggers,
qualitatively similar to the behavior of drops examined in Section 6.1. When the activity is moderate
and is large, all modes mix equally (in the darkest region of the phase space). Here we observe
dynamics that are qualitatively similar to wanderers, but whose behavior appears to be chaotic, rather
than periodic or quasiperiodic, denoted with red squares.

6.5. Design principles for extensile droplets

Combining the results of our linear theory and nonlinear simulations leads to relatively simple set
of design principles for constructing active extensile droplets with a desired qualitative behavior. The
easiest droplets to produce are pure rotors or pure extensors. Pure rotors are found at high activity ( ),
low alignment ( ), where rotational (dg) di usion is large and translational di usion (d7) is low. Pure
extensors are found in the opposite regime: low , high , low dg, and high d7. Swimmer modes are
found when these parameters are all moderate, but care is required to locate parameter regimes that
yield steady ballistic swimmers. Drops with higher surface tension yield larger regions where these
swimmers can be found, while drops with lower surface tension are more dominated the rotor and
extensor modes. Mixed-mode swimmers, whether they are zigzaggers (when rotor and extensor modes
mix) or wanderers (when rotor and swimmer modes mix) are found across much of the phase space,
and parameters which yield specific mixtures can be predicted directly from the linear theory.
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Figure 20. Qualitative behavior of nonlinear simulations over the (a, ) plane. All other
parameters are held fixed at 8 = 0.2, dy = 0.05, dg = 0.05, and Ca = 1.0. The color scale on
the phase diagram shows the mixture of unstable modes, as predicted by the linear theory, see
Figure 6 to interpret the color scale. The white and red markers show the qualitative behavior
of nonlinear simulations at the indicated parameters, see discussion for a full description.

7. Nonlinear dynamics in a contractile drop (a > 0)

In Section 4.2 we analyzed the linear stability of azimuthal perturbations to the homogeneous,
isotropic steady state for contractile drops (@ > 0), and showed that the m = 3 mode can be the
dominant unstable mode. It may be possible that this can occur for extensile systems, although we
have not observed such a case over the parameter ranges that we have explored. The dynamics of such
a droplet, with @ = 4.8, 8 = 0.1, £ = 0.5, dr = 0.01, dg = 0.005 and Ca = 1 are shown in Figure 21.
The growth rates associated with this set of parameters, as a function of azimuthal wavenumber m,
are shown as the blue curve in Figure 10(b); many modes are unstable, with the m = 1, 2, and 3
modes nearly equally mixed and the growth rate associated with the m = 3 mode the largest. The
initial condition for the dipolar tensor is the uniform isotropic state with a small perturbation given by
the m = 3 eigenmode. The drop quickly develops a topological defect at its center where the scalar
order parameter is nearly zero. As time progresses the drop deforms into a three-lobed shape with flow
aligned orthogonal to the dipolar orientation inside each lobe as shown in Figure 21.

In Section 6, we saw that when extensile drops which had multiple unstable modes were seeded
with initial data that was a small perturbation to the isotropic steady state, whether random or given by
an eigenmode that is not the fast growing mode, the drop typically exhibits complex, time-dependent
dynamics due to the nonlinear coupling between the different unstable modes. This is true of contractile
droplets, as well. A novel behavior that we have not observed in an extensile drop is a pulsating
swimmer, or pulsator, which occurs whena = 1, 8 = 0.1, £ = 0.2, dr = 0.01, dr = 0.02 and
Ca = 1. The growth rates for this system are shown as the blue solid curve in Figure 10(c). Only
the m = 2, m = 3, and m = 4 modes are unstable, with the m = 2 and m = 3 modes having by far
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Figure 21. Dynamics of the m 3 mode in a drop filled with a contractile active fluid with

48, 05,dr 001,dg 0005, and Ca 1. Top row shows contours of the scalar
nematic order parameter, plotted over the direction of the dominant eigenvectors; bottom row
shows corresponding flow field, with the drop boundary color-coded by the interior limit of
the vorticity at the interface. The columns progress in time from left to right, with the time
indicated in the subcaption.

the largest growth rates. The initial condition for the dipolar tensor is an isotropic tensor, with a small
perturbation given by the m 4 eigenmode. The contractile drop shape initially evolves towards an
ellipse that corresponds to the most unstable (m  2) mode. In Figure 22(a) we show the spectrum of
the boundary vorticity as a function of time, which is dominated by the m 2 (and other even modes)
froms 50tor 600.
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Figure 22. (a) Fourier amplitude P,, of the vorticity along the drop boundary. (b) Trajectory
of drop center of mass. (c) Speed of drop center of mass.

Att 600, odd modes begin to grow, and thereafter the spectrum alternates periodically in time
between even and odd modes, with significant energy inthe m 1 mode (despite the fact that this mode
is not linearly unstable). As with extensile droplets, the m 1 mode is characterized by translation of
the drop, and indeed the drop begins to swim along the y-axis after the onset of this oscillation. The
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position of the center of mass of the drop is shown in Figure 22(b), and the drop speed is shown in (c).
After translational motion begins, the swimming speed oscillates steadily as a function of time, and the
drop pulses forward as it moves.
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Figure 23. Pulsating dynamics of a contractile drop ( 0). (a) Flow field in the comoving
frame of the drop center at t+ 1345, with the drop boundary color-coded by the vorticity
on ,. (b) Correlation between Fourier amplitudes of vorticity on the surface (dashed curves
for Py, P,, P; as labeled), the center-of-mass speed (solid curve, right axis) and defect
activity (grey regions).

In Figure 23(a), we show the flow field in the co-moving frame of the drop center at# 1345, when
a pair of defects are found inside the drop. The drop boundary is color-coded by the vorticity on the
drop surface. The thin black curve is the drop center trajectory over time, and the red dot denotes the
drop centeratz  1345. The exterior flow is closest to that of a neutral squirmer, rather than a pusher or
puller [43,44]. During the oscillation we also find periodic birth and death of a pair defects (where the
scalar order parameter is nearly zero) as shown in Figure 23(b), where we use grey bars to denote the
time intervals when a pair of defects are found inside the drop. We observe that the defect activity is
nearly anti-correlated with the swimmer m 1 mode, which correlates well with the swimming speed
(solid red curve).

The details of the cyclic dynamics are further illustrated in Figure 24, where we show the contours
of the scalar order parameter over-plotted by the direction of the largest eigenvector of D at six di erent
times as labeled. At¢ 1335 there is no defect inside the drop. At¢ 1336 we observe two defects
are created spontaneously near the boundary in the rear as the drop swims up. As time progresses (up
tor  1355) the two defects move towards the drop center (denoted by the red dot), with the drop
shape elongating more in the vertical direction. During this time the drop speed decreases and the
drop elongation along the propulsion direction is reduced. After # 1355 the two defects move back
towards the drop interface and then disappear at#  1365. Such oscillation continues for the remainder
rof the simulation.
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Figure 24. Birth and death of a pair defects (white triangles) for a contractile active drop
with 1, 01, 02,dr 001,dr 002and Ca 1. Contour plots of the scalar
order parameter are over plotted with arrows of the dominant eigenvectors of D at di erent
times as labeled. Red dots denote the drop center, and triangles denote the defect locations
where the scalar order parameter is nearly zero.

8. Concluding remarks

In this work we closely examine the dynamics of a model active droplet. Using a combination of
linear modeling and nonlinear simulations, we categorize a rich set of behaviors these droplets can
exhibit. At linear order, droplets containing suspensions of immotile (but mobile) active dipoles are
largely dominated by three simple modes: rotors, swimmers, and extensors. Although parameter com-
binations where single modes dominate the dynamics exist, multiple modes can be active. We explore
some of these possibilities, finding states which include wanderers, zigzaggers, washing machines,
and pulsators, a few of which have been previously observed in silico [20]. We show how the often
complex, time-dependent dynamics can be generally predicted from linear theory, and use modal de-
composition of the boundary vorticity to dissect how the coupling of di erent linear modes drives the
droplet dynamics. The model we use has seven physical parameters, and a full exploration of the phase
space is impractical. Instead, we focus on several key parameters, and provide a relatively simple set
of heuristics to aid in finding parameter combinations that lead to particular droplet behaviors.

The physical parameters that govern the dynamics of an active gel of bundled microtubules can be
tuned by adjusting ATP and depletant concentrations [29], and the activity can be altered by adjusting
the intensity of incident light [30]. Our results suggest that if such active fluids are confined in drops,
these known mechanisms for parameter control are su cient to allow the generation of droplets with
multiple di erent behaviors from the same experimental system. Although the details of our analysis
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depend on the active fluid model that we have used, we suspect that the fundamental conclusions do
not: droplets of active fluid will exhibit a multitude of behaviors, and which behavior dominates the
dynamics will be set by tuning the physical parameters that govern the bulk properties of the active
fluid and the interfacial properties.
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Appendix A. Supplementary material on the effect of bottom drag on the axisymmetric case

Here we examine the e ect of bottom drag on the exterior flow generated by an axisymmetric
active droplet. Such a bottom drag may arise due to confinement in one direction (e.g., along the
axis orthogonal to the plane in which the droplet is located). In this case, the resultant flow is well
approximated by a depth-averaged two-dimensional flow in the (x y) plane with a bottom friction
k. This kind of vertical confinement e ect has been previously incorporated in modeling droplets of
bacteria immersed in oil [8].

Outside the active droplet the governing equations are

p U kU O
U 0
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Figure 25. Flow field of an active drop with bottom friction. 2212, 06, 15,

dr 005,anddr 005. (a) u between Stokes flow (kK 0, blue curve) and Brinkman flow
(k 1, black curve with squares) constructed from the linear solution. (b) Illustration of the
counter-rotating boundary layer.

Inside the active droplet, the governing equations are the same (see Section 2) but for the equation that
determines the fluid velocity:

u ku u 0

with  defined as before, see Section 2. In the axisymmetric case, the exterior fluid flow U U (r)e

satisfies the equation

k
PU U U =rU 0

which has the solution U 1K ( k_r), where K is the modified Bessel function of order 1. The
coe cient c¢; needs to be determined by the interface condition at .
Inside the active droplet, the governing equation for u is

20 E)  ku «C )
2Eir u— u
r
When the bottom friction k& # O this equation is not integrable and we cannot proceed using the trick
used in Section 3 to obtain the result in Eq (3.2). Instead, we will proceed as we did for nonzero m in
the main text, discretizing and computing the flow and dipolar fields numerically. The linear equations

foru and D, are

2D, D, 1
0 — 1 = - u ru ru ku
r r 8 r
D, 1 D 4
= L w ( 44D, dr D, = =D,
t 4 r r r2
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The boundary conditions at the drop interface (» 1) are thatu U and

2 E, 2(1 g)E,-, ( ?)Dr 0

As in the main text, we numerically compute the eigenvalues and eigenvectors to the associated
eigenvalue problem. The flow field associated with the leading eigenvector is shown in Figure 25,
when the parameters of the system are k 1, 2212, 06, 15 dr 005,anddr 005.
Panel (a) shows u in black, along with the solution without bottom drag (shown in blue). The linear
solutions have been scaled so that the magnitude of u is unity for both curves. In the absence of
bottom drag the tangential velocity u O at r 1, and the exterior flow is zero. However, when
bottom drag is present the tangential flow changes sign close to the drop boundary, when r is slightly
less than 1. The azimuthal velocity is non-zero and negative (that is, counter-rotating relative to the
azimuthal flow in most of the interior of the droplet) at the interface. Panel (b) shows the velocity field
inside the droplet, with a close-up near the boundary to make clear the thin counter-rotating boundary
layer. Notice that the exterior rotational flow driven by the droplet is counter-rotating relative to the
motion in most of the droplet.
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