
Interfacing photonics with artificial intelligence:
an innovative design strategy for photonic
structures and devices based on artificial neural
networks
YIHAO XU,1 XIANZHE ZHANG,2 YUN FU,2,3 AND YONGMIN LIU1,2,*
1Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
2Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
3Khoury College of Computer Science, Northeastern University, Boston, Massachusetts 02115, USA
*Corresponding author: y.liu@northeastern.edu

Received 15 December 2020; revised 31 January 2021; accepted 3 February 2021; posted 5 February 2021 (Doc. ID 417693);
published 31 March 2021

Over the past decades, photonics has transformed many areas in both fundamental research and practical ap-
plications. In particular, we can manipulate light in a desired and prescribed manner by rationally designed sub-
wavelength structures. However, constructing complex photonic structures and devices is still a time-consuming
process, even for experienced researchers. As a subset of artificial intelligence, artificial neural networks serve as
one potential solution to bypass the complicated design process, enabling us to directly predict the optical re-
sponses of photonic structures or perform the inverse design with high efficiency and accuracy. In this review, we
will introduce several commonly used neural networks and highlight their applications in the design process of
various optical structures and devices, particularly those in recent experimental works. We will also comment on
the future directions to inspire researchers from different disciplines to collectively advance this emerging research
field. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.417693

1. INTRODUCTION

Novel optical devices consisting of elaborately designed struc-
tures have become an extremely dynamic and fruitful research
area because of their capability of manipulating light flow down
to the nanoscale. Thanks to the advanced numerical simulation,
fabrication, and characterization techniques, people are able to
design, fabricate, and demonstrate dielectric and metallic micro-
and nano-structures with sophisticated geometries and arrange-
ments. For instance, metamaterials and metasurface comprising
subwavelength structures, called meta-atoms, can show extraor-
dinary properties beyond those of natural materials [1]. Many
metadevices have been reported that offer enormous opportuni-
ties for technology breakthroughs in a wide range of applications
including light steering [2–5], holography [6–9], imaging
[10–14], sensing [15–17], and polarization control [18–21].

At present, we can handle most of the photonic design prob-
lems by accurately solving Maxwell’s equations using numerical
algorithms such as the finite element method (FEM) and finite-
difference time-domain (FDTD) method. However, those
methods often require plenty of time and computational re-
sources, especially when it comes to the inverse design problem

aiming to retrieve the optimal structure from target optical
responses and functionalities. In the conventional procedure,
we normally start with full-wave simulations of an initial
design based on the empirical knowledge and then adjust the
geometric/material parameters iteratively to approach the cus-
tomer-specific requirements. Such a trial-and-error process is
time consuming, even for most experienced researchers. The
initial design strongly relies on our experience and cognition,
and usually some basic structures are chosen, including split-
ring resonators [22,23], helix [24], cross [25], bowtie [26],
L-shape [2], and H-shape [27,28] structures. Although it is
known that a specific type of structures can produce a certain
optical response (e.g., strong magnetic resonance from split-
ring resonators and chiroptical response from helical struc-
tures), sometimes the well-established knowledge may limit
our aspiration to seek an entirely new design that is suitable
for the same applications or even more complicated ones when
the traditional approach is not applicable.

Artificial neural networks (ANNs) provide a new and power-
ful approach for photonic designs [29–37]. ANNs can build an
implicit relationship between the input (i.e., geometric/
materials parameters) and the output (i.e., optical responses),
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mimicking the nonlinear nerve conduction process in the
human body. With the help of well-trained ANNs, we can by-
pass the complicated and time-consuming design process that
heavily relies on numerical simulations and optimization. The
functions of most ANN models for photonic designs are two-
fold: the forward prediction and inverse design. The forward
prediction network is used to determine the optical responses
from the geometric/material parameters, and it can serve as a
substitute for full-wave simulations. The inverse design net-
work aims to efficiently retrieve the optimal structure from
given optical responses, which is usually more important
and challenging in the design process. One main advantage
of the ANN models is the speed. For example, producing
the spectrum of a meta-atom from a well-trained forward pre-
diction model only takes a few milliseconds, orders of magni-
tude faster than typical full-wave simulations based on FEM or
FDTD [38–40]. In the meantime, the accuracy of the ANN
models is comparable with rigorous simulations. For instance,
the mean squared loss of spectrum prediction is typically on the
order of 10−3 to 10−5 [40,41]. Moreover, ANNs can unlock the
nonintuitive and nonunique relationship between the physical
structure and the optical response, and hence potentially en-
lighten the researchers with an entirely new class of structures.

Solving the photonic design problem by ANNs is a data-
driven approach, which means a large amount of training sets
with both geometric/material parameters and optical responses
are needed. Once the ANN model works well on the training
data set, it can be tested on a test set or real problem. The test
and training data sets should be in the same design framework
but contain completely different data. The general workflow for
a forward prediction network includes four steps. First, a large
number of input structures and output optical responses are
generated from either simulations or experiments. In most
of the published works, the amount of data is on the order
of 104. It is noted that the performance of the neural networks
depends on both the size and quality of data. To improve the
quality of training data, some researchers have applied rule-
based optimization methods in the generation of initial training
data [42] or attempted to progressively increase the dimension
of the training data with the new ones from the trained model
[43]. Then we design the ANNs with a certain network struc-
ture, such as fully connected layers (FCLs)-based neural net-
works or convolutional neural networks (CNNs). Next, the
training data set is fed into the network, and we optimize
the weight and bias for each node. Finally, the well-trained
ANNs can be used to predict the response of other input struc-
tures that are outside the training and test data sets. As for the
inverse design problem, one can simply reverse the input and
output and use a similar network structure. However, for some
problems, it requires complex methods and algorithms.

This review is devoted to the topic of designing photonic
structures and devices with ANNs. We will focus on very recent
works on this topic, especially the experimental demonstra-
tions, after introducing the widely used ANNs. The remaining
part of the review is organized as follows. In Section 2, we will
discuss the basic FCLs and their application in the prediction of
design parameters. Then, in Section 3, we will focus on the
CNNs that are used in the retrieval of much more complicated

structures described by pixelated images. In Section 4, other
useful and efficient hybrid algorithms by combining deep learn-
ing and conventional optimization methods for photonic de-
sign will be discussed. In the last section, we will conclude
the review by discussing the achievements, current challenges,
and outlooks in the future.

2. PHOTONIC DESIGN BY FULLY CONNECTED
NEURAL NETWORK

A. Introduction of FCLs
In the nervous system, the electric signals and information are
transited by neurons. Figure 1(a) is the schematic illustration of
a neuron, in which the main components include the dendrite,
cell body, and axon. The dendrites receive and integrate signals
from other neurons. Once the signal is strong enough, the cell
is activated and then passes the signal to the next neuron
through the axon. In analogy to biological neurons, spiking
neural networks (SNNs) were introduced decades ago [44,45].
In SNNs, not all neurons are activated at each propagation
loop. Only when the action potential, which mimics the mem-
brane potential, reaches a certain value will the neurons trans-
mit information to the next neuron. The FCLs, also called
dense layers, are mathematically simplified structures in com-
parison with the SNNs, in which any neurons in adjacent layers
are connected as shown in Fig. 1(b). The FCLs-based network
consists of an input layer, hidden layers, and an output layer.
Each layer receives the input from the preceding layer and com-
bines the signal with a tensor operation that takes the weights
and biases as learnable parameters. This is a purely linear pro-
cess. The combination of linear calculation of all hidden layers
is still linear, and it is not able to build complex relationships
between the input and output. In this context, a nonlinear
“activation” process is essential for the neurons. Therefore,
the activation function σ�·� should be a nonlinear function
and properly selected so that the ANNs can approximate arbi-
trary functions. The Sigmoid, tanh and ReLU functions plotted
in Fig. 1(c) are three commonly used activation functions. The
Sigmoid and tanh functions map the input into (0,1) range.
When the input is extremely small (or extremely large), the gra-
dient of the two functions vanishes, which is not favorable for
the ANNs. The ReLU is widely used to overcome this issue in
the positive range, and it is not computationally expensive com-
pared to Sigmoid and tanh functions.

The training process of the fully connected neural network
is quite straightforward. The training set contains an input vec-
tor X and an output vector Y (Y can be a vector of complex/
real values for regression problems or vector of discrete integers
as labels for classification problems). The performance of the
model is highly dependent on the quantity and quality of
the training data set. During the training process, the network
first takes the vector X as input and calculates the output Ŷ
through the tensor operation and activation from left to right.
Then a loss function (or cost function) is defined and needs to
be minimized in order to calculate the performance of the
neural network. For instance, we can use mean-squared-error
(MSE) �loss�Y , Ŷ � � �Y − Ŷ �2� for regression problems and
cross-entropy loss �loss�Y , Ŷ � � −Y T · log�Ŷ �� for classifica-
tion problems. The next step, the backpropagation of error,
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is the most critical part of ANNs. In the ANN, there are a series
of learnable parameters to be optimized, i.e., the weight and
bias of each layer. We can then derive the partial derivative of

the loss with respect to each parameter ∂ loss�Y , Ŷ �
∂weight , ∂ loss�Y , Ŷ �

∂ bias . To
calculate those values, we need to apply the chain rule layer by
layer from the end of the ANN to the front. This is why the
process is called “backpropagation.” Finally, all the parameters
are optimized by the stochastic gradient descent method:(

weight 0 � weight − lr · ∂ loss�Y , Ŷ �
∂weight

bias 0 � bias − lr · ∂ loss�Y , Ŷ �∂ bias

:

Here the learning rate lr is a hyperparameter that is usually con-
trolled by the user and is not learnable. The training process is
iterated until the loss is minimized. Different learning rates
would result in different situations: a large learning rate will
cause issues for the model to converge, while a small learning
rate will increase the training time of the model. Therefore,
the general approach is to assign a large learning rate at the
beginning of the training, and after the model is trained
for several epochs, the learning rate can be tuned to a smaller
value.

B. Design Parameterized Structure by FCLs-Based
ANNs
FCLs have been extensively adopted to design optical devices,
especially in the field of metasurface and nanostructure design.
In early 2018, D. Liu et al. introduced, for the first time, a

tandem network architecture for the inverse design problem
[46]. There is one fundamental challenge in training ANNs
for inverse design, arising from the fact that very similar optical
responses may be achieved by different structures. Such non-
unique one-to-many mapping makes the neural network hard
to converge if conflicting instances with almost the same optical
responses but different geometric labels exist in the training
data set. Mathematically, the gradient of the functions to be
approximated by the ANNs is extremely large at this data point.
To tackle this challenge, the authors proposed a network struc-
ture consisting of a pretrained forward model and inversed
design FCLs, which is illustrated in the top panel of Fig. 2(a).
The network structure avoids direct comparison between the
retrieved geometric parameters. Instead, it compares the pre-
dicted spectra of the retrieved structures. Therefore, the predic-
tion of the network will converge to only one structure that can
satisfy the required spectra, solving the one-to-many problem
in the inverse design. The authors used the tandem neural net-
work to design dielectric multilayers composed of SiO2 and
Si3O4. The results are plotted in the bottom panel of Fig. 2(a),
in which the transmission spectra of the retrieved structure
(green dashed line) can well match the desired Gaussian-shaped
spectra (blue solid lines).

Subsequent works have further confirmed the good perfor-
mance of the tandem network architecture. For instance, S. So
et al. used a similar ANN structure to design core-shell struc-
tures (with three layers) that support strong electric and
magnetic dipole resonances [47]. The ANN was built to learn

Fig. 1. (a) Illustration of a biological neuron. (b) FCLs-based neural network, in which all neurons in adjacent layers are connected. (c) Three
widely used activation functions: Sigmoid, tanh, and ReLU.
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the correlation between the extinction spectra and core-shell
nanoparticle designs, including the material information and
shell thicknesses. In Fig. 2(b), the predicted (open circles) ex-
tinction cross sections of the electric dipole (red) and magnetic
dipole (black) of core-shell nanoparticles are compared with
the target responses (solid lines). It is clear that both the elec-
tric dipole and magnetic dipole spectra of the designed core-
shell nanoparticles fit well with the expectations. J. Peurifoy
et al. also studied the inverse design with ANNs for multilay-
ered particles (up to eight layers), with a focus on the scatter-
ing spectra [38]. The FCLs were used in both forward
prediction of scattering cross-section spectra and the inverse
design from the spectra. Using a model trained with 50,000
training data, they can achieve a mean relative error of around
1%. One example is shown in the top panel of Fig. 2(c), in
which the result from the neural network is compared with
numerical nonlinear optimization as well as the desired spec-
tra. The comparison demonstrates that the neural network
model performs better in this design problem. Moreover,
the running time of the ANNs-aided inverse design is

shortened by more than 100 times in comparison with
full-wave simulation as demonstrated in the bottom panel
of Fig. 2(c). This result clearly shows the advantage of
ANNs in terms of efficiency.

Besides the tandem network, other approaches have been
introduced to improve the performance of the FCLs-based neu-
ral network. In 2019, Y. Chen et al. employed an adaptive
batch-normalized (BN) neural network, targeting the smart
and quick design of graphene-based metamaterials as illustrated
in the top panel of Fig. 2(d) [48]. Specifically, a layer using an
adaptive BN algorithm is placed before each hidden layer to
overcome the limitation of BN in small sampling spaces. In
the adaptive BN network, it takes activation hi of each neuron
in a minibatch B, batch normalization parameters γ, δ, and
adaptive parameters α, β as the inputs. The outputs of the sys-
tem are the new activation ĥi for each neuron. The authors
tested their method by deriving the thickness of each Si3O4

layer in the structures. Prediction accuracy of over 95% was
achieved. The bottom panel of Fig. 2(d) plots the optical re-
sponses of two different examples with varied absorbance in

Fig. 2. (a) Top: Schematic of the tandem neural network and SiO2 and Si3O4 multilayers. Bottom: Two examples of target spectra (blue solid
lines) and simulated spectra of retrieved structures (green dashed lines). The target spectra are in a Gaussian shape. (b) Left: Predicted (open circles)
extinction cross section of the electric dipole (red) and magnetic dipole (black) of core-shell nanoparticles. The solid lines are target responses. Right:
Simulated extinction spectra and the corresponding electric field distribution of core-shell nanoparticles. (c) Top: Simulation result and inverse
design prediction of the scattering cross section of core-shell nanoparticles. Bottom: Runtime comparison between the conventional method
and neural network. (d) Top: A multilayer structure composed of Si3N4 and graphene. Bottom: Optical response of the designed nanostructures
(with either low/near-unity absorbance in graphene) under the excitation of s-polarized light. (a) is reproduced from Ref. [46] with permission;
(b) is reproduced from Ref. [47] with permission; (c) is reproduced from Ref. [38] with permission; (d) is reproduced from Ref. [48] with
permission.
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graphene, showing excellent accordance between the target and
design responses.

In parallel, T. Qiu et al. proposed a new method, named
REACTIVE, to conduct the inverse design based on reflection
spectra [39]. The authors applied thismethod to inversely design
a metasurface whose unit cell can be described as a matrix of
8 × 8 as shown in the left panel of Fig. 3(a). The input data sets
are preprocessed by Gaussian smoothing and then transformed
by a discrete cosine transform that can be modeled as

F �u� � c�u�
XN−1

i�0

f �i� cos
��2i � 1�π

2N
u
�
,

c�u� �
� ffiffiffiffiffiffiffiffiffiffi

1∕N
p

, u � 0ffiffiffiffiffiffiffiffiffiffi
2∕N

p
, u ≠ 0

:

In this model, the S-parameters of the desired structure are the
needed output. Once the S-parameters are generated by the
trained deep learning network, the matrix of the designed

Fig. 3. (a) Left: Schematic illustration of the metasurface, the unit cell, and matrix encoding method. Right: Predicted S-parameter and absorp-
tivity with the REACTIVE method. (b) Illustration of the neural network architecture consisting of BaseNet and TransferNet. (c) The trend of
spectrum error when n layers are transferred to the TransferNet and the predicted transmission spectra for two examples. (a) is reproduced from Ref.
[39] with permission; (b) and (c) are reproduced from Ref. [49] with permission.
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metasurface will be automatically generated by REACTIVE. In
Fig. 3(a), the right panel shows the results from REACTIVE,
including S-parameter S11 (i.e., reflection coefficient) and ab-
sorptivity, which perfectly match the design targets.

Due to the data-driven nature of deep learning, the perfor-
mance of a well-trained ANN highly relies on the training set,
and the prediction loss is likely to increase as the inputs deviate
from the training set. Therefore, a challenge in the deep-
learning-aided inverse design lies in extending the capability of
ANNs to an alternated data set that is very different from the
training data. Usually, one needs to generate an entirely
new training set for similar but different physical scenarios.
In this context, reducing the demand for computational data
is an efficient way to accelerate the training of deep learning
models. Y. Qu et al. proposed a transfer learning method,
which is schematically illustrated in Fig. 3(b), to migrate
knowledge under different physical scenarios [49]. The predic-
tion accuracy is significantly improved, even with a much
smaller data set for new tasks. Two sets of ANNs are involved
in this work. The first one, named BaseNet, is trained with
initial data. The second one, called TransferNet, copies the first
n layers from the BaseNet, and the entire system is fine-tuned
simultaneously. The authors first transferred the spectra predic-
tion task from a 10-layer film to an 8-layer film, where the
source and target task were trained with 50,000 and 5000 ex-
amples, respectively. Comparing to direct learning, the result is
good enough since the error drops when n increases as shown in
Fig. 3(c). The TransferNet is applicable for different structures,
ranging from multilayer nanoparticles to multilayer films.
Based on the model, a multitask learning scheme was studied,
which combined the learning for multiple tasks at the same
time. It was shown that the neural network in conjunction with
the transfer learning method can produce more accurate
predictions.

The FCLs have also been utilized in reinforcement learning
[50–53], which is another hot area of machine learning, for the
inverse design problem. Reinforcement learning has
already achieved great performance in robotics, system control,
and game-playing (AlphaGo). Instead of predicting the
optimized geometry, the ANNs in reinforcement learning be-
have as an iterative optimization method. In each step, an ac-
tion to optimize the geometry parameters is predicted. For
instance, the action can be increasing or decreasing several
parameters by a certain value. The advantage of this approach
is that it can be adaptive to specific problems, and it can
provide guidance for conventional trial-and-error optimization
methods.

People have devoted experimental efforts in conjunction
with the development of general models and algorithms using
ANNs. For example, I. Malkiel et al. experimentally demon-
strated that a deep neural network trained with thousands of
synthetic experiments can retrieve subwavelength meta-atoms
from far-field measurements and address the inverse design
problem [54]. In their work, the training of the inverse net-
work to predict the structure based on the transmission spec-
tra served as the first step. The material properties were also
considered additional inputs. The second step was to train the
direct network for forward prediction on top of the first

network as shown in the left panel of Fig. 4(a). A significant
and encouraging improvement in accuracy was noted when
using eight joint layers. Based on the far-field spectra and
the developed neural networks, the authors were able to derive
the geometries of nanostructures. They achieved great
agreement between the desired spectra and simulated spectra
of the fabricated samples as shown in the right panel of
Fig. 4(a).

In addition to spectrum prediction [55,56], the FCLs-based
ANNs have also been used in the inverse design to realize other
functionalities and benefit real-world applications [57–62].
Holographic images, for example, can be optimized by
ANNs to achieve a wide viewing angle and three-dimensional
vectorial field as recently demonstrated by H. Ren et al. [63].
They used a network named multilayer perceptron ANN
(MANN), which was composed of an input layer fed with
an arbitrary three-dimensional (3D) vectorial field, four hidden
layers, and an output layer for the synthesis of a two-
dimensional (2D) vector field. There are 1000 neurons within
each hidden layer. The scheme of this ANN is shown in the top
left panel of Fig. 4(b). The authors showed that an arbitrary 3D
vectorial field can be achieved with a 2D vector field predicted
by the well-trained model. A 2D Dirac comb function was then
applied to sample the desired image. Subsequently, digital
holography, calculated from the desired image, was combined
with the 2D vector field. This process can be visualized in the
right panel of Fig. 4(b). With a split-screen spatial light modu-
lator that independently controls the amplitude and phase
orthogonal circularly polarized light, any desired 2D vector
beam can be generated. As a result, the experimentally mea-
sured image from the hologram can show four different 3D
vectorial fields in different regions as presented in the bottom
left panel of Fig. 4(b). The authors experimentally realized an
ultrawide viewing angle of 94° and high diffraction efficiency of
78%. The demonstrated 3D vectorial holography opens ave-
nues to widespread applications such as holographic display
as well as multidimensional data storage, machine learning
microscopy, and imaging systems.

Another exciting work enabled by ANNs is a self-adaptive
cloak that can respond within milliseconds to ever-changing
incident waves and surrounding environments without human
intervention [64]. A pretrained ANN was adopted to achieve
the function. As schematically illustrated on the left panel of
Fig. 4(c), at the surface of the cloak, a single layer of active
meta-atoms was applied, and the reflection spectrum of each
varactor diode was controlled by DC bias voltage independ-
ently. To achieve the invisibility cloak function, the bias voltage
was determined by the pretrained ANN with the incident wave
characteristics (such as the incident angle, frequency, and reflec-
tion amplitude) as the input. The temporal response of the
cloak was simulated, and an extremely fast transient response
of 16 ms can be observed in the simulation. The authors then
conducted the experiment, where a p-polarized Gaussian beam
illuminated at an angle θ on a chameleon object covered by the
cloak. Two detectors were used to extract the signals from the
background and the incident wave to characterize the cloak.
The right panel of Fig. 4(c) shows the experimental results
at two incident angles (9° and 21°) and two frequencies
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(6.7 and 7.4 GHz). The magnetic field distribution in the case
of a cloaked object is similar to that when only the background
is present, while it is distinctly different from the bare object
case. Differential radar cross-section (RCS) measurement fur-
ther confirmed the performance of the cloak.

3. RETRIEVE COMPLEX STRUCTURES BY
CONVOLUTIONAL NEURAL NETWORKS

A. Introduction of CNNs
The desired designs and structures are oftentimes hard to pa-
rameterize, especially when the structure of interest contains

Fig. 4. (a) Left: Architecture of the proposed neural network for nonlinear layers. Right: Predicted, simulated, and measured transmission spectra
of two gold nanostructures under different polarization conditions. (b) Left: Illustrations of MANN used for reconstruction of 3D vectorial field.
Right: Experimental approach and characterizations of 3D vectorial holography based on a vectorial hologram. (c) Left: Schematic of a deep-
learning-enabled self-adaptive metasurface cloak. Right: Demonstration of the self-adaptive cloak response subject to random backgrounds and
incidence with varied angles and frequencies. (a) is reproduced from Ref. [54] with permission; (b) is reproduced from Ref. [63] with permission;
(c) is reproduced from Ref. [64] with permission.
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many basic shapes [41,65] or is freeform [66,67]. In some
cases, we need to deal with complex optical responses as the
input [68]. Therefore, converting the structure to a 2D or 3D
image is usually a good approach in these studies. Moreover, it
can offer much larger degrees of freedom in the design process.
However, preprocessing is required to handle the image input if
we still want to use the FCLs-based model. Reshaping the im-
age to a one-dimensional vector and applying feature extraction
with linear embeddings, such as principal component analysis
and random projection, are two effective ways to preprocess the
image so that the input is compatible with the FCLs. However,
the performance is usually not satisfactory. The reason is that
these conversions will either break down the correlation of the
nearest pixels in the vertical direction within an individual im-
age or miss part of the information describing the integrality of
the whole image. An extremely large dimension of the input is
another big issue, which will increase the number of connec-
tions between layers quadratically. For conventional parameter
input, the input dimension is usually a few tens or hundreds,
while for a vectorized image, even an image with 64 × 64 pixels
will result in a 4096-dimensional input vector. CNNs are very
suitable to deal with such circumstances. CNNs accept an im-
age input without preprocessing, and then several filters move
along the horizontal and vertical directions of the image to ex-
tract different features. Each filter has a certain weight to per-
form a convolutional operation at each subarea of the image,
that is, the summation of the pointwise multiplication between
the value of the subarea and the weight of the filter.

To explain the function of CNNs in detail, let us assume an
input �C ,X , Y �. Here C is the number of channels of an im-
age, while X and Y are the number of pixels in horizontal and

vertical directions, respectively. For binary or gray images
C � 1, and for RGB images C � 3. Then each CNN consists
of a weight tensor that has Nf filters with the dimension
�C ,Xf , Yf �, meaning each filter is built with C channels of
an Xf × Yf matrix (usually a 3 × 3 or 5 × 5 matrix is used).
The CNN is normally built with three operations, including
convolution, activation, and pooling (sometimes a batch nor-
malization will be added). Figure 5(a) illustrates the convolu-
tion operation (consider C � 1). Each filter is initially placed
on the top left Xf × Yf subarea of each image. The pointwise
multiplication of the two Xf × Yf matrices is calculated and
summed to a single value in the output image. Then the filter
moves a certain number of pixels (known as “stride”) and re-
peats the process until the whole image is mapped to the out-
put. The dimension of the output is usually smaller than that of
the input. However, the output dimension can be easily tuned
by adding paddings to the input images, which expand the di-
mension of the input image with zero pixels. In this example
where one round of padding is added, the output image will
have the same dimension as the input (stride equals 1, and
the filter dimension is 3 × 3). The activation function plays
a significant role in the CNNs for the same reason as FCLs,
and we can choose similar functions as previously mentioned.
A pooling layer helps to reduce the dimension of the image. It
usually maps a 2 × 2 (or 3 × 3) area in the input to a single value
in the output according to the maximum or mean value of the
four (or nine) values, as represented in Fig. 5(b). The entire
workflow for conventional CNNs is shown in Fig. 5(c). The
inputs are several images, and each represents a certain design
of structure. The inputs pass through layers of CNN with three
operations, and the size of the tensor gradually shrinks while the

Fig. 5. (a) Schematic of the convolution operation, in which the filters map the subarea in the input image to a single value in the output image.
(b) Schematic of the pooling operation, in which the subarea in the input image is pooled into a single value in the output according to the maximum
or mean value. (c) The workflow of a conventional CNN. The input images pass through several CNNs, and then the extracted features are passed
into the FCLs to predict the response (e.g., transmission, reflection, and absorption spectra).
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number of channels expands. The output now becomes a 1D
vector. It can be regarded as the features extracted from the
image, and the features are fed into the FCLs to predict the
final output that is related to the optical response. The
MSE and cross-entropy loss discussed in the previous section
can also serve as the loss function in many cases of CNNs. The
loss calculated by comparing the predicted and true response
undergoes backpropagation through all layers to update the
parameters. We want to emphasize that other loss functions,
such as Kullback–Leibler divergence [41] and mean absolute
error [69], can also be used in ANNs, depending on the physi-
cal constraints and the expected functions of the ANNs.

B. Design Complex Photonic Structures by CNNs
The CNNs have greatly expanded the design space of the pos-
sible structures that one can explore. For example, plasmonic
structures have been extensively studied over the past decades,
due to their unique features in optics and photonics and far-
reaching impacts on other disciplines [70–74]. By carefully de-
signing the geometry and composite materials, we can confine
light into a sub-10 nm dimension with the local field amplified
by 10–1000 times at the resonant wavelengths. Therefore,
building a relationship between the design of the plasmonic
structure and the corresponding optical responses is of great
interest. In the work of I. Sajedian et al. published in 2019,
the authors combined the CNNs with the recurrent neural net-
works (RNNs) to predict the absorption spectra of complex
plasmonic structures in the near-infrared region [40]. The
CNNs helped to extract the features from the pixelated struc-
tures, and the RNNs with gated recurrent unit layers were used
to predict the spectra. The model showed an MSE loss lower
than 10−4 when training with 100,000 data. The authors have
also examined the output after each layer to investigate how the
higher-level features could be extracted as the model goes
deeper. In the same year, S. So et al. reported the use of condi-
tional deep convolutional generative adversarial networks
(cDCGANs) to retrieve silver plasmonic structures with six ba-
sic shapes, such as circle, square, and cross, from given reflec-
tion spectra under linearly polarized illumination [69]. The
generative adversarial networks (GANs) consist of a generator
network and a discriminator network [65,75]. The training
process for the GANs-based model is a competition between
the generator and the discriminator. The generator generates
structures from the input spectrum and a noise vector, trying
to fool the discriminator that the generated structure is a ra-
tional structure according to the knowledge learned from
the training set. The noise vectors are sampled from a condi-
tional distribution, which is dependent on the prescribed spec-
tra in this case. The discriminator tries to discriminate the
“fake” structures generated from the generator and the “true”
structures in the training data set. In the beginning, each input
structure is pixelated into a 64 × 64 image, and the CNNs are
used to extract the features of the images in both networks.
After running several epochs of the training process, even
the optimized discriminator can hardly distinguish the differ-
ence between “fake” and “true” inputs, since the generator can
generate extremely similar structures to the desired ones, result-
ing in a good model for inverse design. As shown in the top
panel of Fig. 6(a), the simulated spectra of the retrieved

structures (red line) agree well with the desired spectra (black
line), which are either simulated with an existing structure (first
row) or randomly generated with a Lorentzian shape (second
row). The overall accuracy is noticeable, reaching a 0.0322
mean-absolute error among 12 test samples after the model is
trained with 10,150 training data. The authors also showed that
the model can inversely design different structures (but are still
within the basic shape groups), while the spectra meet the target
as illustrated at the bottom of Fig. 6(a). The emergence of struc-
tures different from the ground truths can be attributed to the
one-to-many mapping issue that we have discussed in the intro-
duction section.

W. Ma et al. also demonstrated a probabilistic approach for
the inverse design of plasmonic structures in 2019 [41]. In this
work, the structure of interest was a metal-insulator-metal
(MIM) structure, with geometries pixelated into 64 × 64 im-
ages as training data. The authors focused on the co- and
cross-polarized reflection spectra in the mid-infrared region
from 40 to 100 THz. The developed neural network is shown
at the top of Fig. 6(b), which comprises the prediction, recog-
nition, and generation models. Again, the input geometry
passes through the CNNs to extract the features from the im-
age. Then the prediction model with FCLs can automatically
predict the reflection spectra from the geometry features. For
the inverse design part, the authors incorporated a variational
auto-encoder (VAE) structure [76,77], which is a probabilistic
approach, in the model. It works in the following way. First, the
recognition network encodes both the structures and corre-
sponding spectra into a latent space with a standard Gaussian
prior distribution. While in the generation model, the network
takes the desired spectra together with a latent variable ran-
domly sampled from the conditional latent distribution to re-
construct one geometry. Here, the three models are trained
together in an end-to-end manner. The well-trained model can
not only predict the spectra from the given structure, serving as
a powerful alternative for numerical simulation, but also recon-
struct multiple structures from user-defined spectra. The bot-
tom part of Fig. 6(b) shows the performance of the model
trained with 30,000 data for spectral prediction and the inverse
design for both user-defined spectra (first row) and spectra from
a test structure (second row). The first column in the figure
shows the target spectra. In the case where a test structure is
used to generate the spectra, the predicted spectrum from the
prediction model is also plotted as a scatter plot, which shows
great coincidence with the spectra from full-wave simulation
(solid lines). In the second and third columns, two examples
of the geometry from the inverse design model and their simu-
lated spectra are depicted. One can find that even though the
structures are very different from each other and also from the
ground truth, the spectra resemble the target ones. The authors
further expanded the basic shapes by transfer learning to enable
the reconstruction of a wide range of geometry groups. The
generality of the model was exemplified by the designs of
double-layer chiral metamaterials. Very recently, W. Ma and
Y. Liu developed a semi-supervised learning strategy to accel-
erate the training data generation process, the most time-
consuming part of the deep-learning-aided inverse design [78].
In addition to the labeled data that have both the geometries of
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structures and simulated spectra, the unlabeled data with only
the geometry information are included. Unlike the labeled data
where simulated spectra can be the input in the inverse design
model, the predicted spectra of the unlabeled data are used as
input to reconstruct the geometry. Without numerical simula-
tion, the unlabeled data can be generated several orders of mag-
nitude faster. They also help to dramatically lower the training
loss by 10%–30% for the model trained with the same number
of labeled data.

Z. Liu et al. introduced a hybrid approach by combining the
VAE model and the evolution strategy (ES) [79]. The frame-
work of the hybrid model is shown on the left of Fig. 6(c). In
each iteration, a generation of latent vectors v is fed into the
model and a structure is reconstructed. Then a well-trained
simulator is used to predict the transmittance spectra of the
structures, and the fitness score is calculated. If the criteria
are not satisfied yet, the ES will perform reproduction and mu-
tation with the mutation strength m to create a new generation
of the latent vectors. Such a process is repeated until the criteria
are met. The details of ES will be discussed in the genetic

algorithm part in the next section. The right panel of Fig. 6(c)
shows the performance of the inverse design model. The solid
line and dashed line are the simulated spectra of the test pattern
(orange) by finite element method and the reconstructed pat-
tern (black) from the hybrid model, respectively. All the works
in Fig. 6 solve the one-to-many mapping issue with a probabi-
listic approach like VAEs and GANs, where a randomly
sampled parameter or vector is combined with the desired op-
tical response as the input to reconstruct the structure. It en-
ables the ANNs to explore the full physical possibility of the
design space to produce sophisticated structures for novel
functions.

In 2019, Q. Zhang et al. demonstrated the digital coding
metasurface using CNNs [80]. They explored different
meta-atoms, each in the size of 8 mm and with 16×16 pixels,
to control the reflection phase. The CNNs model was built
upon residual learning blocks and 70,000 training patterns.
After training, the model can precisely predict the reflection
phase; 90.05% of the test samples exhibited a deviation of less
than 2° in the 360° phase range. Subsequently, the model was

Fig. 6. (a) Top: Examples of cDCGAN-suggested images and the simulation results. Bottom: Entirely new structures suggested by the cDCGAN
for desired spectra. (b) Top: The proposed deep generative model for metamaterial design, which consists of the prediction, recognition, and
generation models. Bottom: Evaluation of the proposed model. The desired spectra either generated with user-defined function or simulated from
an existing structure are plotted in the first column. The reconstructed structures with the simulated spectra are plotted in the second and third
columns. (c) Left: Flowchart of the VAE-ES framework. Right: Test results of designed photonic structures from the proposed model and the
simulated spectra. (a) is reproduced from Ref. [69] with permission; (b) is reproduced from Ref. [41] with permission; (c) is reproduced from
Ref. [79] with permission.
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used for the inverse design of meta-atoms with a prescribed
phase response. More specifically, the goal was to create a 1-
bit coding with two meta-atoms such that the reflection phase
of the incident x- �px� and y- (py) polarized light satisfy

pxi − pyi � θ, jpy2 − py1j � 180°:

This means that the two meta-atoms should have the same re-
flection phase difference θ between cross-polarizations, and the
relative phase between the two meta-atoms is maximized to
180°. With varied phase difference θ, eight different 1-bit cod-
ing elements (with two structures for each coding) were pre-
dicted with 45° step in θ. One example of the eight
elements is plotted on the left of Fig. 7(a). By carefully com-
bining the phase profile on a metasurface consisting of 16 de-
signed units, the authors demonstrated the independent
manipulation of the phase for orthogonal polarizations. As
one example of potential applications, the authors fabricated
several dual- and triple-beam coding metasurfaces that can de-
flect light with different polarizations into different angles at
10 GHz. The measurement was performed in the microwave
chamber with a horn antenna as the excitation source. On the
right of Fig. 7(a), we can find excellent agreement between the
measured far-field scattering patterns and the simulated ones.

CNNs are widely applied in 2D image processing. The sig-
nificance of CNNs is attributed to their ability to keep the local
segment of the input as a whole, which can theoretically work
in an arbitrary dimension. Taking advantage of this property,
P. R. Wiecha and O. L. Muskens built a model with 3D CNNs
to predict the near-field and far-field electric/magnetic response
of arbitrary nanostructures [81]. They pixelated the dielectric or
plasmonic nanostructure of interest into a 3D image and fed
the image into several layers of 3D CNNs. Then an output 3D
image with the same size as the input was predicted, represent-
ing the electric field under a fixed wavelength and polarization
in the same coordination system as shown in Fig. 7(b). The
residual connections and shortcut connections in the network
are known as the residual learning [82] and U-Net [83] blocks,
which can help to stabilize the gradient of the networks and
make the network deeper without compromising its
performance [84,85]. From the predicted near-field response,
other physical quantities, such as far-field scattering patterns,
energy flux, and electromagnetic chirality, can then be deduced.
The authors studied two cases: 2D gold nanostructures with
random polygonal shapes and 3D silicon structures consisting
of several pillars. Each scheme was trained by simulation data of
30,000 distinct geometries. With the well-trained model, the
authors reproduced several nano-optical effects from the near-
field prediction from the 3D CNNs, like antenna behavior of
gold nanorods and Kerker-type scattering of Si nanoblocks.
The model can potentially serve as an extremely fast tool to
replace the current full-wave simulation methods, with the
trade-off of slightly decreased accuracy.

In parallel, a one-dimensional (1D) CNN was also intro-
duced to analyze the scattering spectra of silicon nanostructures
for optical information storage as demonstrated by P. R.
Wiecha et al. in 2019 [86]. The authors used Si nanostructures
to store the bit information with high density as shown in the
left panel of Fig. 7(c). The nanostructure was divided into N
parts. If a certain part contained a silicon block, the particular

bit was defined as “1;” otherwise it was “0.” Therefore, an
N -bit information storage unit was created. The readout of
the information encoded in the nanostructure was through
far-field measurement. Here, the dark-field spectra under
x- and y-polarized light in the visible range were chosen to
be the measured information. The 1D CNNs together with
FCLs were used to analyze the spectra, where the input of
the classification problem was the scattering spectra and the
output was the index of the class number among the total
2N classes for N bits, representing the bit sequence. The net-
work was trained with experimentally measured dark-field spec-
tra of 625 fabricated nanostructures for each geometry. The
model trained after 100 epochs can show quasi-error-free pre-
diction with accuracy higher than 99.97% for the 2-bit to 5-bit
(or even 9-bit) geometries as demonstrated in the right panel of
Fig. 7(c). The authors further showed that the input informa-
tion can be greatly reduced by feeding the network with only a
small spectral window around 100 nm or even several discrete
data points on the spectra, while the effect on the accuracy was
neglectable. Finally, the authors managed to retrieve the stored
information from the RGB value of the dark-field color image
of the nanostructures. This new approach can reduce the com-
plexity and equipment cost of the readout process and at the
same time promises a massively parallel retrieval of information.

CNNs are not always the best choice for image inputs as
found by A. Turpin et al. in 2018 [87]. The scheme of this
work is shown on the left of Fig. 7(d). They studied the speckle
of the illuminated digital micromirror device (DMD) pattern
after light passed through a layer of scattering material like a
glass diffuser of multimode fibers. They intended to inversely
design the required DMD pattern for an output speckle to
form a certain image. The authors built two models by a single
FCL and multilayer CNNs. The right panel of Fig. 7(d)
presents the result of the inverse designs for the desired
Gaussian beam outputs based on the two models. We can find
that the measured results of the single FCL look better than
those of the multilayer CNNs. Quantitatively, both of the
models can achieve a signal-to-noise ratio larger than 10.
However, the enhancement metric is η � 32 for the first model
and only 3.6 for the second model, where η is defined as the
intensity at the generated focal point divided by the mean in-
tensity of the background speckle. Therefore, the authors con-
cluded that in this particular application, CNNs can reduce the
number of network parameters by almost 80% compared to the
single FCL, but at the cost of a worse performance when the
used training data have a similar number. The well-trained
model can then be used to predict the required illumination
pattern with varied output images. In this way, the authors
achieved a dynamic scan of the focal point by manipulating
the input illumination with a high frame rate of 22.7 kHz.

4. OTHER INTELLIGENT ALGORITHMS FOR
PHOTONIC DESIGNS

There are other well-developed computational methods and al-
gorithms that can be applied for the inverse design with satis-
factory performance in specific circumstances. One of the most
popular methods is the genetic algorithm [88,89], which is
inspired by Charles Darwin’s natural evolution theory. As
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previously discussed [79], in the design toward a target re-
sponse, a group of initial designs is created either randomly
or empirically. The performance of the first generation of
“species” is tested and compared to the target response, and a
fitness score based on the comparison is calculated. The algo-
rithm will select several “species” in the current generation that
has the highest fitness score. Then reproduction combining the
information of two or more designs and mutation that adds ran-
dom noise to the design is performed to generate the next gen-
eration of species. The process is repeated until all or most of the
species in the new generation have good fitness scores. This al-
gorithm was already applied to photonic design problems a de-
cade ago and achieved great success [90–94]. Recently, Z. Liu et
al. published their work that integrated the genetic algorithm
with ANNs [95]. They studied “meta-molecules” consisting
of multiple meta-atoms that can realize polarization conversion
and anomalous light deflection as shown on the left of Fig. 8(a).

The model is composed of a compositional pattern-
producing network (CPPN), which is used to decode the
2D patterns from a latent variable, and a cooperative coevolution
algorithm (CC) to identify a set of vectors in the latent space.
The CPPNs take the coordinate tuple �xi, yi, ri� one at a time
together with a latent vector v, which controls the shapes of the
patterns, and assemble the predictions from the whole input as a
pattern. The CC then performs the genetic algorithm with the
fitness score calculated based on the output polarization state, the
ellipticity, and the phase and intensity of the electric field. The
authors first trained a neural network simulator with the re-
sponse from 8000 meta-atoms in different shapes. This simula-
tor can be adopted in the CC to greatly reduce the time of fitness
score computation. The simulator can achieve predictions of real
and imaginary parts of spectra with an accuracy above 97%. The
authors designed and fabricated meta-molecules comprising two
(or eight) meta-atoms to implement polarization conversion

Fig. 7. (a) Left: One example of 1-bit coding elements with regular phase differences. Right: Comparison of the simulated and measured results of
the dual- and triple-beam coding metasurfaces. (b) Schematic of the proposed 3D CNN model to characterize the near-field and far-field properties
of arbitrary dielectric and plasmonic nanostructures. (c) Left: Sketch of the nanostructure geometry and the 1D CNN-based ANNs. Right: Training
convergence and readout accuracy of the ANNs. (d) Left: The workflow of designing the DMD pattern for light control through scattering media
with ANNs. Right: The structures of the FCLs-based single-layer neural network and the CNNs, together with the simulated and measured results
for the focusing effect. (a) is reproduced from Ref. [80] with permission; (b) is reproduced from Ref. [81] with permission; (c) is reproduced from
Ref. [86] with permission; (d) is reproduced from Ref. [87] with permission.
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under linear polarization as well as anomalous light deflection
under circular polarization. The simulated and measured results
of polarization conversion are plotted in the right panel of
Fig. 8(a), showing excellent agreement with the target.

Another widely used optimization algorithm for the inverse
design is gradient-based topology optimization [21,96–103]. In
the optimization process, the design space is discretized into
pixels whose properties (i.e., refractive index) can be repre-
sented by a parameter set p. The parameter set will be opti-
mized for a prescribed target response by maximizing
(minimizing) a user-defined objective function F . Starting
from an initial parameter set, both a forward simulation and
an adjoint simulation are performed to calculate the gradient
of the objective function ∂F∕∂pi with respect to each param-
eter. Then the parameters are updated according to the gradient
ascent (descent) method. This iterative process is continued un-
til the objective function is well optimized. Taking advantage of
the topology optimization, J. Jiang et al. presented a global op-
timizer for highly efficient metasurfaces that can deflect light to
desired angles [100]. As illustrated in the top panel of Fig. 8(b),
the metagrating in one period is divided into 256 segments, and

each segment can be filled with either air or Si. To optimize the
metagrating, the authors used a global optimization method
named GLOnet. The GLOnet is based on both a generative
neural network (GNN) and topology optimization as shown
in the bottom panel of Fig. 8(b). The GNN takes the desired
deflection angle θ and the working wavelength λ together with
a random noise vector z as inputs. The inputs pass through
FCLs and layers of deconvolutional blocks, and then a meta-
grating design is generated. The Gaussian filter at the last layer
of the generator eliminates small features that are hard to fab-
ricate. Next, the topology optimization is applied. By perform-
ing both a forward simulation and an adjoint simulation, the
gradient of the objective function (efficiency) is calculated. The
weights of the ANNs are updated according to the gradient
ascent method. To make the model capable of working for
any deflection angle and wavelength, the initialization of the
model is essential to span the full design space. Therefore,
an identity shortcut is added to map the random noise directly
to the output design, which will enable all kinds of designs
when the initial weight of the GNN is small. It should be noted
that the GLOnet is different from conventional topology

Fig. 8. (a) Left: Illustration of meta-molecules. Right: Fabricated samples and the measured and simulated results of polarization conversion.
(b) Top: Schematic of a silicon metagrating that deflects light to a certain angle. Bottom: The proposed conditional GLOnet for metagrating
optimization. (c) Top: Schematic of structure refinement and filtering for the high-efficiency thermal emitter. Bottom: The efficiency, emissivity,
and normalized emission of the well-optimized thermal emitter. (d) Top: Illustration of the unit cell consisting of three metallic patches connected
via PIN diodes and a photograph of the fabricated metasurface. Bottom: Experimental results for reconstructing human body imaging. (a) is re-
produced from Ref. [95] with permission; (b) is reproduced from Ref. [100] with permission; (c) is reproduced from Ref. [42] with permission; (d) is
reproduced from Ref. [104] with permission.
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optimization. In conventional topology optimization, the struc-
tural parameters (like the refractive index of individual seg-
ments) are updated for a single device with a fixed
deflection angle and wavelength. When the goal (deflection an-
gle θ) or the working wavelength is changed, the optimization
needs to be performed again for the new device. However, in
the GLOnet, the optimized parameters are the weights in the
neural networks during each iteration. Therefore, the GNN is
improved in terms of the ability to inversely design devices for
varied goals and working wavelengths, without the need to re-
train the model when the target changes. The performances of
conventional topology optimization and the GLOnet optimi-
zation have been compared in this work: 92% of the devices
designed by the GLOnet have efficiencies higher than or within
5% of the devices designed by the other method. In addition,
the retrieved devices gradually converge to a high-efficiency re-
gion as the iteration number of the training process increases.

Combining topology optimization and ANNs, Z. A.
Kudyshev et al. studied the structure optimization of high-
efficiency thermophotovoltaic (TPV) cells operating in the de-
sired wavelength range (λ � 0.5–1.7 μm) [42]. The design is
based on a gap plasmonic structure. As shown in the top panel
of Fig. 8(c), the optimization can be divided into three main
steps. First, the topology optimization method is applied to
generate a group of appropriate structures for training. Then
an adversarial autoencoder (AAE) network is trained. Similar
to the VAE, the AAE consists of an encoder to map the input
designs to a latent space and a decoder to retrieve the structure
from the latent vector sampled from the latent space. Both the
VAE and AAE models try to make the latent distribution q�z̃�
approach a predefined distribution p�z� (a 15-dimensional
Gaussian distribution in Ref. [42]). In the VAE model, a
Kullback–Leibler divergence that compares q�z̃� with p�z� is
defined as one part of the loss function; while in the AAE,
a discriminator used to distinguish the samples from q�z̃�
and p�z� is built, and the encoder is trained to generate samples
that can fool the discriminator. In the last step, the structure
retrieved from the decoder is refined with topology optimiza-
tion to remove the blurring of the generated designs. As a result,
the hybrid method that combines AAE and topology optimi-
zation shows great performance, providing a mean efficiency of
90% for the retrieved structures. In contrast, the efficiency is
82% via direct topology optimization. The comparison
between these two methods is shown at the bottom of
Fig. 8(c) together with the emissivity and emission plots for
the best designs from either method. In a very recent work
[105], the same group further developed a global optimization
method in which a global optimization engine can generate la-
tent vectors and Visual Geometry Groupnet can rapidly assess
the performance of the design.

Conventional machine learning methods, such as Bayesian
learning [106], clustering [107], and manifold learning [104],
are also very helpful in solving photonic design problems. In
2019, L. Li et al. showcased a machine-learning-based imager
that can efficiently record the microwave image of a moving
object by a reprogrammable metasurface [104]. This work
may pave the way for intelligent surveillance with both fast
response time and high accuracy. The meta-atom has three

metallic patches connected via PIN diodes to encode 2-bit
information as schematically shown in the top panel of
Fig. 8(d). The digital phase step is around 90° between adjacent
states, and the state can be tuned by applying an external bias
voltage. The authors recorded a moving person for less than
20 min to generate the training data for the model. With prin-
cipal component analysis (or random projection), the main
modes with significant contributions were calculated. Then
all meta-atoms were tuned by a bias voltage to match the prin-
cipal component analysis modes for each measurement. In this
way, the measurement became more efficient because it always
captured the information with a high contribution to recon-
structing the microwave image. To test the well-trained model,
another person was moving in front of the metasurface, and
images of the movements were reconstructed as shown at
the bottom of Fig. 8(d). With only 400 measurements, which
were far fewer than the number of pixels, high-quality
images could be produced even when the person was blocked
by a 3-cm-thick paper wall. This method was further extended
to the classification problem, in which the authors defined three
different movements (i.e., standing, bending, and raising arms).
With a simple nearest-neighbor algorithm, only 25 measure-
ments led to good recognition of the movements.

5. CONCLUSION AND OUTLOOK

In this review, we have introduced the basic idea of applying
ANNs and other advanced algorithms to accelerate and opti-
mize photonic designs, including plasmonic nanostructures
and metamaterials. We have highlighted some representative
works in this field and discussed the performance and applica-
tions of the proposed models. In the inverse design problem,
the neural network is usually built upon FCLs and CNNs, in-
tegrated with other neural network units like ResNets and
RNNs. It is beneficial to incorporate ANNs with conventional
optimization methods such as genetic algorithm and topology
optimization because the conventional optimization methods
can help to perform global optimization and provide feedback
to further improve the ANNs. The emergence of all the meth-
ods offers a great opportunity to increase the structural com-
plexity in the devices, which can realize much more complex
and novel functionalities.

The development of photonics can also potentially benefit
the studies of computational methods. For instance, it has been
long sought to push the computation speed to the speed of the
light. All-optical neuromorphic computing [108–112] via op-
tical networks is one approach toward this goal. In principle,
the diffraction nature of light described as exp�i~k · ~r� can also
be regarded as a nonlinear function. Therefore, the intensity
profiles in two diffractive layers “connected” with light diffrac-
tion can be a good analogy to the connection between neurons
in ANNs. Based on this idea, researchers have demonstrated a
new kind of neural network built upon all-optical components,
which are known as optical neural networks (ONNs)
[113–117]. As a comprehensive example, X. Lin et al. reported
an all-optical system that can serve as a diffractive deep neural
network (D2NN) for image classification in 2018 [118]. The
system is composed of several layers of 3D printed structures.
According to the Huygens–Fresnel principle, points in the
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D2NN layers can be regarded as a secondary source of light.
Therefore, each point in the front layer will contribute to
the amplitude and phase distribution of each point in the fol-
lowing layers, while the propagation phase will function as the
nonlinearity. The analogy between the D2NN and the ANN is
illustrated in the top panel of Fig. 9(a). The authors designed
the D2NN using the same error backpropagation method as in
the ANNs and adjusted the phase distribution in each layer.
This design process was run on the computer, but once the
design finished, the fabricated device can perform prediction
(classification) all-optically. In the measurement, the light
passed through an input plane with the same shape as the im-
age. By detecting the position with the maximum output in-
tensity after light passing through all layers, the class of the
input image can be read out. The authors trained and tested
the classifier with images of handwritten digits and fashion
products. The experimental results show great accordance with
the expectation, as shown in the bottom panel of Fig. 9(a), with
an accuracy of 91.75% and 86.60% for the two tasks, respec-
tively. Two years later, C. Qian et al. showed optical logic op-
erations by a diffractive neural network [119]. The goal was to
perform the logic operations such as “and,” “or,” and “not” for
the inputs. As shown in the first two rows of Fig. 9(b), the input
wave was shaped so that it can only pass through certain regions
before illuminating on the diffractive metasurface. In this way,
the two binary inputs and the logical operation can be con-
trolled. The results can also be read out by detecting the inten-
sity at two positions representing “0” and “1.” The last two

rows of Fig. 9(b) show the experimental measurement for
10 different operations, and all the profiles indicate the correct
results. More efforts are needed to further advance this exciting
direction, for instance, by reducing the footprint and increasing
the efficiency of the optical neural networks.

The ANNs are typically considered a “black box” since the
relationship between inputs and outputs learned by the ANNs
is usually implicit. In some published works, researchers can
visualize the output of each individual layer to provide some
information on what feature is learned (or what function is
done) by each layer [40], which is a good attempt. However,
if we can further extract the relation explicitly from the well-
trained ANNs, it will be very helpful to find new structure
groups that lie out of the conventional geometry groups (like
H-shape, C-shape, bowtie). At the same time, it will also pro-
vide guidelines or insights for the design of optical devices.
Another important direction is to extend the generality of
the ANNs models. When applying ANNs to solve the tradi-
tional tasks, such as image recognition and natural language
processing, we want the neural networks to learn the informa-
tion and distribution that lie inside the natural images or lan-
guages themselves and try to reconstruct or approximate these
distributions. The ANNs have been proven to work well in
learning and summarizing the distributions from the images
or languages. At the same time, it is relatively easy to extend
the model to deal with other kinds of images or languages.
However, the inverse design tasks in photonics are more
complicated. The reason is that the ANNs need to learn the

Fig. 9. (a) Top: Comparison between the all-optical D2NN and a conventional ANN. Bottom: Measured performance of the classifier for
handwritten digits and fashion products. (b) Top: Sketch of the optical logic operations by a diffractive neural network. Bottom: Experiment
setup and measured results of three basic logic operations on the fabricated metasurface. (a) is reproduced from Ref. [118] with permission;
(b) is reproduced from Ref. [119] with permission.
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implicit physical rules (such as Maxwell’s equations) between
the structures and their optical responses, instead of the infor-
mation and distribution associated with the structures them-
selves. Therefore, extending the capability of a well-trained
neural network in the inverse design problems remains a chal-
lenge. Most of the ANNs described in this review paper are
only specified for a certain design platform or application. It
is true that a model can be fine-tuned to handle different tasks,
but the model needs to be retrained and, at the same time, an
additional training data set is required. When the original train-
ing set contains all kinds of training data for multiple tasks,
multiple design rules are likely to be involved and learned
by the ANNs. The performance of the model will not be sat-
isfactory for each individual task compared to the model trained
with only a specific data set for this task, because the rules for
other tasks will serve as perturbation or noise in this case. It is
very important to find the trade-off.

Over the past decades, photonics and artificial intelligence
have been evolving largely as two separate research disciplines.
The intersection and combination of these two topics in
recent years have brought exciting achievements. On one hand,
the innovative ANN models provide a powerful tool to accel-
erate the optical design and implementation process. Some
nonintuitive structures and phenomena have been discovered
by this new strategy. On the other hand, the developed optical
designs are expected to produce a variety of real-world
applications, such as optical imaging, holography, communica-
tions, and information encryption, with high efficiency, fidelity,
and robustness. Toward this goal, we need to include the
practical fabrication constraints and underlying material prop-
erties into the design space in order to globally optimize the
devices and systems. We believe that the field of interfacing
photonics and artificial intelligence will significantly move for-
ward as more researchers from different backgrounds join this
effort.
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