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Abstract
Abstract In cells, cytoskeletal filament networks are responsible for cell movement, growth, and divi-
sion. Filaments in the cytoskeleton are driven and organized by crosslinking molecular motors. In recon-
stituted cytoskeletal systems, motor activity is responsible for far-from-equilibrium phenomena such as
active stress, self-organized flow, and spontaneous nematic defect generation. How microscopic interactions
between motors and filaments lead to larger-scale dynamics remains incompletely understood. To build
from motor–filament interactions to predict bulk behavior of cytoskeletal systems, more computationally
efficient techniques for modeling motor–filament interactions are needed. Here, we derive a coarse-graining
hierarchy of explicit and continuum models for crosslinking motors that bind to and walk on filament pairs.
We compare the steady-state motor distribution and motor-induced filament motion for the different mod-
els and analyze their computational cost. All three models agree well in the limit of fast motor binding
kinetics. Evolving a truncated moment expansion of motor density speeds the computation by 103–106

compared to the explicit or continuous-density simulations, suggesting an approach for more efficient sim-
ulation of large networks. These tools facilitate further study of motor–filament networks on micrometer
to millimeter length scales.

1 Introduction

The cytoskeleton generates force and reorganizes to
perform important cellular processes [1], including cell
motility [2,3], cytokinesis [4], and chromosome segrega-
tion in mitosis [5]. The cytoskeleton is made of polymer
filaments, molecular motors, and associated proteins.
The two best-studied cytoskeletal filaments are actin
and microtubules [1]. It remains incompletely under-
stood how diverse cytoskeletal structures dynamically
assemble and generate force of pN to nN [1,2].

Force generation and reorganization in the cytoskele-
ton depend on the activity of crosslinking motor pro-
teins that align and slide pairs of filaments (Fig. 1.
Reorganization of actin networks by myosin motors
is important for muscle contraction [6–8], cell crawl-
ing and shape change [9–11], and cytokinesis [4,12].
Microtubule sliding by crosslinking kinesin and dynein
motors contributes to mitotic spindle assembly [5,13–
16], chromosome segregation [17–20], cytoplasmic stir-
ring in Drosophila oocytes [21], and beating of cilia and
flagella [22–24].

a e-mail: alamson@flatironinstitute.org (corresponding
author)

Filament–motor interactions produce diverse cellu-
lar structures and dynamics, but linking molecular
properties of motors to larger-scale assembly behav-
ior remains challenging. Crosslinking motors vary in
binding affinity, speed, processivity, and force–velocity
relation. These same ingredients can be reconstituted
and show dynamic self-organization into asters or con-
tractile bundles [25–27], active liquid crystals [28–31],
or other structures [32–34]. Even in reconstituted sys-
tems, our ability to predict and control dynamics and
self-organization is limited.

Improved theory and simulation of cytoskeletal assem-
blies with crosslinking motors would allow better pre-
diction of both cellular and reconstituted systems. Cur-
rently, few mesoscale modeling methods for filament–
motor systems are available between explicit parti-
cle simulations and continuum hydrodynamic theory.
Explicit motor simulations have several existing soft-
ware tools, including Cytosim [35], MEDYAN [36], and
AFINES [37], and others [38]. Explicit motor simu-
lations are straightforward to extend to include, for
example, a new force–velocity relation or motor coop-
erativity. However, the cost of explicit particle simula-
tions scales linearly or quadratically with the number
of particles (depending on the type of interactions),
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making simulation of large systems challenging. Con-
tinuum models of coarse-grained fields can be compu-
tationally tractable and predict macroscopic behavior
[39–46]. Current continuum models invoke symmetry
considerations to determine the structure of the model
without reference to an underlying microscopic mech-
anisms [39,47–49], or simplify a microscopic model by
making assumptions about the physics of motor [43,50–
57]. Furthermore, previous continuum theories have
coarse-grained the filament distribution, with simpli-
fying assumptions about the motor distribution. This
presents an opportunity to better understand how
the distribution of motors evolves and affects filament
motion. Further development of mesoscale modeling
techniques focusing on crosslinking motors could help
bridge the gap between detailed explicit particle models
and continuum theories.

To develop mesoscale modeling tools, we focus on the
fundamental unit of a crosslinked filament network: two
filaments with crosslinking motors that translate and
rotate the filaments. We study three different model
representations in a coarse-graining hierarchy and com-
pare computational cost and accuracy. For explicit
motors, we extend previous work that uses Brownian
dynamics and kinetic Monte Carlo simulation to han-
dle filament motion and binding kinetics [43,56,58–62].
At the first level of coarse-graining, we average over dis-
crete bound motors to compute the continuum mean-
field motor density (MFMD) between filaments, and
evolve this density according to a first-order Fokker–
Planck equation [58]. This requires computing the solu-
tion to a single partial differential equation (PDE) for
each filament pair, rather than separately tracking each
individual motor. The MFMD determines the force and
torque on each filament needed to evolve its position
and orientation. At the second level of coarse-graining,
we expand the MFMD in moments to derive a system
of ordinary differential equations (ODEs) for the time
evolution of the moments. While the moment expansion
does not close, an approximate treatment of filament
motion can be modeled by low-order moments. To com-
pare these three model implementations, we consider
test cases of parallel, antiparallel, and perpendicular
filaments. Under the same initial conditions, the three
model implementations give similar results on average.
Remarkably, the reduced moment expansion achieves a
computational cost that is 103–106 lower than the other
models, suggesting a route to computationally tractable
large-scale simulations.

2 Model overview

We consider a pair of rigid, inextensible filaments
that move and reorient under the force and torque
applied by crosslinking motors. Filaments move in
three dimensions, experience viscous drag, and are
constrained to prevent overlaps. Motors bind to and
unbind from the filaments consistent with detailed
balance in binding. Crosslinking motors walk with a

force-dependent velocity toward filament plus ends and
unbind when they reach the ends. We investigate mod-
els at three levels: an explicit motor model where
motors are represented with a discrete density, a con-
tinuum mean-field motor density (MFMD) model, and
a moment expansion model.

2.1 Filaments

We model filament motion using Brownian dynam-
ics, balancing the force applied by motors against vis-
cous drag and constraint forces. Because the force that
induces Brownian motion is typically smaller than that
due to motors, we neglect Brownian noise [65].

Filaments translate according to the force–balance
equation

ṙi = Mi

(∑
n

Fn,i

)
, (1)

where ri is the center of filament i with mobility matrix
Mi acted on by forces Fn,i. The mobility matrix for a
perfectly rigid rod in a viscous medium is

Mi =
((

γ‖,i − γ⊥,i

)
ûiûi + γ⊥,iI

)−1
, (2)

where I is the identity matrix and γ‖,i and γ⊥,i are the
parallel and perpendicular drag coefficients with respect
to the filament orientation ûi. Cytoskeletal filaments
with length Li and diameter Dfil typically have a large
aspect ratio Li/Dfil � 1, so we approximate the drag
coefficients using slender body theory [66].

The torque–balance equation is

˙̂ui =
1

γθ,i

(∑
n

Tn,i

)
× ûi, (3)

where Tn,i are the torques acting on filament i and
γθ,i is the rotational drag coefficient about the center
of filament i.

The force and torque exerted by crosslinking motors
depend on where motors are attached, the motor tether
extension, and the relative position and orientation
of filaments. Given the crosslinking motor distribution
along the filaments ψi,j(si, sj), where si is the bound
motor head position on filament i, the total crosslink-
ing force and torque exerted by filament i on filament
j are

Fi,j =
∫

Li

∫
Lj

fi,j(si, sj)ψi,j(si, sj)dsidsj , (4)

Ti,j =
∫

Li

∫
Lj

sj ûj × fi,j(si, sj)ψi,j(si, sj)dsidsj .

(5)

where fi,j(si, sj) is the force exerted on filament j by
the crosslinking motor attached at si and sj (Fig. 1E).
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Fig. 1 Experimental systems of cytoskeletal filaments with
crosslinking motors and overview of the model. a–c Fluores-
cence microscopy images of cytoskeletal networks. a Mitotic
spindle showing microtubules (green), chromosomes (blue),
and spindle-pole component TPX2 (red) [63]. b Reconsti-
tuted active gel of microtubules (white) driven by crosslink-
ing kinesin motor clusters with local flow field shown (yellow
arrows) [28]. Scale bar: 80 μm. c Reconstituted active net-
work of actin (magenta) and myosin II (green) [64]. Scale

bar: 50 μm. d Schematic of filament–motor network with
green filaments and red motors. e Schematic of filament
pair (green) crosslinked by a motor (red) with model vari-
ables position of filament i’s center ri, orientation vector of
filament i ûi, vector between filament centers ri,j = rj − ri,
vector between motor heads hi,j , motor tether extension
|hi,j |, and motor speed on filament i while attached to fila-
ment j

For brevity, we use subscripts on variables such as fi,j to
indicate that these are functions of the relative position
and orientation of filaments i and j. Our three model
implementations all models use Eqs. (4) and (5) to com-
pute the force and torque that evolve filament position
and orientation but differ in how the computation of
ψi,j .

We constrain the motion of filaments to prevent over-
lap, which avoids numerical instabilities introduced by
a hard potential between filaments. To implement the
constraint, we construct a vector ûmin that is perpen-
dicular to both infinite carrier lines defined by ûi and ûj

and parallel to the vector of closest approach between
these lines. The vector ûmin is used to define two nor-
mal planes that confine the filaments, leading to the
modified force and torque

F̃i,j = Fi,j − (Fi,j · ûmin)ûmin (6)

T̃i,j = (Ti,j · ûmin)ûmin. (7)

Note that for filaments lying in the same confining plane
and |ûi · ûj | < 1, ûmin = 0 and our constraints break
down. However, if only the first condition is satisfied,

i.e., (anti)parallel filaments, T̃i,j = 0 and F̃i,j is parallel
to ûi and ûj . After computing the force and torque,
we numerically integrate Eqs. (1) and (3) to update
filament position and orientation.

2.2 Motors

In our model motors bind and unbind, crosslink between
two filaments, exert force and torque when crosslink-
ing, and walk with a force-dependent velocity. Typi-
cally motor proteins diffuse in solution until they are
near a filament, then stochastically bind to that fila-
ment. Once one head binds, the other head can bind to
a second filament, forming a crosslink, or the motor can
unbind. Crosslinking motors can unbind to a state with
one head bound, or can unbind completely from both
filaments. We consider an infinite reservoir of unbound
motor proteins. The diffusion of motors in solution is
fast relative to the motion of filaments, so we assume
the motor reservoir has uniform, constant concentra-
tion. We neglect steric interactions between motors.
This approximation holds for filaments sparsely pop-
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ulated with motors and motors that do not cluster on
filaments or in solution.

Motors crosslinking filaments have a potential energy
Ui,j(si, sj) (Fig. 1). The energy depends on the motor
head separation vector hi,j(si, sj) = rj + sj ûj − (ri +
siûi) that gives the motor tether extension

hi,j(si, sj)

=
√

r2i,j + s2j + s2i + 2ri,j · (sj ûj − siûi) − 2sisj(ûi · ûj),

(8)

where ri,j = rj − ri and r2
i,j = ri,j · ri,j (Fig. 1e).

The bound motor heads walk with a speed vi,j that
depends on the force component on the motor head
parallel to the walking direction, ûi · fj,i [67]. This pro-
jected force is used to determine the motor speed via
the force–velocity relation, as discussed below. This
model is based on processive microtubule motors such
as kinesin and dynein, but a similar model has been
used for myosin minifilaments [36,37].

3 Explicit motor model

In the explicit motor model individual bound motors
are modeled, allowing fluctuations in bound motor
number and binding kinetics that recover the correct
equilibrium distribution of crosslinking proteins in the
limit of no motor walking (Fig. 2a) [43,56,59–62].

3.1 Binding kinetics and stepping

A motor diffuses in solution until one of its heads bind
to a filament; we model this by an infinite reservoir of
unbound motors with a uniform and constant concen-
tration co. Filaments have a linear binding site density
ε, and the binding site has an association constant Ka

(units of μM−1). First motor head binding has rate

kon,S = KacoεLtotko,S , (9)

where Ltot =
∑

i Li is the total length of filaments and
ko,S is the bare (force-independent) unbinding rate for
singly bound heads. All binding locations have equal
binding probability. Singly bound motors unbind at
rate koff,S = ko,S .

A motor with one head bound crosslink to another
filament, which may stretch or compress its tether. This
makes crosslinking kinetics force dependent; our mod-
els satisfy detailed balance in binding, so we recover
the thermal equilibrium Boltzmann distribution in the
limit of passive crosslinkers. Motor motion shifts the
crosslinking distribution away from equilibrium. Motor
unbinding rate can depend on the force applied to
bound heads [68–73]. Previous work shows how this
force dependence can be included while maintaining
detailed balance in binding [62,74,75]. For simplicity,

here we include the force dependence in the binding rate
only and discuss possible implications below. With one
head bound to filament i at position si, the free motor
head binds to filament j at position sj with a prob-
ability proportional to a Boltzmann factor of binding
energy

PS→C ∝ exp(−βUi,j) (10)

with β = (kBT )−1 (Fig. 3a). Here, S → C denotes
the motor’s transition from a single head bound (S) to
crosslinking (C). The total binding rate is computed by
integration over all binding positions on filament j

kon,C =
εKEko,C

Vbind

∫
Lj

e−βUi,j dsj , (11)

where ko,C is the bare (force-independent) unbinding
rate for a crosslinking motor, KE is the crosslinking
association constant. The unbound motor head explores
a volume Vbind centered about the bound head, com-
puted as the integral of the unbound head’s position
weighted by the Boltzmann factor

Vbind =
∫

e−βUi,j dr3 = 4π

∫ Rcut,C

0

e−βUi,j r2dr.

(12)

Beyond the cutoff radius Rcut,C , the integrand becomes
small, enabling the use of a lookup table (Appendix B).
The probability distribution of binding position depends
on the Boltzmann factor. We recover the proper binding
distribution through inverse transformation sampling of
Eq. (11) (Appendix B.2).

As discussed above, the unbinding rate of a single
head of a motor crosslinking two filaments is assumed
to be force-independent,

koff,C = ko,C . (13)

Force-dependent unbinding affects the density of motor
proteins most when stretched [70]; larger motor stretch
occurs when external force is applied against the
force generated by motors. Therefore, sliding filaments
slowed only by drag, like those in active nematics, will
be less affected by force-dependent unbinding than sta-
tionary filaments or jammed filaments like microtubules
in mitotic spindles. We can include force-dependent
unbinding in the explicit motor and MFMD model
but not in the moment expansion model (Sect. 5).
We chose the time step small enough that individ-
ual motors undergo only one transition per time step
(Appendix A).
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Fig. 2 Comparison of motor representations in three hier-
archical models with schematics on the left and 2D motor
distributions on the right. a Explicit motor model with two-
step binding kinetics. Unbound motors (light red circle) bind
one head (red circle) to filaments and then crosslink (two red
circles connected by red line). b Mean-field motor density
model with motor distribution (translucent red bars). Aver-

age motor distribution moments μk,l
i,j with respect to powers

of bound crosslink positions si and sj . Moments are related
to bound motor number Ni,j (pentagon color), mean motor
head position Pi (pentagon position), and standard devia-
tion σi (black lines). (right) 2D plot of reconstructed motor
density using bivariate Gaussian approximation. For clar-
ity, only moments derived from left-most crosslinking den-
sity distribution in (B) are used to reconstruct 2D motor
distribution in (C)

The motor force–velocity relation is

vi,j = v(ûi · fj,i) =

⎧⎪⎪⎨
⎪⎪⎩

vo, 0 < ûi · fj,i

vo

(
1 +

ûi·fj,i

fstall

)
, −fstall < ûi · fj,i < 0

0, ûi · fj,i < −fstall,

(14)

where fstall is the motor stall force (Fig. 3b).

3.2 Distribution of explicitly modeled motors

The bound motor distribution is

ψi,j(si, sj , t) =
Ni,j(t)∑
n=1

δ(si − sn(t))δ(sj − s′
n(t)),

(15)

123



45 Page 6 of 22 Eur. Phys. J. E (2021) 44 :45

Fig. 3 Choice for motor tether potential, force–velocity
relation, and filament initial configurations. a Plot of the
normalized potential energy in motor tether as a function
of motor extension (blue) and equivalent zero-length tether
potential (orange line). Both potentials have identical slope
at the distance fstall/kcl (red dashed line) where motors

stall. b Plot of normalized motor speed as a function of
force (blue) and its linear approximation (dashed orange). c
Chosen initial configurations of pairs of 1μm filaments. Fil-
ament centers are separated by Dfil = 25 nm perpendicular
to both filament orientation vectors

where δ(si) is the Dirac delta function and Ni,j is the
total number of motors crosslinking filaments i and j.
Here, sn and s′

n are the attached positions of the heads
of the nth crosslinking motor. Motors with one head
bound to filament i have a distribution

χi(si, t) =
Ni(t)∑
n=1

δ(si − sn(t)), (16)

where Ni is the number of one head bound motors on fil-
ament i. Only motors crosslinking exert forces between
filament pairs, but χi and χj are needed to calculate
the evolution of ψi,j .

4 Mean-field motor density model

Under typical experimental conditions, there can be
tens to thousands of crosslinking motors between a fil-
ament pair. Motor force and torque fluctuations occur
because of stochastic motor binding and unbinding. As

the number of motors increases, the standard devia-
tion relative to the mean decreases as 1/

√
N . For our

explicit motor model, antiparallel filaments with an
average of 14 motors bound show a standard deviation
in bound motor number of 27% of the mean. This shows
that the fluctuations are quite significant for order 10
motors. The 1/

√
N scaling predicts that for an aver-

age of 1000 motors, the standard deviation would be
only 3.2% of the mean. The force and torque scale sim-
ilarly. Therefore, for large motor number, we may use
the average motor distribution to derive a mean-field
motor density (MFMD) to accurately describe force
and torque on filaments by motors. We can then evolve
the MFMD instead of explicit motors (Fig. 2b). We
previously showed that the average steady-state den-
sity of crosslinking motors between stationary paral-
lel filaments agreed well with a solution to a multi-
dimensional Fokker–Planck equation (FPE) [58]. Here,
we expand this approach to model crosslinking motor
density between filaments in three dimensions, allow
filament motion, and study time-dependent behavior of
coupled systems of motors and filaments.
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For a one-step binding model, the MFMD evolves
according to

∂ψi,j(si, sj , t)
∂t

= −∂(vi,jψi,j)
∂si

−∂(vj,iψi,j)
∂sj

+ kon − koffψi,j ,

(17)

with motor velocity vi,j , motor crosslinking rate kon,
and unbinding rate koff . To satisfy detailed balance in
binding, we use the rates kon = 2koce

−βUi,j(si,sj) and
koff = 2ko, with the effective concentration c (units
nm−2) [58]. The factors of two occur because there are
two ways a motor can crosslink. To numerically solve
the hyperbolic Eq. (17), we use a first-order accurate
upwind difference method (Appendix C).

The mean-field motor density model differs from the
explicit model in that motors with one head bound are
not modeled explicitly. To properly compare the differ-
ent binding models, we establish a mapping of param-
eters between these two models (Appendix D), which
gives

c =
ε2KaKE

Vbind
co. (18)

Some model parameters are difficult to measure directly.
For example, the association constant KE may differ
from Ka if proteins change their molecular conforma-
tion when bound. We discuss an approach to estimate
such parameters in Appendix E.

4.1 Steady-state solution for MFMD on antiparallel
filaments

If filaments move slowly compared to the timescale of
motor rearrangement, then a quasi-steady state approx-
imation can be used. In the quasi-steady limit, the
force and torque on filaments are computed from the
steady-state MFMD [61]. The quasi-steady approxima-
tion is computationally efficient compared to numerical
integration of the time-dependent PDE. A steady-state
solution also provides a convenient route to compare
our model implementations.

At steady state, Eq. (17) becomes

ψi,j
∂vi,j

∂si
+ vi,j

∂ψi,j

∂si
+ ψi,j

∂vj,i

∂sj
+ vj,i

∂ψi,j

∂sj
+ 2koψi,j

= 2koce
−βU(si,sj). (19)

Here, we choose functional forms of Ui,j and vi,j con-
sistent with previous models [36,37,58,60,61]. Motors
have a potential energy Ui,j = kcl

2 (hi,j − hcl)
2 deter-

mined by the tether spring constant kcl and tether
length hcl (Fig. 3a), which implies a motor crosslinking
filaments i and j exerts a force on fi,j = −kcl

(
1 − hcl

hi,j

)
hi,j

on filament j. The force–velocity relation of a motor
head attached to filament i while the other head is
bound to j follows Eq. (14). Here, we assume motors
that reach filament ends walk off, i.e., no end pausing.

A semi-analytic steady-state solution can be derived
for antiparallel filaments when motor tethers have zero
length (hcl = 0) because the FPE is symmetric under
the transformation i → j. For zero-tether-length motors
to mimic their non-zero-length counterparts, we modify
the zero-length motor’s spring constant so both types
of motors stall at the same extension hi,j = hstall. This
implies k′

clhstall = kcl(hstall −hcl) = fstall with the solu-
tion

k′
cl =

kclfstall

fstall + kclhcl
, (20)

where hstall = fstall/k′
cl. Note this choice changes the

binding dynamics, because the potential energy is now
larger for larger motor extension (Fig. 3A).

To find the steady-state solution, note that ri,j ·
ûi, rj,i · ûj = 0 and ûi · ûj = −1 for antiparal-
lel filaments with centers aligned. Therefore, hi,j =√

r2
i,j + (si + sj)2 and ûi · fj,i = ûj · fi,j = −k′

cl(si +sj).
Since Ui,j , vi,j , and vj,i depend exclusively on the sum
of si and sj , we make the change of variables ξ = si+sj

in Eq. (19) to find

(vi,j + vj,i)
∂ψi,j

∂ξ
+

(
∂vi,j

∂ξ
+

∂vj,i

∂ξ
+ 2ko

)
ψi,j

= 2koce
−βU(ξ). (21)

There are three regions of solution determined by the
force–velocity relation Eq. (14): ξ ≤ 0, 0 ≤ ξ ≤ hstall,
and hstall < ξ. For ξ ≤ 0, vi,j = vj,i = vo and Eq. (21)
becomes

∂ψi,j

∂ξ
+

ψi,j

lo
=

c

lo
e−βU(ξ), (22)

where lo = vo/ko is the motor run length. This is solved
with an integrating factor, giving

ψi,j(ξ) = e
ξ−L

lo ψi,j(−L) +
c

lo
e−ξ/lo

∫ ξ

−L

e
x
lo

− βk′
cl

2 (r2
i,j+x2)

dx.

(23)

Applying the boundary condition ψi,j(−L
2 ,−L

2 ) =
ψi,j(−L) = 0, we remove the last term in Eq. (23) and
rewrite the Gaussian integral as

ψi,j(ξ) =
c

lo

√
π

2βk′
cl

exp
(

1
2βk′

cll
2
o

− βk′
cl

2
r2 − ξ

lo

)
[
erf

(
βk′

cllox − 1
lo

√
2βk′

cl

)]x=ξ

x=−L

. (24)
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For 0 ≤ ξ ≤ hstall, the velocity vi,j = vj,i = 1 − ξ
hstall

.
Equation (21) becomes

(hstall − ξ)
∂ψi,j

∂ξ
+

(
hstall

lo
− 1

)
ψi,j =

hstall

lo
ce−βU(ξ).

(25)

Solving with an integrating factor, we find

ψi,j(ξ) = ψi,j(0)
(

hstall

hstall + ξ

)1− hstall
lo

+
hstallc

lo(hstall − ξ)1− hstall
lo∫ ξ

0

(hstall − x)− hstall
lo e− βk′

cl
2 (r2

i,j+x2)dx.

(26)

We match the solution for ψi,j(0) to Eq. (23) to
enforce continuity. The exponential term in Eq. (26)
can be approximated by a series expansion or integrated
numerically. Here, we use numerical integration.

For ξ > hstall, the velocity and velocity derivatives
are zero, so

ψi,j(ξ) = ce− βk′
cl

2 (r2
i,j+ξ2). (27)

Since the motor velocity is zero at ξ = hstall, motors
do not walk from ξ < hstall to ξ > hstall. A nonzero
MFMD exists for ξ > hstall only if motors bind at these
lengths. This appears as an integrable discontinuity at
ξ = hstall.

5 MFMD moment expansion

A series expansion or reduced representation of a con-
tinuous distribution can lower the computational cost
of solving a system’s time evolution [57,76,77]. Here,
we use low-order moments of the MFMD to calculate
motor number, mean and standard deviations of motor
head distribution, and filament motion.

The moments of ψi,j are

μk,l
i,j (t) =

∫
Li

∫
Lj

sk
i sl

jψi,jdsidsj , (28)

where k, l are nonnegative integers. The moments are
symmetric under exchange of both filaments and pow-
ers so that μk,l

i,j = μl,k
j,i . The zeroth moment μ0,0

i,j = Ni,j

is the total number of motors bound to the two fila-
ments, and the first moments μ1,0

i,j , μ0,1
i,j are proportional

to the mean motor head position along each filament

Pi =
μ1,0

i,j

Ni,j
, Pj =

μ0,1
i,j

Ni,j
. The first two second moments

determine the standard deviation of motor head den-
sity

σi =

√
μ2,0

i,j

Ni,j
− P 2

i . (29)

The symmetric second moment term μ1,1
i,j determines

the covariance of motor head position

Vi,j =
μ1,1

i,j

Ni,j
− PiPj . (30)

The positional means, standard deviations, and covari-
ance are used to reconstruct an approximate MFMD
for visualization using a bivariate normal distribution
(Fig. 2c, Videos 1–6).

Using the approximation of zero-length tethers as in
Sect. (4.1) above, fi,j is a linear function of si and sj .
In this case, filament motion can be computed from
low-order moments using Eqs. (4) and (5):

Fi,j = −kcl

∫
Li

∫
Lj

(ri,j + sj ûj − siûi) ψi,jdsidsj

= −kcl

(
μ0,0

i,j ri,j + μ0,1
i,j ûj − μ1,0

i,j ûi

)
(31)

and

Ti,j = −kcl

∫
Li

∫
Lj

sj ûj × (ri,j + sj ûj − siûi) ψi,jdsidsj

= −kclûj ×
(
μ0,1

i,j ri,j − μ1,1
i,j ûi

)
(32)

Substituting Eqs. (31) and (32) into Eq. (1) and (3)
shows that only moments up to second order are needed
to compute filament motion from crosslinking motors.
Thus, motor and filament evolution can be written as a
system of ODEs that depend on the dynamical evolu-
tion of the moments. This dynamical evolution is com-
puted by taking the time derivative of Eq. (28) and
substituting in the FPE (17)

∂μk,l
i,j

∂t
=

∫
Li

∫
Lj

sk
i sl

j

∂ψi,j

∂t
dsidsj . (33)

However, this coupled system of equations for the
moment time evolution does not close. Because the
piecewise motor force–velocity relation is not linear,
moments depend on higher-order moments recursively.
Also, filament ends introduce boundary terms that pre-
vent closure. Despite this, in certain limits a trun-
cated moment expansion shows good agreement with
the explicit and MFMD models.
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We first introduce a linear approximation to the
force–velocity relation (Fig. 3b)

vi,j ≈ vo

(
1 +

ûi · fj,i
fstall

)

= vo

(
1 +

kcl

fstall
(ri,j · ûi + ûi · ûjsj − si)

)
.

(34)

This approximation is valid for hstall � √
1/kclβ,

in which case motors do not bind beyond their stall
stretch. We also require that vo � 2ko

√
1/kclβ, ensur-

ing that motors pulled towards the plus ends with
ûi·fi,j > 0 move quickly into a regime −fstall < ûi·fi,j <
0, where the linear and piecewise force–velocity func-
tions agree.

We substitute the linearized force–velocity function
from Eq. (34) into the MFMD Eq. (17) to obtain

∂ψi,j

∂t
= 2koce

−βUi,j + (2κ − 2ko) ψi,j

− (vo + κ (ri,j · ûi + ûi · ûjsj − si))
∂ψi,j

∂si

− (vo + κ (rj,i · ûj + ûi · ûjsi − sj))
∂ψi,j

∂sj
,

(35)

where κ = vokcl/fstall is the rate at which motors reach
their stall force. Integrating Eq. (35) directly returns
the zeroth-moment equation

∂μ0,0
i,j

∂t
= 2koq

0,0
i,j − 2koμ

0,0
i,j

+
[
(−vo − κrj,i · ûj + κsi) B0

j − κûi · ûjB
1
j

]
∂Li

+
[
(−vo − κri,j · ûi + κsj) B0

i − κûi · ûjB
1
i

]
∂Lj

,

(36)

where we have defined qk,l
i,j =

∫
Li

∫
Lj

sk
i sl

je
−βUi,j dsidsj

and

Bl
j(si) =

∫
Lj

sl
jψi,jdsj (37)

with qk,l
i,j representing source terms. Here, Bl

j(si) is a
moment of the MFMD integrated over sj that is a
function of si, but in practice Bl

j only appears in the
equations evaluated at filament endpoints, and so cap-
tures behavior of the motor density at filament ends.
Therefore, we refer to the Bl

j(si) as boundary terms.
To show this, we define the notation [A(si)]∂Li

=
A(Li/2) − A(−Li/2).

The general moment evolution obtained by integrat-
ing Eq. (33) with Eq. (35) is

∂μk,l
i,j

∂t

= 2koqk,l
i,j + k(vo + κri,j · ûi)μ

k−1,l
i,j + l(vo + κrj,i · ûj)μ

k,l−1
i,j

− (2ko + (k + l)κ) μk,l
i,j + κûi · ûj

(
kμk−1,l+1

i,j + lμk+1,l−1
i,j

)

+
[(

κsk+1
i − κri,j · ûis

k
i − vosk

i

)
Bl

j − κûi · ûjsk
i Bl+1

j

]
∂Li

+
[(

κsl+1
j − κrj,i · ûjsl

j − vosl
j

)
Bk

i − κûi · ûjsl
jBk+1

i

]
∂Lj

.

(38)

The boundary terms in square brackets contain moments
and Bl

j an order higher than ∂μk,l
i,j/∂t. In Appendix G,

we write the analogous time evolution for the Bl
j , and

show that it does not close. Therefore, the moment evo-
lution equations do not close.

To close the system of equations, we set the bound-
ary terms to zero. Physically, this means we neglect
motor unbinding from filament plus ends. If motors
pause at plus ends, this approximation will lead to sig-
nificant error. However, if motor unbinding is relatively
rapid (including at filament plus ends), this is a good
approximation. To explore the impact of not including
these boundary terms, below we quantify the discrep-
ancy between this model and the explicit motor and
MFMD models. Neglecting boundary terms truncates
the system of equations at second order, because only
terms up to second order are needed to calculate force
and torque on filaments.

We evolve equations (1, 3, 38) using solver_ivp
in the scipy.integrate library [78]. This code uses
the LSODA integrator, an Adams/BDF integration
method that automatically detects stiffness, from the
Fortran ODEPACK library [79]. The source terms qk,l

i,j

are analytically integrated in one dimension and then
numerically integrated using the quad method also from
scipy.integrate (Appendix F).

6 Results

To test the degree of agreement between explicit motor
and mean-field models, we first selected parameters
based on microtubules and kinesin-5 motor proteins
because they are relatively well-studied cytoskeletal
proteins [81,82,84,85] (Table 1). We studied three char-
acteristic sets of initial filament pair position and orien-
tation: antiparallel, parallel, and perpendicular (Fig. 3,
Video 1–3), and compared both stationary and moving
filaments. We choose an initial condition with no motors
bound to filaments, in order to observe the effects of
time evolution of the motor density. For stationary fil-
aments, we found good agreement for all three mod-
els. For moving filaments, we found qualitative agree-
ment but fluctuations in motor dynamics and differ-
ent end boundary conditions contributed to quantita-
tive differences in filament motion. We measured the
computational cost for stationary antiparallel filaments
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Table 1 Model parameters for MTs and kinesin-5 for explicit motor distribution and MFMD calculations

Parameter Symbol Value Notes

Total time Nt 20 sec Chosen
Explicit motor time step size ΔtExplicit 0.0001 sec Chosen for numerical

stability
MFMD time step size ΔtMFMD 0.001 sec Chosen for numerical

stability
MFMD grid spacing Δs 1 nm Chosen for numerical

stability
Viscosity η 10−6 pN sec nm−2 Chosen (viscosity of

cytoplasm)
Filament length L 1 μm Chosen
Filament diameter Dfil 25 nm Diameter of

microtubules [80]
Explicit motor concentration co 11 nM Chosen
MFMD effective concentration c 0.0093 nm−2 Calculated (Sect. D)
Modified tether length hcl 0 nm Chosen (Sect. 2.2)
Effective
tether spring
constant

kcl 0.037 pN nm−1 Calculated (Sect. 2.2),
spring constant [81],
tether length [82]

Filament bind-
ing site density

ε 0.25 nm−1 Estimated, one site
every four nanometers

Inverse temperature β = 1
kBT

0.2433 pN−1 nm−1 Room temperature

Motor speed vo 50 nm sec−1 [83]
Motor stall force fstall 2 pN [84]
Association
constant
(unbound↔one
head bound)

Ka 0.005 nM−1 [85]

Association
constant
(one head
bound↔crosslinking)

K′
e 2.56 Calculated (Sect. D),

[86]

Multi-step
bare off rate
(unbound↔one
head bound)

ko,S 0.77 sec−1 [85]

Multi-step
bare off rate
(one head
bound↔crosslinking)

ko,C 0.77 sec−1 Chosen to match ko,S

One-step bare off rate ko 0.77 sec−1 Chosen to match ko,S

and found that the moment expansion model can give
a dramatic improvement in performance.

6.1 Stationary filament pairs

When filaments are held stationary, motor density
reaches or fluctuates around a steady-state solution
(Fig. 4). To compare with the mean-field models, we
averaged 48 realizations of each explicit motor simula-
tion; the results agreed within error with the mean-field
models (Fig. 4b–d). This agreement between models
demonstrates that the mean-field models capture the
average behavior of our explicit model.

Beyond the steady state, we characterize the evolu-
tion of motor number, force, and torque (Fig. 4e–m).
In all configurations, the crosslinking motor number in

the explicit motor model lags that of the MFMD and
moment expansion models (Fig. 4e–g). The crosslinking
rate in the two-step binding algorithm depends on the
density of motors with one head bound, resulting in a
slower approach to steady state.

For antiparallel filaments, force generation increases
with crosslinking motor number (Fig. 4h, Video 1)
because motors walk in opposite directions, causing the
motor tether to stretch and generate force. If free to
move, these antiparallel filaments would slide. No aver-
age sliding would occur for parallel filaments, and the
small number of crosslinking proteins for perpendic-
ular filaments results in small relative force (Fig. 4i,
j). The average explicit motor motor torque in the ẑ-
direction shows significant fluctuations about the mean
(Fig. 4k–m). Because motor torque increases for motors
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Fig. 4 Comparison of model results for three different sta-
tionary filament configurations. a Schematic of the three
different filament configurations and legend for following
plots. b Plot of total crosslink motor numbers at steady
state. c Plot of steady-state motor force components from
filament i on filament j. d Bar graph of steady-state torque
in the ẑ-direction from filament i on filament j. Explicit
motor model error bars in (b–d)indicate the Standard Error
of the Mean (SEM) of the last 30 seconds of 40 second
long simulations (n=48). e–g Bound motor number ver-
sus time. Purple and blue solid lines are the average of

48 individual explicit motor simulations (translucent lines)
for one head bound and crosslinking motors. h–j Motor
force in the x̂-direction (solid lines) and ŷ-direction (dot-
ted lines). Individual explicit motor runs are represented
as blue for both directions. k–m Motor torque in the ẑ-
direction from filament i on j. Full explicit motor model
range not shown to better see average. n–p Steady-state
motor probability density as a function of motor extension
for semi-analytic (black), explicit motor, and MFMD mod-
els. Motor minimum extension is set by the separation of
filaments at closest point of approach, 25 nm 123
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farther from the filament centers, the torque fluctua-
tions increase with filament length.

We compared the steady-state distribution of motor
extension for both explicit motor and MFMD models
(Fig. 4n–p). (Note that the moment expansion loses
this information in coarse-graining.) The distribution of
motors crosslinking antiparallel filaments has two peaks
(Fig. 4n). The larger peak represents the most probable
binding distance Δy, and the second peak corresponds
to motors near their stall extension h =

√
Δy2 + h2

stall.
The shape of the distribution results from motor kinet-
ics, walking, and stalling. Motors on parallel filaments
show a peak at Δy (Fig. 4o, Video 2), but no sec-
ond peak because the motor heads walk in the same
direction with similar speed. For motors crosslinking
perpendicular filaments, the extension distribution is
singly peaked and broader than for parallel filaments
(Fig. 4p, Video 3). This occurs because the parallel
force component on perpendicular filaments increases
more gradually as the motors extend, causing a more
gradual decrease in motor speed. This broad distribu-
tion indicates a larger average force per motor for per-
pendicular filaments compared to aligned filaments.

6.2 Dynamical evolution of filament pairs

Here, we consider the same three filament start-
ing configurations and allow filament motion (Fig. 5,
Videos 4–6). The final filament position and orienta-
tion are comparable for the explicit motor and MFMD
models, while the moment expansion model overesti-
mates the range of filament translation and rotation
(Fig. 5b, c; note that filament rotation only occurs for
the perpendicular initial configuration).

To compare motor activity between models over the
whole simulation, we calculated the total work done by
motors. We numerically integrate both filaments using
the trapezoid rule [87],

Wtot = Wlin + Wrot =
∑
i�=j

∫
Fi,j · drj +

∑
i�=j

∫
Ti,j · dθj ,

(39)

where θj is the angle the vector ûj rotates through over
the simulation. The infinitesimal vector dθi = θ̂idθi

where

θ̂i =
ûi × ˙̂ui

|ûi × ˙̂ui|
. (40)

Total work computed for the mean-field models is
within error of the explicit motor model (Fig. 5d). We
note that the explicit motor model produces greater
total work because fluctuations in motor binding cause
fluctuations in sliding direction which generate larger
work. Motors generate rotational work only for ini-
tially perpendicular filaments, due to the constraints.
The magnitude of the rotational work is relatively small
because filaments rotate slowly (due to high rotational

drag and low motor torque), and this slower velocity
produces less work in the overdamped limit.

The crosslinking motor number depends on the fila-
ment overlap length, which changes as filaments move
(Fig. 5e–j). The crosslinking motor number in the
explicit motor model lags the mean-field models ini-
tially due to differences in binding, but becomes compa-
rable after the initial transient. As antiparallel filaments
slide apart, their overlap decreases so fewer motors
crosslink, while crosslinking motors continue to unbind
at a constant rate. However, the overlap length has lit-
tle effect on the number of motors with one head bound
(Fig. 5e, h). The dynamics of motor number for paral-
lel stationary and moving filaments are nearly identi-
cal because there is negligible sliding. (Fig. 5f, i). Mov-
ing perpendicular filaments maintain a similar overlap
length to stationary perpendicular filaments, leading
to an approximately constant motor number, until the
plus-ends move close together (Fig. 5g, j). Then, motors
continue to bind but immediately walk off, producing
little force or torque.

The motor force between antiparallel filaments rapidly
reaches a force plateau which persists until the antipar-
allel overlap length is small enough that motor bind-
ing is negligible (Fig. 5k). The nearly constant force
implies that motor extension decreases as the number
of crosslinking motors increases to give a constant slid-
ing speed (Fig. 5n, Video 4). This steady-state force
is an order of magnitude smaller than the stall force
(Table 1). The moment expansion model shows a slower
decrease in force as the overlap approaches zero com-
pared to the MFMD model (Fig. 5h). This is a conse-
quence of our neglect of boundary terms, which phys-
ically means neglecting motor dissociation at filament
ends. This unphysical slow force decrease drives fila-
ments beyond the zero overlap configuration to larger
than expected separation (Fig. 5b).

Parallel filaments remain with their centers aligned
on average because sampling the full distribution of
motor crosslinking extension generates restoring force
for any fluctuations away from full overlap (Eqs. 11, 13).
Neither the MFMD nor the moment expansion models
produce a net force, but in the explicit motor model
fluctuations in motor number and binding lead to force
and position fluctuations (Fig. 5f, i, l, Video 5). For per-
pendicular filaments, the small number of crosslinking
motors results in large force fluctuations in the explicit
motor model (Fig. 5j). The mean-field models show a
rapid increase to half the maximum force of the antipar-
allel configuration followed by a decrease as the fila-
ments align parallel (Fig. 5k, m). The lag caused by the
two-step binding model is more apparent here because
the explicit lower motor number means filaments move
more slowly into the parallel configuration where bind-
ing is favored (Video 6).

6.3 Computational cost and accuracy

To compare the accuracy and computational cost
of our models, we focus on stationary antiparallel fil-
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Fig. 5 Comparison of model results for three different
initial filament configurations evolved with constrained
motion. a Schematic of initial and final filament configu-
rations. b Plot of final filament center separations. c Plot of
change in angle between filaments starting in a perpendic-
ular configuration. Data shown is final configuration after
100 seconds for the explicit motor model and 20 seconds
for MFMD and moment expansion model. d Plot of trans-
lational (solid bars) and rotational (hatch bars) work done
by motors on filaments during simulation. explicit motor

model error bars in (b–d) indicate the SEM of simulation
realizations (n=48). e–g Plots of filament centers separa-
tion as a function of time. h–j Plots of motor number ver-
sus time. Purple and blue solid lines are the average of 48
explicit motor simulations (translucent lines) for one head
bound and crosslinking motors. k–m Plots of motor force in
the x̂-direction with individual explicit motor runs (translu-
cent blue lines) and average (solid blue). Full explicit motor
model range not shown to better see average
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Fig. 6 Comparison of computational cost and accuracy of
models for stationary filaments in an antiparallel configura-
tion. Error compared against steady-state solution. a Plot
of error (triangle) and CPU time (circle) vs time step Δt for
explicit motor and MFMD models. Each for explicit motor
model data point consists of 48 parameter set realizations.
MFMD simulations were run 3 times to ensure consistency
of time scaling. Standard error of the mean (SEM) of CPU
time plotted but not visible. b Plot of error and CPU time

vs Δs for MFMD model. Simulations were run 3 times to
ensure consistency. SEM of CPU time plotted but not visi-
ble. c, d Plot of CPU time vs unbound motor concentration
co and filament length L for the three models. Explicit motor
simulation data points in C and D consist of 24 parameter
set realizations while MFMD and moment expansion data
points consist of 3 runs for concentration and 4 runs for
filament length. SEM of CPU time plotted but not visible

aments because we can compare to the semi-analytic
solution. Antiparallel filaments are also the main con-
figuration in which motors generate extensile force,
important for mitotic spindle assembly and dynamics in
active nematics. We vary the time step Δt and MFMD
grid spacing Δs and compare the error with the semi-
analytic solution. The central-processing unit (CPU)
time measures the computational cost as a function of
simulation parameters.

The solution error is the average magnitude of the
deviation of the steady-state numerical solution from
ψi,j of Eqs. (23), (26), and (27),

Error =

∫

Li

∫

Lj

∣∣ψi,j − ψi,j

∣∣ dsidsj

≈
∑
m,n

∣∣ψi,j(mΔsi, nΔsj) − ψi,j(mΔsi, nΔsj)
∣∣ΔsiΔsj ,

(41)

where ψi,j is either the average explicit motor distribu-
tion (over 48 simulations) or the MFMD distribution.

The size of the time step Δt does not change the
error of explicit motor or MFMD simulations (Fig. 6a),
because the steady-state solution is time independent.
The number of calculations increases linearly with
the number of time steps Nt/Δt, making the CPU
time approximately inversely proportional to Δt. The
MFMD error scales near-linearly with grid spacing Δs
as expected for a first-order upwind difference method
(Fig. 6b). The CPU time scales approximately as Δs−2,
proportional to the number of grid points Ngrid ∝
Δs−2.

Explicit motor simulations have a cost that is lin-
ear in the motor number, but the cost is constant for
the MFMD and moment expansion models (Fig. 6c).
Fewer explicit motor simulations (24 realizations) were
needed to achieve sufficient statistics. We also note that
at higher concentration, the mean-field models return
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results closer to those of the explicit model because
stochastic fluctuations average out. The explicit motor
model has a cost linear in filament length (due to the
larger number of bound motors on longer filaments),
while for the MFMD model it is quadratic (Fig. 6d).
The cost of the moment expansion model is length inde-
pendent.

7 Discussion

To improve modeling methods for cytoskeletal filaments
crosslinked by motors (Fig. 1), we studied crosslinked
filament pairs and compared an explicit motor model
to two levels of coarse-grained mean-field motor mod-
els (Fig. 2). The explicit motor model uses Brownian
dynamics and kinetic Monte Carlo to describe individ-
ual motor binding and unbinding, motion, and force
generation. In the first level of coarse graining, we aver-
age over individual motors and solve a PDE for the
mean-field motor density (MFMD). To further coarse
grain, we compute a moment expansion of the MFMD
and solve a system of ODEs for the motor moments and
filament motion.

We compared the model implementations for fila-
ments that are initially antiparallel, parallel, or per-
pendicular (Fig. 3). When filaments are held station-
ary, the motor distribution reaches a steady state with
similar average motor distribution, force, and torque
for the three implementations (Fig. 4). The explicit
motor simulations showed significant fluctuations that
by construction are not present in the mean-field mod-
els. Interestingly, we found that a significant portion
of crosslinking motors on antiparallel filaments do not
reach their stall force for our parameter set.

When filaments move, the final filament separation
is similar for the explicit motor and MFMD models,
although the moment expansion model overestimates
the range of displacement and reorientation as a result
of neglecting boundary terms (Fig. 5). The dynamics
of bound motor number, force, and torque were similar
for the MFMD and moment expansion models. Motor
fluctuations in the explicit motor model lead to greater
overall work done by motors.

To compare computational cost across the model
implementations, we studied stationary filaments and
motors at steady state (Fig. 6). Both mean-field mod-
els have a simulation time independent of motor con-
centration, potentially making them faster than explicit
models for systems with many motors. The moment
expansion model’s CPU time is also independent of fil-
ament length, which could make it particularly efficient
for systems with long filaments. Overall, the moment
expansion model was 103 − 106 faster than the other
models. This method could therefore be useful for sim-
ulating bulk active filament networks.

Future work could address the simplifying assump-
tions and approximations made in the moment expan-
sion model. An improved treatment of boundary terms
may improve the computation of filament motion.

Incorporating additional motor physics into the moment
expansion model, such as non-zero-length motors, force-
dependent detachment, and steric interactions between
motors could improve its ability to simulate micro-
scopic motor behavior at the mesoscale, bridging cur-
rent explicit motor and continuous active network theo-
ries.Implementing the moment expansion model in sys-
tems of many filaments is of interest for testing whether
the improvements in computational cost we identify are
present in larger systems.
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Appendices

A Determining the time-step for binding

Our kinetic Monte Carlo algorithm assumes that multiple
binding/unbinding events do not occur in the same time
step Δt. As Δt becomes large relative to the kinetic rates,
this approximation fails. A time step is appropriate if the
maximum probability of two events occurring in Δt satisfies

max{P (C(Δt) ∪ B(t′)|A(0))} < δ (42)

for a tolerance δ, where A, B, and C denote motor bound
states (including unbound, single head bound, and crosslink-
ing) at time Δt > t′ > 0. P (C(Δt) ∪ B(t′)|
A(0)) = P (C(Δt)|B(t′))P (B(t′)|A(0)) and each individ-
ual state change follows a single event Poisson process with
P (B(t)|A(0)) = 1 − exp[−kA→Bt]. The maximum probabil-
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ity for a double event occurs at t′ = t′
max found by solving

dP (C(Δt) ∪ B(t′)|A(0))

dt′

∣∣∣∣∣
t′
max

= 0

kA→B

(
ekB→C(Δt−t′) − 1

)
− kB→C

(
ekA→Bt′ − 1

)
= 0.

(43)

While no analytic solution exists, t′
max can be numerically

computed.
There are four unique processes that must be considered

with a two-step binding process with unbound (U), single
head bound (S), and crosslinking (C) states: U → S → U ,
U → S → C, S → C → S, and C → S → U . The process
C → S → C has the same probability as S → C → S,
similarly, S → U → S has the same probability as U → S →
U . If modeling filament motion with some force- or energy-
dependent unbinding, koff,d may be large. This means that
in the limit of large unbinding rate the probabilities P (C →
S → C) → P (S → C) and P (C → S → U) → P (S → U).

B Lookup table for kinetic Monte Carlo
binding

Equation (11) gives the transition probability of a singly
bound motor crosslinking as an integral of a Boltzmann fac-
tor. If hcl = 0, kon,C is functionally similar to an error func-
tion. However, to model non-zero-length tethers, we numer-
ically integrate Eq. (11). Rather than directly numerically
integrating at each time step, we precompute a lookup table.

The cumulative distribution function (CDF) of Eq. (11),
is a function hi,j . All other variables in the integral are
constant for a given motor species. We reduce the CDF
dimensionality by considering the lab position of each bound
motor head and an infinite carrier line defined by the posi-
tion and orientation of the unbound filament. Binding is
then determined by the minimum distance r⊥ between the
bound motor head position and the filament ends [s−, s+]
on the carrier line.

The carrier line CDF is

CDF(r⊥, s) =

∫ s

−∞
e−βU(r⊥,s′)ds′, (44)

allowing us to write the crosslinking rate as

kon,C(r⊥, s+, s−) = ko,dεKE [CDF(r⊥, s+) − CDF(r⊥, s−)] .

(45)

We notice that e−βUi,j is symmetric in s, so CDF(r⊥, s) −
CDF(r⊥, 0) is anti-symmetric. Therefore, instead of inte-
grating from negative infinity, we use

CDF′(r⊥, s) = sgn(s)

∫ s

0

e−βU(r⊥,s′)ds′ (46)

and (45) to find the crosslinking rate.
We find the values of Eq. (46) by Gauss–Konrad integra-

tion. The accuracy desired sets the maximum values for s
and r⊥. The integrand is always positive for real values of
s and r⊥, so the CDF asymptotes for large values of either

Fig. 7 Visual representation of the lookup table showing
CDF values as a function of distance s along the filament
for hcl = 32 nm, kcl = .3 pN/nm, β = 1./4.11 (pN·nm)−1,
and δ = 10−5

variable. The maximum of the integral is the point when the
Boltzmann factor drops to the accuracy limit δ. Therefore,
the lookup table domain is

s, r⊥ ∈
[
0,

√
−2 ln(δ)

βkcl
+ hcl

]
. (47)

Given a specified grid spacing Δs, Δr, the memory required
for the lookup table scales as (smax/Δs) × (r⊥,max/Δr).

B.1 Interpolation of lookup table values

Since the lookup table is not a continuous function, we inter-
polate values between discrete grid points. The 2D linear
interpolation for input values of r⊥ and s is

CDF(r⊥, s) ≈
(
1 + m − r⊥

Δr

) (
1 + n − s

Δs

)

CDFm,n +
( r⊥

Δr
− m

) (
1 + n − s

Δs

)
CDFm+1,n

+
(
1 + m − r⊥

Δr

) ( s

Δs
− n

)
CDFm,n+1

+
( r⊥

Δr
− m

) ( s

Δs
− n

)
CDFm+1,n+1,

(48)

where CDFm,n = CDF(mΔr, nΔs) are the lookup table
values at m and n if r⊥ lies within mΔr and (m+1)Δr and
s lies within nΔs and (n + 1)Δs.

B.2 Reverse lookup algorithm

When a motor head binds to a filament, the binding position
probability distribution function (PDF) is defined by the
Boltzmann factor. We sample the PDF by using the lookup
table. To transform a uniform random variable X to random
variable Y with an arbitrary PDFY , X is inserted into the
inverted CDF of Y

Y = CDF−1
Y (X). (49)

Since the lookup table holds the CDF values and given a
random number from a uniform distribution, we apply a
combination of search and interpolation to quickly find the
corresponding random number from the PDF. The algo-
rithm is as follows
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1. Sample a uniform random number X ∈ [0, CDFmax].
Note that the maximum value does not need to be 1.

2. Given r⊥, locate index m such that mΔr ≤ r⊥ ≤ (m +
1)Δr

3. Use m to find the set of indices {n−, n+} such that
CDFm,n− ≤ X ≤ CDFm,n−+1 and CDFm+1,n+ ≤ X ≤
CDFm+1,n++1.

4. Use the CDF values to interpolate the binding loca-
tions s−, s+ corresponding to the perpendicular dis-
tances r− = mΔr and r+ = (m + 1)Δr. For example,

s− = Δs
X − CDFm,n−

CDFm,n−+1 − CDFm,n−
+ Δsn− (50)

s+ = Δs
X − CDFm+1,n+

CDFm+1,n++1 − CDFm+1,n+

+ Δsn+

(51)

Note that s− is not necessarily less than s+.
5. Find s by interpolating the across the lookup table grid

with respect to r⊥

s ≈ (s+ − s−)
r⊥ − r−

Δr
+ s− (52)

While this algorithm succeeds in most circumstance, the low
slope of the CDF at large values of s can cause errors. For
example, if the lookup table has the form of Fig. 7 and a
protein is located at a perpendicular distance of r⊥ = 35
nm, given a random number of X = 103, no value for s−
will be found since CDF(30, smax) < 103. To correct for this,
we solve for s using a binary search algorithm.

The binary search algorithm is as follows

1. Determine if CDFm,nmax or CDFm+1,nmax is less than
X. If CDFm,nmax < X, set s− = smax. If CDFm+1,nmax <
X, set s+ = smax.

2. Find other s± using the inverted lookup table and Eq.
(50) or (51).

3. Find the average of s− and s+.
4. Use the lookup table interpolation algorithm to find the

CDF(r⊥, savg).
5. If CDF(r⊥, savg) > X set the larger of the two s± values

to savg. Otherwise, set the smaller of the two to savg.
6. Repeat steps 3-5 until | CDF(r⊥, savg)−X| < δ for some

desired tolerance δ.

This process converges at a rate O(log2(δsmax)).

C Numerical integration of the MFMD
equation

We approximate the solution ψi,j(si, sj , t) by discretizing
the solution in time and space

ψi,j(si, sj , t) → ψm,n,k
i,j = ψi,j(mΔs, nΔs, kΔt) (53)

for ψm,n,k
i,j ∈ R

(Mi+1)×(Mj+1)×k, where Mi is the number
of discretized points along filament i. Additional boundary
points for m, n = 0 are added.

We use forward Euler time-stepping so our discrete dif-
ferential operator for time is

∂ψi,j

∂t
→ 1

Δt
(ψm,n,k

i,j − ψm,n,k−1
i,j ). (54)

To solve the hyperbolic FPE (17), we use a first-order
accurate upwind method [88]. The differential operator for
si becomes

∂ψi,j

∂si
→ 1

Δs
(ψm,n,k

i,j − ψm−1,n,k
i,j ). (55)

Note this only holds for the indices 0 < m and 0 < n. The
matrix representation for Eq. (55) is

1

Δs

⎛
⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 · · · cMi

−1 1 0

0 −1 1
. . .

...
. . .

. . . 0
d0 · · · dMi−1 dMi

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ0,n,k
i,j

ψ1,n,k
i,j

...

ψMi−1,n,k
i,j

ψMi,n,k
i,j

⎞
⎟⎟⎟⎟⎟⎟⎠

= �m,aψa,n,k
i,j , (56)

where cm and dm are chosen to satisfy the boundary con-
ditions. We choose the notation �m,n for this matrix. To
differentiate along sj , we use the identity ψm,n,k

i,j = ψn,m,k
j,i ,

apply �m,n on the matrix, and then convert back,

∂ψi,j

∂si
→

(∑
a

�n,aψa,m
j,i

)T

, (57)

which in index notation is ψm,a
i,j (�T )n,a. For brevity, we use

the notation ψm,a
i,j (�T )n,a = ψm,a

i,j �a,n.
The discretized Fokker–Planck Eq. (17) is then

ψm,n,k+1
i,j = Δt

(
− �m,a

(
va,n,k

i,j ψa,n,k
i,j

)

−
(
vm,a,k

j,i ψm,a,k
i,j

)
�a,n +2koce

−βU
m,n,k
i,j

−2koψ
m,n,k
i,j

)
+ ψm,n,k

i,j , (58)

where Um,n,k
i,j and vm,n,k

i,j are the discretized potential and

velocity at time kΔt. Note that Um,n,k
i,j = Un,m,k

j,i , but

vm,n,k
i,j �= vn,m,k

j,i .

In cases where the flux of the motors
∂(vi,jψi,j)

∂si
is known

at the boundaries, we construct � to satisfy the require-
ments. When filaments are in solution, there is zero flux
from the minus ends, so all cm = 0. In our simulations,
motors walk of filament ends with out pausing, so dMi−1 =
−1 and dMi = 1 with all other dm = 0. Although not mod-
eled in this paper, some biological motors end pause at fila-
ment plus ends. To model this, dMi−1 = −1 and every other
dm = 0.

D Conversion of binding parameters from an
explicit to mean-field motor density model

To relate binding parameters of the one-step and multi-step
binding models, we use that at steady state, the motor dis-
tribution ψi,j should be equivalent for both models. Since
we only compare binding kinetics, we simplify the Fokker–
Planck equation to keep only the binding terms: in Eq. (17),
we set vi,j = vj,i = 0,

∂ψi,j

∂t
= 2koce

−βUi,j − 2koψi,j . (59)
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The steady-state solution is

ψi,j = ce−βUi,j , (60)

which is a Boltzmann factor multiplied by an effective con-
centration.

The multi-step binding model can be written

∂ψi,j(si, sj)

∂t
= εK′

Eko,C(χi + χj)e
−βUi,j − 2ko,Cψi,j ,

(61)
∂χi(si)

∂t
= coKaεko,S − ko,Sχi

+

∫

Lj

(
ko,Cψi,j − εK′

Eko,Cχie
−βUi,j

)
dsj ,

(62)
∂χj(sj)

∂t
= coKaεko,S − ko,Sχj

+

∫

Li

(
ko,Cψi,j − εK′

Eko,Cχje
−βUi,j

)
dsi,

(63)

where χi is the mean-field density of motors with one head
bound to filament i (cf. Eq. 16). We define K′

E = KE/Vbind

and solve for the steady state, giving

ψi,j =
εK′

E

2
(χi + χj)e

−βUi,j , (64)

χi =
εK′

Eko,C

2ko,S

(∫

Lj

(χj − χi)e
−βUi,j dsj

)
+ εKaco,

(65)

χj =
εK′

Eko,C

2ko,S

(∫

Li

(χi − χj)e
−βUi,j dsi

)
+ εKaco.

(66)

The equations for χi and χj have the forms

X(s) = C

∫ b

a

(Y (t) − X(s)) K(s, t)dt + D, (67)

Y (t) = C

∫ d

c

(X(s) − Y (t)) K(s, t)ds + D, (68)

where t ∈ [a, b] and s ∈ [c, d]. Distributing the integrals, we
can rewrite

X(s) = C

∫ b

a

Y (t)K(s, t)dt − CX(s)F (s) + D, (69)

Y (t) = C

∫ d

c

X(s)K(s, t)ds − CY (t)G(t) + D, (70)

where F (s) =
∫ b

a
K(s, t)dt and G(t) =

∫ d

c
K(s, t)ds. Solving

for X(s) and Y (t) gives

X(s) =
D

1 + CF (s)
+

C

1 + CF (s)

∫ b

a

Y (t)K(s, t)dt,

(71)

Y (t) =
D

1 + CG(t)
+

C

1 + CG(t)

∫ d

c

X(s)K(s, t)ds,

(72)

After plugging Eq. (71) into (72), we find

Y (t) =
D

1 + CG(t)
+

CD

1 + CG(t)

∫ d

c

K(s, t)

1 + CF (s)
ds

+C2

∫ b

a

∫ d

c

Y (t′)
K(s, t)K(s, t′)

(1 + CF (s))(1 + CG(t′))
dsdt′.

(73)

This can be rearranged into the form

Y (t) = A(t) +

∫ b

a

Y (t′)B(t, t′)dt′, (74)

which implies that Y (t) and X(s) each satisfy a Fredholm
equation of the second kind. Both A and B are continuous
given K(s, t) = e−βUi,j(s,t), so the Fredholm equations of
the second kind have unique solutions. By inspection, the
solution to Eqs. (67) and (68) is X(s) = Y (t) = D. When
we substitute this solution in Eqs. (65) and (66), we find
χi = χj = εKaco and

ψi,j = ε2KaK′
Ecoe

−βUi,j . (75)

Setting Eq. (60) equal to (75) gives

c =
ε2KaKE

Vbind
co. (76)

E Calculating binding parameters from exper-
iments

The experimental parameters for motor binding are not
always independently measured. If all but one binding
parameters are known, then the unknown parameter can be
found from Eq. (18) and the ratio of the number of motors
with one head bound and number of motors crosslinking.

As an example, suppose we wish to find KE. The number
of motors with one head bound is NS = coKaεL, where L is
the filament length. In vitro experiments [86] can measure
the crosslinking motors number Nd. Integrating Eq. (75), we
obtain the model prediction for the number of crosslinking
motors as

NC = coε
2KaK′

E

∫

Li

∫

Lj

e−βUi,j dsidsj . (77)

For fully parallel or antiparallel filaments of the same length
with adjacent centers, the total number of motors in Eq.
(77) is proportional to L. If L 	 √

2/βkcl, the Gaussian

integral ≈ L
√

2π/βkcle
−βkclr

2
⊥ , where r⊥ is the center-to-

center separation between filaments. The ratio of the num-
ber of crosslinking motors relative to the number motors
with one head bound is

ρ =
NC

NS
= εK′

E

√
2π

βkcl
e−βkclr

2
⊥ , (78)

allowing us to estimate K′
E = ρ

ε

√
βkcl
2π

eβkclr
2
⊥ .
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F Gaussian integrals in the moment expan-
sion

The source terms in the moment expansion require a dou-
ble integral over two filaments. To lower the numerical inte-
gration’s computational cost, we find an analytic solution
for either the semi-integrated term Ql

j(si) or the fully inte-

grated term qk,l
i,j .

The integrated source terms are
q

k,l
i,j =ce

−
(

r
α

)
2
{∫

Li

s
k
i exp

[
− s2

i −2siri,j · ûi−(rj,i · ûj +ûi · ûjsi)
2

α2

]

∫

Lj

s
l
j exp

[
−

(
sj − rj,i · ûj−ûi · ûjsi

α

)2]
dsjdsi

}
,

(79)

where α =
√

2
βkcl

. We define the quantity A = −rj,i · ûj −
ûi · ûjsi so that the integral over sj becomes

Q̄l
j(si) =

∫

Lj

sl
je

−
(

sj+A

α

)2

dsj . (80)

This integral has an analytic form in terms of error func-
tions, which can be rapidly computed. For l = 0, 1, 2, 3, we
find

Q̄0
j (si) =

α
√

π

2

[
erf

(
sj + A

α

)]

∂Lj

(81)

Q̄1
j (si) = −α

2

[
αe

−
(

sj+A

α

)2

+ A
√

π erf

(
sj + A

α

)]

∂Lj

(82)

Q̄2
j (si) =

α

4

[
2α(A − sj)e

−
(

sj+A

α

)2

+(2A2 + α2)
√

π erf

(
sj + A

α

)]

∂Lj

(83)

Q̄3
j (si) =

−α

4

[
2α(A2 − Asj + s2

j + α2)e
−

(
sj+A

α

)2

+(2A2 + 3α2)A
√

π erf

(
sj + A

α

)]

∂Lj

(84)

G Moment expansion boundary terms

To generally define boundary conditions, instead of integrat-
ing over both si and si, we integrate over just one variable.
This makes the boundary condition a function of a single
filament attachment position. For example, the boundary
terms for the first filament are

Ḃl
j(si) =

∫

Lj

(
2koce

−βUi,j + (2κ − 2ko)ψi,j

− (vo + κ(ri,j · ûi + ûi · ûjsj − si))
∂ψi,j

∂si

− (vo + κ(rj,i · ûj + ûi · ûjsi − sj))
∂ψi,j

∂sj

)
sl

jdsj .

(85)

These boundary terms are evaluated at −Li/2 and Li/2.
We derive a recursion relation by integrating Eq. (85) over

sj and using the definition in Eq. (37)

Ḃl
j (si)

= 2kocQ
l
j (si) + l (vo + κ(rj,i · ûj + ûi · ûjsi)) Bl−1

j

− (2ko + κ(l − 1)) Bl
j

− (vo + κ(ri,j,j · ûi,j − si))
∂Bl

j

∂si
− κûi · ûj

∂Bl+1
j

∂si

−
[
sl

j (vo + κ (rj,i · ûj + ûi · ûjsi − sj)) ψi,j (si, sj)
]

∂Lj

.

(86)

Solving this equation requires finding the time evolution of
the boundary term spatial derivatives, which solve

∂Ḃl
j (si)

∂si
=2koc

∂Ql
j

∂si
+ ûi · ûj lB

l−1
j

+ l (vo + κ(rj,i · ûj + ûi · ûjsi))
∂Bl−1

j

∂si

− (2ko + κ(l − 2))
∂Bl

j

∂si

− (vo + κ(ri,j,j · ûi,j − si))
∂2Bl

j

∂s2
i

+ κûi · ûj

∂2Bl+1
j

∂s2
i

+ corner terms.

(87)

This shows that the boundary terms do not close. How-
ever, if the higher-order terms or their coefficients are small
compared to the moments μk,l

i,j , we may take a zeroth-order
approximation. We consider this approximation in Sect. 6.
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