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Abstract—We report the development of a simple
interferometer-based microwave sensing system for multiple
frequency characterization and differentiation of in-flow yeast
cells. The interferometer uses a simple microstrip line, integrated
with a microfluidic channel, for single-cell measurement.
An algorithm was developed and verified with high-
frequency structure simulator (HFSS) for complex permittivity,
e*"(f) = &'(f) — je"([f), extraction from measured scattering
parameters. The sensing system and the algorithm were evaluated
by measuring polystyrene particles of different diameters and
at different interferometer operating frequencies. Viable
and nonviable Saccharomyces cerevisiae and Saccharomyces
pastorianus cells were measured at those frequencies. The
results showed frequency-dependent permittivity values for each
species of yeast and viability as well as frequency-dependent
permittivity differences between different yeast types. The
differences at some frequency points are significant and enable
the differentiation of cells in mixed suspension, which is also
demonstrated with a prediction model developed in this work.

Index Terms— Brewing yeast, complex permittivity, cytometry,
microwave sensing, single cell analysis.

I. INTRODUCTION

ICROWAVE technology has attracted significant inter-

est in biological cell sensing. It is highly sensitive,
partly due to strong interactions between microwaves and
cells and large permittivity contrasts between cells and liquid
medium matrix. A variety of approaches have been developed
and different types of cells have been tested. For instance,
a combination of resonator and interference demonstrated high
sensitivity microwave (1.1 GHz) detection of dual-frequency
dielectrophoresis response of in-low CHO cells [1]. A straight
transmission line with a sensing gap has been used to monitor

Manuscript received November 9, 2020; accepted November 16, 2020.
Date of publication January 14, 2021; date of current version March 4,
2021. This work was supported in part by NSF under Grant 1711463 and
Grant 1640578 and in part by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, for the use of the Center for
Nanoscale Materials, an Office of Science user facility, under Contract
DE-AC02-06CH11357. (Corresponding author: Jeffrey A. Osterberg.)

Jeffrey A. Osterberg, Neelima Dahal, David Moline, and Pingshan Wang
are with the Holcomb Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC 29634 USA (e-mail: josterb@clemson.edu;
pwang@clemson.edu).

Ralu Divan and Christina S. Miller are with the Argonne National Labora-
tory, Center for Nanoscale Materials, IL 60439 USA.

Thomas P. Caldwell and Sarah W. Harcum are with the Department of
Bioengineering, Clemson University, Clemson, SC 29634 USA.

Xianzhong Yu is with the Department of Biological Sciences, Clemson
University, Clemson, SC 29634 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109%/TMTT.2020.3048176.

Digital Object Identifier 10.1109/TMTT.2020.3048176

single-cell monocytes subject to electroporation [2], where a
blocker is used to capture single cells for broadband mea-
surement up to 40 GHz. A similar design was developed
for detecting small populations of E. coli cells from 0.5 to
20 GHz [3]. Passive interferometers were built to measure
single yeast cells [4]. Nevertheless, the lack of specificity has
been the limiting factor for microwave cell sensing.

Results from various microwave and RF sensing efforts indi-
cated potential measurement specificity. At lower frequencies,
impedance measurements [5] have shown partial success in
single-cell identification when the ratio of impedance at two
different frequencies (i.e., opacity) is used [6], [7]. At 5 GHz,
viable and nonviable yeast cells showed significantly different
signals [4]. The fact that a cell species can have highly
conserved and stable molecular components, such as fatty
acids [8], likely enabled the differentiation due to differ-
ing charges, polarization, and dynamics of molecules of the
bacteria. RF and microwave sensors have long been used
for label-free sensing of cell suspensions due to their ease
of construction and ability to take broadband measurements.
Such sensors have been used to detect cancer cells (liver,
breast, lymphocyte, bone) [21]-[26], on-line monitoring of cell
adhesion [27], alterations of cell morphology and motility for
cytotoxicity assessment of chemicals [28], and on-line biomass
monitoring [29]. A major drawback of bulk measurements
is the lack of insight provided on the large variability of
individual cells within the population. Additionally, most
studies of this type are well controlled in the lab and may not
translate to real-world applications. These drawbacks could
be overcome by measuring individual cells within a cell sus-
pension over a broadband. Thus, a combination of broadband
and high-frequency measurements of single cells presents the
best opportunity in the search for cell differentiation power
due to potentially added information of molecular relaxation
not detected by single frequency or narrowband probing and
cell organelles not detectable at low frequencies. As a result,
microwave measurement specificity could be achieved without
using bio-recognition elements or labels. The specificity would
address the major limitation of microwave sensor application
in biology as well as chemical and environmental monitoring,
where substance identification is of paramount importance.
While label-based technologies can provide high specificity,
these tools are often labor- and cost-intensive.

Nevertheless, measuring single in-flow cells over a wide
frequency range remains a challenge despite significant efforts
and progress. In this work, we demonstrate the utility of
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Fig. 1. (a) Illustration depicting the utilization of two microwave properties to
identify/distinguish different species and strains. (b) Schematic of the simple
tunable microwave interferometer used in this work for cell characterization.
Two power dividers (PD) are used to split and combine the probing microwave
signals and create interference between the two signal paths. MUT represents
the MUT path, while REF represents the reference path. The attenuator, «,
is used to balance the two paths to improve SNR ratio. A vector network
analyzer (VNA) is used to generate and detect probing signals.

a simple tunable interferometer system for single-cell iden-
tification. When the tunable interferometer was applied to
two brewing yeasts of closely related species, we showed
significant microwave property differences that can be used to
differentiate the species in a cell-particle mixture suspension.
This article is arranged as the following: Section II describes
the design considerations of the tunable interferometer for
single-cell characterization at different frequencies. Section III
reports the measurement results of live and dead cells from
two brewing yeast species, Saccharomyces cerevisiae and
Saccharomyces pastorianus. Section V discusses the project’s
findings and presents the conclusion.

II. TUNABLE MICROWAVE INTERFEROMETER FOR YEAST
MICROWAVE SPECIFICITY INVESTIGATION

A significant number of single cells need to be measured
over a wide frequency range for a microwave specificity
analysis to identify species or other cell characteristics. There-
fore, in-flow cell measurement, instead of measuring trapped
cells, is necessary. Additionally, signal variations from various
sources, such as cell position in the sensing zone, are required.
Finally, the measurement system fluctuations should be small,
much smaller than cellular heterogeneity within a cell species
or strain, or smaller than intercellular differences for the
analysis to be meaningful, as illustrated in Fig. 1(a). The
measurement frequency should be tunable, since the frequen-
cies that provide the best information for differentiation are
unknown. At the same time, high-sensitivity measurements
are necessary, since the difference between cells within a
population is expected to be small. In this work, we choose
a multifrequency tunable interferometer and examine two
brewing yeast species.

Fig. 1(b) is a schematic of the interferometer device. The
operating principle for this device has been described pre-
viously [9]. For this device setup, the sensing electrode is
placed in the shorter path and an attenuator is used on the
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Fig. 2. (a) Top view of the sensing zone of the ML sensor. The microfluidic

channel runs perpendicular to the microstrip and contains a ground plane along
the base. (b) K—K cross section of the microfluidic channel showing the layers
of the microstrip and the signal line transitions (CPW-ML—CPW). The sensing
zone spans the width of the channel, w.papne1. and is described by (6)—(10).
The effects of the remaining sections of the sensor can be calibrated out
using (3). The height (hp) and dielectric constant (eiop) of the top cover on
the microstrip are 1 mm and 2.78, respectively. The height and permittivity of
the lower substrate, labeled with the subscript sub, do not impact the behavior
of the microstrip due to the placement of the ground plane at the base of the
microfluidic channel, which acts as the lower substrate for the ML. Since the
ML ground, wepd, is 80 pm wide and the channel is 100 um wide, there
are 10-um gaps between the edges of the substrate ground and the edge of
the channel, which adds some error both in the model and in measurements,
since it is possible for a cell to miss the ground plane when passing under the
ML. (c) M—M cross section of the microstrip showing the HFSS-simulated
electric field intensity. The total electric field energy within two 4.5-um-
diameter spheres, one at the top of the channel (1) and one at the bottom (2),
have a difference of 6%, showing that measurement error due to the vertical
position of a cell is minimal. The cross sections in (b) and (c) are not to
scale, since fjop and hgyp (both 1 mm) are over 100 times larger than hyyr.
(d) Broadband simulation of the ML section of the sensor for PSPs (g, = 2.6)
in positions (1) and (2) using water as the reference material (eyyT = 81).

reference (REF) path to balance the loss between the two paths
to maximize measurement signal-to-noise ratio (SNR).

A. Microstrip Line as Sensing Electrodes

A simple microstrip line (ML), Fig. 2(a), was selected to
be the sensing electrode in Fig. 1. Resonators can concen-
trate the probing fields and improve measurement sensitivity,
such as measuring nanometer-scale cell membranes [10]. But
their operating frequencies are limited and not easily tunable,
thus inconvenient for frequency search/sweeping application.
Coplanar waveguides (CPWs) are easier to build, yet the
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measurement signals are sensitive to cell position relative
to CPW electrode surface [11], and the position is difficult
to control. Hence, separating cell-intrinsic property variation
from position variation in a measurement is challenging. For
the ML arrangement in Fig. 2(a), it has better sensitivity
than CPWs [12]. The interaction between a cell and the
microwave fields varies with cell sizes and vertical location,
Fig. 2(b), but the variations can be alleviated to likely tolerable
levels by the use of larger ML width, w. Hence, the ML in
Fig. 2 provides a reasonable tradeoff between sensitivity, field
intensity variation, and frequency tunability.

The microstrip electrode in Fig. 2(a) is connected to a CPW
transition section at each end. The use of CPW is for easier
cable connections. The microfluidic channel, used to transport
cell samples through the sensing zone, extends the width of the
10 mm x 10 mm sensor. The 500-xm-wide channel tapers to
a width of 100 gm for a 250-um-long section passing under
the ML, giving a total channel volume of 43.6 nL. Microfluidic
tubes inserted at the ends of the channel allow for samples to
be injected via a syringe.

The sensor is made of two pieces—a top piece that serves
as a cover for the microfluidic channel and contains the signal
lines and the CPW ground plane, and a bottom piece that
has the microfluidic channel, the microstrip ground, and four
additional channels used to adhere the pieces. The sensors
were fabricated on 4-in fused silica wafers using standard
microfabrication processes. 20-Cr/200-Au metal was patterned
using a liftoff procedure on both wafers to create the signal
and ground lines. Five 9-um-deep channels were etched in the
bottom wafer, prior to metal patterning on the bottom wafer,
by immersing in concentrated 49 wt% hydrofiuoric acid (HF)
for 10 min. Due to the relatively large etch depth, 5-Cr/100-Pt
was used as masking material rather than more commonly
used photoresists, since photoresist is easily penetrated by HF
at high concentrations [17]. The microfluidic channel, labeled
Wehannel iN Fig. 2(a), runs perpendicular to the signal line at the
center of the sensor. The other four channels are used to adhere
the two pieces together using optical glue. The glue channels
are each 200 ym wide and span the width of the sensor. The
bases of the channels are metal coated to create a ground
plane for the microstrip and ensure continuity of the CPW
ground. The width of the microstrip ground, wgpq, is slightly
narrower than the microfluidic channel at 80 zm to allow for
misalignment during fabrication. The areas above the channels
on the top wafer are left transparent to allow for viewing
under a microscope. After adhering the signal and ground
pieces, tubes are inserted into drilled holes at the ends of the
microfluidic channel, allowing continuous fluid flow through
the sensor. The final assembled device is mounted in a brass
assembly with SMA connectors, shown in Fig. 3(b). Fig. 4(b)
shows the broadband measurement and simulation results of
the ML. There was very good agreement between measured
and simulated |S;| over the entire operating frequency range
and |S;;| agrees well below 6 GHz. The differences above
this are likely due to effects from the connectors, optical
glue, and device imperfections from fabrication, particularly
scratches created from drilling the microfluidic channel inlets,
being difficult to account for in the simulation.
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Fig. 3.

(a) Benchtop assembly showing the interferometer setup with VNA,
microscope, and (b) final assembled ML sensor.
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Fig. 4. (a) Broadband measurement of the interferometer in Fig. 1(b)

with an ML. Yeast measurements were taken at the six frequencies circled.
(b) Comparison of measurement and simulation results for the sensing
electrode over the operating frequency range.

With the ML in the interferometer in Fig. 1(b), the path
lengths were fixed such that the interferometer had a funda-
mental frequency of 265 MHz, with harmonics approximately
every 530 MHz, as shown in Fig. 4(a). This allowed for easy
switching between operating frequencies over a wide range of
frequencies. A tunable phase shifter could be added in series
with the attenuator if increased frequency tunability is desired.

B. Cell Permittivity Extraction

In order to obtain cell permittivity information, *(f) =
g'(f) — je"(f), from measured S-parameters, we first extract
the effective substrate permittivity of the ML sensing zone
section. The ML propagation constant, y = a + jf, can be
obtained from the measured S,;. The output at port 2 of the
interferometer in Fig. 1(b) is [9]

S21 = Amure T 4 Apgg

ey

where the subscript MUT and REF refer to the material under
test and the reference material, respectively. The complex
constants Ayyr and Aggp are the normalized transmission
coefficients of the two paths. The transmission coefficient of
the ML sensing zone is described by the term e~ 7r™uT_These
constants can be eliminated by using two calibration liquids
with known propagation constants by

SZ]MUT — S21(:a]1 e—}"MUTfMUT — e—}’.—.anfcan

(@)

S21cai2 — S21can e~ Yeazlealz — @—Vean keall
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Fig. 5. Cell permittivity determination process. The schematic starts
at the transmission line model. The parameter y/ is calculated from Sy
using (2). This parameter is used to obtain &£}y, which describes the per-
mittivity of a microstrip if it were surrounded by a homogeneous medium.
Equations (6)—(10) are used to determine the media permittivity, % .. . prior
to cell measurements, where a cell is represented by the circle. The thickness
and permittivity of the glass cover, Ap and eiop, the channel height, Anmur,
and the electrode width, w, are constants defined by the device geometry and
materials. When a cell passes under the electrode the overall MUT permittivity
changes, labeled as Ael.

where the call and cal2 subscripts refer to the signals from
two calibration solutions. Solving for ppulmu gives

S$21MUT — S21call

}'MUTIMUT = ln[( )(e—]’ujzfcﬂz _ e_}‘lcallfcall)

S$21ca12 — S21cal

_e—}'.—.anfcanil_ 3)

The effective complex permittivity is then determined from
Pmut bY [35]

2 2
—a

=t % @
W~ [LpEp

and
2ap
" - 5
Eoff ? 00 ( )

This results in the effective permittivity of the microstrip
portion of the sensor, which assumes a homogeneous medium
surrounding the microstrip (Fig. 5).

The next step is to use this measured effective permittivity
to determine the relative permittivity of the medium. The
above analysis is valid for any sensor in an interferometer
system, provided the impedance changes during measurements
are small enough that reflections can be ignored. Extracting
the permittivity of the medium from the effective permittivity,
however, is dependent on the device geometry.

Closed-form solutions based on the conformal mapping are
commonly used to relate effective and relative permittivity
of microstrip devices; however, these models are typically
intended for single-layer microstrips. For multilayered struc-
tures, curve fitting techniques can be used, but this is a difficult
endeavor. Due to the multilayer structure of the microstrip and
the large permittivity of the mediums we found the variational
method in the Fourier domain, along with the transverse
transmission line (TTL) technique [14], to be more accurate
than conformal mapping based models and more computation-
ally efficient compared to full-wave electromagnetic methods.
Since the ML is embedded in an inhomogeneous medium the
propagating mode is approximated as quasi-TEM, for which
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the effective permittivity is related to the capacitance by [18]

Co
where C* is the capacitance of the multilayered ML per unit
length and Cj is the capacitance of the ML with the dielectric
layers replaced by air. The capacitance of the ML can then be
determined from the variational expression of line capacitance
in the Fourier domain [13]

- [ oo

(6)

*
Seﬂ' =

)

where f(f) is the charge distribution in the Fourier domain
where total charge Q on the center conductor, per unit length,
is
(B 8[sin(Bw/2) n 12

0 5L (Bw/2) 5(Bw/2)?

. .
X [cos (Bw/2)— zszz,fzgz) + Slzﬁ,f ;:;: )] (8

where w is the width of the microstrip. G (8, h) is the Green’s
function in the Fourier domain, defined as [14]

G(B,h) = ©)

1
pY+
where the Y-admittance parameter for a two-layer microstrip
is given by [19]

S:Op + coth (ﬁhlop) (10)
1 + &}, coth(Bhyp)

where hyp (1 mm) and Ayur (9 um) are the substrate and
channel thicknesses, respectively, and &, is the dielectric
constant of the glass substrate.

So, the effective permittivity, eJ;, is determined from
S-parameter measurements using (1)«(3), then g is
obtained using look-up tables. Due to the complexity of (7)
there is no closed-form expression for ey, so look-up
tables were used to determine &gy, from the measured £3;.
Equations (6)—(10) were used to generate two tables, one
relating e¢'myr and &'er, and one for &'myr and &,
by sweeping one of the values of ey, (real or imaginary),
and calculating the corresponding part of ;. The maximum
error created by using the tables was found to be less than
0.01% for ¢ and less than 0.5% for ¢”. The permittivity
extraction process is summarized in Fig. 5. When a cell
passes under the electrode the overall MUT permittivity
changes. Throughout this article when discussing Aek,, we
are referring to the peak change in permittivity, which occurs
when the cell is centered under the electrode.

To validate the model described in (6)—(9), the effective per-
mittivity £3; was calculated from relative permittivities ey,
and compared with simulation using ANSYS high-frequency
structural simulator (HFSS). The ML was simulated by sweep-
ing the real and imaginary parts of efyyr and calculating
ek using (4) and (5), and the propagation constant y from
HFSS. The simulated and calculated values for ¢}; are plotted
in Fig. 6.

Yt = B;IUT Com(ﬁkMUT) + Srop[
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Fig. 6. Calculated and simulated (a) &'esr and (b) &”cfr for values of

e'mur and &”yyr for the ML. The permittivity extraction model described
in (6)—(10) shows good agreement with HFSS simulation.

III. YEAST MEASUREMENTS

The microwave interferometer system is shown in Fig. 1(b)
and the algorithms were evaluated first using polystyrene
particles (PSP) with various diameters (3 to 7.3 xm). The
measurements taken using the PSP were used to determine
the sensor accuracy, sensitivity, and precision. The second
evaluation of the microwave interferometer system probed
viable and nonviable S. cerevisiae and S. pastorianus, two
popular species of yeast used in the production of beer, for
signal characteristics.

The two species are nearly identical in size and shape,
which makes visual identification difficult [36], [39]. Both
are elliptical in shape and vary from 7 to 10 gm long and
4 to 7 pym wide [37], [38]. The similar morphologies are
a result of S. pastorianus being a hybrid S. cerevisiae and
another species, S. eubayanus, which also gives S. pastorianus
a double size genome [36], [44], [45]. As such, biochemical
techniques such as mass spectrometry and polymerase chain
reaction (PCR) must be employed to identify closely related
species [40]-[42]. These techniques are expensive and time
consuming. The ability to rapidly distinguish between similar
species such as these could provide a valuable new method-
ology for microbiologists.

When yeast from either species is killed by heat shock
there is no noticeable change in morphology, provided the
temperature is not so high to completely breakdown the cell
membrane. Nonetheless, high temperature and subsequent cell
death are known to increase membrane permeability [44].
Consequently, there were no visual differences between the
two yeast species and the two states for each condition (live
and dead). Thus, the differences in microwave properties were
due to the inherent differences between the cells.

A. System Evaluation With PSP

Five spherical polystyrene microparticles with diameters—
3,44,5.5,6.2, and 7.3 pgm were suspended in DI water and
pumped through the sensor at a rate of 20 xzL/h using a syringe
pump to obtain signals for the six targeted frequency points
shown in Fig. 4. These frequencies were 7.65, 5.55, 3.96, 2.38,
0.800, and 0.265 GHz. When a particle passed under the ML,
a shift in §,; was observed, which corresponded to a change
in the complex permittivity due to the permittivity contrasts
between the cell/particle and medium.
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Fig. 7. Multiple measurements of a single 5.5-um particle at 3.96 GHz.

The same particle was manually controlled to pass back and forth across the
sensing electrode to test the repeatability of the measurement. The particle
position was controlled by first injecting the particle solution into the sensor
and waiting several minutes until the particles stopped moving. The particle’s
lateral position can then be precisely controlled by raising and lowering the
tubes connected to the inlet. The average shifts of &’ and & were 0.760+0.013
and 0.145 + 0.006, respectively. The differences between measurements can
be attributed to noise having a small effect on the peak shift value.
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Fig. 8.  Scatter plot of permittivity shifts for 150 5.5-um PSP particles
measured at 3.96 GHz.

Fig. 7 shows a typical S»; signal and the corresponding
permittivity change with DI water as the background reference.
The signals are obtained with the same particle that passes
through the sensing electrode multiple times. The measure-
ment time step is approximately 10 ms. The average shifts of
¢" and &” were 0.760 & 0.013 and 0.145 =+ 0.006, respectively.
The results show that the setup in Fig. 1(b) is sensitive and
the measurements are repeatable.

Fig. 8 shows the measured results of 150 5.5-um PSP
particles measured one at a time. The average shifts for all
the particles are 0.660 £ 0.044 (£') and 0.112 + 0.022 (£").
The coefficients of variation of A¢’" and Ae” are 5.40% and
17.53%, respectively. Compared to 13.64% particle volume
variation, the system has good measurement accuracy.

Fig. 9(a) shows measured S;; of PSPs with different
diameters. The minimum detectable PSP particle and
permittivity change, which yields an SNR of 3:1, is frequency-
dependent as shown in Fig. 9(b). The sensitivity decreases

Authonzed licensed use limited to: CLEMSON UNIVERSITY . Downloaded on June 18,2021 at 15:54:59 UTC from IEEE Xplore. Restrictions apply.



1880
50 T T T T
a5 0. o A
40 t % ° .

A & i

% 30 } .

5 f A J

= Ayt

ﬁ 20 F ‘ Aa, ¢ 44um |

S @55um |
o iy - Gzan |
s | Y 4 sum
. : . . .

0 i, 2 3 4 5
ALS,, (deg)
(@)
0.4 T T r 45
035 | *E 4 €
B s | ®: 35 =
w # Diameter Fr
o 3 =
E 25 E
@ e
@ 2 2
& £
3
E s g
=
IE s
= 0.5
0 , . , 0

4 6
Frequency (GHz)
(b)

Fig. 9. (a) Scatter plot of the observed Sa1 shift for various sizes of micropar-
ticles at 1.81 GHz. Each point represents the peak induced shift, plotted as
magnitude versus phase. (b) Minimum detectable shift in permittivity and
minimum detectable PSP diameter for a 3:1 SNR.

at lower frequencies due to decreasing electrical length.
At higher frequencies, the sensitivity flattens out because
of increased sensitivity to mechanical noise in the cables.
The predicted smallest measurable PSP particle is 1.7 gm
diameter, assuming a linear relationship between volume and
signal size, which would occur at 2.38 GHz.

B. Yeast Cell Measurement

S. cerevisiae and S. pastorianus cells, shown in-flow in
the sensor in Fig. 10, were grown in Yeast Extract-Peptone-
Dextrose (YPD) medium until a concentration greater than or
equal to 10 cells/mL was reached, typically around 24 h.

The cells are diluted 40:1 DI water:cell medium immedi-
ately before taking measurements. Since measurements are
taken for individual cells, we are not concerned with the
consistency of the cell concentrations between measurements,
but rather the consistency of the medium since that will affect
the baseline permittivity. Dead cell samples are obtained by
killing yeast in 90 °C water for one minute. The effectiveness
of the methods used for cell growth and killing the cells was
confirmed by performing cell viability counts using Trypan
blue and a hemocytometer. We found S. cerevisiae live samples
are at least 97% viable and dead samples contain less than 1%
viable cells and S. pastorianus live samples are over 99%
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Fig. 10. Microscope images taken of live (a) S. cerevisiae and
(b) S. pastorianus cells in-flow. The two strains, whether alive or dead, are
visually indistinguishable.

viable and dead samples have less than 2% viable cells. All
samples were prepared to be as uniform as possible to keep
the baseline permittivity constant throughout measurements.
However, due to the complex biological processes taking place
during cell growth, there will always be slight differences in
the media. We found the solution media permittivity had a
maximum standard deviation between measurement samples
of 0.9 for ¢ and 0.3 for &,” occurring at 0.265 and 0.8 GHz,
respectively, and the percent difference between media permit-
tivities was less than 3% for all frequencies except for &” at
the same two frequencies, although the larger differences are
exaggerated due to the small values of ¢.” The effects of these
differences are minimal compared to the intrinsic differences
between cells within a given population.

Multiple time-domain measurements are taken of four yeast
samples, including two yeast species, S. cerevisiae and S.
pastorianus, at two physiological states, live and dead. Mea-
surements were taken one frequency at a time under the
assumption that the solutions have a uniform distribution (i.e.,
uniform baseline). Fig. 11 shows typical measurement results
of S. pastorianus cells at 2.38 GHz. Each signal represents a
cell passing under the ML, with the peak change in &’ and &”
occurring when the cell is under the center of the electrode.

Scatter plots for three of the six frequencies are shown
in Fig. 12. Each point in the plots represents the absolute value
of the difference between the average baseline value and the
peak change in both ¢’ and &” for a single cell.
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Fig. 11.  Typical time-domain measurement of S. pastorianus yeast cells,

taken at 2.38 GHz. Each signal is due to a single cell passing through the
sensor. The S-parameter data are used to calculate the complex permittivity,
then the peak change in &' and &” is used to obtain the cell population’s
response, shown in Fig. 12, where each point represents the peak change in
both ¢’ and &” for a single cell.

TABLE I
COEFFICIENTS OF VARIATION OF Ag’

Frequency SC SC SP SP 5.5

(GHz) Live Dead Live Dead um
7.65 58.2% 61.1% 41.2% 51.4% 5.06%
5.55 42.1% 47.4% 41.7% 49.3% 3.78%
3.96 51.9% 57.3% 45.3% 51.0% 5.40%
2.38 43.2% 50.1% 38.9%  52.50% 4.78%
0.80 57.8% 50.6% 38.9% 41.6% 5.50%
0.265 57.0% 19.4% ND 18.7% 9.0%

SC represents S. cerevisiae and SP represent S. pastorianus. ND indicates
permittivity values that were not obtainable.

TABLE 11
COEFFICIENTS OF VARIATION OF Ag”

Frequency sSC sSC SP SP 5.5
(GHz) Live Dead Live Dead Lum
7.65 58.8% 52.1% 39.9% 44.8% 1.7%
5.55 39.6% 42.3% 35.8% 39.8% 23.2%
3.96 50.9% 58.8% 45.7% 33.9% 17.5%
2.38 43.6% 43.9% 43.9% 52.9% 24.4%
0.80 51.1% 119% 46.3% ND ND
0.265 44.5% ND 40.7% ND ND

SC represents S. cerevisiae and SP represent S. pastorianus. ND indicates
permittivity values that were not obtainable.

The results show that yeast signals have a significant
distribution, which is quantified in Tables I and II. The
distribution comes from various potential sources discussed
above. Additionally, multiple cells passing through the sensor
simultaneously or cells passing under the electrode in an area
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Fig. 12. (a) Scatter plot of the change in §7; magnitude versus phase at

2.38 GHz and scatter plots of permittivity of known samples at (b) 265 MHz,
(c) 2.38 GHz, and (d) 7.65 GHz. Each data point represents the change in
permittivity for a single cell or particle, with the x-axis being the real part and
the y-axis the imaginary part. Note that there are no data for 3-um particles at
265 MHz due to the inability to obtain a signal and the 5.5-um particle data
were left off (a) due to it having significantly larger values that would make
the plot unreadable, caused by a lower minimum |Sy;| during measurements.
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where there is no ground plane may have attributed in part
to the variations, but from microscope observations during
measurement, we estimate this occurring in less than 3% of
measurements. Given the dilutions and the small areas without
a ground plane relative to the areas that do contain a ground,
the variations are mostly due to intrinsic differences between
cells within the populations. Overall, viable S. cerevisiae has
the largest distribution at the three frequencies, possibly due
to larger microwave permittivity variations during the cell’s
life cycle compared to S. pastorianus cells. Further work is
needed to understand the biological sources. All yeast signals
and signal distributions are frequency-dependent. At higher
frequencies, yeast permittivity values (Ae) are lower, but the
distributions remain constant. Different yeast species have
different signals and permittivity values, which are also altered
to different degrees by cell death. Though signal overlaps exist,
there are significant separations at each frequency point. The
differences indicate potential microwave specificity.

Fig. 13(a) and (b) shows the measured ey, versus fre-
quency with the water permittivity plotted for comparison. The
extracted ey, follows water permittivity trend, as is shown
in bulk cell measurements [15]. Fig. 13(c) and (d) shows the
trend of average yeast permittivity versus frequency.

At 265 MHz we see that the average value of Ag’ for the
two species of dead cells are smaller than the live counterparts.
This is likely due to a decrease in membrane capacitance
caused by cell death, since the membrane capacitance of yeast
cells remains constant while the cells are viable and drops
to zero at cell death, and a smaller membrane capacitance
would be observed as a decrease in the real part of the cell’s
permittivity [30]. The difference observed between the two
live species at the lowest frequency can also be described
by differences in the cell’s membrane capacitances, since
the permittivity of yeast membranes has been shown to be
correlated with flocculation abilities of yeast cell species, with
weaker flocculating cells having a higher permittivity [31].
In this work, the authors observed that S. cerevisiae cells,
which have a weaker flocculation ability than S. pastorianus
cells, have a higher permittivity than S. pastorianus cells
when measured in solution from 100 Hz to 100 kHz. The
authors suggested the result was due to differences in cell
surface charge between the two cell types, where a decrease in
surface charge would decrease electrostatic repulsion between
cells, and hence increase flocculation. However, a relationship
between surface charge in yeast at the start of flocculation
has not been found [46]. It has also been suggested that
cell-surface hydrophobicity is responsible for flocculation in
brewing yeast [47]. This is supported by measurements over
the frequency range from 40 Hz to 110 MHz showing that
the dielectric properties of the plasma membranes of live S.
cerevisiae are strongly influenced by the properties of the
hydrophobic layer of the cell membrane [48]. Regardless of
the underlying mechanisms, our results are consistent with
those reported in [31]. Although their measurements were
performed at lower frequencies, the effects of membrane
capacitance on permittivity have been observed at frequencies
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Fig. 13.  Average shift of (a) ¢ and (b) &” for the four cell classes

versus frequency, with DI water as the baseline reference. The background
reference was changed to water to help illustrate the differences observed
between cell types. The media changes slightly between measurements based
on chemical makeup and temperature. Efforts were made to keep the media
as consistent as possible across measurements, minimizing the resulting error.
(c) and (d) Average shift in (c) & and (d) &” versus frequency for each of the
five mixture classes. The relative consistency in the 5.5-um particle signals
and the consistently large variability from cells across frequencies indicates
that any observed frequency dependence is due to intrinsic cell properties.
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as high as 100 MHz and are most likely the cause of our
observations [34].

At frequencies 800 MHz and above, where microwave sig-
nals more readily probe structures within the cell membrane,
it is possible that the difference observed between the two
species is a result of S. pastorianus having a larger relative
genome size (1.46) than S. cerevisiae (1.00) [36]. Regardless,
due to the probing nature of high-frequency signals, several
factors will influence measurements (nucleoplasm, cytoplasm,
nucleus size, and nuclear envelope thickness) and thus further
investigation is needed to verify this is the only cause.

The differences in Ae” observed between live and dead
cells are likely due to increased membrane permeability caused
by heat shock, meaning molecules in the external media can
more readily diffuse across the cell membrane into the cell
(and simultaneously, leakage of cytoplasmic ions) making the
conductivity, and hence ¢,” inside the cell more closely match
that of the media [33]. At the lowest frequency (265 MHz), this
is supported by observations in [32], where the authors mea-
sured the dielectric properties of live and dead yeast cells in
suspension from 60 to 600 kHz and observed lower dielectric
loss £” of dead yeast suspensions compared to live cell suspen-
sions. Despite these measurements being at lower frequencies
than ours, the trend should extend to higher frequencies
since at higher frequencies, penetration of the microwaves
into the cell increases and cell membrane effects have little
impact on the measured complex permittivity. This means
intracellular differences between cells become more apparent.
At frequencies of 800 MHz and above, where internal cell
properties are more readily observed, our results are consistent
with those in [20], where the authors observed by way of elec-
trorotation a significant decrease in cytoplasmic conductivity
in S. cerevisiae, from 5500 £ 500 to 100—800 xS/cm, when the
cells were killed by heat shock. This decrease in conductivity
would result in a smaller Ae” for dead cells compared to live
cells, which is what we observed in our measurements.

This shift to internal cell properties being more readily
observed at higher frequencies is apparent in the average Ag’
at 800 MHz and above, where we see that live cells have
a larger (more negative) shift than their dead counterparts.
This is due to the protoplasm of the live yeast having a
smaller permittivity than that of the media (which is mostly
water) [16]. Again, due to the increased membrane perme-
ability, the internal permittivity of the dead cells more closely
resembles that of the media, while the permittivity of the live
cell’s protoplasm is much smaller, resulting in a larger shift for
live cells. Additionally, the increase in Ag" above 265 MHz
for dead cells can be explained by the membrane capacitance
no longer having an observable effect.

C. Mixture Prediction

To better understand if microwave measurements can be
exploited to discriminate yeast species and the viability of
the yeast, a prediction model was developed using the mea-
surement data described above. Quadratic discriminate analy-
sis (QDA) was used for frequencies 2.38 GHz and above
since the data obtained appear to have a normal distribution.
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Fig. 14. Cell identification algorithm development. A quadratic classifier is
used on known cell measurement data to create a decision surface. The regions
on the surface can be used to classify unknown cell types in a mixture.

K -nearest neighbor (KNN) was used for the lowest two
frequencies due to having some data on only the x- or
y-axis [Fig. 12(b)]. The training data consist of five classes—
the four yeast classes (S. cerevisiae and S. pastorianus, live and
dead) and 5.5-pm particles, which could represent debris in an
application such as cell monitoring during fermentation, which
would contain a significant amount of grain particulates from
the mashing process that could potentially be misidentified
as cells. Prediction models were developed and compared
for individual frequencies. The exact sample data totals were
1351, 958, 1733, 842, 1493, and 1564 for the frequencies
7.65, 5.55, 3.96, 2.38, 0.800, and 0.265 GHz, respectively.
The prediction algorithm, starting from raw S-parameter data,
is shown in Fig. 14.

We found that 2.38 GHz and 265 MHz show the low-
est uncertainty if using single-frequency measurements, with
cross-validation errors of 27% and 15%, respectively, which
supports the notion that certain frequencies are more sensitive
to the minute differences between live and dead cells from the
same species. It also suggests that broadband measurements of
the same yeast cell should enhance the differentiation power.

To further test the sensing and prediction ability of the
system in Fig. 1(b), the permittivity extraction algorithms
in Fig. 5, and the models in Fig. 14, a mixture of the five
classes is measured at each frequency point. The mixture
contained equal parts of the four yeast classes (22.2% each)
and half as many 5.5-um particles (11.1%). Prior to mixing,
cell densities were measured using a spectrophotometer.
Fig. 15 shows typical time-domain measurement signals at
2.38 GHz.

At least 100 data points were collected at each frequency,
the prediction results at each frequency are shown in Table III.
While the cross-validation suggested that 265 MHz would be
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TABLE III
PREDICTED CLASSIFICATIONS OF CELL MIXTURE

Frequency SC sC SP SP 5.5

(GHz) Live Dead Live Dead um
7.65 25.6% 17.9% 23.9% 21.4% 11.1%
5.55 32.7% 18.3% 17.3% 15.4% 16.3%
3.96 9.4% 17.2% 32.8% 14.1% 26.6%
2.38 20.0% 21.8% 26.1% 22.4% 9.7%
0.80 44.1% 5.6% 6.3% 28.0% 16.1%
0.265 9.2% 35.9% 52.2% 0.0% 2.7%

the most accurate, the trained model is unable to distinguish
between the two dead cell types and particles, all of which lie
on the x-axis [Fig. 12(b)]. Fig. 16 shows the predicted classi-
fication of the mixture at 2.38 GHz, which agrees reasonably
well with expectations. This further supports the statement
that the slight differences in the media for the individual cell
measurements discussed previously produce the minimal error,
since that data were used for training the model.

The accuracy of predictions could be increased further by
using larger training data sets or by using multifrequency
measurements. In the case of multiple frequencies, decision
trees could be used where differences are seen in only one
or two classes at a frequency, such as S. cerevisiae and
S. pastorianus live cells at 265 MHz, which can clearly be
differentiated but the other classes have significant overlap.

IV. DISCUSSION

As shown in Fig. 12, significant distribution at every
frequency is observed for each yeast class, with live S.
cerevisiae having the largest. A major contributor to the
variations comes from cells being in different stages of growth
within the samples, since it is known that budding yeast
and single yeast cells have different microwave dielectric
behaviors [16]. Nevertheless, the variation between frequen-
cies, shown in Tables I and II, is consistent, which indicates
that the cell populations are uniform between frequency mea-
surements. So, any observed frequency dependence reflects
intrinsic cell property change versus frequency. With this
assumption, there is a clear frequency dependence of both
¢" and ¢" for all four cell classes, as is highlighted in Fig. 13,
whereas the 5.5-um particle responses are much more uni-
form. Furthermore, we see that the difference in Ag” is
more significant at lower frequencies for the two live species
while the difference of the dead cells remains roughly the
same at all frequencies. The uniformity of the dead cell
responses can be explained by the leakage of cytoplasmic ions
resulting from membrane damage caused by heat shocking
the cells to cause cell death. The more significant frequency
dependence of the live cells is due to the cell membrane
having a larger effect at the lowest frequency (fS-dispersion),
265 MHz, while at higher frequencies the cell membrane has
little impact on measurements, and instead differences between
the permittivity of the cell protoplasm and that of the media
are observed. Similar phenomena for Ae¢’ is observed, except
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made using QDA with the training data shown in Fig. 12(c).

for a spike in S. cerevisiae live cells at 2.38 GHz, where the
membrane capacitance plays a significant role at 265 MHz but
has little effect at higher frequencies. The large Ae’ observed
in S. cerevisiae at 2.38 GHz is caused by a more drastic
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difference between &’ of the protoplasm and &’ of the media,
but the reason it occurs at this particular frequency is unknown.

The frequency-dependent properties make it difficult to
compare the identification capabilities at higher frequencies
with the two lowest frequencies, 800 and 265 MHz. For some
of the yeast classes, we are only able to detect one of the
permittivity values. Particularly at 265 MHz, where we only
detect both £" and £” for live S. cerevisiae. Due to this and the
fact that live S. pastorianus is the only class where only &” is
detectable, we can say that the differentiation of the two live
species is solved at 265 MHz. However, for the remaining
three classes we see that there is significant overlap to the
point where we are unable to differentiate at all. Adding more
classes at this frequency could lead to even worse performance.
A similar trend is seen at 800 MHz, where we can detect
¢’ and £"” for both live species but in roughly half of the dead
cells we only see a signal for £'. This may be in part due to
the lower sensitivity of the sensor at low frequencies, where
the minimum detectable signals are nearly 10 times larger than
at higher frequencies. Improved sensitivity at low frequencies
could lead to increased microwave specificity. While this may
make it difficult to differentiate more cell classes at these
isolated frequencies, it may be useful when developing mul-
tiple frequency measurement prediction models. For example,
the lower frequencies could be used to detect viability and
higher frequencies could differentiate between these closely
related species.

This is further supported with the prediction models that
were generated where we found that 2.38 GHz and 265 MHz
had the lowest cross-validation errors. However, when the
models were used to make predictions on cell mixtures,
we were unable to differentiate between the two dead cells
across the species, getting a 0% value for S. pastorianus dead
and a significantly smaller than expected number of 5.5-um
particles. Additionally, it appears that a significant number of
S. cerevisiae live cells were misclassified as S. pastorianus
live. This is likely due to slight differences of the media
in the mixture measurements from the media that was used
for individual cell-type measurements. Other potential sources
of errors include multiple cells passing under the electrode
simultaneously, cells passing under the region of the microstrip
for which there is no ground plane, and the vertical location
of the cell in the channel. Future efforts will address these
problems as well as concurrent multifrequency measurements
of individual cells and minimizing sources of error.

V. CONCLUSION

In this work, we developed a microwave interferometer test
platform for single yeast characterization. Using microstrip
sensing structures, we showed that membrane differences in
two yeast cell species, as well as two viability states, resulted
in an observable differences in both the real and imaginary
parts of the permittivity at 265 MHz. We also showed that
increased permeability of the cell membrane in dead cells,
induced by heat shock, resulted in lower permittivity inside the
cells compared with live cells of the same species at 800 MHz
and above. We were able to use these properties to differentiate
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between the two yeast species and determine their viability,
as well as differentiate signals from PSPs from that of the
cells.

We validated our measurements by creating prediction
models at each frequency and testing them with mixtures
containing live and dead cells from the two species and 5.5-um
particles. We found that of the frequencies we tested, 2.38 GHz
has the highest degree of specificity, indicating that cells have a
stronger frequency dependence than was previously known and
that this frequency dependence can be exploited for microwave
cell characterization measurements.
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