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Figure1. ContoursofconstantdarkphotonlifetimeτA (inseconds)asfunctionsofκandmA .

Fromthelastterminequation(2.1), weseethattheeffectivecouplingbetweenthedark

photonÃµ andthestandard modelelectricchargecurrentJµ
emis

eκeff,a=
eκm2

A

m2
A −Reπa

2
+(Imπa)2

. (2.2)

Certainly,thephysicsshouldbeindependentofthebasis wechoose. Sointhefollowing
discussion,wewillrefertotherotated(massstate)Ã asthedarkphotonanddesignatethis
simplyasA.

Thephysicalmeaningoftherealandimaginarypartsofπafollowsfromconsiderations
offinitetemperaturefieldtheory. Therealpartcanbeinterpretedastheeffectivephoton
massintheplasma. Withthepolarizationvectorschoseninequations(A.1)and(A.2),the
dispersionrelationforEMwavesfollowstheformω2=|k|2+Reπafora=±TandL.

Theimaginarypartofπa describestherateatwhichthenon-equilibriumdarkpho-
tondistributionfunctionevolvestowardthermalequilibrium. Quantitatively,itisImπa=
−ω(Γabs

Aa
−Γprod

Aa
),whereΓabs

Aa
andΓprod

Aa
denotetheabsorptionrateandspontaneousproduc-

tionrate,respectively[38].Inalocalthermal(steadystate)equilibrium,detailedbalance

woulddictatethatΓprod
Aa

=e−ω/TΓabs
Aa

.

Specifically,Γprod
Aa

inthisworkdenotestheannihilationrateforleptonorquarkpairs
intooneSMphotonandisevaluatedas(seeappendixC)

Γprod
Aa

(ω)=
1

2ω

d3p

(2π)32Ep

d3q

(2π)32Eq

1

eEp/T+1

1

eEq/T+1

×
spin

| Ml̄l→Aa
|2(2π)4δ(4)(k−p−q),

(2.3)

whereM l̄l→Aa
isthe matrixelementforlepton-pair(momentapandq)annihilationtoone

vectorbosonthroughastandardEMvertexandthesumisoverinitialleptonspinstates.
Asaresult,thedarkphotonemissionrateinadensemediumisκ2

eff,aΓ
prod
Aa

. Theevolutionof
thetotalnumberdensityofdarkphotonscanbecalculatedfromtheBoltzmannequationas

ṅAa
+3HnAa

=
d3k

(2π)3
κ2

eff,aΓprod
Aa

(ω)−nAa
τA

−1, (2.4)
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Figure3.Evolutionoftheratioofdarkphotonstobaryonsplottedagainstplasmatemperaturefor
a modelwheremA =100MeVand κ=10 10. Red(blue)linesgivethetransverse(longitudinal)
mode. Foragiven mode,dottedlinesshowtheproductionhistoryif weignoreplasmaeffectsat
alltemperatures,i.e.,κeff,a = κ. Theresultofignoringtheplasmaeffectsgivesthecontinuum
contribution. Conversely,solidlinesshowthecompleteproductionhistoryifweincludetheplasma
effectsencapsulatedinequation(2.2). Thedashedblacklinegivesthetotalnumberofdarkphotons
forthethree modes(a=±T,L)inthefullsolution. Resonantproductionwithintheplasmaoccurs
atearlytimes(T 8mA )whilecontinuumproductiondominatesatlatetimes(T mA ).

temperatureregimewhere Reπa m2
A ,theeffectivecouplingreducestoκmA

4/Reπa
2,

sothecontinuumemissionrateissuppressedbyafactormA
4/Reπa

2relativetotherate
inthelowtemperatureregime[17]. Moreover,thereisalways moretimetoproducedark
photonsatlowtemperaturesthanathightemperaturesbecausetheHubbleexpansionrate
intheseradiationdominatedconditionsdropswithdecreasingtemperature,H ∼ T2/mpl

withmpl thePlanck mass. Asaresult,thecontinuumdarkphotonproductionisalways
moresignificantatlowtemperaturesthanathightemperatures.

Wewouldliketounderstandtheroleoftheresonantproductionchannelincontributing
totheoveralldarkphotonyield,andassessitssignificancerelativetocontinuumproduction.
Asanexample,infigure3weshowthedarkphotonproductionhistoryforaspecificdark
photonmassmA =100MeV.Thesolidlinesshowthefullsolutionsfordarkphotonemission
within-mediumplasmaeffectincluded. Thesolidlinesarecolorcodedforlongitudinal
andtransverse modes. Ontheotherhand,thedashedlinesshowtheproductionhistories
whennoplasmaeffectsareincluded. Therapidriseindarkphotonnumberdensityinthe
temperaturerange8mA <T < 10mA ,andatT >10mA ,isaconsequenceofresonant
productionoftransverseandlongitudinal modes. Thesehistoriesagreewiththoseshownin
figure2.Forthelepton/quark-pairannihilationproductionchannel,wecanconcludefromthe
calculationsshowninthefigurethatlongitudinal moderesonantproductionisinsignificant
relativetoresonanttransverse modeproduction.See,forexample,ref.[15]foradiscussion
ofstellarconditionsintheregime wherethedarkphoton massislessthantheplasma
frequency,mA <ωp,andwhere,consequently,theresonantdarkphotonemissionproduction
oflongitudinalmodesdominatesovertheresonanttransversemodeproductionrate. Onthe
otherhand,thecontinuumproductionratesforbothtransverseandlongitudinal modesare
initiallysmallatT >10mA asaconsequenceoftheextrasuppressionfactormA

4/Reπa
2,

buttheseeventuallydominatethetotaldarkphotonemissionwhenT mA . Comparing
thefullandcontinuumsolutions, weseethat:(1)resonantproductionisimportantonly
atT 8mA ;and(2)eventuallythecontinuumproductiondominatesovertheresonant
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Figure4. RelativedifferencesfromFD[equation(3.7)]foradarkphoton model(dotted)and
standardcosmology(solid)versus atfreeze-out. Theparametersforthedarkphotonmodelare
mA =10MeVandκ=2×10

10.

Weadd ρA totheenergydensitiesoftheothercomponentstocalculatetheHubble
expansionrateH.Duringdarkphotonproductionanddecay,weassumetheenergydensity
oftheelectromagneticplasmainstantlyequilibrates,whichinducesachangeintheplasma
temperaturetime-derivative[40]

dT

dt
=−3H

ρpl+Ppl+
1

3H

dQ

dtT

dρpl
dT

, (3.3)

whereρplistheenergydensityoftheplasma(lessbaryons);Pplisthepressureexertedbyall
plasmacomponents;dQ/dt|Tistherateofheatgainorlostfromnuclearreactions,neutrino
scattering/decoupling,anddarkphotonevolution;anddρpl/dTisthetemperaturederiva-
tiveoftheplasmaenergydensitycomponents(includingbaryons). Wemodeltheenergy
subtraction(injection)fromdarkphotonproduction(decay)usingtheheatsink(source)

dQ

dtT

=−
dQ

dtnuc

+
dQ

dtν

−
dQ

dtA↔ll

, (3.4)

=−
dQ

dtnuc

+
dQ

dtν

+mA
dnA
dt
. (3.5)

Aninjectionofheatwillraisetheentropyperbaryonwithintheplasmaspl,whichisequiva-
lenttodilutingthebaryonnumberdensity.Therefore,westartwithalowentropy-per-baryon
andallowthedarkphotondecaystoraisetheentropyperbaryon(orlowerthebaryonnum-
berdensity)toavalueconsistentwithphotondecoupling,namelyspl=5.91×10

9[39].For
eachdarkphotonmodel(setofdarkphotonmassandcouplingparameters),weiterateon
thestartingentropytofindthefinalentropyconsistentwithref.[39],spl,cmb.

3.2 Neutrinospectra

Asthedarkphotonsdecay,theyinjectheatintotheelectromagneticplasma. Thisheat
flowchangesthetemperatureoftheplasmagivingadifferentthermalhistoryfortheearly
universeascomparedtothestandardcosmology.Forthedarkphotonmassesweconsider

–10–
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Figure5.Theplasma(blue)andneutrino(red)entropiesperbaryonversusTcmforadarkphoton
model.TheparametersforthedarkphotonmodelaremA =10MeVandκ=2×10

10.Theblack
dashedlineistheentropyperbaryonasinferredfromtheCMBinref.[39].

inthiswork,theneutrinoscannotdirectlypartakeinthisheatflowfromdarkphotondecay.
However,awarmerplasmawillprecipitatealargerheatflowfromtheplasmaintothe
neutrinoseasduringneutrinodecoupling. Asaresult,darkphotondecaysdoaffectthe
neutrinospectraindirectly.

Asanillustrativeexample,wetakeaspecificcasefordarkphotonrestmassandcoupling
tothestandardmodelandcalculateindepthhowtheproductionanddecayofthisparticle
affectsweakdecouplingandentropyflow.Inparticular,weshowtheneutrinoenergyspectral
distortionsandtheevolutionofentropyinfigures4,5,and6.Forthisexamplecasewechoose

mA =10MeV, κ=2×10
−10, (3.6)

andusethestandardcosmologicalmodel(i.e.,azerodarkphotondensity)forabaseline
comparison. Wehavepickedthisparticulardarkphotonmodelinequation(3.6)becauseof
theassociatedlargechangeintheentropyperbaryonduringneutrinodecoupling.Figure4
showstherelativechangesintheoccupationnumberfromFD(Fermi-Dirac)equilibrium

δf()=
f()−f(eq)()

f(eq)()
, f(eq)()=

1

e+1
, (3.7)

plottedagainstthecomovinginvariant =Eν/Tcm,whereEνistheneutrinoenergyand
Tcmisaproxyfor(inverse)scalefactor[41]. SolidcurvesgivethedeviationsfromFD
equilibriuminthecaseofthestandardcosmology,whereasthedottedlinesareforthedark
photonmodelinequation(3.6).Thebluecurvesarefortheelectron-flavorneutrinoandthe
redforµ-flavor. Theτ-flavorneutrinosaredegeneratewithµ-flavorandtheantineutrinos
aredegeneratewiththeneutrinosinourmodelofneutrinotransportsansoscillations.The
blackdashedlineatzerorepresentsFDequilibrium.Thedashedandsolidlinesdeviatefrom
oneanother,showingtwouniquehistoriesforneutrinodecoupling,onewiththedarkphoton
withtheassumedparameters,onewithout.

Asthedarkphotonsdecay,theentropyincreaseintheplasmadilutestheneutrinoseas
andchangesthethermalhistoryoftheearlyuniverse. Weshowtheentropichistoryforthe
darkphotondecayscenarioinfigure5.Inthisfigure,entropyisplottedasafunctionof
thecomovingtemperaturequantity,Tcm. Thebluecurvegivestheentropyperbaryonin
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Figure6. Differentialνenumberdensitiesscaledbyplasmatemperature[equation(3.11)]foradark
photonmodel(dotted)andstandardcosmology(solid)versus atfreeze-out. Theparametersforthe
darkphoton modelaremA =10MeVandκ=2×1010.

theplasma,spl,andtheredcurvetheentropyperbaryonresidingintheneutrinoseas,sν.
Wecalculatetheplasmaentropyfromequilibriumthermodynamics. Theneutrinoseasare
out-of-equilibriumsowecalculatethatentropyusingnon-equilibriumstatistical mechanics,
i.e.,Boltzmannneutrinoenergytransport(seesectionIVinref.[34]).Bothquantitiescount
thenumberofmicrostatesavailabletothetwosubsystems. Thedashedblackhorizontalline
infigure5istheentropy-per-baryoninferredfromref.[39]. Thereisasmallincreaseinsν

arisingfromneutrinotransportandequivalentlyencapsulatedinthedottedcurvesoffigure4
atfreeze-out. Thissmallincreaseisaccompaniedbyasmalldecreaseinsplwhichisdwarfed
bythelargeincreaseintheentropyfromdarkphotondecay. Thephenomenonofdilutionis
theincreaseintheratiooftheentropicquantitiesfromearlytimestolate. Thechangein
theentropygivesanonstandardthermalhistoryfortheearlyuniverse. Wecansummarize
thethermalhistoryusingtheratioofTcmtoTatfreeze-out

Tcm

T f.o.

=0.7082 mA =10MeV,κ=2×10−10, (3.8)

Tcm

T f.o.

=0.7138 StandardCosmology(SC). (3.9)

Figures4and5showthattheneutrinosexperiencetwocompetingandopposingeffects:
anincreaseintheheatflowfromtheplasmatotheneutrinoseasatthelevelofafewpercent
deviation(figure4);anddilutionoftheneutrinoseasatalevelof20%(figure5).Theformer
effectraisesthenumberofneutrinosatagivenenergybin andTcm,whichwewriteasa
differentialnumberdensity

dni

d
=T3

cm

2

2π2
fi(), (3.10)

foragivenneutrinoflavori.Thelatereffectdecreasesthenumberofneutrinoswithrespectto
photonswhichweencodeintheratioofTcm/T.Figure6encapsulatesbotheffects,showing
ascaleddifferentialnumberdensity

1

T3

dn

d
=

Tcm

T

3 2

2π2
f(), (3.11)
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Figure7.Contoursofconstantinitial-to-finalentropyratios(spl,i/spl,f)plottedintheκversusmA
parameterspace.Thecontourswithvaluesbelow1.0indicateanincreaseinentropyduetothedark
photonproductionanddecay.

plottedagainst . Weonlyplotthescaleddifferentialnumberdensitiesforelectron-flavor
neutrinosinthedarkphotondecayscenario(dottedline)andthestandardcosmology(solid
line). Theµ-flavorquantitiesarequalitativelyidentical. Thescaleddifferentialnumber
densityisascale-dependentquantity,soweplotfigure6attherespectivefreeze-outepochs
foreachscenariowhichwouldoccuratdifferentTandTcm.

Thepreviousexpositionhasdelvedintothedetailsofneutrinotransportwithdark
photons.Forthespecificmodelweconsidered,thedominanteffectontheneutrinonumber
density(andbyextensionenergydensity)wasdilution.Energyflowfromneutrinotransport
addsonorderan1%increasetothetotalneutrinoenergydensity.Theincreaseisdependent
ontheparticularmodelofdarkphotons.O(1%)contributionsmaybeimportantinfuture
high-precisionmodelingofBSMcosmologiesandweemphasizetheneedforsuchcalcula-
tionif/whenthedatawarrantit.Forthepurposesofthiswork,wewillfocusondilution
whendiscussingthedarkphotonparameterspaceinitsentirety,anddiscusssub-dominant
transporteffectsforspecificmodels.

3.3 Radiationenergydensity

Thefirstobservableconsequenceofentropyinjectionanddilutionisdecreasingtheneutrino
radiationenergydensity(asparameterizedbyNeff)comparedtothevaluepredictedinthe
standardcosmology.Inthissubsection,wefirstcalculatethedilutioneffectinthedark
photonmodelandshowthechangesinNeffforthefullmodelparameterspace;thiswouldbe
forthecasewithoutincludingenergytransportbetweenneutrinosandtheplasma. Wethen
discusstheeffectofneutrino-energytransportonNeffforafewsetsofdarkphotonmodel
parametersandshowthenon-linearscalingoftheNeffcorrectionwitheithermA orκ.

3.3.1 Sharpneutrinodecoupling

TheenergydensityoftheneutrinoseasissolelyafunctionofTcm

ρν=6
7

8

π2

30
T4cm (3.12)

whenignoringout-of-equilibriumcontributions. TheCMBpowerspectrumissensitiveto
theradiationenergydensity,ρrad,oftheearlyuniverse,whichweparameterizeusingthe

–13–
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Figure8. ContoursofNeffareshownforvaluesofdarkphoton massmA and mixingparameterκ.
Forreference,wealsoplottheQED-onlypredictionofNeff=3.011intheabsenceofneutrino-energy
transport.Thebluecontourisdownfrom3.011by1σS4wherewequotethemeasurementuncertainty
1σS4=0.027fromtheCMBStage-4sciencebook[2].

quantityNeffandplasmatemperatureT

ρrad= 2+
7

4

4

11

4/3

Neff
π2

30
T4. (3.13)

Ifwetaketheradiationenergydensitytobethesumofthephotonandneutrinocomponents,
wefind

Neff=3
11

4

4/3 Tcm

T

4

. (3.14)

Afterweakdecoupling,darkphotondecayinjectsentropyonlyintotheelectromagnetic
plasma. Thisprocessresultsinthedilutionofboththebaryonnumberandtheneutrino
energydensities.Ifspl,iistheentropyperbaryonintheplasmaataninitialepoch,andspl,f

isthesamequantityatafinalepoch,thentheratiobehaveslikethefollowing

spl,i

spl,f
=




2π2

45g
(i)
ST3

i

2π2

45g
(f)
ST3

f



 nb,f

nb,i
=

g
(i)
S

g
(f)
S

Tiai

Tfaf

3

=
11

4

Tcm

T

3

f.o.

, (3.15)

wherewehaveselectedtheinitialepochsuchthatTcm,i=Tiandthefinalepochsuchthatthe
ratioTcm/Thasreachedafreeze-outvalue,i.e.,alloftheplasmaentropyresidesinSMpho-
tons.Figure7showsthecontoursofspl,i/spl,fintheκvs.mA parameterspace. Allcontours
arelessthanorequaltounity,showingthatthephysicsofdarkphotonsprecipitatesdilution.

Ifwecompareequation(3.15)toequation(3.14)evaluatedatfreeze-out,wefind

Neff=3
spl,i

spl,f

4/3

. (3.16)

Asaresult,weexpectcontoursofNefftocorresponddirectlytothecontoursofspl,i/spl,fin
figure7.Thatis,asmallervalueofspl,i/spl,f(alargerdilutioneffect)wouldleadtoasmaller
valueofNeff(amoredilutedneutrinoradiationdensity).Figure8showsthecontoursofNeff

asfunctionsofκandmA inthecaseofdarkphotondecay.Indeed,theNeffcontoursdo
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mA [MeV] κ Neff(QEDonly) Neff(w/trans.) Diff Diff/σS4

SC 3.0113 3.0442 0.0329 1.2201

2.0 1×1012 3.0097 3.0426 0.0329 1.2192

2.0 1×1011 2.9961 3.0289 0.0327 1.2128

2.0 1×1010 2.8944 2.9237 0.0293 1.0834

2.0 1×109 2.7201 2.7152 -0.0049 -0.1838

2.0 1×108 2.6934 2.6838 -0.0096 -0.3560

10.0 2×1012 3.0101 3.0430 0.0329 1.2188

10.0 2×1011 2.9983 3.0306 0.0323 1.1970

10.0 2×1010 2.9012 2.9147 0.0135 0.5009

10.0 2×109 2.7110 2.8807 0.1697 6.2866

10.0 2×108 2.6656 2.8894 0.2238 8.2284

Table1. TableofvaluesrelatedtoNeff.Firstandsecondcolumnsarethedarkphotonmassand
coupling,respectively.ThirdandfourthcolumnsarethevalueofNeffwithonlyQEDeffectsandwith
transportincluded,respectively.Fifthcolumnisthedifferencebetweenthefourthandthirdcolumns.
SixthcolumnisthatdifferencescaledbytheuncertaintyinNeffasforecastbyCMBStage-4[2].The
firstrowgivesthevaluescalculatedinthestandardcosmologywithourcode.

followthesamegeneraltrendofthedilutioncontoursinfigure7.ForlowmA,alargevalue
ofκinducesrapiddarkphotonproductionandresultsinanon-negligibleabundance.In
addition,peakproductionoccursinthetemperaturerange0.1mA Tpeak mA.Forthe
lowendofourmass-rangestudy,peakproductionoccursafterthesharpneutrinodecoupling
wehaveinstitutedfortheparameterspacescan. Thisaddedentropyfromdarkphoton
decaydilutesthethermalneutrinoseasandlowersNefftoavaluesmallerthan3.Atlarge
κandmA 100MeV,thedarkphotonsarebothcreatedanddecayawaybeforeneutrino
decoupling,andthusthereislittleornodilutionontheneutrinoenergydensity. The
differenceinthecontourpatternsbetweenfigures7and8isaresultofhowwecalculatethe
initialentropy. WefixtheinitialepochatT=30MeVregardlessofmA.ForlargemA,
theentropyischanginginthisinitialregimeandsotherespectivecontoursinfigure7do
notmeetthecriteriausedtoderiveequation(3.16),andhencedivergefromthemoreprecise
contoursoffigure8.

Weplotabluecontourat Neff=2.984onfigure8.Thiscontourusesa1σS4=0.027
uncertaintyinNefffromaCMBStage-4forecast[2]. The1σS4differenceisbetweenthe
contourlevelandtheQED-onlypredictionofNeff=3.011intheabsenceofheatflowfrom
neutrino-energytransport[41].Thespecificlocationinthedark-photonparameterspacefor
the1σcontourwouldbethesameiftransportweretoaddanoffsettoallofthecontour
levels,althoughNeffwouldtakeonavalue≈3.02forthe1σcontourinthatscenario.
However,thisprocedurereliesontheassumptionthattheeffectoftransportisindependent
ofthedarkphotonphysics. Weexpanduponthisdetailinthefollowingsection.

3.3.2 Effectsfromneutrinoenergytransport

Thecontoursoffigure8areforamodelofneutrinodecouplingwhichdoesnotincludeenergy
transportbetweenneutrinosandchargedleptons.Inthisscenario,thebaselineQED-only
calculationwouldyield∆Neff≡Neff−3=0.011,wherethedeparturefromexactlythreeis
duetofinite-temperatureQEDeffectswhichchangetheentropyoftheplasma[42,43](see

–15–
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Figure9. Sameparameterspaceasfigure8,excepthere wegivethepercentagechangeofthe
primordialdeuteriumabundanceyieldinthedarkphotonmodel,D/H,ascomparedtoourcalculated
standard modelphysicsandstandardcosmologyresult,(D/H)|sc=2.64×105. Theredcontour
isdownfromourstandard modelvaluebyanassumed1%uncertainty,i.e.,σ=2.64×107. The
coarsenessofthecontourat0%isanumericalartifact.

QCD[55],experimental[56],andphenomenological[57–60]sources. Theresultsofthose
effortscanbeintegratedintoaBBNnuclearreactionnetworkattheappropriatetimeto
yieldhigh-precisionabsolute BBNpredictions. Forthedarkphotonparameterspace we
studyhere, weanticipatethatchangesto D/Hfromupdatedreactionnetworks willnot
dependonthedynamicsofdarkphotondecay,i.e.,theeffectofanupdatednetworkisto
linearlyperturbabaselinevalue. Asaresult,wegiveourD/Hresultsasrelativedifferences
fromabaselineinsteadofabsoluteabundancepredictions.

Figure9showsthecontoursofprimordialdeuteriumabundanceyieldasfunctionsof
mixingparameteranddarkphoton massinthecaseofdarkphotondecay. Theplotis
presentedasthepercentagechangeoftheprimordialdeuteriumabundanceinthedarkphoton
model,D/H,ascomparedtoourcalculatedstandard modelandstandardcosmologyresult,
(D/H)|sc=2.64×10−5. AtlargeκandlowmA ,darkphotonsarecreatedabundantlyand
theirdecayhappensduringBBN. Thatis,theplasmawouldstartoutwithalowervalueof
spl (orhighervalueofη)attheBBNepochthaninthecaseofstandardcosmology. This
altersthefinaldeuteriumabundanceyield. AtlargeκandmA 100MeV,darkphotons
arebothcreatedanddecayawaytooearly(wellbeforeBBN)tohaveimpactonprimordial
nucleosynthesis.

WeuseD/HasthediagnosticforBBNinfigure9becauseitiswell measuredandis
apriorithe mostsensitivetochangesinentropy. ComplementarytoD/H,thehelium mass
fraction,YP,isalsowellmeasuredandsensitivetotheneutron-to-protonration/p.Therates
oftheneutron-to-protoninter-conversionprocessesdictatetheevolutionofn/pdowntolow
temperatures. Theseratesaresensitivetothedistributionsofneutrinos,anti-neutrinos,
electrons,andpositrons.Inparticular,fouroftheseratesaresensitivetothedynamicsof
darkphotons,namely

νe+n↔ p+e− (3.17)

e+ +n↔ p+νe. (3.18)

Asdarkphotonsbegintodecay,thetemperatureoftheplasmaincreases.ThePauliblocking
factorsforthechargedleptonssuppresstheforwardrateinequation(3.17)andalsothe
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Figure11. ispersionrelationsforthetransverse(right)andlongitudinal(left)modesofSMphotons
inthesun.(eft)Theredandbluesolidcurvesdenotethedispersionrelationsofthelongitudinal
modeatthecenterandattheedgeofthesun,respectively. Theblackcurveshowsthedispersion
relationforadarkphotoninamodelwithmA =10

1eV. arkphotonresonantemissioncan
occurwhentheSMphotonlongitudinaldispersioncurveintersectsthedarkphotondispersioncurve.
Thiscanhappenfortherangeof kvaluesboundedbetweentheintersectionpoints(circles)onthe
redandbluecurves. Wenotethatthelongitudinalplasmawavefork 1/ inanonrelativistic
plasmasuffersstrong andaudampingasshownbythedashedlines.(Right)Thecoloredsolidcurves
denotethedispersionrelationsforthetransversemodeinthesun. Thered(blue)dottedcurveis
thedifferencebetweenred(blue)solidcurveandtheblackdarkphotoncurveforeachk value.
ThedispersionrelationcurveforSMphotonsinthetransversemodeneverintersectsthedispersion
relationcurveforadarkphoton.

B.1 Example resonantdarkphotonemissioninanonrelativisticplasma

References[10,14,15]havepointedouttheimportanceofplasmaeffectsinthedarkphoton
emissionrateinthesunandinhorizontalbranchstarswhenmA 10eV. ereweusethe
plasmadispersionrelationtointerprettheseresults.

Incompactobjects,theelectronplasmafrequencyismanyordersofmagnitudehigher
thanelectroncyclotronfrequency. Asfarastheordinaryelectromagnetic(transverse)and
electrostatic(longitudinal)modesareconcerned,theplasmainsuchconditionscanbetreated
asunmagnetizedandisotropic. ASMphotonpropagatinginthisenvironmentwouldthen
acquireaneffectivein-mediummass,Reπa,wherethegeneralformofπaisgiveninequa-
tions(A.4)and(A.5). WiththepresenceofadarkphotonwithmassmA,darkphoton
resonantemissionoccurswhenmA

2=Reπa.Thisstatementisequivalenttosayingthatthe
resonancehappenswhenthereisasolutionof(,k)thatsatisfiesboththedispersionrelations
forthedarkphoton, 2= k2 m2A,andforin-mediumSMphotons,

2= k2 Reπa(,k).
Whilethesetwodispersionrelationsaresimilarinstructure,theydictatequitedifferentbe-
haviorinanonrelativisticplasmasuchasthatinthesunorinhorizontalbranchstars.

Infigure11,wetakethesunasanexampleofthenonrelativisticplasmaenvironment
andshowthedispersionrelationsforin-mediumphotonsandforadarkphoton. Weconsider
arangeofradiusrfromthecenterofthesunto95%ofthesolarradius,r 0.95R .
Electronsandprotonsinthesunarenonrelativistic.Thedispersionrelationforlongitudinal
EMoscillationinsuchanenvironmentis pwhen k 1/ ,where denotes ebye
screeninglength.Thisbehaviorisevidentforthesolidlinesintheleftplotoffigure11. When
mA islessthantheplasmafrequencyataroundtheedgeofthesun, pr=0.95R 1eV,
thedispersionrelationcurveforthelongitudinalEMoscillationmaycrossthedispersion
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