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The evolution of neutrino flavor in dense environments such as core-collapse supernovae and
binary compact object mergers constitutes an important and unsolved problem. Its solution has
potential implications for the dynamics and heavy-element nucleosynthesis in these environments.
In this paper, we build upon recent work to explore inference-based techniques for the estimation of
model parameters and neutrino flavor evolution histories. We combine data assimilation, ordinary
differential equation solvers, and neural networks to craft an inference approach tailored for non-
linear dynamical systems. Using this architecture, and a simple two-neutrino-beam, two-flavor
model, we compare the performances of nine different optimization algorithms and expand upon
previous assessments of the efficacy of inference for tackling problems in flavor evolution. We find
that employing this new architecture, together with evolutionary optimization algorithms, accurately
captures flavor histories in the small-scale model and allows us to quickly explore both model
parameters and initial flavor content. In future work we plan to extend these inference techniques
to large numbers of neutrinos.

I. INTRODUCTION

Core-collapse supernovae and binary compact object
mergers are extreme physical environments with the po-
tential to serve as valuable laboratories at the intersec-
tion of particle theory, dense matter physics, and high-
energy astrophysics. Many of the important physical
phenomena in these environments, such as shock propa-
gation, bulk matter outflows, and the synthesis of heavy-
elements are driven in part by interactions between nu-
clear matter and the accompanying prodigious flux of
emitted neutrinos [1–4].

In these situations, the flavor evolution of the neutrinos
is a complicated, nonlinear problem, wherein the flavor
histories of neutrinos with different energies and trajec-
tories are coupled to one another. This has been shown
to lead to various collective flavor oscillation phenom-
ena [5–18]. In particular, in the last few years, it has
been demonstrated that relaxing certain assumptions re-
garding spatial and temporal symmetries in the neutrino
flavor field can lead to flavor instabilities not previously
identified, and which have not been well studied [19–45]
(see also the recent review in Ref. [46] and references
therein).

Since the flavor evolution of neutrinos is so inextrica-
bly linked to the transport of energy and lepton number
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in these environments, it is important to identify the ini-
tial conditions and physical regimes under which these
noted flavor-field instabilities and collective phenomena
can manifest themselves. Meanwhile, the next generation
of terrestrial detectors such as DUNE [47] and Hyper-
Kamiokande [48] could potentially provide a detection of
a large number (∼ O(103–104)) of neutrinos from Galac-
tic core-collapse supernovae events. Thus it is pertinent
to ask what such a detection could reveal about neutrino
properties, as well as the physics of the supernova envi-
ronment itself.

The last decades have seen the rapid development of
machine learning (ML) algorithms that utilize “big data”
to solve difficult problems such as image recognition [49–
51] and natural language processing [52, 53]. The train-
ing of most ML algorithms requires large amounts of
data, in part because initial conditions are often not
assumed to be well known. Not surprisingly, scientific
fields that typically produce large data sets have lever-
aged these technological advances [54, 55]. Other do-
mains of science and engineering, however, are charac-
terized by sparse data—sparsity that precludes the ap-
plication of such learning algorithms to problems in these
fields. Instead, these fields have long established research
traditions which have led to the development of predic-
tive models. The study of neutrino physics falls into this
latter category.

At first glance, then, there appears to be a dichotomy
in approach: data-driven machine learning on one hand,
and theoretical models on the other. If no information
about initial conditions—or for that matter any model
knowledge—is available but large amounts of data are,
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the first approach seems very reasonable. When deal-
ing with sparse data, however, knowledge of the model
and initial conditions is invaluable. In the physical sci-
ences and engineering fields characterized by sparse data
and highly developed theoretical frameworks, functions
chosen to represent any unknown parts of a model are
typically dictated by the researchers’ experience and in-
tuition. This educated guesswork might not account for
all functional forms that may appropriately represent the
data. This situation calls for a less biased—and more
general—means of model estimation.

Recently, in calculations of neutrino flavor transforma-
tion, there have been attempts [56, 57] to combine the
best from both approaches noted above, by utilizing an
inference procedure known as statistical data assimilation
(SDA). In an SDA procedure, real or simulated data are
considered together with assumed theoretical constraints,
to complete a model with one or more unknown param-
eters. “Completing the model” here refers to the task
of simultaneously determining the evolution histories of
state variables, as well as the values of unknown parame-
ters, subject to data and physical constraints. In [56, 57]
the authors used inference to predict the flavor transfor-
mation histories of two mono-energetic neutrino beams
coherently interacting with each other and with a mat-
ter background potential. Simulated “measurements” of
neutrino flavor at the endpoint of the evolution, as well as
theoretical constraints at other points along the trajec-
tory, were utilized to compute the evolution histories by
approximating the value of the neutrino beam flavor on
a grid of uniformly-spaced radial locations. Several dis-
tinct functional forms for the unknown parameters were
tested. Also in [57] the effects of incrementally adding
theoretical constraints to improve the inference efficacy
were analyzed.

This work explores new directions in applying SDA
for constraining neutrino flavor evolution histories inside
core-collapse supernovae. There are two key differences
with respect to previous work. Firstly, we eliminate uni-
formity in grid discretization. Specifically, we include an
adaptive step differential equation solver in the neural ar-
chitecture [58], and we employ a deep neural network that
replaces any guesswork, on the part of the researcher, of
the functional forms of unknown parameters. The cho-
sen neural architecture is a universal function approxima-
tor [59], which removes the need for guessing functional
forms of unknown parameters. The solver precludes any
possible model error associated with grid discretization.
Secondly, we perform the calculations using nine distinct
optimization algorithms, for a comparative analysis of
performance.

Here we study a two-neutrino-beam, two-flavor system,
with one beam initially electron flavor and the other x
flavor. Given the initial flavor configuration, this toy
problem can be evolved from the supernova “source” to
the “detector” without significant computational difficul-
ties [60]. Our focus, however, is not the forward evolu-
tion, but rather the estimation of model parameters re-

sponsible for a given detection.
Our results show that inference, even given such an

apparently-simple setup, is an intricate task. We find
that, for the specific small-scale model examined in this
paper, evolutionary algorithms perform well in both the
estimation of unknown parameters and initial conditions.
However, this may change in more complicated setups
and with large number of unknown parameters and a hy-
brid approach of consecutive optimizations, for instance,
evolutionary algorithms followed by gradient and hessian
based methods, might be more appropriate. In what fol-
lows, we will discuss the potential advantages of adaptive-
step-size solvers.

In Sec. II, we describe the algorithmic setup and
specifics of the problem. Then we perform two sets of
inference experiments. In the first set (Secs. III and IV),
we estimate unknown parameters governing the matter
potential, assuming the initial conditions on flavor to be
known. In the second set (Secs. V and VI), we instead
estimate the initial conditions, assuming the matter po-
tential to be known. In Sec. VII we make further con-
siderations regarding the comparison of different models
and estimation of uncertainties. We present conclusions
in Sec. VIII.

II. INVERSE PROBLEMS AND NEURAL
NETWORK OPTIMIZATION

A. General Framework

Data assimilation is an inverse problem formula-
tion [61]: a procedure whereby information in measure-
ments is used to complete a model of the system from
which the measurements were obtained. For our pur-
poses, the model F is written as a set of ordinary differ-
ential equations that evolve in affine parameter r as:

du

dr
= F (u, r,θ) (1)

where the vector u is the observable being modeled, with
initial value u0. The affine parametrization r may be, for
example, time or distance. Any unknown parameter that
influences the forward problem (differential equation) is
denoted by θ. An observation uD is made at a detector
location R and one seeks to estimate θ that best fits this
observation. This is achieved through minimization of
the cost function:

Cost(θ) = [uD − uθ(R)]
T
W [uD − uθ(R)] (2)

where uθ(R) is the prediction from F . In practice, we
may only observe a subset of the components of the vec-
tor uD, while through F all components are evolved in
order to predict the final values at the detector. The
sparse matrix W is introduced to select these compo-
nents when computing the cost function.
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FIG. 1. Data assimilation as a neural network architecture.
The forward problem is represented by a set of first-order or-
dinary differential equations, F (u, r,θ), that depend on the
unknown model parameters θ. Cost(θ) is the objective func-
tion whose minimum denotes the optimal solution of the in-
verse problem. Blue arrows denote the forward process of
prediction, and red arrows denote the backward pass for er-
ror correction.

In [56, 57], the cost function was comprised of three
parts: model error, measurement error, and physical con-
straint terms. The model error, in addition to permitting
uncertainty in the model parameter estimates, included
terms related to the uniform discretization of the domain
and finite difference approximation of the derivative. In
addition, as the optimization algorithm took the grid
points to be independent, we had imposed co-variation
of the model coordinates into the cost function as an
equality constraint. Here, we explicitly include only the
measurement term in the cost function, as the neural ar-
chitecture ensures that the other terms are automatically
satisfied; this will be explained in detail below. In [57],
we also considered u0 to be an input in the form of a mea-
surement. Here, in the first two experiments we follow
the same assumption, but without explicitly including
u0 as part of the cost function (the cost function implic-
itly depends on u0, via the dynamical equations). In the
last two experiments, we assume all model parameters
are known, and we instead optimize the cost function by
varying the initial conditions u0.

In recent decades, machine learning has been used to
provide solutions to ordinary differential equations [62–
66]. As the focus of this work is the inverse problem, the
system of differential equations is a building block of our
setup. As such, our goal is not to approximate the ODE
solution through a neural architecture or discretized grid,
but rather to understand which parameters in the ODE
definition lead to a solution that best matches observa-
tions. Hence, we use the existing vast and established lit-
erature on solving ODEs through forward integration in
the vein of incorporating model knowledge with machine
learning. This is the motivation for using the recently de-
veloped neural ODE [58] network for data assimilation.
This network will automatically incorporate our model
knowledge of the dynamical system, through Eq. (1).

We include an adaptive step solver method in the neu-
ral architecture, removing the need for domain discretiza-
tion and errors induced by such discretization. Specifi-
cally, we employ the Radau method [67]. The forward-
problem arrow in Fig. 1 refers to this part of the archi-

tecture. The solution uθ(r) then satisfies all the physical
constraints associated with Eq. (1). Consequently, no
model and no constraint terms are needed in the cost
function. As such, the cost function in Eq. (2) contains
only the measurement term. We have verified that the
errors associated with model and constraint terms are
within numerical precision (. 10−16). An additional
feature of this setup is the reduction of the number of
unknown parameters that require optimization. Obtain-
ing adequate resolution in the previous setup required a
rather large number of grid points. In this new architec-
ture, the points in the domain are automatically chosen
by the adaptive Radau method to solve the forward prob-
lem to machine precision.

At first glance, the choice to incorporate the ODE
solver into the neural architecture may seem puzzling.
The most general definition of a neural layer is a differ-
entiable function with tensor input and output. This is
the basis of a general differentiable programming archi-
tecture. Traditionally, neural layers are superpositions
of simple primitive functions, but they need not be. Dif-
ferential equation solvers naturally fit this framework, as
an ODE solver has an input vector u(rn) that outputs
a new vector u(rn+1), where the points (rn and rn+1)
and the separation between those points are determined
adaptively. In order for the solver to be a neural layer,
the output of the ODE solver must be differentiable with
respect to the unknown parameters. This is achieved
through automatic differentiation [68, 69] and adjoint
sensitivity analysis [70, 71]. Automatic differentiation in
computer science encompasses a set of techniques for con-
verting a program into a sequence of primitive operations
that have specified routines for computing derivatives. It
is efficient, in that there exists a linear time cost in com-
puting values, and it is numerically stable. Adjoint sen-
sitivity analysis allows for the automatic differentiation
of ordinary differential equations. The code for this work
was written in the Julia programming language [72], and
we used the DiffEqFlux package [73–75]. While the in-
terested reader may delve deeper into these interesting
topics, for the purposes of this work, it suffices to state
that the current architecture allows us to compute the
Jacobian and Hessian matrices of the dynamical model
(5θCost(θ) and ∂θi∂θjCost(θ)).

Once the forward problem is implemented, one per-
forms the minimization of the cost function. In Fig. 1 this
step is represented by the backward update arrow. Typ-
ically, in deep learning, the minimization is performed
through stochastic gradient descent (SGD) [76] (which
requires the computation of the gradients mentioned).
In practice, the step size of the parameter update is a
hyper parameter of the training procedure, which must
be tuned to achieve convergence. Many improvements on
SGD have been developed through decades. For instance,
AdaGrad [77] and Adam [78] are algorithms widely used
in deep learning. LBFGS [79], which also approximates
the Hessian of the cost function, is a commonly used al-
ternative to SGD.
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The focus of this work is global optimization (finding
the optimal value in the entire region of interest), and
the algorithms mentioned above work locally, informed
by gradients of the cost function. Hence, we also em-
ployed a number of global algorithms in our analysis. A
list of algorithms used in this work, along with their clas-
sification, is given below:

• Monte Carlo based methods (gradient free): “Sim-
ulated Annealing” (SAMIN) [80, 81] — based on
Metropolis-Hastings algorithm to generate samples
from a thermodynamic system,

• Evolutionary algorithms (gradient free):

1. “Improved Stochastic Ranking Evolution
Strategy” (ISRES) [82, 83] — based on a com-
bination of a mutation rule (with a log-normal
step-size update and exponential smoothing)
and differential variation (update rule similar
to Nelder–Mead [84]) ,

2. “Adaptive Particle Swarm Algorithm”
(APS) [85] — improve global coverage and
convergence by switching between four evo-
lutionary states: exploration, exploitation,
convergence, and jumping out.

• Jacobian and Hessian based methods:

1. “Interior Point Optimizer” (IPOPT) [86] — a
primal-dual interior point method which uses
line searches based on filter methods. IPOPT
is designed to exploit 1st and 2nd derivative in-
formation if provided. If no Hessians are avail-
able, IPOPT will approximate them using a
quasi-Newton methods, specifically a BFGS
update.

2. “Newton method with Trusted Region Hes-
sian” (NTR) [87] — quadratic approximation
of the objective function by means of the
hessian with steps restricted to be within a
‘trusted’ region where the approximation is
believed to be valid.

• Combination of global and local optimization:

1. “Stochastic Global Optimization”
(STOGO) [88] — systematically divide
the search space (which must be bound-
constrained) into smaller hyper-rectangles via
a branch-and-bound technique, and search-
ing them by a gradient-based local-search
algorithm.

2. ‘Multi-Level Single-Linkage” (MLSL) [89, 90]
— global optimization by a sequence of local
optimizations from random starting points,
in conjunction with local optimizations algo-
rithms

– BOBYQA [91] — (gradient free) bound-
constrained optimization using an itera-
tively constructed quadratic approxima-
tion for the objective function,

– “Method of Moving Asymptotes”
(MMA) [92] — local, convex and sep-
arable approximation of the objective
function from the gradient,

– LBFGS [93, 94] — quasi-Newton
method that approximates the Broy-
den–Fletcher–Goldfarb–Shanno algo-
rithm (BFGS) [95] using a limited
amount of computer memory.

These algorithms cover a wide range of methodologies.
For instance, multi-level algorithms (MLSL) have been
used for over three decades in optimization, and nowa-
days are part of many statistical programming languages.
Simulated annealing is another widely used algorithm,
with over four decades of applications. In addition to
the familiar Newton’s method and IPOPT, we have also
included evolutionary algorithms like ISRES and APS
which are inspired by biological evolution [96]. Clearly,
optimization is a rather fascinating and varied field. The
numerical implementation can be found in NLopt [97]
and Optim [98] packages. In all experiments covered in
this work, we set the maximal number of iterations for
the optimization procedure to 1000.

B. Specifics of the problem

The neutrino flavor evolution problem has been ex-
plained in detail in [57]. Here we summarize the system
of differential equations,

Fi =
dPi
dr

=

∆iB + V (r)ẑ + µ(r)
∑
j 6=i

Pj

× Pi (3)

Here, ∆i = δm2/(2Ei) are the vacuum oscillation fre-
quencies of neutrinos with energies Ei. The mass-
squared differences in vacuum are δm2. The unit vec-
tor representing neutrino flavor mixing in vacuum is
B = sin(2α)x̂ − cos(2α)ẑ, where α is the mixing angle
between the flavor and mass eigenstates. The functions
V (r) and µ(r) are the potentials arising from neutrino-
matter and neutrino-neutrino interactions, respectively.
The “polarization vectors” Pi, which contain information
about the flavor composition of the neutrinos, play the
role of the state variable u from Eq. (1), and the only
components that are measured at the detector are the
Pz of each neutrino. Anti-neutrinos are not considered
at present, and will be included in future work. The gen-
eralization to include anti-neutrinos is straightforward,
and simply involves allowing for negative oscillation fre-
quencies ∆i in Eq. (3).
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In our model, we take the neutrino-neutrino potential
to be,

µ(r) =
µ0

(r + δ0)4
. (4)

This choice is consistent with how this coupling strength
varies in the neutrino bulb model calculations employing
the single-angle approximation. In our SDA experiments,
µ0 is taken to be a constant with a known value and
δ0 = 10−3 is added to avoid any numerical singularities
at r0 = 0. The matter potential V (r) is chosen to be

V (r) =
V0

(r + δ0)3
. (5)

In the first two experiments, V0 is treated as an unknown
parameter that we optimize. To generate the simulated
“detector data” (uD in Eq. (2)), we use a constant value

V0 = Ṽ0 of the matter potential coefficient, given in ta-
ble I. As a thought experiment and proof of concept, we
study a system of two neutrino beams, with all the pa-
rameters used for simulated data generation displayed in
table I. In future work we intend to study much larger
systems.

Parameter Value Initial polarization Value
∆1 30 P1,z(r0) -1.0
∆2 55 P2,z(r0) 1.0
µ0 10.0 Final polarization Value

Ṽ0 50.0 P1,z(R) 0.20575
α 0.15 P2,z(R) -0.96750
r0 0
R 5

TABLE I. Model parameters used for generating the
simulated ‘detector’ data. ∆i are the vacuum oscilla-
tion frequencies of the neutrinos, and (µ0, Ṽ0) are the mul-
tiplicative factors governing the neutrino-neutrino coupling
potential µ(r) and matter potential V (r). Parameter α is the
mixing angle in vacuum. Neutrino 1 is initially x flavor and
neutrino 2 is initially electron flavor, as is reflected in the
respective initial Pz values.

Fig. 2 displays the solution to the forward problem—
represented here by the z components of the polarization
vectors as functions of r, for the model parameters of ta-
ble I. The two neutrino beams are initially in pure flavor
states (electron and x). At some intermediate distance,
there occurs a large flavor transformation, and the two
neutrino beams interchange flavors. As expected, with
increasing distance, both matter and neutrino potentials
become less relevant and we can observe vacuum oscilla-
tions.

III. MATTER POTENTIAL COUPLING AS AN
UNKNOWN CONSTANT

In this section, we assume the matter potential cou-
pling V0 is an unknown parameter and ask whether the

0 1 2 3 4 5
r

1.0

0.5

0.0

0.5

1.0

P z

FIG. 2. The solution to the forward problem, in terms
of the z components of the polarization vectors, Pz, of the
two neutrino beams, as functions of the affine parameter r.
The parameters used in the forward integration are shown
in table I. One neutrino beam (orange) is initially electron
flavor, and the other (blue) is initially x flavor. In this toy
problem, we assume the detector to be at location r = 5. For
solving the inverse problem, the only information available to
the procedure is the polarization measured at this location.

z components of the polarization vectors of the two neu-
trino beams at the detector provide sufficient information
to infer the true value Ṽ0 provided in Table I. As this is
a small system, and there is only one unknown parame-
ter, we can plot the dependence of the cost function on
the unknown parameter using repeated forward integra-
tion, as shown in Fig. 3. That is, the forward code was
run several times with different parameter values V0, and
the corresponding values of Pz at the endpoint in each
case were compared with the true values (that is, with

V0 = Ṽ0) to generate the cost function using Eq. (2). In
practice, physical systems contain many more particles,
and more unknowns, rendering it infeasible to create the
plot analogous to Fig. 3. We are considering a ‘toy’ prob-
lem, however, as a proof of concept for the approach we
propose, and for the relative ease with which we may
examine figures such as those displayed in this work.

From Fig. 3 we see that at V0 = Ṽ0 the cost function
attains its global minimal value as expected. In addi-
tion, though, there are many local minima present, which
will make it difficult for any local optimization algorithm
to find the correct value Ṽ0 if the initial guess is in the
vicinity of a different local minimum. In addition, in the
parameter range with small V0 values, the cost function
changes very quickly between large and small values. To
understand how gradient and Hessian based optimizers
would perform, in Fig. 4 we plot the first and second
derivatives of the cost as function of V0. As the figures
show, there are large fluctuations in the derivatives of
the cost function at small values of V0, and many stable
local minima at large V0. On the one hand, if the initial
guess is small, gradient-based optimization will change
the value of the guess drastically, and on the other hand,
if the initial guess is large, the changes will be minus-
cule. This does not bode well for gradient- (and Hessian-)
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0)

FIG. 3. Cost function dependence on the free parameter V0,
where the simulated “detector” data was obtained through
forward integration using the parameter values of table I. The
global minimum is obtained at V0 = Ṽ0 (see table I), but there
are many local minima present. Thus, even with only a single
unknown parameter, this problem presents a very difficult
challenge for the optimization.

100 101 102 103

V0

15
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5

0

5
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15

dn
Co

st
/d

V 0
n

n = 2
n = 1

FIG. 4. Gradient (orange) and Hessian (green) of cost func-
tion with respect to the free parameter θ = V0. Ideally, one
expects that these derivatives will be large at locations far
from the global optimum, and that they will gradually go to
zero as the minimum is approached. In our setup there is
a sudden transition from large oscillations to tiny ones near
V0 = Ṽ0. For small V0, gradient based methods will have very
large parameter updates in either direction, and for large V0

the updates will be very small.

based optimization. Even with just two neutrino beams,
the problem is rather complicated. Hence our choice for
global optimization and the wide range of optimization
algorithms that we test.

In Fig. 5 we plot the cost function at the end of the
iterations for each algorithm as a function of the initial
guess for V0. We sampled uniformly 100 initial values in
the range [0, 400]. Not surprisingly, gradient and Hessian
based algorithms have a final cost value much larger than
the rest. To verify that small cost indeed translates to
convergence to the global minimum, we also plot the final
inferred values of the unknown parameter as function of
the initial guess in Fig. 6.

0 50 100 150 200 250 300 350 400
V0initial

10 17

10 14

10 11

10 8

10 5

10 2
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0fin
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)

ISRES
STOGO

MLSL + BOBYQA
MLSL + LBFGS

MLSL + MMA

(a)
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SAMIN NTR APS IPOPT

(b)

FIG. 5. The cost function at the final inferred values of V0

(i.e., at the end of the optimization procedure) as function
of the initial guess V initial

0 , for each of the nine optimization
algorithm. Ideally this value should be 0, and in practice, the
smaller it is the better the optimization. For visual clarity, the
nine algorithms are plotted in two groups 5a and 5b. In this
set of experiments, the optimization procedure is instructed
to regard V0 as a constant unknown parameter.

As can be seen from both figures, most gradient-based
methods have difficulties in converging to the optimal
value, while gradient-free methods perform rather well.
In particular, with the Jacobian/Hessian based methods
like IPOPT and NTR, the final inferred value of V0 is pos-
itively correlated with the initial guess, suggesting that
the optimization procedure simply finds a local minimum
close to the initial guess. This outcome agrees with ex-
pectations laid out by Figs. 3 and 4. In addition, the com-
bination of a global (MLSL) and local method (MMA)
seems successful.

IV. MATTER POTENTIAL COUPLING AS AN
UNSPECIFIED FUNCTION OF POSITION

In the calculations presented in this section, we treat
the numerator in Eq. (5), V0, as a function of the affine
parameter r. Note that the simulated “detector data”
(uD) used is identical to the data used in the previous
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V0initial
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FIG. 6. The final inferred value of V0 as function of the ini-
tial guess V initial

0 , for each optimization algorithms. For a
converged optimization this value should be Ṽ0 = 50, inde-
pendent of the initial guess (see table I). These results are for
the same set of experiments as those in Fig. 5.

section. That is, it was generated using a constant mat-
ter potential coefficient Ṽ0. Instead of selecting a spe-
cific functional form for this dependence, we represent
the numerator by a two-layer feed-forward neural net-
work, V0(r) = |NA(θ, r)|. Each layer has five neurons.
The first layer has a hyperbolic tangent activation func-
tion, and the second is linear; for a total of 16 param-
eters denoted by θ. The depth, width, and activation
functions of the neural architecture are hyper parame-
ters. We choose these hyper parameters strictly, as our
goal here is to merely explore whether a neural archi-
tecture can provide us with reasonable estimates for V0
and the architecture chosen can represent a wide range
of functions. Since only positive values are physically
meaningful, the matter coupling parameter is taken to
be the absolute value of the output of the neural archi-
tecture. We opted to perform global optimization in the
range ±103 for each of the parameters. For each method
we sampled uniformly 40 initial parameter sets for each
optimization.

In Fig. 7 we show the maximal, minimal and average
values of the cost function at the end of the each opti-
mization procedure. APS stands out from the rest: it
performs quite well for all initial guesses and provides
overall small cost values. While NTR achieves a near-
zero cost value for a particular initial guess, its results
are quite spread and have a strong dependence on initial
conditions. Generally, dependence on the initial guess is
to be expected. If a guess happens to be close to the
optimal result, one would expect the optimization pro-
cedure to produce a final cost value close to zero. On
the other hand, if the initial guess is quite far from the
optimal value, the optimization might converge to local
minimal nearby. An additional complication arises from
the possibility of degeneracies as the number of unknown
parameters increases. “Degeneracies” here refers to the

ISRES STOGO MLSL+
BOBYQA

MLSL+
LBFGS

MLSL+
MMA

SAMIN NTR APS IPOPT10 18

10 15

10 12
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10 3
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Minimum
Average
Maximum

FIG. 7. The minimum, maximum and average values of the
cost function at the final values of θ (i.e., at the end of the op-
timization procedure), for each optimization algorithm. Ide-
ally, all these three values should be 0. The spread shows
how dependent the optimization algorithms are on the initial
guess of the unknown parameters. In this set of experiments,
the optimization procedure treats V0 as a generic function,
encoded in terms of a two-layer feed-forward neural network,
that depends on unknown parameters θ.

possibility of multiple solutions |NA(θ, r)| that yield the
same values of Pz(r) at the endpoint.

To illustrate the behavior behind this remark, we plot
the numerator |NA(θ, r)| for each method using the pa-
rameters that produced the smallest cost value in Fig. 8.
A priori, we know that a constant function of r, namely
V0(r) = Ṽ0, is one possible optimal solution.

0 1 2 3 4 5
r

100

101
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|
(

fin
al

,r
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ISRES
STOGO
MLSL+BOBYQA

MLSL+LBFGS
MLSL+MMA
SAMIN

NTR
APS
IPOPT

FIG. 8. Optimal matter potential coupling V0 found by each
method as function of the affine parameter r. Some algo-
rithms find the coupling to be a constant close to the value
in table I, while others show sharp matter profile changes.
This shows that various matter profiles, despite being quite
different, lead to very similar values of the polarization z-
components detected at r = 5. This is for the same set of
experiments described in the caption of Fig. 7.

As the plot shows, both ISRES and IPOPT converge to
a constant function close to Ṽ0. APS shows a sharp tran-
sition from a region of high density to the optimal Ṽ0. A
rather interesting result is displayed by NTR, where the
matter density profile experiences two sharp transitions
and yet the cost value is small (≈ 10−18). Other methods
that display sharp transitions are MLSL+LFBGS and
SAMIN, which perform slightly better than ISRES. In
fact, many methods show sharp changes in the matter
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profile. For the model chosen, the matter density profile
is inversely proportional to r3, so the sharp changes in the
numerator amount to small changes in the profile itself.
In an actual core-collapse supernova environment, such
sharp transitions may represent, for instance, a dense
matter outflow in a lower density background, or alter-
natively the presence of a shock during the supernova
explosion. In this manner, allowing for a variable numer-
ator represented by the neural architecture can lead us to
discovering other possible matter profiles consistent with
the same detector measurement.

V. PARTIALLY UNSPECIFIED INITIAL
CONDITIONS

In this section we study the influence of initial con-
ditions on the inference of the neutrino flavor compo-
sition at the detector. As an illustration, we assume
that Neutrino 1, which in the original setup was taken
to be initially in the x flavor, decouples earlier and
can potentially oscillate in flavor before the second neu-
trino is emitted. By assuming the matter and neu-
trino potentials of table I, and given detector measure-
ments at R = 5 in Fig. 2 (i.e., the same simulated
detector data as in the previous experiments), we in-
vestigate whether we can infer the initial polarization
of this neutrino. The initial flavor polarization is nor-
malized, so it can expressed by two free parameters,
the azimuthal and polar angles in flavor space; that

is, u
(1)
0 = {cos(θ1A) sin(θ1P ), sin(θ1A) sin(θ1P ), cos(θ1P )},

where θ1A ε [0, 2π], θ1P ε [0, π]. Here, θ = {θ1A , θ1P } are
the unknown parameters to optimize. As we assume co-
herent evolution, the polarization is normalized through-
out the evolution.

In Fig. 9 we plot the cost function dependence on these
two parameters. Given that the second neutrino is ini-
tially of electron flavor, the optimal value for the first
neutrino is to be an x flavor (i.e., Pz = −1, or equiva-
lently, θ1P = π), as the figure confirms. In addition, we
can see that the polar angle plays a major role in deter-
mining the value of the cost function. The figure shows
the cost value decrease as the polar angle changes from
0 to π, which is the optimal value. There is also minor
dependence on the azimuthal angle for a fixed polar an-
gle. Overall, this is to be expected, as for θ1P = π, the
neutrino is x flavor regardless of θ1A .

We have performed 100 optimization experiments with
different initial guesses of θ, from a uniform grid of ini-
tial values within the allowed range. The statistics for
the final values are summarized in table II. APS and
MLSL + BOBQYA reach the optimal value of θ1P for
most of the initial guesses, as shown by the tiny variances
in the table. Many other algorithms (ISRES, MLSL +
MMA, SAMIN, IPOPT) converge quite close to the op-
timal value and have small variances. All methods con-
verge to large values of the azimuthal angle. To under-
stand this behavior, we computed the gradients of the
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FIG. 9. Dependence of the cost function, Cost(θ1P , θ1A), on
the initial orientation in flavor space of the polarization vec-
tor of the first neutrino. There is a relatively strong depen-
dence on the polar angle, θ1P , and weak dependence on the
azimuthal angle, θ1A . This is an indication of degeneracy in
parameter space. Here, the matter potential was taken to be
a known constant Ṽ0 (see table I), and only the initial angles
θ1P and θ1A were varied. The simulated “detector” data was
generated by using P1,z = −1 as the starting point of the
forward integration.

Method (µθP , µθA) /π (σθP , σθA) /π
ISRES (0.996, 1.05) (0.001, 0.57)
STOGO (0.87, 1.52) (≈ 0,≈ 0)
MLSL + BOBQYA (1.0, 1.4) (≈ 0,≈ 0)
MLSL + LBFGS (0.484, 1.0) (0.31, 0.64)
MLSL + MMA (0.997, 1.011) (0.00013,≈ 0)
SAMIN (0.997, 0.996) (0.002, 0.615)
NTR (0.47, 0.98) (0.31, 0.65)
APS (1.0, 1.0) (≈ 0, 0.9)
IPOPT (0.9, 1.1) (0.2, 0.4)
Optimal Values (1,−) (0,−)

TABLE II. Sample average and standard deviation of the in-
ferred angles in flavor space, for the initial polarization of the
first neutrino at the end of the each optimization procedure.
The optimal values shown at the end of the table; there is no
preferred azimuthal angle. In this set of experiments, the mat-
ter coupling parameter V0 is taken to be a known constant,
and the initial polar and azimuthal angles, θ1P and θ1A , of
the polarization vector of the first neutrino are regarded as
being unknown parameters that the optimization procedure
is tasked with inferring.

cost function and found one major gradient flow toward
θ1P = π, as expected. We also found a rather small
flow toward θ1A = 2π. But interestingly, the average in-
ferred values of the azimuthal angle seem to be clustering
around π rather than 2π. This is an unexpected result,
and a priori hard to guess, as one would need to solve to
the flavor evolution equations for all initial conditions to
notice this secondary flow.

In Fig. 10 we display the maximal, minimal and av-
erage cost value obtained from each method. APS and
MLSL + BOBQYA result in small cost values for all ini-
tial guesses, in agreement with table II. Most methods do
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FIG. 10. The minimum, maximum and average values of
the cost function at the final values of θ (i.e., at the end
of the optimization procedure), for each optimization algo-
rithm. Ideally, all these three values should be 0. For each
algorithm, the spread of cost function values shows how de-
pendent the optimization algorithms are on the initial guess
of the unknown parameters. These results are for the set of
experiments described in the caption of table II, where the
unknown parameters to be optimized are θ = {θ1P , θ1A}.

not show any spread in the final values of the cost func-
tion, apart from APS and IPOPT. In these two cases,
for some initial conditions, the methods achieve very low
cost function values.

VI. COMPLETELY UNSPECIFIED INITIAL
CONDITIONS

In this section, we make no assumptions about the
initial polarizations. Instead, given the detector data
generated by the parameters in table I, we optimize the
cost function for the azimuthal and polar angles in flavor
space for both neutrinos. We pick 5 uniformly-spaced
values for each of the 4 angles for a total of 625 exper-
iments for each optimization method. These are initial
guesses of the angles in flavor space.

As Fig. 11 shows, most methods converge to sub-
optimal solutions. There is convergence for initial condi-
tions close to optimal values, but this does not happen
for initial guesses farther away. APS is the only method
that performs well for all initial guesses. On the hand,
STOGO does not provide a small cost value even for ini-
tial guesses close to the optimal one.

As an additional check, in table III we summarize the
statistics for the final values obtained from each method
for each of the two neutrinos. The sample standard devi-
ation shown is an additional indication of the dependence
on the initial guess. Ideally, this deviation should be zero
as the methods should converge to the optimal value re-
gardless of the initial guess for the unknown parameter,
but this is not the case in practice.

As the tables show, most methods tend toward a large
polar angle for the first neutrino and a small value for
the second one. In other words, most methods expect the
first neutrino to be mostly x flavor and the second to be
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FIG. 11. The minimum, maximum and average values of
the cost function at the final values of θ (i.e., at the end
of the optimization procedure), for each optimization algo-
rithm. Ideally, all these three values should be 0. For each
algorithm, the spread of cost function values shows how de-
pendent the optimization algorithms are on the initial guess
of the unknown parameters. These results are for the set of
experiments where the matter coupling parameter is taken to
be a known constant, and the unknown parameters to be op-
timized are the polar and azimuthal angles of both the initial
neutrino polarization vectors, i.e., θ = {θ1P , θ1A , θ2P , θ2A}.

mostly electron flavor. This result indicates that, for the
two neutrino beam system, the final polarization values
can provide information on initial conditions, under the
assumption that we know the matter density profile. In
addition, we have identified APS as a method that works
quite well in understanding the initial flavor composition
of the system.

VII. FURTHER CONSIDERATIONS

In this section we ponder on further complications one
may encounter when performing inference on the detec-
tor data. As the APS method was the most successful
one in the various experimental setups, the additional
experiments and computations performed here will focus
on this method for illustration.

A. Using inference to select theoretical models
consistent with detector data

In section IV we consider the matter potential coupling
to be a generic function of radius. This is different from
the setup used to generate the detector data which has a
constant coupling Ṽ0. The constant coupling is a special
case for this section, and indeed, some of the optimiza-
tion methods converge to it. When the detector data will
be available to the community, one can not know for cer-
tain whether the theoretical model employed captures all
the relevant aspects of neutrino flavor oscillations emit-
ted from compact objects, and more probably, there will
be more then one model to consider. To simulate this



10

Method
(
µ
θ
(1)
P

, µ
θ
(1)
A

)
/π

(
σ
θ
(1)
P

, σ
θ
(1)
A

)
/π

ISRES (0.89, 0.98) (0.07, 0.53)
STOGO (0.73, 1.0) (≈ 0,≈ 0)
MLSL + BOBQYA (0.81, 1.88) (0.04, 0.27)
MLSL + LBFGS (0.5, 1.0) (0.35, 0.71)
MLSL + MMA (0.81, 0.14) (0.21, 0.04)
SAMIN (0.87, 0.99) (0.07, 0.59)
NTR (0.5, 1.0) (0.5, 1.0)
APS (1.0, 1.04) (≈ 0, 0.54)
IPOPT (0.45, 0.89) (0.26, 0.57)
Optimal Values (1,−) (0,−)

(a) Inferred angles for neutrino 1

Method
(
µ
θ
(2)
P

, µ
θ
(2)
A

)
/π

(
σ
θ
(2)
P

, σ
θ
(2)
A

)
/π

ISRES (0.17, 0.98) (0.10, 0.53)
STOGO (0.43, 0.99) (≈ 0,≈ 0)
MLSL + BOBQYA (0.15, 0.18) (0.03, 0.26)
MLSL + LBFGS (0.5, 1.0) (0.35, 0.71)
MLSL + MMA (0.21, 0.33) (0.04, 0.22)
SAMIN (0.19, 1.0) (0.07, 0.59)
NTR (0.35, 0.71) (0.35, 0.71)
APS (≈ 0, 1.03) (≈ 0, 0.64)
IPOPT (0.19, 0.89) (0.21, 0.59)
Optimal Values (0,−) (0,−)

(b) Inferred angles for neutrino 2

TABLE III. Sample average and standard deviation of the
inferred angles in flavor space, for the initial polarization vec-
tors of the two neutrinos at the end of the each optimization
procedure. The optimal values shown at the end of the table;
there is no preferred azimuthal angle. These results are for
the set of experiments described in the caption of Fig. 11.

scenario, for the detector data generated based on ta-
ble I, we remove the neutrino self-interaction from Eq. 3
and optimize for the matter coupling potential V0. In
Fig. 12 we simultaneously plot the final inferred value of
V0 by the APS method, and its cost value, as function of
the initial guess. To obtain this plots we used a grid of
500 uniform initial guesses in the range [0, 1000] and 1000
optimization iterations were employed per initial value.
As the plot shows, there is no convergence to a global
minimum, and the smallest cost value obtained is about
five orders of magnitude higher than the one found by
the same optimization method is Sec. III. These are in-
dications of how poorly the current model performs in
reproducing the detector data. One could expect such
differences to be used in discerning among the various
proposed models when a detection is made.

B. Inclusion of experimental uncertainties

A second point that merits consideration is the inclu-
sion of experimental uncertainties in inference. The re-
sults presented here can be interpreted as maximum like-
lihood estimates obtained from using the central value of
measured neutrino polarization vectors. Assuming the
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FIG. 12. The final inferred value of V0 (green) with the APS
optimization method, and its corresponding cost value (red),
as function of the initial guess V initial

0 . In this experiment, the
optimization procedure was given a model with the neutrino-
neutrino coupling µ0 = 0, even though the simulated “detec-
tor” data was generated using a model with µ0 = 10. The
lack of a global convergence and the relatively high values of
the cost function are indications that the model with µ0 = 0
does not properly reproduce the detector measurements.

measurement error to be tiny one can approximate,

4Cost

4V0
≈ ∂Cost

∂V0
, (6)

and estimate the error in the inferred value of V0. In the
rare event the optimal solution is found, ∂Cost

∂V0
= 0, and

the local gradient provides no useful information in esti-
mating uncertainties. In practice, the optimization pro-
cedure converges close to the optimal solutions so local
gradients are non-vanishing. However, detection errors
may be small but not tiny and the outlined procedure
might not provide robust estimates. Determining param-
eter uncertainties is, indeed, a rather complicated task
and the presence of multiple minima with a cost value
very close to the global optimum could lead to situa-
tions in which a small uncertainty in measurement could
lead to large uncertainties in the parameter estimation.
This is why one would need to probe large regions of pa-
rameter space through Monte Carlo sampling to properly
represent uncertainties. When there is some information
on the parameters of the model under consideration, one
could perform a Bayesian analysis. These directions de-
serve to treated in depth and are outside the scope of this
work. We plan to pursue them in the future.

VIII. CONCLUSION

We have combined recent developments in deep learn-
ing with data assimilation, to examine what information
is contained within a detected neutrino signal regarding
complex astrophysical environments such as supernovae.

By recasting the differential equations of our model as
layers of a neural architecture, we accomplish two things.
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Firstly, we automatically satisfy physical constraints for
the problem under investigation. Secondly, we demon-
strate a model framework in which domain discretization
is absent. This framework has allowed us to focus on the
prediction error (that is, the cost function), by eliminat-
ing any free parameters associated with the grid resulting
from domain discretization.

In addition, we have tested nine optimization algo-
rithms that cover a wide range of techniques, and we
have identified the “Adaptive Particle Swarm Algorithm”
(APS) as best suited for our purposes in this paper. This
algorithm, through its four evolutionary stages, is able to
move out of local minima and thus has a high chance of
finding a global minimum.

The study conducted here has focused on a small sys-
tem, primarily as a first testing ground for our frame-
work. We expect the computational complexity to in-
evitably increase with larger systems, and many degen-
eracies to be present in the parameter space. Thus, when
the particle number is greatly increased, we might com-
bine evolutionary algorithms such as APS for a wide pa-
rameter search, with a follow-up gradient- and Hessian-
based method such as IPOPT as a secondary search
within smaller optimal regions that are found by the first
search. We might also need to transition to distributed
ordinary differential equation solvers, which can take ad-
vantage of computer clusters.

We intend to maintain a level of modeling complexity
lower than that of three dimensional supernovae simula-
tions (which take months for a single run to complete),
and provide a computational service that is complemen-
tary to simulations and can function as a bridge to earth-
based neutrino detection. A more realistic setting, how-
ever, would require more than one affine parameter: tem-
poral, in addition to spatial evolution. We may need to
make away with rotational symmetry, leading to three
affine spatial parameters. In this case, a combined ap-
proach, with the grid discretization of previous work ap-
plied to the spatial dimensions, and the new framework
developed here applied to the temporal parameter, might
prove useful.
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