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ABSTRACT

The mergers of binary neutron stars, as well as black hole-neutron star systems, are expected to pro-

duce an electromagnetic counterpart that can be analyzed to infer the element synthesis that occurred
in these events. We investigate one source of uncertainties pertinent to lanthanide-rich outflows: the
nuclear inputs to rapid neutron capture nucleosynthesis calculations. We begin by examining thirty-

two different combinations of nuclear inputs: eight mass models, two types of spontaneous fission rates
and two types of fission daughter product distributions. We find that such nuclear physics uncertainties
typically generate at least one order of magnitude uncertainty in key quantities such as the nuclear
heating (one and a half orders of magnitude at one day post-merger), the bolometric luminosity (one

order of magnitude at five days post-merger), and the inferred mass of material from the bolometric
luminosity (factor of eight when considering the eight to ten day region). Since particular nuclear
processes are critical for determining the electromagnetic signal, we provide tables of key nuclei under-

going β-decay, α-decay, and spontaneous fission important for heating at different times, identifying
decays that are common among the many nuclear input combinations.

Keywords: kilonova, r -process, neutron star merger

1. INTRODUCTION

The recent detection of both gravitational waves and electromagnetic emission from the neutron star merger (NSM)

GW170817 (Abbott et al. 2017a,b; Dı́az et al. 2017) provides us with an unprecedented wealth of data (Chornock
et al. 2017; Cowperthwaite et al. 2017; Nicholl et al. 2017), which can be used to enhance our understanding of many
physical processes that accompany compact object mergers. One such physical process is the nucleosynthesis triggered
in merger-driven outflows, which has long been suspected to include heavy elements formed via rapid neutron capture
(r -process) (Lattimer & Schramm 1974; Eichler et al. 1989; Freiburghaus et al. 1999; Pian et al. 2017). As first pointed
out by Li & Paczyński (1998), the radioactive decay of these freshly synthesized unstable r -process nuclei should power
an electromagnetic transient, observations of which could offer unique insight into mass ejection from mergers and
astrophysical nucleosynthesis. In the years leading up to the detection of GW170817, significant theoretical progress
was made towards understanding these macronova (Kulkarni 2005), or kilonova (KN) (Metzger et al. 2010) signals (for
recent reviews, see Nakar (2019); Metzger (2020).)

The process of modeling and interpreting KN emissions encompasses multi-physics problems that require tracking
astrophysical, nuclear and thermodynamic processes. Simulations of NSMs suggest multiple sites where element
synthesis occurs (see Fernández & Metzger (2016) and Shibata & Hotokezaka (2019) for recent reviews). Most models
show an initial ejection of matter on dynamical timescales, due to some combination of tidal interactions during the NS
inspiral, hydrodynamic “squeezing” of material from the contact interface between coalescing NSs, and pulsations of a
merged hyper- or supramassive NS remnant that can unbind additional material from the remnant’s surface (Oechslin,
R. et al. 2007; Bauswein et al. 2013; Hotokezaka et al. 2013; Lehner et al. 2016). While tidally ejected outflows

are traditionally expected to be neutron-rich enough to produce a main r -process, i.e. nuclei between A ∼ 130 and
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A ∼ 195 (often referred to as second and third r -process peak) and beyond (Goriely et al. 2011; Korobkin et al.
2012a; Mendoza-Temis et al. 2015), there is less consensus on the nucleosynthesis that takes place in the collisional
and pulsational ejecta. Some simulations of these components (Goriely et al. 2011; Bovard et al. 2017; Radice et al.
2016) find a low electron fraction (Ye) consistent with heavy r -process production. Others, however, predict that
weak current interactions can push the distribution of Ye toward higher values, in some cases raising it enough that
nucleosynthesis is restricted to a light r -process that fails to reach the third peak (Oechslin, R. et al. 2007; Wanajo et al.
2014; Sekiguchi et al. 2015). In addition to dynamical ejection channels, the formation of an accretion disk (Surman
et al. 2008; Perego et al. 2014; Just et al. 2015; Wu et al. 2016; Siegel & Metzger 2017) and possible hypermassive
NS (Baumgarte et al. 1999; Lippuner et al. 2017; van Putten & Della Valle 2018; Metzger et al. 2018; Ciolfi & Kalinani
2020) after the merger is expected to drive further outflows. These may be neutron rich enough to produce r -process
material (Surman et al. 2006), but could also be responsible for material closer to the iron peak (Surman & McLaughlin
2005; Arcones & Montes 2011).

While it is currently difficult to identify individual main r -process isotopes from analyses of observed spectra of
GW170817, it is widely accepted that the light curve and spectral energy distribution of the associated transient are
consistent with at least some portion of the outflows producing lanthanides (Kasen et al. 2017; Drout et al. 2017;
Chornock et al. 2017; Nicholl et al. 2017). Evidence supporting this conclusion can be found in the luminosity and
morphology of the light curve, and in particular by the uniquely red color of the emission, a signpost for r -process
compositions (Barnes & Kasen 2013; Tanaka & Hotokezaka 2013). Evidence also suggesting a rapidly evolving blue
component inconsistent with lanthanide enrichment points to the relevance of multi-component models. Specifically,

these include a red, dim component which is rich in lanthanides and/or actinides (Kasen et al. 2017) and a blue
component that is effectively free of these high opacity elements, which could be caused by material closer to the
iron peak (Evans et al. 2017; Miller et al. 2019a). Models that account for the composition-dependent opacity of
the r -process ejecta and the energy released by the decay of r -process elements can be used to estimate the amount

and composition of r -process material ejected in the merger (Radice et al. 2018a). This is an important quantity to
estimate because it is not clear if all the r -process material is made in compact object mergers, or if a second type of
explosive event is required to account for all the r -process material in the galaxy (Travaglio et al. 2004; Mennekens &

Vanbeveren 2014; Côté et al. 2018, 2019).
Following the evolution of material made via the r -process requires tracking the production and decay of nuclei far

from stability, where nuclear properties are often unmeasured (for review, see Mumpower et al. (2016b) and recent

works Mumpower et al. (2015a); Lippuner & Roberts (2015); Barnes et al. (2016); Zhu et al. (2018); Wu et al. (2019)).
Some light curve calculations have previously suggested the radioactive decay of the r -process material that powers the
KN to be dominated by β-decay, and in fact, models assuming high-opacity lanthanide production seem to successfully
interpret late-time observations with a power-law fitted β-decay heating rate (Waxman et al. 2019). However, more

detailed tracking takes into account different decay modes (Wanajo 2018; Hotokezaka & Nakar 2020a; Korobkin et al.
2020; Fujimoto & Hashimoto 2020), which affect the energy released as well as the way that energy is converted to
thermal photons, i.e. its thermalization efficiency. Uncertainties in the ejecta composition and dominant decay modes

determining energy deposition therefore propagate to uncertainties in the predicted light curve. Since KN energy
generation is therefore fundamentally sensitive to uncertainties in nuclear properties, these join other uncertainties
such as the equation of state (Radice et al. 2018b; Malik et al. 2018; Abbott et al. 2018; Coughlin et al. 2018; Carson
et al. 2019; Gamba et al. 2019), neutrino transport (Ruffert et al. 1997; Dessart et al. 2008; Abdikamalov et al. 2012;
Fernández & Metzger 2013; Richers et al. 2015) and flavor transformation (Malkus et al. 2012; Zhu et al. 2016; Frensel
et al. 2017; Wu et al. 2017; Richers et al. 2019), and atomic opacity calculations (Fontes et al. 2015; Tanaka et al.
2019) as areas that merit closer inspection. Evaluating the effects of nuclear processes with other astrophysical and
thermodynamic data from theoretical simulations allows for more informed models to aid in the interpretation of future
KN signals. To move forward quantitative descriptions for the uncertainty range nuclear inputs can generate, here
we explore a wider range of nuclear mass models and fission properties than have been considered by previous works

(Metzger et al. 2010; Wanajo 2018; Barnes et al. 2016; Wu et al. 2019; Radice et al. 2018a; Lippuner & Roberts 2015;
Vassh et al. 2019; Giuliani et al. 2019; Eichler et al. 2019; Even et al. 2019; Hotokezaka & Nakar 2020a; Korobkin et al.
2020).

In this paper, we explore the impact of variation in nuclear physics inputs for a range of initial astrophysical conditions
on the energy generation and radioactively-powered emission from lanthanide-rich outflows believed to be responsible
for the red components of kilonovae. While the GW170817 kilonova has been extensively studied there are still
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uncertainties which remain; for example detailed numerical simulations and semi-empirical models have successfully
explained some, but not all of the GW170817 kilonova evolution, e.g. Chornock et al. (2017). Furthermore, many
models require two or three substantial high-mass outflow components which is in tension with numerical relativity
simulations (Villar et al. 2017). Thus, it is worth comparing the results of nucleosynthesis-informed predictions directly
with the observed light curve before additional manipulation of these results occurs. We anticipate that our results,
which emphasize contributions to the light curve from species with A & 120, will be useful not only for elucidating
aspects of symmetric mass NSMs, such as GW170817, but also asymmetric NSMs and black hole-neutron star (BHNS)
mergers, which are suggested by simulation to expel a greater amount of very neutron-rich ejecta than the symmetric
mass case.

This paper is structured as follows. We introduce the astrophysical conditions and nuclear inputs used in our
nucleosynthesis simulations, as well as outline the radiation transfer methods we use for our models in Section 2. In
Section 3, we then evaluate the scale of uncertainties in ejecta composition and nuclear heating in order to provide
a comprehensive estimate of their effect on nucleosynthesis-informed light-curve modeling in Section 4. Finally, in
Section 5, we identify key nuclei and reactions that drive the KN heating.

2. METHOD

In this section we describe our simulation pipeline, which begins with the choice of astrophysical conditions; we choose
a wind-type model with a variety of initial electron fractions as a proxy for the full possible range of hydrodynamic

and thermodynamic outflow conditions in a NSM. We use each of these thermodynamic/hydrodynamic trajectories in
a separate nuclear reaction network calculation for thirty-two different combinations of nuclear inputs. The output of
these calculations are used in a semi-analytic KN model that estimates the system’s emerging luminosity. We include

in this model approximations to the full opacity calculations, anticipating that future measurements and theoretical
calculations of opacities will contribute to the ultimate goal of exact predictions of KN light curves. Our model
provides a picture of the general trends of a lanthanide rich component of KN light curves and estimates for light curve
uncertainties through a survey of nuclear inputs in a variety of conditions.

2.1. Astrophysical conditions

The astrophysical parameters that describe the initial conditions of r -process outflows launched by compact object
mergers giving rise to KNe have been studied extensively, for example in Korobkin et al. (2012b); Martin et al. (2015);
Lippuner & Roberts (2015); Wanajo (2018); Miller et al. (2019b). The nuclei synthesized in NSM ejecta are determined

by a number of factors, including the entropy, the gas’ rate of expansion, and initial neutron richness of the ejecta.
Here we choose astrophysical conditions typical of merger accretion disk winds and use variations in the initial electron
fraction, Ye, of the ejecta as a proxy for all astrophysical variations.

The base astrophysical trajectory is a standard parameterized wind (Panov & Janka 2009), with initial entropy per
baryon in units of Boltzmann constant of s/k = 40 and an expansion timescale of 20 ms, conditions similar to those
found in the multidimensional NSM simulations of, e.g., Just et al. (2015); Radice et al. (2018a) and as applied in
Zhu et al. (2018). Note that nucleosynthesis proceeds slightly differently at different entropy, with a higher entropy
working similarly to a lower Ye, as both can increase the r -process reach (Meyer & Brown 1997). Simulations begin
in nuclear statistical equilibrium at a temperature of T = 10 GK with seed nuclear abundances generated using the
SFHo equation of state (Steiner et al. 2012). For all simulations, we use the same evolution of density as a function
of time (expansion rate) but choose a variety of initial electron fractions. With different initial electron fractions,
nucleosynthesis processes and their corresponding energy generation as a function of time are different. Therefore,
the temperature of each simulation must be determined separately; and we use an adiabatic expansion law which is
modified assuming a 10% nuclear reheating efficiency as in Holmbeck et al. (2018); Vassh et al. (2019). As the energy
generation is different for each set of nuclear inputs, each simulation we consider has a unique thermodynamic history.

Based on an initial survey of Ye from 0.01 to 0.30 (with increments of 0.01) we find that a subset of these is sufficient to
capture most of the effects on the light curve. Therefore, to keep simulation expense low without losing a reasonable

coverage of electron fractions, we use Ye of 0.02, 0.12, 0.14, 0.16, 0.18, 0.21, 0.24, and 0.28 in our nucleosynthesis
calculations, which we describe next.

2.2. Nucleosynthesis

For the nucleosynthesis simulations, we use the Portable Routines for Integrated nucleoSynthesis Modeling

(PRISM) (Sprouse et al. 2020) reaction network developed at the University of Notre Dame and Los Alamos Na-
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tional Laboratory. PRISM is designed to work with prepared input files of astrophysical conditions, nuclear mass
models, and nuclear reaction channels (such as charged particle reactions, neutron capture, photodissociation, β-
decay, β-delayed neutron emission, neutron-induced fission, β-delayed fission, and spontaneous fission as in Zhu et al.
(2018); Vassh et al. (2019)). For experimentally measured nuclei, we use measured masses from AME2016 from Wang
et al. (2017) and experimental data from NUBASE2016 from Audi et al. (2017), including α-decay, β-decay, electron
capture, neutron emission, and spontaneous fission data. Since we are interested in uncertainties from theoretical
nuclear inputs for nuclei heavier than iron, we use the JINA Reaclib nuclear reaction database (Cyburt et al. 2010)
for charged-particle and light-nuclei reactions, but otherwise explore the effect of a wide range of predictions for as yet
unmeasured masses and reactions rates for heavier nuclei.

Where experimental data is not available, we use nuclear physics inputs starting from the eight theoretical nuclear
models listed in Table 1, and all the reaction rates are determined consistently with the associated masses (Mumpower
et al. 2015b). The neutron capture and neutron-induced fission rates are recalculated with each chosen mass model
using Los Alamos National Laboratory statistical Hauser-Feshbach code CoH (Kawano et al. 2016). The β-decay
strength functions are from Möller et al. (2019), and the relative probabilities for β-decay, β-delayed neutron emission,
and β-delayed fission are calculated using the QRPA+HF framework (Mumpower et al. 2016a, 2018). Theoretical
α-decay rates are obtained with a Viola-Seaborg relation using Q-values calculated from each chosen mass model and
parameters fit to known data (Vassh et al. 2019). For neutron-induced fission, β-delayed fission, and spontaneous
fission, we use either a symmetric (Afragment = 1

2Afission) or a double Gaussian fragment distribution from Kodama
& Takahashi (1975); most modern fission yield predictions fall somewhere between these extremes. We make an

exception for the fission yields for 254Cf, in which case we use the yield distribution described by Zhu et al. (2018). For
spontaneous fission half-lives, we apply a barrier-height-dependent prescription from Karpov et al. (2012); Zagrebaev
et al. (2011) (KZ) or the parameterization from Xu & Ren (2005) (XR). Fission rates are updated with the fission

barrier predictions most closely associated with a given mass model as in Vassh et al. (2019). That is, for the ETFSI
model we apply ETFSI barriers, for HFB-22 and HFB-27 we apply HFB-14 barriers, for the TF model we apply TF
barriers, and for all other cases, including FRDM2012, we apply FRLDM barriers.

Table 1. Mass Models Used in the Nucleosynthesis Simulations.

Mass Model Abbreviation Masses, Fission Barriers

Finite-Range Droplet Model FRDM2012 Möller et al. (2016); Möller et al. (2015)

Duflo and Zuker DZ33 Duflo & Zuker (1995); Möller et al. (2015)

Hartree-Fock-Bogoliubov 22 HFB22 Goriely et al. (2013, 2009)

Hartree-Fock-Bogoliubov 27 HFB27 Goriely et al. (2013); Goriely et al. (2009)

Skyrme-HFB with UNEDF1 UNEDF1 Kortelainen et al. (2012); Möller et al. (2015)

Skyrme-HFB with SLY4 SLY4 Chabanat et al. (1998); Möller et al. (2015)

Thomas-Fermi TF Myers & Swiatecki (1996, 1999)

Extended Thomas-Fermi plus Strutinsky Integral ETFSI Aboussir et al. (1995); Mamdouh et al. (2001)

Weizäcker-Skyrme (WS3) WS3 Liu et al. (2011); Möller et al. (2015)

2.3. Thermalization efficiencies

The total heat supplied to the light curve is a function of the energy emitted by radioactive decay and the efficiency
with which that energy thermalizes, i.e., is converted into the thermal energy that ultimately forms the light curve. The
distribution of radioactively decaying nuclei evolves rapidly in the days and weeks following the merger. We keep track
of the energy emitted through each channel (β-decay, α-decay and fission) as a function of time for each nucleosynthesis
simulation. This is important because there is not a one-to-one correspondence between a final abundance pattern
and the history of heating and nuclear decays (Kawaguchi et al. 2019).

Different decay channels have different overall levels of thermalization efficiency. Energy released in β-decays heats
the ejecta less effectively than that released in α-decay, which in turn is less efficient than fission, as shown in Barnes

et al. (2016). This is partly because a substantial fraction of β-decay energy is released as neutrinos, which free-stream
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out of the diffuse KN ejecta without interacting. In contrast, in α-decays and fission, most of the energy goes to
massive particles, which thermalize more effectively in the ejecta. To capture these effects, we calculate the rate at
which energy is produced by β-decay, α-decay, and fission as a function of time. We then apply analytic thermalization
efficiencies from Kasen & Barnes (2019) (hereafter referred to as KB19) for each channel to estimate the total rate at
which energy is thermalized, Q̇(t), as a function of time,

Q̇(t) =
∑
i

fi(Mej, vej, t) q̇i(t) Mej. (1)

In the above, fi is the thermalization efficiency for the reaction channel i, which depends on the mass, Mej, and
characteristic velocity, vej, of the ejecta in addition to time, and q̇i(t) is the nuclear heating released by channel i per
unit mass of ejecta, as determined from the reaction rates and Q-values of each nuclear reaction in each nucleosynthesis
simulation. We determine the thermalization efficiencies, fi(t), following the procedure outlined in Kasen & Barnes
(2019) in which the thermalization of massive particles is assumed to have the form f = (1 + τ)−n. Here, τ is the time
scaled to a characteristic “thermalization time”, tth, at which thermalization starts to become inefficient. Both tth and
the power-law index, n, depend on the parameters of the ejecta, the energetics of the decaying nuclei, the magnitude
of the energy-loss cross-sections, and their dependence on particle energy.

The total thermalization efficiency for β-decay depends on the efficiencies for electrons and γ-rays, as well as the

fraction of energy lost to neutrinos. We assume that 25% of the energy goes to electrons, 25% to γ-rays, and the
remainder to neutrinos Barnes et al. (2016); Hotokezaka et al. (2016), which is consistent with the decays that are
occurring in the calculations presented in the next sections. The electron efficiency follows the pattern defined above,
with n = 1, and tth defined by (KB19 eqn. 43):

tth,β = 12.9 M
2/3
0.01 v

−2
0.2 ζ

2/3 days, (2)

where M0.01 is the ejecta mass in units of 0.01M�, v0.2 = vej/0.2c, and ζ is a constant defined to be close to unity (we
adopt ζ = 1). For γ-rays, the thermalization efficiency is assumed to be comparable to the probability of absorption
or scattering in the ejecta (KB19 eqns. 48, 53),

fγ(t) = 1 − exp[t2γ/t
2], (3)

tγ = 0.3 M
1/2
0.01 v

−1
0.2. (4)

The efficiencies for α-decay and fission are the efficiencies of the corresponding particles. For α-decay,

fα(t) = (1 + t/tth,α)−1.5, (5)

tth,α = 2 tth,β , (6)

while for fission fragments,

ff(t) = (1 + t/tth,f)
−1, (7)

tth,f = 4 tth,β . (8)

The scalings and choice of n come from comparing the typical energies and energy-loss rates of the different particle
types (Barnes et al. 2016). The thermalization efficiencies fi(t) for each decay channel are plotted in Fig. 1.

2.4. Opacity

We estimate the opacity of the KN ejecta from the composition of each simulation at a representative time tκ = 1 day
after the merger. The assumption of constant composition is standard in radiation transport models of KNe (Kasen
et al. 2017; Tanaka et al. 2019; Even et al. 2019, among many others), and is justified by the much slower evolution
of the composition on these longer timescales relative to the first minutes and hours after free neutron depletion. In
particular, the mass fractions of the highest opacity species are not found to change dramatically over the course of
the KN, and the effects of temperature are expected in this epoch to have a greater effect on the opacity than any
lingering compositional drift (Kasen et al. 2013; Tanaka et al. 2019).

Opacity has been shown to depend critically on bound-bound structure, and because we lack atomic data for all
atomic species, we carry out our opacity calculation for a carefully constructed modified composition. We take the
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Figure 1. Thermalization efficiencies for α-decay (red line), β-decay (green line), fission (cyan line) as described in Section 2.3
using ejecta mass Mej = 0.05M� and the characteristic ejecta velocity vej = 0.15c.

mass fraction in all s- and p- block elements and, for the purpose of calculating opacity only, assume that this mass
resides in calcium (Z = 20). Since the opacities from d- and f-block dominate the total opacity of the gas, we modify
the full composition in a manner that preserves the total mass fractions in d- and f-blocks. In the d-block, we evenly

divide the mass fractions in d-block elements among Z = 21 − 28. In the f-block (lanthanides and actinides) we take
care to preserve the mass fraction in each column of the periodic table, since atomic opacities vary both among and
within the blocks of the periodic table (Kasen et al. 2013; Tanaka et al. 2019), and because f-block abundances have

the strongest impact on the total opacity. In our modified composition, lanthanide and actinide mass fractions are
distributed as described above among Z = 59 − 70.

We calculate the Planck mean of the expansion opacity (Karp et al. 1977) for the modified compositions described
above at a range of temperatures, assuming local thermodynamic equilibrium and adopting a mass density ρ =

10−14 cm2 g−1, typical of conditions in the ejecta on KN timescales. The results of these calculations inform the
temperature-dependent opacity function we use to compute semi-analytic light curves:

κ =

κmax

(
T

4000 K

)5.5
, T < 4000 K

κmax otherwise
(9)

In the equations above, κmax is the maximum value from the Planck mean opacity calculation, and is unique for each
composition. The steep decline in κ for T < 4000 K accounts for the opacity lost as the higher-energy electronic states
of high-opacity lanthanide and actinide atoms and ions are depopulated due to the decreasing amount of available
thermal energy in a cooling gas.

While opacity does have an effect on our calculations, since we are looking at lanthanide-rich scenarios, it tends to
be less significant than other uncertainties such as the nuclear heating. We explore the effects of different lanthanide
and actinide mass fractions, and therefore changing opacity, in Section 4.2.

2.5. Light curve

The effective heating, Q̇(t) and opacity, κ(T (t)) are input into a semi-analytic light curve model based on that of

Metzger (2017), in which the KN ejecta is discretized as a set of concentric shells of mass Mv. We choose a power-law
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mass density profile

ρ(v, t) =

(
3

4π

)
Mej

v3t3

(
v

v0

)−3

, (10)

where v is the velocity coordinate, which extends from v0 = 0.1c to vmax = 0.4c. Since we are interested in the red
KN component containing the most massive r -process nuclei, we adopt as our fiducial model an ejecta with mass
Mej = 0.05M� and vej = 0.15c, typical of the values inferred for the outflow powering the red emission of the KN
associated with GW170817 (Kasen et al. 2017; Kasliwal et al. 2017; Tanaka et al. 2017; Drout et al. 2017; Perego et al.
2017). The effect of varying ejecta mass is explored in Section 4. The characteristic ejecta velocity, defined in terms
of the ejecta’s total kinetic energy, Ekin, through vej = (2Ekin/Mej)

1/2, is used to calculate thermalization efficiencies
as expressed in Eq.s 2 and 4. In our fiducial model, vej = 0.15c. We consider 100 shells and evolve the thermal energy,
Ev, of a shell of mass Mv at velocity v as

dEv
dt

=
Mv

Mej
Q̇(t, v) − Ev

t
− Lv, (11)

where the first term on the right hand side is the effective heating from (thermalized) radioactivity, the second term
accounts for loss of radiation energy due to adiabatic expansion, and the final term represents the outgoing luminosity
from the mass shell. The luminosity comprises photons that diffuse and free-stream out of the shell, and is approximated

as

Lv =
Ev

td,v + tlc
. (12)

Here, tlc is the light-crossing time and td,v the diffusion timescale at velocity v. These quantities are given by

tlc = vt/c, and (13)

td,v = M>vκ(Tv(t))4πvtc (14)

In Eq. 14, M>v is the amount of mass exterior to the mass shell with velocity v, i.e. the amount of mass which has

velocity greater than v. The opacity of a given layer, as described above, depends on the temperature, Tv, which
we calculate from Ev assuming the ejecta is radiation dominated. The total luminosity at time t is the sum of the
luminosity escaping from each layer.

3. UNCERTAINTIES STEMMING FROM NUCLEAR PHYSICS INPUTS

In this section, we examine the effects of theoretical model uncertainties on both lanthanide and actinide mass
fractions as well as the effective heating rate, using the methods described in Sections 2.2 and 2.3. The composition
plays a key role in determining the opacity of the ejecta and, together with the effective heating rate, is a critical factor

influencing the magnitude and shape of the light curve. We begin with an exploration of the effects of nuclear inputs,
keeping in mind that the degree to which this uncertainty comes into play depends on the astrophysical conditions. For
illustrative purposes, we consider simulations with two different initial electron fractions of Ye = 0.24 and Ye = 0.16;
the former has minimal fission and the latter has substantial fission. For each calculation, we vary the nuclear inputs
using the combinations of mass models and fission barriers previously described, with masses propagated to neutron
capture and β-decay rates as described in Section 2, in order to explore the scale of uncertainties in effective heating
and final abundance patterns.

We show the final abundance and mass fractions of lanthanides and actinides of simulations with the aforementioned
initial electron fractions in Fig. 2. In the lower panels of Fig. 2, we see that both Ye = 0.24 and Ye = 0.16 have a sum
of lanthanide and actinide mass fractions larger than 10−3, which is generally considered to be a lower threshold for

a red KN (Chornock et al. 2017), as well as larger than 10−1.5, which is a lower limit for r -process enhanced metal-
poor stars (Ji et al. 2019). High electron fraction (Ye = 0.24) scenarios show more significant lanthanide production
than actinide production when compared with lower electron fraction (Ye = 0.16) scenarios. The difference can be
attributed primarily to the different numbers of neutrons available for capture in the two scenarios. The upper panels
of Fig. 2 show the final abundances (at ∼ 0.3 Gyr) of r -process elements with different nuclear inputs, with the
grey band indicating the spread. Since the simulations with Ye = 0.16 access fissioning isotopes, we include two
additional nuclear models to show cases which find a relatively low population of actinide species at late times, TF

and TF+D3C∗. This behavior is due in part to the relatively low fission barriers of the TF model near N = 184,
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(b) Simulations with Ye = 0.16.

Figure 2. Abundance pattern (top panel) and mass fraction of lanthanide and actinide elements (bottom panel) at two
different electron fractions (Ye). All simulations in these figures use symmetric fission yields and Karpov (KZ) spontaneous
fission rates. In the top panels, black plus markers represent the solar r -process abundance (Sneden et al. 2008). In all plots
the solar data is scaled by comparing the average abundance in the third peak to the value obtained given FRDM2012 based
nuclear inputs, symmetric fission yields, and KZ spontaneous fission rates.

which increases the participation of neutron-induced and β-delayed fission. Species are cleared out of the actinide

region even more when TF is coupled with the β-decay prescription of D3C∗ (Marketin et al. 2016), which predicts
β-decay rates faster than those calculated based on Möller et al. (2019) above the N = 126 shell closure, quickly
decaying material into fissioning regions during times when neutron-induced fission is most active. Simulations with
Ye = 0.24 have a path that is significantly closer to stability, where the discrepancies between the masses predicted by

the different models are more modest, which explains the smaller spread in simulated abundances and mass fractions.
Each of our calculations begins with a determined initial abundance calculated based on the nuclear model and Ye.
Thus, for both scenarios, the spread shown in this figure is an underestimate of the true uncertainty due to nuclear

inputs, since uncertainties in the charged particle reactions that create the initial abundance of each trajectory were
not taken into account in our analysis.

Besides the production of elements, the nuclear heating from each reaction channel as a function of time is also highly
dependent on the nuclear physics inputs. In Figs. 3 and 4 respectively, we show the total effective heating rates and the

fractional effective heating rates for distinct theoretical nuclear models for simulations with Ye = 0.24 and Ye = 0.16.
We remind the reader that we assume Mej = 0.05M� and vej = 0.15c when estimating the thermalization efficiencies
and in determining the total effective heating rate. Similar to what was seen with the spread in predicted abundance
patterns, Fig. 3 shows that simulations with higher electron fraction show a relatively small spread in effective heating
rates when compared to simulations with lower electron fractions. The initial electron fraction determines not only
to what mass number the synthesis of heavy elements reaches, but also the places where there is a pile-up of nuclear
species, and this has a direct impact on the extent to which different reaction and decay channels contribute to the
overall heating.

As demonstrated in Fig. 4, β-decay dominates the heating in most simulations leading up to roughly one day, which
is a key time for KN energy generation. From one to several days, these same simulations show significant competition

between the contribution of spontaneous fission and α-decay heating to the total heating. At 100 days, there is
considerable variation in the effective heating rates for the lower Ye scenarios (Fig. 3(b)), despite the tendency for
spontaneous fission heating to dominate at this time, as shown in Fig. 4(b). We note that examining the fractional
effective heating solely reflects relative contributions from decay processes and emphasize that the absolute heating
from a given process like spontaneous fission can differ greatly between nuclear models since different fission barriers
lead to different abundances of long-lived species such as 254Cf (Vassh et al. 2019). The TF model shown in Fig. 4(b)
demonstrates such a case since here 254Cf production is decreased relative to other models due to low TF fission
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Figure 3. Comparison of total effective heating rates are shown for the same set of models as in Fig. 3; all models assume
Mej = 0.05 and vej = 0.15. The effective heating rate for an individual nuclear model is shown as a colored line. The grey band
shows the range of effective heating rates from all simulations.

F
ra
ct
io
n
of

E
ff
ec
ti
ve

H
ea
ti
n
g
R
at
e

0.1

0.5

0.9Alpha Decay

0.1

0.5

0.9SP Fission

0.1 1.0 10.0 100.0 1000.0

Time (Day)

0.1

0.5

0.9

Beta Decay

FRDM2012

HFB27

HFB22

WS3

DZ33

SLY4

UNEDF1

ETFSI

(a) Ye = 0.24

F
ra
ct
io
n
of

E
ff
ec
ti
ve

H
ea
ti
n
g
R
at
e

0.1

0.5

0.9Alpha Decay

0.1

0.5

0.9SP Fission

0.1 1.0 10.0 100.0 1000.0

Time (Day)

0.1

0.5

0.9

Beta Decay

FRDM2012

HFB27

HFB22

WS3

DZ33

SLY4

UNEDF1

ETFSI

TF

TF+D3C*

(b) Ye = 0.16

Figure 4. Fractional heating rates assuming different theoretical nuclear models. All simulations are performed with symmetric
fission yields and KZ spontaneous fission rates.

barriers. We explore barrier effects on the populations of long-lived fissioning species further in Section 5. Lastly we
note that although we mostly see late-time heating as being dominated by spontaneous fission and α-decay, this is
the case when we consider β-decay rates calculated based on Möller et al. (2019), as described in Section 2.2. When
instead D3C∗ β-decay rates are adopted, we see markedly lower actinide production, thereby minimizing the heating
impact from other decay channels and keeping β-decay heating as the dominant source throughout the calculation,
yielding similar heating patterns as our higher Ye simulations, as shown by the dark purple line in Fig. 3(b). Thus
we caution that the full impact of processes such as spontaneous fission and α-decay would have to be more carefully
evaluated for a broader set of β-decay reaction rate calculations.

We now turn to an illustration of the effect of varying the astrophysical conditions for a fixed theoretical nuclear

mass model. Fig. 5 shows the comparison of four nuclear models, and for each we use a set of simulations with electron



10

120 140 160 180 200 220 240
A

10−7

10−5

10−3

A
b
u
n
d
a
n
ce

Ye = 0.02

Ye = 0.12

Ye = 0.14

Ye = 0.16

Ye = 0.18

Ye = 0.21

Ye = 0.24

Ye = 0.28

58 60 62 64 66 68 70
Z (Lanthanides)

10−3

10−2

10−1

M
a
ss

F
ra
ct
io
n
(Z
)

90 92 94 96 98 100 102
Z (Actinides)

10−3

10−2

10−1

(a) Simulations with HFB27 theoretical nuclear model.
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(c) Simulations with UNEDF1 theoretical nuclear model.
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(d) Simulations with ETFSI theoretical nuclear model.

Figure 5. Final abundance pattern (top panels) and mass fraction of lanthanides and actinides (bottom panels) are shown
for the same simulations as in Fig. 3. Black plus markers represent the solar r -process abundance.

fractions ranging from Ye of 0.02 to 0.28 as described in Section 2.1. We compare the final abundance pattern as well
as lanthanide and actinide mass fractions for the four sets of simulations. We note that each simulation displayed
in Fig. 5 shows production of r -process nuclei beyond the second r -process peak (at A ∼ 130). The grey bands in
each subplot show the range of the final abundance patterns for each set of simulations. The size of the spread of
predictions varies with mass model, with FRDM2012 (and FRLDM fission barriers) having only about a one order of
magnitude range of final abundance in the lanthanide region. However, the same region has a two order of magnitude
spread of predictions with each of the theoretical nuclear models HFB27, UNEDF1, and ETFSI.

The third r -process peak (at A ∼ 195) and beyond shows the largest sensitivity to the initial electron fraction.

Consistent with Fig. 3(a), we see in Fig. 5 that the abundance of nuclei at and beyond the third peak is very low in the
simulations with an initial electron fraction above roughly Ye ∼ 0.24. Meanwhile, we tend to see maximal production
beyond the third r -process peak and correspondingly low final abundance in the rare-earth region in simulations that
have just enough neutrons to capture out significantly past the third peak i.e. initial electron fractions of 0.16 to
0.18. The final abundance pattern in the lanthanide region is again larger for even lower electron fractions (Ye < 0.14)
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(c) Simulations with UNEDF1 theoretical nuclear model.
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(d) Simulations with ETFSI theoretical nuclear model.

Figure 6. Total effective heating rates for various electron fractions (Ye). These simulations use symmetric fission yields and
Karpov (KZ) spontaneous fission rates. The grey band shows the range of effective heating rates from all simulations.

since in these cases, significant fission deposition is taking place as well as subsequent neutron capture on the fission
products.

In Fig. 6 we show the spread of effective heating rates corresponding to the simulations in Fig. 5. As with the final
abundance pattern, we see the least variation in the heating in the simulations using FRDM2012 nuclear models. For
the remaining models we see that there is not a one-to-one correspondence between the spread in the heating rate and
the spread in the predicted abundance pattern. This is because the effective heating is dependent upon the energy
released from each reaction and decay channel coupled with the relevant thermalization efficiencies, and the amount
of heating in each channel can vary with nuclear inputs.

4. EFFECTS OF UNCERTAINTIES IN KN LIGHT-CURVE MODELING

In this section, we explore the effect of the range of uncertainties in composition and effective heating rates described
in previous sections on the KN light curve. In order to sample from the full range of predicted heating rates and final
abundances from all our simulations, we select 13 simulations, which are listed in Table 2. In choosing the simulations

labeled 1-11 in Table 2, we include reasonable variation in theoretical nuclear model, spontaneous fission prescription,
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Table 2. Highlighted simulations with their mass models, initial electron fractions and fission
prescriptions

Index Mass Model Ye Yield Distribution Spontaneous Fission rates XLn+An(tκ = 1 day)

1 FRDM2012 0.28 Symmetric KZ 0.020

2 FRDM2012 0.16 Symmetric KZ 0.217

3 HFB22 0.16 Symmetric KZ 0.366

4 HFB27 0.16 Kodama KZ 0.481

5 DZ33 0.16 Symmetric KZ 0.308

6 UNEDF1 0.16 Kodama KZ 0.336

7 UNEDF1 0.16 Kodama XR 0.335

8 UNEDF1 0.24 Symmetric KZ 0.378

9 SLY4 0.18 Symmetric KZ 0.029

10 SLY4 0.21 Symmetric KZ 0.120

11 TF+D3C∗ 0.16 Symmetric KZ 0.217

12 DZ33 mixturea Kodama KZ 0.258

13 UNEDF1 mixtureb Symmetric KZ 0.115

aLinear combinations of DZ33 simulations with Ye values of 0.02,0.14,0.16, 0.18, 0.28 and the corresponding
weights of 38%, 6.8%, 20%, 8.6%, 26%.

b Linear combinations of UNEDF1 simulations with Ye values of 0.02, 0.16, 0.18, 0.21, 0.24, 0.28 and weights
of 8.2%, 7.2%, 18%, 25%, 1.4%, 40%.

and initial Ye. A subset of these models have the same Ye, which allows us to better explore the effect of changing
nuclear physics inputs. The simulations labeled 12 and 13 are a linear combination of simulations with different initial
electron fractions designed to match the solar abundance pattern (indicated by black crosses in Fig. 7). As shown in

Fig. 7(b), simulation 12 fits the solar pattern in the second and third peaks, with an overproduction around A = 150,
while simulation 13 fits the solar pattern well from the second peak out past the third peak. We find that together,
all thirteen selected simulations adequately capture the complete span of effective heating curves, as can be seen in
Fig. 8.

4.1. Nucleosynthesis and Effective Heating

In Fig 8, we show the overall effective heating rate for the 13 simulations, calculated using the thermalization
efficiencies described in Section 2.3 with Mej = 0.05M� and v = 0.15c. In this figure, the grey band represents the

range of effective heating rates from all simulations with Ye of 0.02 to 0.28, as well as the full set of nuclear physics
inputs described in Section 2.2. The combined mass fraction of lanthanides and actinides, XLn+An(tκ = 1 day), varies
from 0.020 to 0.481, as shown in the corner subplot of Fig. 8. In Fig 9, we show the fractional effective heating rates
for the individual simulations 1-11. Meanwhile, Fig. 10 shows the fractional effective heating rates for simulations 12
and 13, in addition to the individual simulations of which they are composed.

Prior to one day post-merger, we see that most simulations are dominated by β-decay. The exceptions to this are
simulations 3 and 4, which use the HFB theoretical nuclear model. In these cases, Fig. 9 shows the dominance of
spontaneous fission at this time, and we see a correspondingly high effective heating rate, shown in Fig. 8. Beginning
at 8-10 days post-merger, we start to see α-decay and spontaneous fission playing an increasingly important role in
the overall heating for simulations with Ye < 0.21, as well as those fit to the solar pattern. We note that these cases
are weighted such that they include substantial contribution from simulations with Ye < 0.21 in order to produce solar
actinide yields. Around this time, we see that the effective heating rates for individual simulations decay with slopes
roughly proportional to t−1 − t−1.1. For comparison purposes, these timescales are shown by the red lines in Fig. 8.

Simulations 1, 8 and 10 (Ye ≥ 0.21) lack significant contributions from spontaneous fission and α-decay, and show
lower heating rates than their lower Ye counterparts. However we also see that for a given Ye, the effective heating
rate is also sensitive to the theoretical nuclear model.

Around 100 days, simulations 1, 8 and 10 continue to be dominated by β-decay. The effective heating rate for these
simulations decays rapidly at this time, roughly proportional to t−2.3, as indicated by the solid red line in Fig. 8.
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(a) 11 single simulations, labeled 1 to 11 in Table. 2.
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Figure 7. The final abundance (top panel), mass fractions of individual lanthanide and actinide elements (bottom panel) from
the nucleosynthesis simulations. For comparison, the solar abundance is plotted with black plus markers. The grey band (top
panel) and grey vertical lines (bottom panel) show the range of final abundance and mass fractions of individual lanthanide and
actinide elements from all simulations included in each figure.
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Figure 8. Comparison of the effective heating rates of the 13 simulations in Table 2. Subplots in the left bottom are mass
fractions of lanthanides (Ln) and actinides (An), XLn+An(tκ), where tκ = 1 day. Lines proportional to t−α are shown for
comparison. The grey band shows the range of effective heating rates from all our astrophysical and nuclear inputs.

Meanwhile, simulations with low Ye, as well as simulations 12 and 13, are dominated by spontaneous fission and in
most cases show a “bump” in the overall heating compared to the power law decays. This “extra” effective heating
mainly comes from the spontaneous fission of 254Cf, which is consistent with the findings of Zhu et al. (2018). After
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Figure 9. Fractional heating rates for different nuclear channels using individual simulations, labeled in Table 2.
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(a) Simulation 12 which uses the DZ33 theoretical nuclear model
and Kodama fission yields.
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(b) Simulation 13 which uses the UNEDF1 theoretical nuclear
model and symmetric fission yields.

Figure 10. Fractional heating rates of the two linear combinations of simulations that both reproduce the solar abundance
pattern in the range of 120 < A < 200. Colored lines represent the individual simulation from which the linear combination is
composed. Black lines represent simulation 12 (left) or 13 (right). Both simulations use the Karpov (KZ) spontaneous fission
rates.

hundreds of days, we tend to see a decreased importance of spontaneous fission and a corresponding rapid decay in the
effective heating rate. We further explore the sources and roles of theses different processes and timescales in energy
generation in Section 5.

4.2. Light Curves

The relationship between r -process radioactivity and the emerging light curve is governed by multiple interacting
factors. While the total effective heating sets the overall magnitude of the light curve, the maximum luminosity also
depends on the time at which the light curve peaks, which is a function of the ejecta opacity. Changes in the slope

of the effective heating curve can also affect the shape of the light curve near its peak, while the decline of the light
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curve is a function of late-time effective heating, which is directly tied to nucleosynthetic outcomes, particularly the
prevalence of alpha decay and fission. We now take the thirteen models given in Table 2, and calculate the bolometric
luminosity for each of them as described in Section 2. Fig. 11 shows the results of this calculation assuming an ejecta
mass of Mej = 0.05M� and an ejecta velocity of vej = 0.15c. For comparison, the observed bolometric luminosity from
the KN associated with GW170817 (Drout et al. 2017) is also shown. This includes emission from a blue component,
which dominates for the first ∼2 days, and a red component, which is the main contributor after roughly 4 days. Since
our model is concerned only with the red component, the relevant time period for comparison with data is t & 4 days.
As can be seen in Fig. 11, the peak bolometric luminosity is on the scale of 1041 erg s−1, and all simulations reach
their maximum values by times ranging from 2 days to about 12 days. We note that this behavior is for an ejecta mass
close to that generally inferred from GW170817. We explore the effects of varying the ejecta mass in the next section.

Much of the variability in the luminosity is a reflection of the variability in the effective nuclear heating seen in
Fig. 8. For the selected simulations, the range of uncertainty in the peak bolometric luminosity is from 5 × 1040 to
3 × 1041 erg s−1. The general trend is that a larger effective heating rate at the peak time leads to an overall more
luminous light curve. For example, the effective heating rates of simulation 3 and 4 are close to the upper bound of
the effective heating rate range shown in Figure 8 and the peak bolometric luminosities of simulations 3 and 4 shown
in Figure 11 are also the most luminous. At a few days after the merger, simulations 9 and 10 have the lowest effective
heating rate as shown in Fig. 8 and their peak bolometric luminosities (brown lines in Fig. 11) are also on the low side.

Another way in which differences in nuclear heating manifest themselves is in the shape of the luminosity curve
at late times. With lower Ye simulations, it is more likely that nucleosynthesis will proceed to heavy nuclei that

can fission. As discussed in Secs. 2 and 3, this boosts the effective heating rate, both because of the large Q-values
involved in fission and also due to the enhanced thermalization of fission products. In contrast, the element synthesis
in simulation 1 never reaches nuclei which fission, and only β-decays contribute significantly to the heating. Therefore,
the luminosity in simulation 1 (dark purple line in Fig. 11) drops much more steeply at late times. We explore the

landscape of decaying nuclei more closely in Section 5.
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Figure 11. Bolometric luminosity of 13 simulations with the ejecta mass 0.05M� and the ejecta velocity vej = 0.15c. Red
and blue diamond markers are observed bolometric luminosity from the KN associated with GW170817 (Drout et al. 2017).
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If the effective heating rate is the same, the higher opacity that stems from a larger XLn+An results in an elongated
light curve and a later, dimmer peak, as compared to a simulation with a smaller XLn+An. For example, simulations
1 and 12 have similar effective heating rates (dark purple and green lines in Fig. 8) at several days, but the peak
bolometric luminosity of simulation 1 (dark purple line in Fig. 11) is noticeably earlier than the peak bolometric
luminosity of simulation 12 (dark green line in Fig. 11). This is consistent with the subplot of Fig. 8, where simulation
1 (dark green bar) has an XLn+An which is less than 10% while simulation 12 (dark green bar) has an XLn+An of
about 30%. We caution that while lanthanides and actinides produce a high opacity component, the relationship is
one of diminishing returns. Increasing the lanthanide mass fraction from 0.1 to 1.0 raises the mean opacity by a factor
of less than 2 and even an increase from 0.01 to 1.0 results in a change of a factor of . 5 (Kasen et al. 2013). These
differences tend to be less significant than that of the variation in nuclear heating across models. If we were working
in the context of a fixed heating rate which is insensitive to nuclear physics variations, then the ejecta mass would
be tightly constrained by a comparison with observed luminosity, and with this information about the mass, then
the opacity could be constrained by matching the evolution of the light curve. Since in our study the heating rate is
calculated to be consistent with the nuclear model, we can see from Fig. 11 that the (smaller) differences in opacity
can be offset by a combination of the heating rate and ejecta mass, or vice versa.

The combination of the effective heating and XLn+An leads to substantial differences in the duration of the bolometric
light curve peaks shown in Fig. 11. Simulations 3 and 4 (blue lines in Fig. 11) have a fast rise at about 1 day, and
their peak luminosity begins to decline only around 12 days. This correlates with the shallow slope in the effective
heating rate which comes from an early time fission contribution, as well as a substantial XLn+An, which increases the

diffusion time of photons through the ejecta. These long plateaus are interesting as a potential signal of early time
fission and need to be verified with a more sophisticated radiation transport model (to be presented in Barnes et al.,
in prep).

4.3. Inferred Ejecta Mass

Fig. 11 demonstrates that the single-component (red) model of a given mass and velocity, as outlined in Section 2,
could have a wide range of predicted luminosities, depending on the nuclear physics and astrophysics inputs chosen
for the r -process calculation. We now turn to an exploration of the uncertainty in the inferred ejecta mass given
uncertainties in these inputs in the case where there is a component dominated by lanthanide/actinide rich material.

In Fig 12(a), for simulations 12 and 13 (which are the linear combinations that fit the solar abundance pattern),
we show the calculated light curve for various ejecta masses ranging from 0.01M� to 0.08M�. In all models, the
average ejecta velocity was vej = 0.15c. As can be seen from Fig. 12(a), this grid of masses covers a substantial

range of bolometric luminosities. Additionally, the peak luminosity, width of the peak, and decay of the light curve
also depend on the ejecta mass. In the context of the methods outlined in Section 2, if we assume the merger event
GW170817 to have synthesized nuclear species in ratios consistent with the solar abundance pattern (for A > 125)

in conditions like simulations 12 or 13, 0.02M� is the best inferred ejecta mass to match the light curve from 8 to
12 days. Additional work with a more complete set of solar abundance-tuned models is needed to determine the full
extent of the uncertainty on the bolometric luminosity from models which match the solar abundance pattern but
have different nuclear inputs.

Next, we take simulations 1-11 and calculate a light curve for four different values of the ejecta mass: 0.01M�,
0.02M�, 0.05M�, and 0.08M�. In Fig. 12(b), for each simulation, we plot the light curve that best matches the data
at 4 to 12 days and show the corresponding ejecta mass in the key. We see from this figure that a single set of data can
be fairly well fit by a variety of ejecta masses. The inferred ejecta mass can be relatively small with the simulations
with higher effective heating rates and XLn+An. For example, the best match for simulations 3, 4, and 5 (HFB and
ETFSI mass models) occurs with an ejecta mass of 0.01M�. The simulations with lower effective heating rates at the
time their light curve peaks and lower mass fractions of lanthanides and actinides, such as simulations 9 and 10 with
SLY4 mass model, have higher inferred ejecta masses, 0.08M�. The ejecta mass inferred from simulations 1, 2, 6, 7,
8, 12, and 13, which have light curves that reflect an interplay between the amount of lanthanides and actinides and
the effective heating rates, is in between these two extremes.

This analysis indicates the extent to which the inferred ejecta mass can vary with different nuclear physics and
different initial neutron richness, while keeping the rest of the parameters in the KN model constant. In particular,
it is clear that if the model is not required to be consistent with solar abundance ratios, the inferred ejecta mass
may suffer from large uncertainties. Note that this analysis is intended to show the range of uncertainty that would
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Figure 12. Bolometric luminosity of simulations using different ejecta masses. The ejecta masses are chosen from a grid
that includes four ejecta mass parameters: 0.01M� (solid), 0.02M� (dashed), 0.05M� (dash-dot), 0.08M� (dotted), for each
simulations labeled in Table 2. Black diamond markers are observed bolometric luminosity from the KN associated with
GW170817 (Drout et al. 2017).

exist if one considered material that is synthesized with Ye < 0.24 in the 8-12 day range. Our analysis considers
scenarios where the ejecta reaches rather high XLn+An. Previous estimates of an XLn+An ∼ 10−2 (e.g. Chornock

et al. (2017) calculated based on observations are derived under specific assumptions about the r -process heating rate,
which we vary. If a smaller mass fraction is preferred than is obtained from neutron-rich element synthesis, then these
curves could be combined with lanthanide-free material to reach the desired lanthanide mass fraction, and the previous

analysis could be repeated along with complete fits to the spectra and time evolution of the luminosity.

4.4. Power Law Fits for Late-Time KN signals

For some practical applications, it may be useful to approximate the light curve as a power law. For the power law

t−α we find this range to be 1 ≤ α ≤ 2.7, depending on the nuclear physics inputs, for the time period we consider,
t < 40 days. The broad range of power-law indices we find reflects the fact that our analysis includes contributions
from all decay channels, including α-decay and fission, which can contribute significantly to the heating. For example,
Simulation 1 (purple line in Fig. 12(b)), is not neutron rich enough to significantly produce heavy nuclei which undergo
spontaneous fission or α-decay. Therefore the late-time decay is not supplemented by these extra processes, and the
bolometric luminosity decays rapidly, proportional to t−2.7. Meanwhile, simulations 3 to 8 have more significant
fissioning and/or α-decaying nuclei, and show a much slower decay rate that is closer to t−1.

Other estimates of this power law at a different times can be found in Kasen & Barnes (2019); Waxman et al. (2019);
Hotokezaka & Nakar (2020b).

5. IMPORTANT REACTIONS FOR NUCLEAR HEATING

In this section, we explore variations and similarities in the predictions of individually contributing isotopes in each
decay channel, and how these account for some of the differences in overall heating explored in previous sections. In
order to obtain a reasonably full picture of important reactions, for the majority of this section, we return to the
nearly full suite of simulations combining the 8 theoretical nuclear models and 4 combinations of spontaneous fission
prescriptions and daughter product distributions as described in Section 2.2, yielding 32 combinations for each of the
Ye ≤ 0.24 values (simulations with Ye = 0.28 showed little to no fission past one day) described in Section 2.1 for a

total of 224 simulations.
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Figure 13. Heating from α-decay (solid), β-decay (dash-dotted) and spontaneous fission (dashed) for six different simulations,
selected to highlight the competition between respective channels at different times. Times of 1, 8, 30, 50 and 200 days are
indicated with vertical lines. The parenthesis in the legend indicate the spontaneous fission yield, spontaneous fission rate, and
Ye, in that order.

While in previous sections we examined the fractional effective heating in each channel, we instead show in Fig. 13
the absolute α-decay, β-decay and spontaneous fission heating rates as a function of time for a selection of simulations.

These were selected with the intention of sampling from the range of Ye, nuclear models, and spontaneous fission
prescriptions, while capturing some of the interesting behavior. We find general agreement across all simulations that
the β-decay heating follows a power law decay, as illustrated by the dot-dashed lines for the six simulations in this

figure. When we compare all simulations with Ye ≤ 0.21, we find that the absolute β-heating varies by approximately
one order of magnitude, increasing to up to two orders of magnitude at late times (∼ 100 days). However, β-decay is
not always the dominant reaction channel, and Fig. 4 serves as an example of how there are a range of possibilities for

the dominating channels at essentially all times. In contrast to the relative similarity in β-decay heating across models,
α-decay heating (solid lines in Fig. 13) varies more in the overall amount of heating by between two to four orders of
magnitude. The spontaneous fission heating rate (dashed lines in Fig. 13) shows the most sensitivity to model inputs,
displaying differences in overall shape as a function of time and between three to six orders of magnitude variation

in its value. We note that in the cases of α-decay and spontaneous fission, some simulations with Ye = 0.24 and
Ye = 0.28 show no heating at the times included in Fig. 13. Therefore, including these high Ye cases would amplify
these uncertainties by several orders of magnitude by extending them to zero.

5.1. Spontaneous Fission

Given the potential importance of spontaneous fission, as well as the large uncertainties associated with spontaneous
fission heating, we examine the consequences of spontaneous fission rate prescriptions as well as the influence of daughter
product distributions. In Fig. 14 we show fractional effective heating rates in order to compare simulations for which
we altered only these aspects of spontaneous fission, while holding all other nuclear and astrophysical inputs constant.

The most striking takeaway from Fig. 14(a) is that prior to tens of days, there can be a clear difference between the
results with KZ and XR for cases which permit nuclei with high mass numbers to be significantly populated, as is the
case for HFB with KZ rates. This is because XR spontaneous fission rates are relatively high starting around Z ∼ 94
regardless of the predicted fission barriers since this prescription has no dependence on this input. Therefore in the
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Figure 14. Comparison of the impact of different spontaneous fission prescriptions for two different nuclear models (left:
HFB27, right: UNEDF1) on the fractional effective heating rates.

XR case, high mass, high fission Q-value nuclei are never significantly populated. We see also from both panels of this
figure that changing the daughter product distribution can influence the fraction of β-decay heating.

Returning to all 224 simulations, we now identify those isotopes responsible for most of the spontaneous fission

heating. In general, we determine key contributors at each selected time by ranking the heaters within each channel.
We then sum this list until 80% of the total heating in that channel is accounted for, as we find that 80% adequately
represents the diversity of significant contributors. In Fig. 15, we show a section of the chart of the nuclides, graphically

representing the number of simulations for which each isotope was responsible for all or part of the top 80% of the
spontaneous fission heating. We find that in most cases, even at early times, 254Cf (t1/2 = 60.5 ± 0.2 days) (Phillips
et al. 1963) is among the top isotopes contributing to spontaneous fission heating. This is reflected in the behavior of

the spontaneous fission heating lines in Fig. 13, showing a consistent underlying plateau and decay after about 50 days,
indicating a population and evolution of 254Cf on its spontaneous fission timescale. However, in some cases, we find
other isotopes to be responsible for all or part of 80% of the spontaneous fission heating in that model, either because
they dominate over 254Cf or because 254Cf itself does not make up the entire 80%. We list the simulations in which

an isotope other than 254Cf is responsible for all or part of 80% of the total spontaneous fission heating in Table 3.
The dominant trend is that models which permit the synthesis of heavy species near or beyond the N=184 predicted
shell closure have the greatest diversity in nuclear species that contribute to spontaneous fission heating, as is the case
with HFB + KZ combinations. We note, additionally, that very low fission barriers will result in limited population
of nuclei near 254Cf (Vassh et al. 2019; Giuliani et al. 2019), and thus little to no contribution of spontaneous fission
to the nuclear heating. At times much earlier than the timescale for spontaneous fission of 254Cf, e.g. at one day, our
simulations have a more diverse set of important spontaneous fission heaters than at later times, especially from nuclei
which decay on shorter timescales.

Table 3. Top Contributing Nuclei: Spontaneous Fission (80%)

Time (d) Isotope Model Fission Yield Fission Rate Ye

1 254
96Cm HFB22 Symmetric XR 0.24*

Kodama XR 0.24*
258
100Fm HFB27 Symmetric KZ (0.02-0.24)*

Kodama KZ (0.02-0.24)*

Table 3 continued on next page
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Table 3 (continued)

Time (d) Isotope Model Fission Yield Fission Rate Ye

267
104Rf FRDM2012 Kodama KZ 0.12, 0.14

UNEDF1 Symmetric KZ 0.14, 0.18

Kodama KZ (0.02-0.18)

HFB22 Symmetric KZ 0.02*, 0.12, 0.14, 0.16*, 0.18*, 0.21, 0.24

Kodama KZ (0.02-0.18)*, 0.21, 0.24
270
104Rf HFB22 Symmetric KZ 0.02*
271
104Rf HFB22 Symmetric KZ 0.02*, 0.12, 0.14, 0.16*

Kodama KZ (0.02-0.16)*

HFB27 Symmetric KZ (0.02-0.18)*

Kodama KZ (0.02-0.18)*
273
105Db UNEDF1 Kodama KZ 0.12
288
108Hs ETFSI Symmetric KZ 0.02, 0.12, 0.14*

Kodama KZ 0.14

8 259
100Fm HFB22 Symmetric KZ 0.18

Kodama KZ 0.18
269
104Rf HFB22 Symmetric KZ 0.16, 0.18

Kodama KZ 0.02, (0.14-0.18)

HFB27 Symmetric KZ 0.02, 0.12, 0.16, 0.18

Kodama KZ 0.02, 0.12, 0.16, 0.18
270
104Rf HFB27 Symmetric KZ 0.02, 0.18

Kodama KZ 0.02, 0.14

50 259
100Fm HFB22 Symmetric KZ 0.18

Kodama KZ 0.18
269
104Rf HFB22 Symmetric KZ 0.16

Kodama KZ 0.02, 0.16, 0.18

HFB27 Symmetric KZ 0.02, 0.12, 0.16, 0.18

Kodama KZ 0.02, 0.12, 0.14, 0.16, 0.18

Note—Simulations in which an isotope other than 254Cf was responsible for all or part of 80% of the total spontaneous
fission heating. The right columns list out the specific simulations in which each isotope was seen, labeled first by
nuclear model, then in parentheses by spontaneous fission yield, spontaneous fission rate and Ye. An asterisk
indicates that for the corresponding simulations, 254Cf did not appear in the list of top 80%.

(a) Spontaneous fission at 1 day. (b) Spontaneous fission at 8 days. (c) Spontaneous fission at 50 days.

Figure 15. Isotopes responsible for 80% of the total spontaneous fission heating rate. Colors indicate the number of times (out
of 224 simulations with different nuclear physics and astrophysical inputs) each isotope was listed as being part of the top 80%
of spontaneous fission heating. Dots indicate nuclei which have measured values for their spontaneous fission rate.
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5.2. Key Reactions in Alpha-Decay

(a) α-Decay at 1 day. (b) α-Decay at 8 days. (c) α-Decay at 30 days.

Figure 16. Isotopes responsible for 80% of total α-decay heating at indicated times. Colors indicate the number of times (out
of 224 simulations with different nuclear physics and astrophysical inputs) each isotope was listed as being part of the top 80%.
Dots represent the nuclei for which α decay rates have been measured.

As Fig. 14 shows, varying the nuclear inputs, such as the mass model or the spontaneous fission rate and yield
distribution, can also impact the α-decay heating prediction. Depending on the specific model inputs, we find that

α-decay heating can range from 10% of the total heating to up to 50% prior to 100 days. Following the same procedure
described in Section 5.1, we identify isotopes responsible for the top 80% of α-decay heating. In Fig. 16, we show the
evolution of the top contributing nuclei between 1, 8, and 30 days, with a more complete list included in the appendix.

At each of the selected times, there is generally good agreement across simulations regarding which isotopes contribute
the most.

We distinguish two regions of importance: 83 ≤ Z ≤ 89 and 98 ≤ Z ≤ 105. The first region, shown in the bottom left
corner of each subplot of Fig. 16, is accessible to most trajectories, and is a region where the preferential decay mode

tends to be α-decay. The magnitude of the α-heating in this region is largely determined by the amount of material
which reaches these high mass regions, thus we find that it exhibits a relatively high sensitivity to Ye. Comparing the
important isotopes in this region as a function of time (across panels), we see the expected evolution toward stability.

Meanwhile, in the upper right region of the nuclear chart (higher atomic numbers), decay modes display a stronger
competition between α-decay and spontaneous fission, e.g. one species might primarily decay via α-decay with a
secondary or tertiary spontaneous fission decay, while its immediate neighbor might primarily decay via spontaneous
fission. Therefore, while the α-heating in this region is sensitive to the amount of material which reaches the region, it is

also sensitive to the relative rates of α-decay and spontaneous fission along the relevant decay chains. By examining the
ordered list of contributors to α-decay heating, we find that in simulations where isotopes from this second region are
important, they tend to supply an increasing fraction of the total α-decay heating as time progresses. We find that the

two most consistent isotopes from the second region, 253Es and 255Fm, are present in most nuclear model simulations
from this sample, but are restricted to simulations using lower Ye values (only below 0.18). Finally, while many nuclei
in this region have measured α-decay rates, some do not, making both theoretical predictions and measurements for
these α-decays particularly important.

5.3. Impact on Beta-Decay Heating

We find the largest variation in fractional effective heating in the contribution from β-decay heating. Depending

on the time post-merger, varying the fission prescription, nuclear models and astrophysical conditions can result in
β-decay heating comprising anywhere between 10% to more than 90% of the total effective heating. The spontaneous
fission reactions and α-decays discussed in the previous sections have direct impacts on the β-decay heating, as these
processes are a significant factor in determining the population of nuclei which eventually β-decay. Fig. 17 shows
the frequency of isotopes responsible for all or part of 80% of the β-decay heating at 8 (left) and 50 (right) days: a
more complete list is found in the appendix. Close to stability, there are a few important isotopes that show up in
nearly every simulation. Further away from stability, and as early as 30 days, we start to see the significant impact
of 254Cf spontaneous fission daughter products in the A = 130 region. Given that the simulations we compare in
this section span Ye values from 0.02 to 0.24, it is expected that the abundance of 254Cf varies from simulation to
simulation, and therefore the fraction of β-heating which comes from decays of daughter products of 254Cf is also
not uniform; this is reflected in Fig. 17. Surrounding the two distinct green patches seen in the bottom right panel
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Figure 17. Top panel: Frequency of β-decay nuclei in the top 80% of the total β-heating rate at 8 (left) and 50 (right) days.
Colored bar indicates the number of simulations (out of 224 total) in which each isotope was listed as being part of the top
80%. Dots indicate isotopes which have a measured beta decay rate. Bottom panel: Zoom on the region where more consistent
spontaneous fission daughter products appear after at least 50 days.

of Fig. 17 is a more diffuse distribution of isotopes (yellow patches) that appear to be significant in few simulations.

These are primarily found in simulations using HFB nuclear models with Kodama fission yields and KZ spontaneous
fission rates. This highlights the potential importance of isotopes with unmeasured characteristics in the high-Z region
(100 ≤ Z ≤ 106), both directly via spontaneous fission or α-decay, as well as indirectly via the decay products of

these processes. The amount of heating from spontaneous fission, α-decay, and subsequently, β-decay, is ultimately
sensitive to whether the synthesis of heavy nuclei reaches this high-Z region, and if it does, the process by which they
preferentially decay.

6. CONCLUSION

Observations of the electromagnetic signal that comes from a NSM present a unique opportunity to investigate both
the type and amount of the elements that are ejected in these events. It is generally believed that a high opacity
material, likely rich in lanthanides, was ejected from the recent NSM GW170817. These elements are synthesized via
the r -process, so this suggests that at least some r -process material was produced in this NSM.

Using the observed electromagnetic signal to infer elements produced in the merger is an inverse problem. Since
uncertainties are present in a variety of inputs relevant for predicting light curves, interpreting merger signals is
subject to degeneracies. From the results of our investigations, we estimate that a range of approximately one order of
magnitude in the ejected mass is needed to reconcile light curve observations with the broad range of nuclear physics
uncertainties we have explored. Our estimate by design includes simulations with a variety of final abundance patterns.
While the two simulations we considered that produce a solar main r -process seem to show more similar trends, we
caution that a more extensive study of nuclear physics models is needed to more quantitatively estimate the full range
of behavior when applying a solar pattern constraint. However, it is too preliminary to impose such a constraint
without definitive evidence that NSMs are the sole site of r -process element production.

We find that the late time behavior of the light curve is substantially different above and below Ye ∼ 0.21 for

our choice of outflow timescale and entropy. We focus on below Ye ∼ 0.24 conditions, and find that the effective
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heating rate exhibits much more variability than the opacity. Although lanthanides can be produced with Ye . 0.24,
there is very little actinide production above Ye ∼ 0.21, resulting in less spontaneous fission, and a rapidly decaying
bolometric luminosity at around ten days. Meanwhile for Ye . 0.21, considerably more spontaneous fission occurs
and the bolometric luminosity decays much more slowly. This is directly relevant to the open question of dominant
r -process production sites within the merger, including dynamical ejecta (tidally ejected or “squeezed”) and winds
(from a hypermassive NS or accretion disk). Although each site is thought to be dominated by its own range of Ye,
there is variety in the predictions of these ranges and therefore in the nucleosynthetic outcomes within each site. This
includes a possible admixture with higher Ye material. This points to the critical need for dynamical and wind ejecta
models which carefully consider microphysical processes in order to translate observations into an understanding of
NSM nucleosynthesis, as well as that of BHNS mergers.

Our results show that single spontaneous fission reactions can have leverage on the bolometric luminosity on both
short and long timescales. We explore different fission barriers and find that some choices show substantially elevated
radioactive heating around one day, which is a key time for setting the light curve’s peak luminosity as well as the
peak’s duration. As part of explicitly examining the impact of different fission treatments, we identify key nuclear
reactions and their effect on the heating. For practical use in light curve models, we include tables of key radioactive
decay reactions from our survey and suggest a range of effective heating and bolometric luminosity decay rates.

Looking forward, our results highlight several needs. More detailed studies with sophisticated radiation transport
coupled to hydrodynamics are essential; this will anchor the uncertainties reported here to state of the art light curve
predictions. Examinations of the relationship of the observed light curve to alpha decay and fission contributions

can be combined with existing techniques which estimate outflow velocity using absorption features in the observed
spectrum, since both methods shed light on the type of outflow from which r -process material originates. To reduce
the uncertainties which stem from nuclear inputs, a concerted effort in both nuclear experiment and theory is needed
in all areas relevant to r -process nucleosynthesis including nuclear masses, fission rates, fission daughter product

distributions, as well as β-decay and α-decay rates.
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APPENDIX

We list the key radioactive decay reactions that contribute to the heating from the α-decay and β-decay channels.
We consider eight theoretical nuclear models, two fission yield distributions and two spontaneous fission rate choices,
giving 32 combinations of nuclear physics inputs. We list the reactions that appear in the top 80% (as defined in Section
5) more than 16 times (black) and more than 28 times (red) out of the 32 combinations for each of the initial electron
fractions in Tables 4 and 5. In the case of α-decays, we find that when present in the ranked list of top contributors,
the isotopes listed in Table 4 account for 93% of the top 80% of the α-decay heating, on average. Similarly, in the
case of β-decays, we find the isotopes listed in Table 5 also account for 93% of the top 80% of the β-decay heating, on
average.

Table 4. Key contributing α-decays

Time (d) Ye (Z,N)

1 0.02 212
83Bi, 212

84Po, 214
84Po, 216

84Po, 220
86Rn, 224

88Ra

0.12 212
83Bi, 212

84Po, 214
84Po, 216

84Po, 218
84Po, 220

86Rn, 224
88Ra

0.14 212
83Bi, 212

84Po, 214
84Po, 216

84Po, 220
86Rn

0.16 212
83Bi, 212

84Po, 214
84Po, 216

84Po, 218
84Po, 220

86Rn, 224
88Ra

0.18 212
83Bi, 212

84Po, 214
84Po, 216

84Po, 218
84Po, 220

86Rn, 224
88Ra

0.21 212
83Bi, 212

84Po, 214
84Po, 216

84Po, 218
84Po, 220

86Rn, 224
88Ra

0.24 212
83Bi, 212

84Po, 214
84Po, 216

84Po, 218
84Po, 220

86Rn

0.28 212
83Bi, 212

84Po, 216
84Po, 220

86Rn, 224
88Ra

8 0.02 212
84Po, 214

84Po, 215
84Po, 216

84Po, 218
84Po, 220

86Rn, 222
86Rn, 224

88Ra, 211
83Bi, 219

86Rn, 223
88Ra, 255

100Fm

0.12 212
84Po, 214

84Po, 215
84Po, 216

84Po, 218
84Po, 219

86Rn, 220
86Rn, 222

86Rn, 224
88Ra, 211

83Bi

0.14 214
84Po, 216

84Po, 218
84Po, 211

83Bi, 212
84Po, 215

84Po, 219
86Rn, 220

86Rn, 222
86Rn, 224

88Ra, 253
99Es, 255

100Fm

0.16 212
84Po, 214

84Po, 216
84Po, 218

84Po, 220
86Rn, 222

86Rn, 224
88Ra, 211

83Bi, 215
84Po, 219

86Rn, 255
100Fm

0.18 211
83Bi, 212

84Po, 214
84Po, 215

84Po, 216
84Po, 218

84Po, 219
86Rn, 220

86Rn, 222
86Rn, 224

88Ra

0.21 211
83Bi, 212

84Po, 214
84Po, 215

84Po, 216
84Po, 218

84Po, 219
86Rn, 220

86Rn, 222
86Rn, 224

88Ra

0.24 211
83Bi, 212

84Po, 214
84Po, 215

84Po, 216
84Po, 218

84Po, 219
86Rn, 220

86Rn, 222
86Rn, 224

88Ra

0.28 211
83Bi, 212

84Po, 214
84Po, 215

84Po, 216
84Po, 218

84Po, 219
86Rn, 220

86Rn, 222
86Rn, 224

88Ra

Top contributing α-decay nuclei that are common in at least 28 out of 32 nuclear physics input combinations
are in red. Nuclei in black are common in at least 16 out of 32 nuclear physics input combinations.
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Table 5. Key contributing β-decay reactions.

Time (d) Ye (Z,N)

1 0.02 128
51Sb, 132

53I,
133
53I,

135
53I,

135
54Xe, 197

78Pt, 127
51Sb, 129

51Sb, 129
52Te, 132

52Te, 131
53I,

143
58Ce, 193

76Os

0.12 132
53I,

133
53I,

135
53I,

135
54Xe, 197

78Pt, 127
51Sb, 128

51Sb, 129
51Sb, 129

52Te, 132
52Te, 131

53I,
141
57La, 193

76Os

0.14 132
53I,

133
53I,

135
53I,

135
54Xe, 127

51Sb, 128
51Sb, 129

51Sb, 129
52Te, 132

52Te, 131
53I

0.16 128
51Sb, 132

53I,
133
53I,

135
54Xe, 197

78Pt, 127
51Sb, 129

51Sb, 129
52Te, 131

53I
135
53I,

240
93Np

0.18 128
51Sb, 132

53I,
133
53I,

193
76Os, 197

78Pt, 208
81Tl, 240

93Np
129
51Sb, 129

52Te, 135
53I,

135
54Xe, 200

79Au, 212
82Pb

0.21 132
53I,

133
53I,

135
53I,

135
54Xe, 157

63Eu, 184
73Ta, 189

75Re, 193
76Os, 197

78Pt
128
51Sb, 131

53I,
140
57La, 151

61Pm, 159
64Gd, 166

67Ho, 171
68Er, 172

68Er, 187
74W

0.24 128
51Sb, 129

51Sb, 129
52Te, 132

52Te, 132
53I,

133
53I,

135
53I,

135
54Xe, 193

76Os
131
53I,

140
57La, 151

61Pm, 156
62Sm, 157

63Eu, 159
64Gd, 166

67Ho, 184
73Ta

0.28 132
53I,

133
53I,

128
51Sb, 132

52Te, 131
53I,

135
53I,

135
54Xe

8 0.02 132
52Te, 132

53I,
133
54Xe, 140

57La, 125
50Sn, 127

51Sb, 127
52Te, 131

53I,
140
56Ba, 156

63Eu

0.12 132
52Te, 132

53I,
133
54Xe, 140

57La, 125
50Sn, 127

51Sb, 127
52Te, 131

53I,
140
56Ba, 156

63Eu, 166
67Ho

0.14 132
53I,

125
50Sn, 127

51Sb, 132
52Te, 131

53I,
133
54Xe, 140

56Ba, 140
57La

0.16 132
52Te, 131

53I,
132
53I,

125
50Sn, 127

51Sb, 127
52Te, 133

54Xe, 140
56Ba, 140

57La, 234
91Pa, 246

95Am

0.18 127
51Sb, 132

52Te, 131
53I,

132
53I,

208
81Tl, 234

91Pa, 246
95Am, 125

50Sn, 127
52Te, 133

54Xe
140
56Ba, 140

57La, 193
76Os, 199

79Au, 202
79Au, 207

81Tl, 211
82Pb, 212

82Pb, 214
82Pb, 247

94Pu

0.21 132
53I,

140
57La, 156

63Eu, 166
67Ho,17269Tm, 191

76Os, 193
76Os

132
52Te, 131

53I,
140
56Ba, 166

66Dy, 188
75Re

0.24 131
53I,

132
53I,

140
57La, 166

67Ho, 132
52Te, 133

54Xe, 140
56Ba, 156

63Eu,17269Tm

0.28 131
53I,

132
53I,

132
52Te

Top contributing β-decay nuclei that are common in at least 28 out of 32 nuclear physics input combinations
are in red. Nuclei in black are common in at least 16 out of 32 nuclear physics input combinations.
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