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Abstract We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an
oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded
by planar, parallel, blocking electrodes. The AREF refers to the steady component of the electric potential gradient
within the electrolyte, as discovered via numerics by Hashemi Amrei et. al. [Hashemi Amrei, S. M. H., Bukosky, S.
C., Rader, S. P., Ristenpart, W. D., & Miller, G. H. (2018), Physical Review Letters, 121(18), 185504.]. We adopt the
Poisson-Nernst-Planck framework for ion transport in dilute electrolytes, taking into account unequal ionic diffusivities.
We consider the mathematically singular, and practically relevant, limit of thin Debye layers, 1/(κL) = ε → 0, where
κ−1 is the Debye length, and L is the length of the half-cell. The dynamics of the electric potential and ionic strength in
the “bulk” electrolyte (i.e., outside the Debye layers) are solved subject to effective boundary conditions obtained from
consideration of the Debye scale transport. We specifically analyze the case when the applied voltage has a frequency
comparable to the inverse bulk ion diffusion time scale, ω = O(DA/L2), where DA = 2D+D−/(D+ + D−) is
the ambipolar diffusivity, and D± are the ionic diffusivities. In this regime, the AREF extends throughout the bulk of
the cell, varying on a lengthscale proportional to

√
DA/ω, and has a magnitude of O(ε2kBT/(Le)) to leading order

in ε. Here, kB is the Boltzmann constant, T is temperature, and e is the charge on a proton. We obtain an analytical
approximation for the AREF at weak voltages, V0 � kBT/e, where V0 is the amplitude of the voltage, for which the
AREF is O(ε2V 2

0 e/(kBTL)). Our asymptotic scheme is also used to calculate a numerical approximation to the AREF
that is valid up to logarithmically large voltages, V0 = O((kBT/e) ln(1/ε)). The existence of an AREF implies that
a charged colloidal particle undergoes net electrophoretic motion under the applied oscillatory voltage. Additionally,
a gradient in the bulk ionic strength, caused by the difference in ionic diffusivities, leads to rectified diffusiophoretic
particle motion. Here, we predict the electrophoretic and diffusiophoretic velocities for a rigid, spherical, colloidal
particle. The diffusiophoretic velocity is comparable in magnitude to the electrophoretic velocity, and can thus affect
particle motion in an AREF significantly.

1 Introduction

Electrolytes under time-dependent voltages have applications in dielectric impedance spectroscopy [1–3]; generating
fluid flow in microfluidic devices, [4–8]; desalination and de-ionization through porous membranes [9–11]; colloidal
directed assembly [12–14]; and separation of particles and macromolecules through dielectrophoresis [15–18]. In these
applications, the transport of charged ions under the applied voltage is used to drive fluid flow, particle motion, or
separation processes. Ion transport in dilute solutions is governed by the Poisson-Nernst-Planck (PNP) equations that
are coupled, nonlinear, partial differential equations describing the ionic species balances and electric potential in the
electrolyte [19, 20]. Inclusion of fluid flow is achieved by coupling advective ionic fluxes in the PNP equations with the
Stokes equations including a Coulomb body force.

A simple, yet instructive, model system to study electrolyte dynamics is an electrochemical cell containing a monova-
lent, binary electrolyte flanked by parallel, blocking electrodes [21]. Here, it is assumed that the ion transport is one
dimensional, normal to the electrodes, and there is no fluid flow. When the cell is subject to an external voltage, the ions
in the electrolyte move towards oppositely charged electrodes and form a diffuse layer of charge near each electrode,
called the ‘Debye layer,’ that effectively screens the applied voltage from the bulk of the cell. The thickness of this layer
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is characterized by the Debye length,

κ−1 =

√
εkBT

2neqe2
, (1)

where ε is the permittivity of the electrolyte, kB is the Boltzmann constant, T is the temperature, neq is the uniform
equilibrium ionic strength (i.e., in the absence of applied voltage), and e is the charge on a proton. For a monovalent elec-
trolyte with an ionic strength of 1 mM, the Debye length κ−1 ≈ 10 nm. Typical electrochemical cells have dimensions
L ≈ 10− 100µm [3, 5, 7, 13], hence, the product κL� 1. Physically, this means that the applied voltage drops rapidly
over a very short length scale compared to the cell width, leading to large potential and ion concentration gradients
within the Debye layer. This poses challenges for numerically solving the PNP equations; for example, the time steps
for numerical solution have to be suitably small to ensure stability. Further, a uniform grid cannot practically be used
to simultaneously resolve the Debye layer and cover the entire solution domain; thus, mesh refinement is required [22].
However, the singular mathematical nature of the limit 1/(κL)→ 0 can be exploited by perturbation methods [21, 23–
25]. Electrolyte dynamics are well understood in the limit of weak applied voltages, V � kBT/e, where kBT/e is
the thermal voltage [21]. For reference, at a temperature of T = 298 K, the thermal voltage ≈ 25 mV. Specifically, at
weak voltages (formally, to first order in V e/(kBT )) the PNP equations can be linearized about the equilibrium state of
the electrolyte to yield the “linear response” dynamics of the system. Going beyond the linear response regime is done
either by calculating weakly nonlinear contributions [26, 27], by singular asymptotic analyses at κL � 1 [21, 23–25],
or by solving the PNP equations numerically [22, 28–30].

An assumption made in many theoretical analyses of this model problem is that of electrolyte symmetry; that is, the
ions in the electrolyte have equal diffusivities and magnitudes of valences. A key result of this assumption is that
during charging or discharging in the linear response regime, the ionic strength is uniform throughout the cell. Thus,
any electric field gradient in the electrolyte is purely due to the local charge density in the Debye layers. The bulk
behaves as an Ohmic resistor, wherein the potential is a harmonic function, and the neutral “salt” concentration, or
ionic strength, is equal to its (uniform) equilibrium value. Note, bulk salt depletion can occur at larger voltages due to
uptake of salt by the nonlinear capacitance of the Debye layers [21, 23]. However, in any real system, this assumption
of symmetry may be questionable. For example, the ratio of the diffusivites of the anion and cation for NaCl (sodium
chloride), D−/D+ = 1.523. The salt that comes closest to perfect symmetry is perhaps KCl (potassium chloride),
where D−/D+ = 1.038. (The ratios are calculated from values of ionic diffusivities at infinite dilution as reported by
[31].) As we will show below, a difference in diffusivities transiently perturbs the ionic strength in the bulk electrolyte
away from its equilibrium value, which in turn drives a transient field gradient in the bulk. This transient “concentration
polarization” arises even in the linear response regime. Practically, accounting for the asymmetry could alter predictions
made for charging time scales; particle motion; or fluid flow in the electrolyte. A specific phenomena that arises due to
unequal ionic diffusivities is the “asymmetric rectified electric field (AREF),” that was recently predicted by Hashemi
Amrei et. al. [28]. They considered an asymmetric binary electrolyte subject to an ac voltage whose amplitude is larger
than the thermal voltage, thus, the system is in the nonlinear regime. They numerically solved the PNP equations and
discovered that a sinusoidal input voltage with zero time-average produces a steady, or “rectified,” electric field in the
electrolyte. They analyzed the case when the frequency of the applied voltage was comparable to the inverse of the
ion diffusion time scale across the cell. In this regime, the AREF is “long ranged,” that is, it extends much farther into
the electrolyte than the Debye layer. In further work from this group, the AREF was used to explain the levitation of
colloidal particles near an electrode [32], and electrolyte-dependent flow reversals in induced-charged electro-osmosis
[33]. Finally, they demonstrated that an approximation to the AREF can be obtained from a perturbation expansion of
the PNP equations to second order in a weak applied voltage: specifically, they obtained the solution to the second-order
problem numerically [34].

Here, we analyze the PNP equations governing ion transport in this model electrochemical system for an asymmetric
electrolyte (with unequal diffusivities but equal valances) under an ac voltage, employing singular perturbation methods
to leverage the thin Debye layer limit. The characteristic length scale, or “range,” of the AREF emerges from our analysis
as
√
DA/ω, where DA = 2D+D−/(D+ + D−) is the ambi-polar diffusivity of neutral salt. This has been predicted

from the numerical solution of the AREF [22]. Our analysis specifically examines frequencies comparable to the inverse
bulk ion diffusion time scale, as in Refs. [22, 28, 34]. We also briefly consider the limit when the applied frequency is
comparable to the inverse RC time scale. An important implication of the AREF is that a charged particle would exhibit
net motion under an ac voltage. This has been experimentally observed as electrolyte-dependent colloidal particle motion
to specific positions in the bulk [35, 36]. In addition to the net electric field, however, we also demonstrate that the bulk
transient concentration polarization can give rise to diffusiophoretic particle motion [37, 38]. Hence, the velocity of
a charged particle under an AREF would include electrophoretic and diffusiophoretic contributions, in general. We
develop our thin Debye layer approximation in Section 2; present our main results and discuss in Section 3; discuss the
implications for particle motion in Section 4; and offer a conclusion in Section 5.
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Fig. 1 Schematic of the model electrochemical cell consisting of a dilute asymmetric, monovalent, binary electrolyte between planar, blocking
electrodes. The cell is subject to an ac voltage 2V0 cos(ωt).

2 Problem formulation

Consider an electrochemical cell with planar, parallel, blocking, initially uncharged electrodes, containing a dilute,
monovalent, binary electrolyte solution (Fig.1). The ions in the electrolyte have unequal diffusivities, D+ 6= D−. The
cell is subject to a voltage 2V (t) = 2V0 cos(ωt), applied as ±V (t) to the right and left electrodes respectively. Here V0
is the amplitude of the voltage signal, ω is its angular frequency, and t represents time. We assume that the dimensions
of the electrodes are much larger than the spacing between them; thus, the PNP equations are one dimensional, with
ion transport solely along the direction of the normal to the electrodes. Hence, there is no fluid flow in the system; the
variation in local charge density is balanced by a dynamic pressure gradient [39]. The dimensionless PNP equations are

L2ω

D±

∂ñ±
∂t̃

=
∂2ñ±
∂x̃2

± ∂

∂x̃

(
ñ±

∂φ̃

∂x̃

)
, and

∂2φ̃

∂x̃2
= −1

2
(κL)2 (ñ+ − ñ−). (2)

Here, ñ± are the ion concentrations of the positive and negative ions normalized by the equilibrium ionic strength neq;
φ̃ is the electric potential normalized by the thermal voltage kBT/e; x̃ is the position normalized by the length of the
half cell L; and t̃ is time normalized by the inverse frequency ω−1. In (2), the first equation describes the transport of
ions under diffusion and electro-migration, and the second is Poisson’s equation relating the field gradient to the local
ionic space charge density. The tilde notation (̃.) is used to denote dimensionless variables. The system is subject to the
following boundary conditions at the electrodes (x̃ = ±1):

∂ñ±
∂x̃
± ñ±

∂φ̃

∂x̃
= 0, and φ̃ = ±Ṽ (t̃), (3)

which correspond to conditions of zero flux through the blocking electrodes, and the applied potential difference. It is
useful to reformulate the governing equations in terms of the dimensionless ionic strength and the charge density, i.e.,
the sum and difference of the dimensionless ionic species concentrations. The dimensionless (mean) ionic strength and
charge density are thus, 2c̃ = (ñ++ ñ−) and 2ρ̃ = (ñ+− ñ−). This introduces the dimensionless frequencies L2ω/DA
and L2ω/DF as important parameters where DA = 2D+D−/(D+ +D−) is the ambipolar diffusivity of the salt, and
DF = 2D+D−/(D− − D+). We define α = L2ω/DA, and β = DA/DF = (D− − D+)/(D− + D+). Note that
when D+ = D−, we have β = 0. The PNP equations in terms of the ionic strength and charge density are

α
∂c̃

∂t̃
+ αβ

∂ρ̃

∂t̃
=
∂2c̃

∂x̃2
+

∂

∂x̃

(
ρ̃
∂φ̃

∂x̃

)
, (4)

αβ
∂c̃

∂t̃
+ α

∂ρ̃

∂t̃
=
∂2ρ̃

∂x̃2
+

∂

∂x̃

(
c̃
∂φ̃

∂x̃

)
, (5)

and
∂2φ̃

∂x̃2
= − (κL)2 ρ̃. (6)

The flux boundary conditions at x̃ = ±1 then become

∂ρ̃

∂x̃
+ c̃

∂φ̃

∂x̃
= 0, and

∂c̃

∂x̃
+ ρ̃

∂φ̃

∂x̃
= 0. (7)

Hence, we have a system of coupled nonlinear partial differential equations (4) − (7) for ρ̃, c̃, and φ̃, which would, in
general, require numerical solution. Such solutions are challenging due to the typical scale disparity between the Debye
length and the cell width, κL� 1. Here, we are interested in the long-time oscillatory response, that is, after the initial
transients have died out.
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2.1 Thin Debye layer limit

To proceed, we seek asymptotic approximations that exploit the fact that κL � 1. That is, we consider the limit
ε ≡ 1/(κL) → 0. It is readily seen that this limit is singular, as taking ε = 0 leads to a reduction in the order of the
Poisson equation (6). In this limit, we have two spatial regions: the bulk electrolyte, which is a distance of x̃ = O(1)
away from each electrode; and the Debye layers at each electrode, of thickness O(ε). The leading order bulk dynamics
can be found simply by setting ε ≡ 0 in the PNP equations, the first consequence of which is ρ̃ = 0, i.e., the bulk is
electro-neutral to leading order; and then from (4) and (5),

α
∂c̃

∂t̃
=
∂2c̃

∂x̃2
, and αβ

∂c̃

∂t̃
=

∂

∂x̃

(
c̃
∂φ̃

∂x̃

)
. (8)

Unequal diffusivites implies β 6= 0; thus, the time variation of the bulk ionic strength drives a bulk field gradient. This
would not happen if the diffusivities were equal. Now, ρ̃, c̃, and φ̃ represent the leading order charge density, ionic
strength, and electric potential in the bulk, in an asymptotic expansion as ε→ 0.

We seek separate solutions that are valid inside the Debye layers. Consider the right electrode at x̃ = 1. We introduce
an “inner” coordinate for the Debye layer near this electrode, defined as

X̃ =
x̃− 1

ε
= O(1) as ε→ 0. (9)

Thus, at the electrode surface, x̃ = 1, and X̃ = 0. In the bulk outside the Debye layer, |x̃ − 1| � ε, and x̃ < 1, thus
X̃ → −∞. Now the Poisson equation inside the Debye layer becomes

∂2Φ̃

∂X̃2
= −P̃ . (10)

The corresponding species balances are

ε2α

[
∂C̃

∂t̃
+ β

∂P̃

∂t̃

]
=
∂2C̃

∂X̃2
+

∂

∂X̃

(
P̃
∂Φ̃

∂X̃

)
, (11)

ε2α

[
β
∂C̃

∂t̃
+
∂P̃

∂t̃

]
=
∂2P̃

∂X̃2
+

∂

∂X̃

(
C̃
∂Φ̃

∂X̃

)
. (12)

Here the capital symbols C̃, P̃ , and Φ̃ represent the leading order ionic strength, charge density, and potential within the
Debye layer, respectively. Next, we assume ε2α� 1, or equivalently, ω � κ2DA, that is, the frequency of oscillations
is smaller than the inverse Debye relaxation time. Physically, this implies that the Debye layer charges quasi-steadily
over each oscillation cycle. This is the only restriction we make on the frequency at this stage. Later, we consider
separately the behavior of our system at two different scales of the applied frequency: Sec. 2.3 briefly considers when
the frequency is on the order of the inverse of the RC time constant of the cell; and Sec. 2.4 describes in detail the case
when the frequency is on the order of the inverse bulk diffusion time scale. The species balances imply

0 =
∂2Ñ+

∂X̃2
+

∂

∂X̃

(
Ñ+

∂Φ̃

∂X̃

)
, and 0 =

∂2Ñ−

∂X̃2
− ∂

∂X̃

(
Ñ−

∂Φ̃

∂X̃

)
. (13)

Here Ñ± are the concentrations of the positive and negative ions inside the Debye layers. Thus we find the ion concen-
trations in the Debye layer have a quasi-equilibrium Boltzmann profile,

Ñ± = ñ± exp
[
±(φ̃− Φ̃)

]
. (14)

Here ñ± and φ̃ are the bulk values as x̃→ 1. Further, the concentrations of the positive and negative ions in the bulk are

equal, since the bulk is electro-neutral to leading order. Thus, ñ+ = ñ− =
c̃

2
. Using (14) in the Poisson equation (10),

we have that the potential in the Debye layer satisfies the Poisson-Boltzmann equation

∂2Φ̃

∂X̃2
= c̃ sinh(Φ̃− φ̃), (15)

which is subject to the boundary condition Φ̃ = Ṽ (t̃) at X̃ = 0. Equation (15) can be integrated twice, using ∂Φ̃/∂X̃ = 0
and Φ̃ = φ̃ as X̃ → −∞ (to match the bulk solution) to obtain

Φ̃− φ̃ = 4 tanh−1

[
e
√
c̃X̃ tanh

(
ζ̃r
4

)]
, (16)

where ζ̃r = Φ̃(0) − φ̃ = Ṽ (t̃) − φ̃ is the leading order zeta potential of the right electrode (at x̃ = 1); that is, the net
potential drop across the Debye layer. Note, (16) has been derived previously in various contexts, e.g., see Refs. [40–42].
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2.2 Effective boundary conditions for the bulk solution

We connect the double layer and the bulk through effective boundary conditions for the bulk fields c̃ and φ̃ to be applied
at x̃ = 1. To do this, we define dimensionless surface excess concentrations of the cations and anions near the electrode
(in this case, at x̃ = 1) [23, 43]. The excess concentration in the Debye layer is with respect to the bulk value. This is
integrated over the thickness of the Debye layer to obtain the surface excess concentration,

Γ̃± = ε

∫ 0

−∞
(Ñ± − c̃)dX̃ = 2ε

√
c̃
(
exp(∓ζ̃r/2)− 1

)
(17)

We use that the net flux of ions from the bulk into the Debye layers is balanced by the accumulation of surface ex-
cess concentration at each electrode. (Note that the surface excess concentration is normalized by neqL.) In our one
dimensional system, this is written as

L2ω

D+

∂Γ̃+

∂t̃
= −

(
∂ñ+
∂x̃

+ ñ+
∂φ̃

∂x̃

)
at x̃ = 1, (18)

L2ω

D−

∂Γ̃−
∂t̃

= −
(
∂ñ−
∂x̃
− ñ−

∂φ̃

∂x̃

)
at x̃ = 1. (19)

We relate the surface excess concentrations to the surface excess ionic strength Ĩr and charge density R̃r in the Debye
layer at x̃ = 1 as

εĨr =
1

2

(
Γ̃+ + Γ̃−

)
and εR̃r =

1

2

(
Γ̃+ − Γ̃−

)
. (20)

Using (17), we have
Ĩr = 4

√
c̃
[
sinh2(ζ̃r/4)

]
and R̃r = −2

√
c̃
[
sinh(ζ̃r/2)

]
. (21)

The boundary conditions (18) and (19) are then added and subtracted to obtain

αε

[
∂Ĩr

∂t̃
+ β

∂R̃r

∂t̃

]
= − ∂c̃

∂x̃
, and αε

[
β
∂Ĩr

∂t̃
+
∂R̃r

∂t̃

]
= −c̃ ∂φ̃

∂x̃
, at x̃ = 1. (22)

Thus, (22) represents the required effective boundary conditions on the ionic strength and potential at x̃ = 1. We have
an equivalent analysis of the left electrode at x̃ = −1 where the zeta potential is now ζ̃l = −Ṽ (t) − φ̃. The surface
excess ionic strength and charge density at the left electrode are

Ĩl = 4
√
c̃
[
sinh2(ζ̃l/4)

]
and R̃l = −2

√
c̃
[
sinh(ζ̃l/2)

]
, (23)

and the effective boundary conditions on the left electrode are

αε

[
∂Ĩl
∂t̃

+ β
∂R̃l
∂t̃

]
=
∂c̃

∂x̃
, and αε

[
β
∂Ĩl
∂t̃

+
∂R̃l
∂t̃

]
= c̃

∂φ̃

∂x̃
, at x̃ = −1. (24)

Thus, the equations (8) along with (22) and (24), provide a macro-scale model of the bulk electrolyte, where the Debye-
scale transport is encoded in the effective boundary conditions. The small parameter ε appears in these boundary con-
ditions because we have normalized time with the inverse of the applied frequency, rather than choosing a time scale
associated with diffusive ion transport.

2.3 Analysis at the RC frequency

A natural regime to consider is when the frequency is on the order of the inverse RC charging time [21], ω =
O(DA/(κ−1L)) in dimensional variables, corresponding to α = O(1/ε). Here, one can ‘gear’ the frequency and
dimensionless Debye length by defining σ = αε = O(1) as ε → 0. Thus, ε disappears from the effective boundary
conditions, (22) and (24), and instead enters the governing equations, (8). This prompts expansions for the bulk ionic
strength and potential in orders of ε. The governing equations at leading order will then stipulate that the bulk ionic
strength is uniform, which is incompatible with the dynamic effective boundary conditions. This mismatch points to
the existence of a second, nested boundary layer that bridges the Debye layer and the bulk, the so-called the “diffusion
layer,” as has been elucidated for symmetric electrolytes beyond the linear-response, or weak voltage, regime [23]. The
diffusion layer is also seen in problems involving transiently forced Debye layers, including polarization impedance of
an electrode [44]; polarization of particles under ac fields [45]; and ac electroosmosis [46, 47]. The diffusion layers
extend for a distance of O(

√
ε) from each electrode, and the variations in ionic strength and potential in the diffusion

layers follow an expansion in orders of
√
ε. Notably, in this limit, the leading order dynamics, and hence the AREF, are

constrained to the diffusion layers; they do not extend throughout the cell. Hence, we do not pursue this analysis further.
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2.4 Analysis at the bulk diffusion frequency

Here, we analyze the case when the frequency is on the order of the bulk diffusion time, ω = O(DA/L2) in dimensional
variables, corresponding to α = O(1). This is relevant to the numerical computations of Hashemi Amrei et al. [22, 28,
34]. We pose the regular expansions for the bulk variables

g̃ = g̃(0) + εg̃(1) + ε2g̃(2) +O(ε2), (25)

where g̃ is c̃ or φ̃; and g̃(0), g̃(1), and g̃(2) are functions that are independent of ε. The leading order balances are, from
(8)

α
∂c̃(0)

∂t̃
=
∂2c̃(0)

∂x̃2
, and αβ

∂c̃(0)

∂t̃
=

∂

∂x̃

(
c̃(0)

∂φ̃(0)

∂x̃

)
. (26)

From (22) and (24), the leading order boundary conditions at x̃ = ±1 become

0 =
∂c̃(0)

∂x̃
, and 0 = c̃(0)

∂φ̃(0)

∂x̃
. (27)

Thus the bulk ionic strength c̃(0) is a constant. We further get that c̃(0) = 1 from the requirement that the total number
of ions must be conserved across the cell due to the blocking nature of the electrodes. Note, this result assumes that the
net ion uptake by theO(ε) wide Debye layers is o(1), and we will return to this issue below. The potential φ̃(0) = 0; that
is, there is no bulk electric field at leading order in ε. The leading order zeta potentials at the left and right electrode are
thus ζ̃(0)l = −Ṽ (t̃) and ζ̃(0)r = Ṽ (t̃). Furthermore, since φ̃(0) = 0 we see from Poisson’s equation that the leading order
charge density in the bulk is o(ε2). This completes the leading order solution. Physically, at leading order the Debye
layers are able to completely charge in a quasi-steady manner; thus, the applied potential is dropped entirely across these
layers. Since bulk dynamics are absent at leading order, we seek the O(ε) solutions. We have from (8)

α
∂c̃(1)

∂t̃
=
∂2c̃(1)

∂x̃2
, αβ

∂c̃(1)

∂t̃
=
∂2φ̃(1)

∂x̃2
. (28)

These are subject to the boundary conditions, from (22),

α

[
∂Ĩ

(0)
r

∂t̃
+ β

∂R̃
(0)
r

∂t̃

]
= −∂c̃

(1)

∂x̃
, and α

[
β
∂Ĩ

(0)
r

∂t̃
+
∂R̃

(0)
r

∂t̃

]
= −∂φ̃

(1)

∂x̃
, at x̃ = 1; (29)

and from (24),

α

[
∂Ĩ

(0)
l

∂t̃
+ β

∂R̃
(0)
l

∂t̃

]
=
∂c̃(1)

∂x̃
, and α

[
β
∂Ĩ

(0)
l

∂t̃
+
∂R̃

(0)
l

∂t̃

]
=
∂φ̃(1)

∂x̃
, at x̃ = −1. (30)

Here, from (21),

Ĩ
(0)
r = 4 sinh2

(
Ṽ (t̃)

4

)
, and R̃

(0)
r = −2 sinh

(
Ṽ (t̃)

2

)
; (31)

and from (23),

Ĩ
(0)
l = 4 sinh2

(
Ṽ (t̃)

4

)
, and R̃

(0)
l = 2 sinh

(
Ṽ (t̃)

2

)
. (32)

Consider the right electrode, x̃ = 1. Here, the time derivatives are

∂Ĩ
(0)
r

∂t̃
= sinh

(
Ṽ (t̃)

2

)
dṼ (t̃)

dt̃
and

∂R̃
(0)
r

∂t̃
= − cosh

(
Ṽ (t̃)

2

)
dṼ (t̃)

dt̃
. (33)

The effective boundary conditions are thus, at x̃ = 1,

α

[
sinh

(
Ṽ (t̃)

2

)
− β cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
= −∂c̃

(1)

∂x̃
, α

[
β sinh

(
Ṽ (t̃)

2

)
− cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
= −∂φ̃

(1)

∂x̃
.

(34)
A similar evaluation of the time derivatives at the left electrode gives the effective boundary conditions at x̃ = −1,

α

[
sinh

(
Ṽ (t̃)

2

)
+ β cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
=
∂c̃(1)

∂x̃
, α

[
β sinh

(
Ṽ (t̃)

2

)
+ cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
=
∂φ̃(1)

∂x̃
.

(35)
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Equations (28) with the boundary conditions (34) and (35) form the O(ε) problem. The applied voltage is oscillating,
thus, we express the solutions as Fourier series, written in exponential form as

c̃(1) =
∞∑
k=1

(
c̃
(1)
k eιkt̃ + (c̃

(1)
k )∗e−ιkt̃

)
; φ̃(1) =

∞∑
k=1

(
φ̃
(1)
k eιkt̃ + (φ̃

(1)
k )∗e−ιkt̃

)
. (36)

Here, the notation (.)∗ represents a complex conjugate. We focus on obtaining solutions for k positive, taking conjugates
when needed. The governing equations for each k become

ιkαc̃
(1)
k =

∂2c̃
(1)
k

∂x̃2
, ιkαβc̃

(1)
k =

∂2φ̃
(1)
k

∂x̃2
. (37)

Note that there is no steady component of the O(ε) potential: that is, over a time period of the field oscillation, φ̃(1)

averages to zero. Practically, this means that there cannot exist a time-averaged electric field at O(ε). Hence, we seek
the next higher order solution. The O(ε2) governing equations follow as

α
∂c̃(2)

∂t̃
=
∂2c̃(2)

∂x̃2
, αβ

∂c̃(2)

∂t̃
=
∂2φ̃(2)

∂x̃2
+

∂

∂x̃

(
c̃(1)

∂φ̃(1)

∂x̃

)
. (38)

Note that if φ̃(0) 6= 0, as discussed below, there would be a non-zero charge density at O(ε2) satisfying the corre-

sponding Poisson equation, ∂2φ̃(0)/∂x̃2 = ρ̃(2). Consider the forcing term c̃(1)
∂φ̃(1)

∂x̃
in (38). This is a product of two

infinite series of functions oscillating at integer harmonics. In general, this product would have terms that oscillate with
frequencies which can be expressed as (±k± j), where each k and j range from 1 to∞. The product of oscillators at k
and −k lead to terms that are non-oscillating, or “steady.” These steady terms result in an asymmetric rectified electric
field, or “AREF,” in the bulk of the cell. To proceed, we need to consider only the governing equation for the steady
potential

0 =
∂2φ̃

(2)
0

∂x̃2
+

∞∑
k=1

∂

∂x̃

(
c̃
(1)
k

∂(φ̃
(1)
k )∗

∂x̃
+ (c̃

(1)
k )∗

∂φ̃
(1)
k

∂x̃

)
, (39)

where the subscript ‘0’ indicates a steady variable. The corresponding steady effective boundary conditions for the
potential at x̃ = ±1 are

0 =
∂φ̃

(2)
0

∂x̃
+

∞∑
k=1

(
c̃
(1)
k

∂(φ̃
(1)
k )∗

∂x̃
+ (c̃

(1)
k )∗

∂φ̃
(1)
k

∂x̃

)
. (40)

Thus we have a system of equations, namely (39) and (40), that can be solved to examine the AREF, which is evidently
O(ε2) at leading order in ε for frequencies on the bulk diffusion time. Finally, we remark that this formulation is valid
until the applied voltage becomes “logarithmically large” [48, 49]. Specifically, we have implicitly assumed that the
temporal variation in the leading order salt uptake in the O(ε) wide Debye layers is small compared to unity. However,
since Ĩ(0)r = Ĩ

(0)
l = 4 sinh2

(
Ṽ (t̃)/4

)
we see that the uptake can be ofO(1) when εĨ(0)r = O(1), which translates to the

dimensional criterion V0 = O((2kBT/e) ln(1/(4ε))). Thus, to proceed beyond the present analysis the leading order
effective boundary conditions (27) will have to include the dynamics of salt uptake by the Debye layers. Consequently,
the leading order ionic strength c̃(0) and potential φ̃(0) will no longer be constants, and there will be a non zero charge
density ρ̃(2) at O(ε2). The required analysis may necessitate the introduction of temporal boundary layers within the
oscillation cycle, since even if V0 � (2kBT/e) ln(1/(4ε)) from Ĩ

(0)
r we see that the rate of instantaneous salt uptake

by the Debye layer is small at moments around when dṼ (t̃)/dt̃ vanishes. We leave this to future work.

3 Results and discussion

The solution of (37) for the ionic strength is

c̃
(1)
k = Ak sinh (mkx̃) +Bk cosh (mkx̃),

=⇒ c̃(1) =
∞∑
k=1

(
(Ak sinh (mkx̃) +Bk cosh (mkx̃)) e

ιkt̃ +
(
A∗k sinh (m

∗
kx̃) +B∗k cosh (m

∗
kx̃)
)
e−ιkt̃

)
;

(41)

and the potential is

φ̃
(1)
k = βAk sinh (mkx̃) + βBk cosh (mkx̃) + Lkx̃+ Jk,

=⇒ φ̃(1) =
∞∑
k=1

[
(βAk sinh (mkx̃) + βBk cosh (mkx̃) + Lkx̃+ Jk) e

ιkt̃

+
(
βA∗k sinh (m

∗
kx̃) + βB∗k cosh (m

∗
kx̃) + L∗kx̃+ J∗k

)
e−ιkt̃

]
.

(42)
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Here m2
k = ιkα. From (34), taking only positive k, the effective boundary condition for the ionic strength at x̃ = 1

becomes,

α

[
sinh

(
Ṽ (t̃)

2

)
− β cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
= −

∞∑
k=1

(Akmk cosh (mk) +Bkmk sinh (mk)) e
ιkt̃; (43)

and the potential boundary condition is

α

[
β sinh

(
Ṽ (t̃)

2

)
− cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
= −

∞∑
k=1

(βAkmk cosh (mk) + βBkmk sinh(mk) + Lk) e
ιkt̃. (44)

Similarly from (35), at x̃ = −1, the ionic strength boundary condition is

α

[
sinh

(
Ṽ (t̃)

2

)
+ β cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
=
∞∑
k=1

(Akmk cosh (mk)−Bkmk sinh (mk)) e
ιkt̃, (45)

and the potential boundary condition is

α

[
β sinh

(
Ṽ (t̃)

2

)
+ cosh

(
Ṽ (t̃)

2

)]
dṼ (t̃)

dt̃
=
∞∑
k=1

(βAkmk cosh (mk)− βBkmk sinh(mk) + Lk) e
ιkt̃. (46)

Using the orthogonality of complex exponential functions on the sum and difference of (43) and (45); and substituting
Ṽ (t̃) = ν cos(t̃), and dṼ (t̃)/dt̃ = −ν sin(t̃), where ν = V0e/(kBT ), we have

Ak = −αβν sech(mk)

2πmk

∫ 2π

0

sin (t̃)

[
cosh

(
ν cos(t̃)

2

)]
e−ιkt̃dt̃, (47)

and

Bk =
αν csch(mk)

2πmk

∫ 2π

0

sin (t̃)

[
sinh

(
ν cos(t̃)

2

)]
e−ιkt̃dt̃. (48)

To find Lk, we use the linear combination (44) −β (43), along with the orthogonality constraint to get

Lk =
α(β2 − 1)ν

2π

∫ 2π

0

sin (t̃)

[
cosh

(
ν cos(t̃)

2

)]
e−ιkt̃dt̃. (49)

It can be shown that for odd k, Bk = 0; and for even k, Ak = 0, and Lk = 0. Finally, we require that the potential at
the center of the cell vanishes; thus, Jk = −βBk. Hence we have

c̃(1) =



∞∑
k=1

(
(Ak sinh (mkx̃)) e

ιkt̃ + (A∗k sinh (m
∗
kx̃)) e

−ιkt̃
)
, k = odd,

∞∑
k=1

(
(Bk cosh (mkx̃)) e

ιkt̃ + (B∗k cosh (m
∗
kx̃)) e

−ιkt̃
)
, k = even;

φ̃(1) =



∞∑
k=1

(
(βAk sinh (mkx̃) + Lkx̃) e

ιkt̃ + (βA∗k sinh (m
∗
kx̃) + L∗kx̃) e

−ιkt̃
)
, k = odd,

∞∑
k=1

β
(
(Bk cosh (mkx̃)−Bk) eιkt̃ + (B∗k cosh (m

∗
kx̃)−B

∗
k) e
−ιkt̃

)
, k = even.

(50)

Note that the even harmonics of the potential would disappear when the ions are symmetric, that is, β = 0. Thus we
have the O(ε) solution in the bulk. We can now calculate the AREF. Integrating (39) once gives,

−
∂φ̃

(2)
0

∂x̃
=

∞∑
k=1

(
c̃
(1)
k

∂(φ̃
(1)
k )∗

∂x̃
+ (c̃

(1)
k )∗

∂φ̃
(1)
k

∂x̃

)
+ L0. (51)

From the boundary condition (40), we have L0 = 0. From the O(ε) solution (50), we have

c̃
(1)
k

∂(φ̃
(1)
k )∗

∂x̃
=

βAkA
∗
km
∗
k sinh (mkx̃) cosh (m

∗
kx̃) +AkL

∗
k sinh (mkx̃), k = odd,

βBkB
∗
km
∗
k cosh (mkx̃) sinh (m

∗
kx̃), k = even.

(52)
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Fig. 2 (a) The AREF, re-normalized by ν, as a function of position in the left half cell for characteristic length scales, LD = 0.24, 0.17, 0.1;
corresponding to α ≈ 32, 62, 181. The horizontal dashed lines indicate the peak magnitudes of the AREF. (b) The peak values of the re-
normalized AREF as a function of the applied voltage, using our theory (solid lines) as compared to numerics by Hashemi Aremi et. al. [22]
(symbols) for three values of LD . Here, κL = 1300 and β = 0.5.

The AREF is then

Ẽ0(x̃) ≡ −ε2
∂φ̃

(2)
0

∂x̃
= ε2

(
f(x̃) + f∗(x̃)

)
, (53)

where

f(x̃) =



∞∑
k=1

βAkA
∗
km
∗
k sinh (mkx̃) cosh (m

∗
kx̃) +AkL

∗
k sinh (mkx̃), k = odd

∞∑
k=1

(βBkB
∗
km
∗
k cosh (mkx̃) sinh (m

∗
kx̃)) , k = even.

(54)

The values of Ak, Bk, and Lk (47) − (49) are found via numerical integration. We truncate the infinite sums in (50)
and (53) at a sufficiently large value of k = kmax, which is determined by requiring that the relative error in the AREF
calculated using two consecutive values of kmax is below a set tolerance. Typically, kmax = 10 is chosen in the results
that follow. Note, since the integrands in (47) − (49) are periodic in the interval [0, 2π], the value of the integral is
exponentially small for large k (as can readily be shown via repeated integration by parts), thus the most significant
contributions to the AREF come from the smaller values of k. Finally, in the limit of weak applied voltages, we can
linearize the integrands in (47) − (49) to obtain the leading order AREF. We pursue the weak voltage limit in Sec. 3.1.
Note that (53) is strictly valid in the bulk electrolyte, i.e., at a distance much larger than ε from the electrodes. However,
this covers the range of practical interest, when considering the impact of AREFs on particle motion, for instance.

The AREF, Ẽ0, is an odd function of x̃, and is zero at the center of the cell. The AREF has a peak in magnitude, whose
position depends on the applied frequency. From (53), a (dimensional) characteristic length scale, or range, of the AREF
is obtained as L/|m1| = L/

√
α =

√
DA/ω. Thus, we see the inverse square root dependence of the range of the AREF

as reported by previous authors in various instances of transiently perturbed Debye layers [22, 23, 45–47]. We use Fig.
2 to quantitatively compare our theory to the numerical observations by Hashemi Amrei et. al. (Fig. 5 in Ref. [22]).
Therefore, we re-scale our theory to reflect the scaling used by those authors. Specifically, the AREF in the present work
is normalized using a thermal voltage scale kBT/(Le), whereas Ref. [22] uses the applied voltage based scale V0/L.
Hence, we re-scale the AREF derived here by ν = V0e/(kBT ) to reflect this difference. That is, we plot Ẽ0/ν on the
y− axis in Fig 2. Further, α relates to the dimensionless distance LD , as defined by Ref. [22] and used in the plots, as

L2D =
π

4α
√

1− β2
. (55)

Fig. 2 (a) illustrates the dependence of AREF on the frequency α, or equivalently, on LD , emphasizing the AREF peak
magnitudes Ẽ0,peak at the different values of LD . Fig. 2 (b) shows the variation of Ẽ0,peak as a function of the applied
voltage, as obtained by our theory (lines) and data from numerical observations (symbols) by Ref. [22]. The theory
developed here matches well to the numerics at sufficiently small voltages, as expected. We see a linear response at
weak voltages ν � 1 and a transition to a nonlinear response at ν = O(1). Our theory is expected to break down at
logarithmically large voltages, which at ε = 1/(κL) = 1/1300 corresponds to ν ≈ 12. The breakdown of our theory is
also demonstrated in Fig. 2 (b), as the theory indeed deviates from the numerical data at around ν = 12.

We also make additional direct comparisons to results presented by Hashemi Amrei et. al. [22]. In this regard, we
calculate the dependence of the magnitude of Ẽ0,peak on the dimensionless frequency α, or equivalently, LD . For
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Fig. 3 The AREF as a function of the position in the left half cell (a) for different values of ion diffusivities for common electrolytes [31], for
ν = 10; and (b) for applied voltages ranging from weak to moderate values, when β = 0.5. Here, κL = 1300, and α = 100

this, note that mk ∼ O(
√
α); Ak, Bk ∼ O(α/mk) = O(

√
α); and Lk ∼ O(α). Thus, AkA∗km

∗
k, BkB∗km

∗
k, and

AkL
∗
k ∼ O(α

3/2). Thus, the peak AREF Ẽ0,peak ∼ O(α3/2). Using (55), we have Ẽ0,peak ∼ O(L−3
D ). This scaling is

demonstrated by Fig. 6 in Ref. [22]. Next, from (53), the AREF Ẽ0 ∼ O(ε2). This matches exactly to prediction from
the full numerical simulations, as shown by Fig. 8 in Ref. [22].

The AREF is proportional to the difference in ionic diffusivities β = (D−−D+)/(D−+D+), and hence vanishes when
the ions have equal diffusivities, β = 0. Fig. 3 (a) shows the variation of the AREF with electrolyte type, represented
by changing β. Note, −1 < β < 1. Due to the anti-symmetry of Ẽ0 (53) about x̃ = 0, the transformation β → −β
gives a reflection about the x−axis. If either ion has a diffusivity that is much larger than the other, that is, |β| → 1, the
behavior of the AREF changes significantly. Specifically, the peak observed for |β| − 1 = O(1) vanishes, that is, the
AREF is monotonic. This can be understood mathematically as the coefficients Lk → 0 for |β| → 1, thus making the
AREF purely a monotonic function. However, typical electrolytes have diffusivity ratios ofO(1), hence the experimental
observation of this limit may be difficult. Fig. 3 (a) is qualitatively similar to Fig. 8 in Ref. [34] who calculated the AREF
using fully numerical as well as semi-analytical methods. Their semi-analytical solution is obtained by applying a weak
voltage approximation to the full PNP equations; that is, without considering the thin Debye layer limit. They then
solve the O(ν2) equations numerically, thereby obtaining a numerical evaluation of the weak-voltage AREF. Equation
(53), and its weak voltage approximation (62) derived next in Sec. 3.1, represent the first analytic approximations to the
AREF.

Fig. 3 (b) shows the AREF in the left half cell for different applied voltages. Here, the AREF is normalized by the square
of the dimensionless applied voltage ν2 to show the significance of higher order effects at moderately large voltages.
At low voltages, the lines overlap, demonstrating that the leading order AREF is indeed O(ν2) in this limit. Thus our
analysis provides a general analytic formulation of the AREF in the bulk of an electrochemical cell under a moderately
large, oscillating voltage.

3.1 Weak voltage limit

We now consider the limit when the applied voltage is small compared to the thermal voltage. Formally, the weak voltage
limit is defined as ν � 1. In this limit, we expect the leading order contributions to the ionic strength and potential to
come from the lowest harmonics. The leading order coefficients can be found by linearizing the expressions for A1 and
L1, since B1 = 0. We use the expansion

cosh

(
ν cos(t̃)

2

)
= 1+

1

2

ν2

4
cos2 (t̃) +O(ν4) = 1 +

ν2

32

(
e2ιt̃ + e−2ιt̃ + 2

)
+O(ν4). (56)

Here, we represented cos(t̃) = (eιt̃ + e−ιt̃)/2. Further using sin(t̃) = −ι(eιt̃ − e−ιt̃)/2, we have from (47),

A1 =
ιαβ sech(m1)

4πm1

∫ 2π

0

[
ν
(
1− e−2ιt̃

)
+
ν3

32

(
e2ιt̃ + 1− e−4ιt̃ − e−2ιt̃

)]
dt̃+O(ν5). (57)

Since the integration is over a time period, all the oscillating (time-dependent) terms integrate out to zero. Thus we have

A1 = νA11 +O(ν3); A11 =
ιαβ sech(m1)

2m1
. (58)
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Note that A1 (and A∗1) are the only coefficients that have terms of O(ν); all other Ak have higher order contributions in
ν. Similarly, we calculate L1, which would contain the leading order contribution at the low voltage limit to get

L1 = νL11 +O(ν3); L11 =
ια(1− β2)

2
. (59)

The O(ε) ionic strength and potential in the low voltage limit are thus

c̃
(1)
1 = νA11 sinh (m1x̃) +O(ν3); φ̃

(1)
1 = ν (βA11 sinh (m1x̃) + L11x̃) +O(ν3). (60)

The leading order AREF is driven by the product c̃(1)1

∂(φ̃
(1)
1 )∗

∂x̃
and its conjugate. From (60),

c̃
(1)
1

∂(φ̃
(1)
1 )∗

∂x̃
= ν2

[
βA11A

∗
11m

∗
1 sinh (m1x̃) cosh (m

∗
1x̃) +A11L

∗
11 sinh (m1x̃)

]
+O(ν4). (61)

The leading order AREF is thus

Ẽ0 = ε2ν2
[
βA11A

∗
11m

∗
1 sinh (m1x̃) cosh (m

∗
1x̃) +A11L

∗
11 sinh (m1x̃)

+ βA11A
∗
11m1 sinh (m

∗
1x̃) cosh (m1x̃) +A∗11L11 sinh (m

∗
1x̃)
]
+O(ν4),

(62)

where the coefficients are given by (58) and (59). Thus the AREF Ẽ0 ∼ O(ε2ν2) to leading order in the simultaneous
limit of thin Debye layers and weak voltage. Note that the scaling of the AREF with ε and α (or LD) are explicitly
captured even by the weak voltage analysis, and compares well to the numerical results of Ref. [22].

4 Particle motion under AREFs

We now consider the effect of the AREF on the time-averaged, or rectified, motion of a charged, dielectric, spherical
particle. Particle motion under oscillating electric fields are of interest in colloidal assembly, where, for instance, a
large number of such particles form planar structures above electrodes when subject to an ac voltage [13, 35]. The
experimentally observed “height bifurcation” of colloidal particles in such experiments was attributed in recent work
to the particle motion generated by the AREF, in addition to electro-hydrodynamic flow [22, 28]. Here, we recognize
that in addition to the rectified electric field, we also have a transient concentration gradient in the bulk. Further, the
AREF is nonuniform in space. Thus, a charged particle will move under the combined effects of electrophoresis and
diffusiophoresis, and even an uncharged particle could move due to dielectrophoresis, in principle. Here we consider a
particle which has a zeta potential ζp = O(kBT/e), where the subscript “p” is for particle. We expect classical models
for electrophoresis [50] and diffusiophoresis [37] to hold in this regime. Further, we assume that for a particle at any
given point x̃p in the cell, the electric field E(x̃p) can be treated as the field at “infinity.” This assumption also extends
to concentration gradients that are functions of x̃. This is a reasonable first assumption in the bulk electrolyte when
the particle radius is much smaller than the half-length of the cell; that is, over the size of the particle, the field and
concentration do not change considerably.

The electrophoretic particle velocity is obtained using Smoluchowski’s theory for a charged dielectric particle with a thin
Debye layer, UEP =MEPE(x̃p), where MEP = εζp/η, and η is the viscosity of the electrolyte solution. The velocity
is linear in the electric field, hence the averaged electrophoretic velocity is obtained by replacing the electric field with
its time-averaged value, which up to moderate voltages is given by the AREF (53). Further, in our one dimensional
system, the electric field, and hence the velocity, are in the direction perpendicular to the electrodes, hence we only
consider their magnitudes hereafter. The magnitude of the (dimensional) rectified electrophoretic velocity is

〈UEP 〉 =
εζp
η

(
kBT

Le

)[
Ẽ0 +O

(
ε4
)]

∼
(
εk2BT

2

e2ηL

)
ζ̃pẼ0. (63)

Here, the angular brackets 〈.〉 indicate a time-average, ζ̃p is a dimensionless particle zeta potential normalized by the
thermal voltage, and we have used kBT/(Le) as the normalization of electric field. Notice that εk2BT

2/(e2ηL) emerges
as the scale of the electrophoretic velocity. Using (53) in (63), we calculate the electrophoretic velocity as a function
of the position x̃p. Since the electrophoretic mobility is constant in space, the roots of the AREF are the roots of the
electrophoretic velocity. Thus, a charged particle at the center of the cell will not experience net electrophoretic motion.
Physically, the roots of the AREF are positions away from the center of the cell where the particle would undergo no net
electrophoretic motion. However, only some roots are “stable,” and hence practically observable. Consider a positively
charged particle (ζ̃p > 0) in an electrolyte with β > 0, in the left half-cell (x̃p < 0). The dimensionless, rectified
electrophoretic velocity of such a particle, that is, from (63), 〈ŨEP 〉 = ζ̃pẼ0, is shown in Fig. 4 (a) by the dashed red
curve. Here, the second root in the left half of the cell would behave as a stable position. This is understood physically by
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Fig. 4 The dimensionless, rectified velocity (of O(ε2)), normalized by εk2BT
2/(e2ηL), of a charged dielectric spherical particle. (a) The

electrophoretic and diffusiophoretic contributions to the total velocity for ζp = 2kBT/e. (b) The total velocity for a range of zeta potentials.
Here, α = 100, κL = 1300 and β = 0.5, and ν = 10.

considering the sign, or direction, of the AREF, or equivalently, the direction of electrophoretic velocity, for a positively
charged particle on either side of the root. If the particle is perturbed slightly to the right of the stable root, the AREF
here is negative, or to the left. Similarly, if the particle is perturbed to the left, the AREF is positive, or to the right. In
either case, the particle would return to its initial position, hence, the root is considered stable. Conversely, under the
same conditions, the first root in the left half cell is “unstable,” i.e., a particle perturbed from this position will continue
to move away from it. Notably, on the left of the first root, the particle continues to move leftward, hence approaching
the Debye layer. An equivalent analysis can identify stable roots for β < 0, ζ̃p < 0, or x̃p > 0. Mathematically, a stable
root of the electrophoretic velocity is determined as a root where its gradient is negative [51]. For the one-dimensional
system considered here, this condition becomes ∂UEP /∂x̃p < 0. This result is also obtained in [22]. Here, we reiterate
that the electrophoretic motion does not completely describe the behavior of a charged particle under an AREF, however.

The diffusiophoretic velocity is proportional to the logarithm of the normalized ionic strength gradient, UDP =
MDP∇ ln(c(x̃p)/ceq), where MDP is the diffusiophoretic mobility [37, 38]. The driving force for diffusiophore-
sis is inherently nonlinear in the ionic strength, thus we should expect a rectified diffusiophoretic velocity when-
ever there is a bulk ionic strength gradient, even if this gradient is transient. The driving force for diffusiophoresis
∇ ln(c/ceq) = ∇ ln(c̃) is obtained from our asymptotic solution for c̃ and by using a Taylor series expansion of ln(1+z),
where z represents the total perturbation, of O(ε) and higher, to the bulk ionic strength; that is,

ln (c̃) =
[
εc̃(1) + ε2c̃(2)

]
− 1

2

[
εc̃(1) + ε2c̃(2)

]2
+O(ε5). (64)

The rectified driving force is obtained by first taking the time-average and then calculating the gradient of (64). From
(41), c̃(1) does not have steady, time-independent terms. Similarly, from (28), c̃(2) cannot have any steady, non-constant
terms. Thus, the gradients of c̃(1) and c̃(2) average to zero over an oscillation cycle. The leading order driving force thus
comes from (c̃(1))2. Here, the steady terms arise from products of oscillators at equal and opposite frequencies, +k and
−k. From (50), we have the rectified driving force for diffusiophoresis,

〈∇ ln (c̃)〉 = −ε2
∞∑
k=1

∇
(
c̃
(1)
k (c̃

(1)
k )∗

)
+O(ε4). (65)

Thus, the leading order driving force for diffusiophoresis under an ac voltage is obtained from the O(ε) perturbation
of the ionic strength. Further, note that the O(ε2) driving force has a negative sign, which is unlike diffusiophoresis in
the linear regime [37, 38]. We obtain the magnitude of the rectified diffusiophoretic velocity (in our one-dimensional
system) as

〈UDP 〉 = −MDP

ε2 ∞∑
k=1

(
c̃
(1)
k

∂(c̃
(1)
k )∗

∂x̃
+ (c̃

(1)
k )∗

∂c̃
(1)
k

∂x̃

)
+O(ε4)

 , (66)

where

c̃
(1)
k

∂(c̃
(1)
k )∗

∂x̃
=

AkA
∗
km
∗
k sinh (mkx̃) cosh (m

∗
kx̃), k = odd,

BkB
∗
km
∗
k cosh (mkx̃) sinh (m

∗
kx̃), k = even;

(67)
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and the diffusiophoretic mobility is [37]

MDP =

(
εk2BT

2

e2ηL

)[
βζ̃p + 4 ln

(
cosh

(
ζ̃p
4

))]
. (68)

Note that the diffusiophoretic velocity follows the same scaling as the electrophoretic one; hence, we expect the two to
be comparable in general. The diffusiophoretic mobility, and hence velocity, consists of two terms, the first is due to
the electric field generated as a result of the concentration gradient. This term depends linearly on the zeta potential,
and also on the difference in diffusivities β, since an electric field is generated in an electrolyte concentration gradient
only when the ions have different diffusivities. Further, the direction of electric field depends on the sign of β, i.e., on
which ion is faster. Note, to leading order in ζ̃p, the diffusiophoretic mobility scales as βζ̃p. The second term describes
the motion of a charged particle in an osmotic pressure gradient. This term depends non-linearly on the zeta potential
and does not depend on the difference in diffusivities of the ions. The second term in MDP is always positive, thus a
particle under an ac voltage, on average, is driven up the concentration gradient. The first term, that may be positive or
negative, can drive a particle either up or down the concentration gradient, on average. Thus, the rectified diffusiophoretic
velocity could either be up or down the concentration gradient depending on the zeta potential ζ̃p and the difference in
the diffusivities β̃. When the product ζ̃pβ > 0, the two terms in MDP are additive. Thus the diffusiophoretic velocity
becomes close in magnitude and opposite in sign to the electrophoretic velocity, and the total particle velocity deviates
from the electrophoretic velocity. This is shown by the dotted black curve (diffusiophoretic velocity) and the solid blue
curve (total particle velocity) in Fig. 4 (a). However, if the product ζ̃pβ < 0, the two terms in MDP have opposite
effects, thus the total diffusiophoretic velocity is smaller than the electrophoretic velocity, and thus the electrophoretic
velocity dominates the total rectified velocity.

Fig. 4 (b) shows how the zeta potential affects the total rectified velocity. When ζ̃p < 0 (dot-dashed magenta and dot-
dot-dashed grey curves) the total velocity resembles the electrophoretic velocity. However, when ζ̃p > 0 (solid blue and
dashed red curves) the total velocity deviates from pure electrophoresis. The position of the stable root does not change
with zeta potential. This is expected as the root only depends on the characteristic length scale, and hence the frequency
of input voltage. For certain zeta potentials, there is an unstable root that is different from that of the AREF, and for
larger zeta potentials, the diffusiophoretic velocity is so large that there is no unstable root, thus the particle has only
one equilibrium position in the left half cell. Clearly, then, one must consider rectified diffusiophoresis when attempting
to accurately predict particle motion under an AREF.

Finally, we expect that an uncharged particle would also move under the AREF since it is spatially non-uniform. By a
scaling analysis, we get that the dielectrophoretic mobility is a factor (a/L)2 � 1 smaller than the electrophoretic and
dielectrophoretic contributions. Hence, we neglect this contribution to the total particle velocity.

5 Conclusions

We have presented a thin double layer analysis of the asymmetric rectified electric field generated when an ac voltage
is applied to a binary monovalent electrolyte with unequal ionic diffusivities. Accounting for unequal ionic diffusivities
gives rise to a transient ionic strength gradient in the bulk electrolyte that causes a nonzero rectified electric potential
at second order in the normalized Debye layer thickness. At frequencies comparable to the inverse bulk diffusion time
scale, the range of the AREF emerges from our analysis (and also from numerical work in Ref. [22, 28]) as

√
DA/ω. The

characteristic amplitude of the AREF is O(ε2β) for moderate voltages, and is O(ε2ν2β) for weak voltages to leading
order. Further, we discuss the implications of an AREF to the motion of charged colloidal particles under an ac voltage.
Notably, in addition to electrophoretic motion under the AREF, charged particles also undergo rectified diffusiophoresis
due to the bulk ionic strength gradient. The existence of bulk ionic strength gradients that occur due to differences in
ionic diffusivities should be expected as a norm, rather than an exception. We demonstrate the effect of these transient
ionic strength gradients to the motion of a charged dielectric spherical particle. It would be interesting to study its effect
on particle motion beyond the simple case considered here; for instance, conducting particles that would exhibit induced
charge electrokinetics, or considering more than one particle.

The AREF is a general nonlinear phenomenon that occurs when any oscillating voltage, including non-sinusoidal sig-
nals, is applied across an asymmetric electrolyte between polarizable electrodes. It can be viewed as the electrochemical
analog to “steady streaming,” where a time-averaged, or rectified, velocity field is generated in the bulk (viscous) fluid
due to the oscillation of an immersed particle [52]. In that case, there is a momentum diffusion boundary layer akin
to the Debye layer in the present problem. The thin Debye layer analysis yields a set of equations (8), (22), and (24),
that provide a macro-scale description of the bulk electrolyte from which the bulk AREF, which is of practical interest,
can be calculated. These equations could be solved numerically at voltages beyond the logarithmically large voltage
limit considered here. Additionally, one can go beyond our model one dimensional system to include the effects of the
curvature or roughness of electrodes [43, 53] that would introduce a second (or third) spatial dimension for ion transport
and fluid flow in the bulk. There, the effective boundary conditions (22) and (24) must be generalized to include ion
fluxes tangential to the electrode surface, i.e., “surface conduction,” along with the normal fluxes considered here.
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