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Abstract
Graph Neural Network (GNN) has recently drawn a rapid
increase of interest in many domains for its effectiveness in
learning over graphs. Maximizing its performance is essen-
tial for many tasks, but remains preliminarily understood.
In this work, we provide an in-depth examination of the
state-of-the-art GNN frameworks, revealing five major gaps
in the current frameworks in optimizing GNN performance,
especially in handling the special complexities of GNN over
traditional graph or DNN operations. Based on the insights,
we put together a set of optimizations to fill the gaps. These
optimizations leverage the state-of-the-art GPU optimiza-
tion techniques and tailor them to the special properties of
GNN. Experimental results show that these optimizations
achieve 1.37×–15.5× performance improvement over the
state-of-the-art frameworks on various GNN models.

CCSConcepts: •Computingmethodologies→Massively
parallel algorithms; • Computer systems organization
→ Single instruction, multiple data.

Keywords: GNN, Performance Optimizations, Parallelism

1 Introduction
In the last several years, Graph Neural Network (GNN) has
emerged as a dominant approach to learn from graphs. It
holds state-of-the-art performance across a wide range of
prediction tasks on graphs, such as node classification [38],
graph classification [45], and link prediction [41]. At the
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same time, GNN outperforms other methods (e.g., Deep-
Walk [37], Node2Vec [9]) in graph representation tasks, pro-
viding downstream tasks with better node representation.
As a result, GNN holds more than 90% of leading positions
in graph tasks in Open Graph Benchmark (OGB) [12] and
CogDL [2]. Its influence has spanned across many domains,
from biology to medicine [8], social networks, personal rec-
ommendations [10], knowledge graph processing [39], and
so on.
GNN performance (speed) is essential for many of its ap-

plications. The importance is amplified by current trends
as researchers find that deeper GNN models bring better
accuracy [26, 28], and move their attention from small graph
datasets to larger datasets [12] to model real-world problems
better. The limited computing efficiency of current GNN
frameworks has been restraining GNN applications and re-
search. Compromises have to be made on algorithms and
hence the resulting accuracy [3, 23, 49].

Although GNN consists of primarily graph operations and
neural operations, simply putting graph computing frame-
works and DNN frameworks together is insufficient for sup-
porting efficient GNN executions, as it cannot efficiently
handle complex interactions between graph operations and
neural operations, which is the key to GNN performance.
For instance, graph operations and DNN layers interleave
in GNN, the dependences complicate kernel fusion, mem-
ory performance optimization, scheduling, and load balance.
Some GNNmodels even perform neural operations following
graph structure, making it harder to achieve high efficiency
due to the mismatch of the dense computational property
of neural operations and the sparse patterns in graph opera-
tions.

The needs have prompted a strand of recent efforts in de-
veloping GNN programming frameworks, such as Pytorch-
Geometric (PyG) [5], Deep Graph Library (DGL) [42], Neu-
Graph [29] AliGraph [52], ROC [17], and G3 [27]. Although
these frameworks have shown some promising advance-
ments, experiments indicate that a large performance poten-
tial remains yet to tap into. We find that current frameworks,
on Nvidia Tesla V100 GPU, achieve less than 10% of the peak
throughput, with only around 50% peak memory bandwidth.

https://doi.org/10.1145/3437801.3441585


PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen

During up to 87% of the execution time, the occupancy of
GPU is less than 10% (detailed in Section 3).

In this work, we provide an in-depth examination of these
GNN frameworks. Through a series of experiments, we have
identified five major gaps in current frameworks in optimiz-
ing GNN performance, especially in handling the special
complexities of GNN over traditional graph or DNN opera-
tions. These gaps reside in the aspects of data locality, load
balance, redundancy, memory footprint, and treatment to
varying feature lengths.

Based on those insights, we put together a set of opti-
mizations to fill the gaps. These optimizations leverage the
state-of-the-art GPU optimization techniques and tailor them
to the special properties of GNN. We develop locality-aware
task scheduling and neighbor grouping to fit the needs of
graph operation scheduling in GNN to promote locality and
load balance. We schedule the operations on the computa-
tion graph through data visible range adapter to tackle the
complex dependence among operations, which significantly
reduces redundant graph data loads, kernel launches, and
neighbor traverse. Taking advantage of graph structures, we
develop Sparse fetching to avoid expanding the feature ma-
trix and redundant computations when performing neural
operations in GNN. Finally, we build a tuning framework
to choose running configurations based on both the given
problem (e.g., feature length, graph size, and computation
pattern) and the characteristics of our optimizations.
We evaluate our optimizations with three popular GNN

models, GCN [20], GAT [41], and GraphSage [10], with
eight diverse graph datasets. Experimental results show that
our optimizations produce 1.81×, 14.8×, and 3.76× aver-
age speedups over the state-of-the-art GNN frameworks,
DGL [42], PyG [5], and ROC [14], on GCN. For models with
more complex structures such as GAT, we can achieve 15.5×
and 38.6× improvement over DGL and PyG. Even on com-
putation intensive models such as GraphSAGE-LSTM [10],
we can achieve 1.37× speedups.

In summary, we make three major contributions in this
work.

1. As the first comprehensive study on the complexities
of GNN for performance optimizations, we summarize
a list of special complexities of GNN that go beyond
what traditional graph computing and DNN frame-
works can handle.

2. Through empirical studies on several representative
GNN frameworks, we identify the major gaps in the
state-of-the-art frameworks in optimizing GNN perfor-
mance, especially in handling the special complexities
of GNN over traditional graph or neural operations.

3. We show how to tailor the principles of GPU opti-
mizations to fit the features of GNN, yielding a set of
GNN optimizations that advance GNN computation
significantly.

2 Complexities in GNN for Optimizations
This section first gives some background on GNN, and then
presents its complexities for performance optimizations.

2.1 Overview of GNN
GNN is the neural networks performed on graph data. In a
graph used in GNN, nodes represent entities in a problem
domain (e.g., a user in a social network), with each carrying
a feature vector. Edges between nodes indicate their relation-
ship, quantified with edge weights. For a GNN model, there
are mainly two kinds of operations. The first is graph oper-
ation. A node (usually called center node) collects feature
vectors of its neighbor nodes, performs some operations,
such as reductions or other kinds of computations, and up-
dates its own feature vector accordingly. In this way, GNN
can encode the graph structure and information using the
updated node feature vectors. The second is neural opera-
tions. Neural operations are performed in two ways, either
independently among nodes or in center-neighbor patterns
according to the graph structure. The latter makes use of
neighborhood relationship, and performs neural operations
for each center node with neighbors’ features.
A computing layer in GNN consists of both graph opera-

tions and neural operations. A simple example is shown in
Equation 1, which computes the hidden features of center
node v on layer l + 1. The input for layer l is the hidden
features hl ; u → v means that there is an edge from node u
to nodev ; euv is the value on the edge. The layer reduces the
features of neighbor nodes of v , and then computes tensor
product using weightsW l . At last, an activation function is
performed to produce the hidden features for the next layer
hl+1.

hl+1v = ReLU ((SUMu→v (euv ⊙ hlu )) ⊗W l ) (1)
Table 1 lists some commonly used computing layers for

updating nodes in GNN. Table 2 lists some common opera-
tions for updating edge weights. All computing layers of a
GNN form its computation graph [14].

Table 1. Common computing layers used in GNN models.

Layer type Formula
sum SUMu→v (h

l
u ∗ euv )

mean SUMu→v (h
l
u ∗ euv/Dv )

pooling MAXu→v (ACT (W
l ⊗ hlu ⊙ euv ))

MLP [45] MLP (l )(SUMu→v (h
l
u ⊙ euv ))

LSTM [10] LSTMu→v (h
l )

Softmax_aggr [25] SUMu→v (h
l
u ⊙ so f tmax(euv ))

2.2 Complexities for Optimizations
GNN shares some common complexities with traditional
graph computing and DNN for performance optimizations,
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Table 2. Typical graph operations for computing edge
weights in GNN models.

Model Names Formula
Const econuv = 1
GCN [20] e

дcn
uv =

1√
dudv

GAT [41] e
дat
uv = leaky_relu((Wl ∗ hu +Wr ∗ hv ))

Sym-GAT e
sym
uv = e

дat
uv + e

дat
vu

GaAN [50] ecosuv =<Wl ∗ hu ,Wr ∗ hv >
Linear [7] el inearuv = tanh(sum(Wl ∗ hu ))
Gene-linear [7] e

дene
uv =Wa ∗ tanh(Wl ∗ hu +Wr ∗ hv )

but also owns some distinctive features. Although a number
of GNN frameworks have been developed in recent several
years, no previous work has given a systematic examination
of both common and special complexities. Such knowledge
is essential for providing the right perspective to analyze the
strengths and weaknesses of current GNN frameworks.

2.2.1 CommonComplexities. The complexities that GNN
inherits from graph computing and DNN can be concisely
summarized into two points: (i) irregularity brought by graphs;
(ii) large volumes of memory footprint together with heavy
workloads in memory access and computations brought by
DNN. Nodes in a graph differ in degree and accessed nodes
often reside discontinuously in memory, causing difficul-
ties for load balance and memory optimizations. The large
volumes of memory footprint and computations, especially
when the neural network is getting deeper or wider [26, 44],
further worsen the difficulty.

2.2.2 Special Complexities. GNN has three-fold special
complexities, which make the simple combination of tradi-
tional graph computing optimizations and DNN optimiza-
tions insufficient.
Complex dependence and interleaving patterns. In each
GNN layer, there are interleaved graph operations and neural
operations of various kinds, which leads to intensive function
calls with large overhead of kernel launch and framework
scheduling. Many previous optimizations for DNN are dif-
ficult to apply in GNN. For instance, none of the existing
GNN frameworks can apply effective kernel fusion [22, 51], a
common DNN optimization strategy, to GNN because graph
operations in GNN have irregular thread mapping patterns,
unpredictable memory accesses, and complex dependencies
between operations, a clear contrast to regular element-wise
and dense operations in DNNs.
Neural operations performed in Graph patterns. Unlike
DNNs where neural operations are performed independently
on tensors, GNN contains some neural operations that have
to be conducted in a center-neighbor pattern [10]. As shown
in Figure 1, center nodes collect features from neighbors
and perform neural operations (e.g., RNN cells) rather than

N1
C

N3 

N4 

N2

LSTM LSTM LSTM LSTM

Collect 
features

Neural operations

Feature Vector

Figure 1. Neural operations performed in a center-neighbor
pattern

simple reduction on them. Performing neural operations in a
center-neighbor pattern brings the complexity of graph struc-
ture into the computation. The highly optimized libraries
developed for DNNs support neural operations but cannot
work well on such computation patterns. Moreover, the mix-
ture of graph operations and neural operations prompts a
large amount of data movements for the need of expanding
feature matrices for neural operations according to graph
structure.
Varying feature lengths. Feature lengths in a GNN model
can range from one to thousands in practice. There can be
multiple types of features on each node, such as hidden
feature and attention feature (for the computation of self-
attention [40, 41]) of different lengths. Meanwhile, the fea-
ture length gets changed by transformations at each layer.
Although different layers of DNN may see activation maps
of different lengths, varying lengths impose some special
complexities to optimizations when DNN and graph compu-
tations are mixed together at each layer as highly optimized
libraries (e.g., cuBLAS and cuDNN) cannot be directly applied
and the irregularity and complexity of graph are amplified.

3 Gaps in Existing GNN Frameworks
With the perspective prepared, this section presents the ma-
jor performance gaps in existing GNN frameworks that we
have identified through a set of measurements. We start with
our methodology.

3.1 Methodology
We choose Deep Graph Library (DGL) [42] and PyTorch Geo-
metric (PyG) [5] as common GNN frameworks to study. Both
have PyTorch [36] as backend. The frameworks represent
the state of the art in terms of supported GNN models and
performance. We also analyze ROC [14] and NeuGraph [29].
Our experiments use three popular GNN models, GCN [20],
GAT [41], and GraphSage [10], with eight diverse graph
datasets. The datasets are from Open Graph Benchmark
(OGB) [12], the unified benchmark suite for GNN models.
Table 3 lists them. With 49M edges on average, the datasets
are much larger than the ones (e.g., CORA, Pubmed, Citeseer)
studied in previous work whose average number of edges
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Table 3. Graph datasets

#N #E avg max Var Density
Citation network

collab 236K 2.4M 10 671 360 4.2E-5
citation 2.9M 30M 10 1738 221 4.0E-6
arxiv 169K 1.2M 7 13155 4.6K 4.1E-5

Biology network
protein 133K 79M 597 7750 386K 4.5E-3
ddi 4K 2.1M 501 2234 177K 1.2E-1
ppa 576K 42M 74 3241 9.9K 1.3E-4

Social network
reddit 233K 115M 492 21657 640K 2.1E-3

Co-purchasing network
products 2.4M 124M 51 17481 9.1K 2.1E-5

is 37K, and can represent the trend of GNN model research.
The datasets also have a broader coverage of domains.

We used DGL 0.4.3post2 and PyG 1.5.0 on Nvidia Tesla
V100 with CUDA 10.1, and the deep learning framework is
PyTorch 1.5.1.

3.2 Observed Performance Gaps
We make five main observations on the performance gaps
in existing GNN frameworks. Some of these gaps also exist
in either graph or DNN computings, while others are due
to the special complexities brought by the interleaving and
dependence of two kinds of computations in GNN. We list
them all here to provide a complete understanding of the
gaps needed to fill.

Observation 1: Poor locality in graphoperations due
to edge granularity

Graph operations perform computation according to graph
structure, in which an edge indicates data transfer. Let E be
the number of edges in a graph and Feat the length of the
node feature. Graph operations on one layer can involve
E ∗ Feat bytes of data movement in loading node features,
which is a dominating performance factor. The total size of
node features is however only N ∗ Feat (N is the number of
nodes in the graph). In theory, with perfect data reuse, only
N ∗Feat bytes rather than E∗Feat need to be loaded. Despite
the obvious importance of reuse, existing GNN frameworks
take advantage of reuse poorly.

PyG employs edge-wise parallelization1. As shown in the
upper part of Figure 2, the graph structure is represented in
an edge list format. Its first step in graph operations is to
expand the feature matrix of [N , Feat] to the feature matrix
[E, Feat] for source nodes, duplicating the features of source
nodes in the edge list. It then performs a reduction on the
feature matrix for source nodes. Two steps are performed in

1From PyG 1.6.0, it implements some of aggregation operations in a center-
neighbor pattern just like DGL.

1   2 
1   3 
2   1 
2   3 
3   2 
3   3 
3   4 
4   3

Step 2: 
Reduce
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2: 1 3 
3: 1 3 4 
4: 3

Edge list

Step 1: Index select by source index

Step 2: 
Reduce

CSR 
format

PyG

DGL

Src

Dst

Feature 
vector

Step 1: Fetch from 
feature matrix

Figure 2. Graph operations in PyG and DGL

separate kernels; the source feature matrix dimensions are
as large as [E, Feat].
DGL avoids the large space usage by employing node-

wise parallelization with a center-neighbor pattern. Each
task takes charge of the computation of a center node and
its neighbor nodes. As shown in the lower part of Figure 2,
the graph structure is represented in Compressed Sparse
Row (CSR) format, and each task first fetches data from the
feature matrix, and then performs reduction to update the
feature of the center node. Different tasks are assigned to
warps or thread blocks in GPU. If the reduce function is SUM ,
DGL utilizes cuSPARSE [33] to perform the sum reduction.
Otherwise, it conducts the two steps in a single kernel. The
single-GPU versions of ROC and NeuGraph also implement
graph operations in this way.

arxiv collab citation ddi protein ppa reddit products
Datasets

0
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100

L
2
C
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M
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s
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)

DGL

w/ cuSPARSE

Figure 3. L2 cache miss rates of graph operations in the last
layer of GCN in DGL. (It uses cuSPARSE when the reduce
function is SUM, shown by "w/ cuSPARSE" bars.)

Figure 3 shows the L2 cache miss rates of graph opera-
tions in GCN implemented with DGL, running with eight
datasets. Except on the small or already clustered datasets
(ddi, protein), the executions exhibit over 50% L2 cache
miss rates. The reason for the poor locality is that DGL stat-
ically distributes the tasks of center nodes to underlying
computing units, leaving memory access pattern fully deter-
mined by the graph, which has an irregular pattern.

Observation 2: Severe workload imbalance
DGL, ROC, and NeuGraph all partition tasks in center

node granularity, assigning the computations for a center
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Table 4. The percentage of time when #active block is less
than a proportion in DGL for graph operations in GAT.

Dataset <100% <50% <10%
arxiv 89.99 89.64 87.87
collab 34.35 33.39 31.83
citation 3.23 1.91 1.15
ddi 74.39 63.79 42.55
protein 14.12 11.11 9.09
ppa 6.49 4.89 3.40
reddit 19.15 17.33 15.21
products 5.70 4.40 3.58

node and all its neighbors to one computing unit. Due to
the irregularity of a graph, the nodes in a graph may have
large variances in the number of neighbors. Moreover, the
feature vector length in GNN is typically large, which makes
the computation for each neighbor node heavy. These two
factors lead to severe workload imbalance, resulting in long-
tail effects. Table 4 reports the percentage of time when the
number of active thread blocks is less than 100%, 50%, and
10% of the maximum number that can concurrently run on
a GPU. In a substantial part of the executions, the GPU is
underutilized. PyG, for its distribution of graph operations
in edge granularity, is less subject to load imbalance; but as
mentioned earlier, the needed duplications result in large
overhead.

Observation 3: Redundancy in memory access and
large overhead due to intensive function calls
DGL and PyG build up computation graph using many

graph operations. Consider a GAT layer. The core computa-
tion is shown in Equation 2. For a center node, it first updates
the edge weight with attsrc and attdst with the activation
function leaky_ReLU . It then normalizes the weights of all
incoming edges with so f tmax . It finally can apply the edge
weights to the features of the neighbor nodes to update the
center node. The implementation in DGL breaks the layer
into seven steps as shown in Listing 1. PyG shares a simi-
lar way of segmenting computations into many steps and
kernels. There are hence repeated loading of the graph struc-
tures (for DGL) or redundant global memory accesses (for
PyG), which cause large overhead.

1 # input: graph , feat_src , att_src , att_dst

2 # update edge weight

3 e = graph.u_add_v(att_src , att_dst) # [E, 1]

4 e = leaky_relu(e) # [E, 1]

5 # edge softmax

6 e = exp(e) # [E, 1]

7 v_acc = graph.reduce_edge("sum", e) # [N, 1]

8 e_acc = graph.broadcast_edge(v_acc) # [E, 1]

9 e = div(e, e_acc) # [E, 1]

10 # aggregation

11 outf = graph.reduce_vertex("sum", u_mul_e(feat_src

, e)) # [N, Feat]

Listing 1. GAT layer in DGL

hl+1v = SUMu→v (so f tmaxv (leaky_ReLU (attv + attu )) ⊙ hlu )
(2)

Table 5. The percentage of the execution time of expan-
sion and transformation in neural operations (DGL on
GraphSAGE-LSTM).

Dataset Expansion % Transformation %
arxiv 9.60 25.60
collab 9.70 21.42
citation 7.32 19.02
ddi 8.89 20.85
protein 9.69 23.01
ppa 9.95 24.32
reddit 9.42 22.64
products 8.05 18.77

Observation 4: Large memory footprints and redun-
dant computationswhen expandingneural operations
by graph structure

Neural operations performed in a center-neighbor pattern
are based on the graph structure. The frameworks doing that
involve large memory footprints and redundant computa-
tions. DGL, for instance, breaks computation into two steps:
it first expands each center node’s neighbor features into a
continuous memory space, and then performs neural opera-
tions on the expanded matrix in a dense way. The problem is
that the first step (expansion) results in large footprints and
the next step (transformation) results in large redundancy.
After expanding the feature matrix, even if two feature vec-
tors are identical, without this information, the transforma-
tion has to be redone on those vectors. Table 5 reports the
portion of time taken by the expansion and the transforma-
tion in the overall time when DGL processes GraphSAGE-
LSTM, which conducts LSTM on the neighbor features of
each center node. The cost of the two together is as much as
35%.
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Figure 4. The throughput changes as feature lengths change.

Observation 5: Inefficiency on variant feature lengths
Neither DGL nor PyG adapts the computations based on fea-
ture lengths. Their task distribution and the mapping of
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computation to threads remain the same for different feature
lengths. As the performance of graph operations are very
sensitive to locality, utilizing the same schedule for different
feature lengths can lead to large performance degradation.
As shown in Figure 4, the throughput changes significantly
even if the feature length changes slightly.

4 Tailoring Optimizations to Fill the Gaps
After identifying the performance gaps, we further develop
a set of optimizations to fill those gaps. Please note that our
goal is not to invent fundamentally new GPU optimization
techniques. In fact, at the fundamental level, these optimiza-
tions all grow out of the common principles already estab-
lished in the general GPU code optimization community
around data locality, load balance, and kernel fusions. The
question we try to answer here is how to translate these
optimization principles into effective optimizations that fit
the properties of GNN, thereby, state-of-the-art of GNN com-
puting can be advanced.

Specifically, we have developed four optimizations, two on
GPU resource and locality for graph operations, two on the
co-optimizations of graph operations and neural operations.

4.1 Task Distributor for Graph Operations
The irregularity of graphs leads to poor locality and work-
load imbalance in graph operations as previous sections have
mentioned. We develop two techniques, locality-aware task
scheduling and neighbor grouping, to address these issues.
The key of locality-aware task scheduling is to make the tasks
of center nodes that have similar neighbor distributions run
concurrently to make better use of cache. Neighbor grouping
addresses load imbalance by further partitioning the work-
load of each center node into finer granularity.

4.1.1 Locality-aware task scheduling. In locality-aware
task scheduling, we re-order the tasks of each center node by
considering their neighbor distributions. The basic idea is to
make tasks with similar neighbor distribution run concur-
rently as much as possible, so that cache can be better used.
This optimization is effective for GNN applications because
they have large feature lengths and the graph operations
in them can benefit significantly from data reuse. The chal-
lenge is how to identify and schedule tasks that share similar
distributions efficiently.
We first introduce the similarity metric we use, Jaccard

Similarity. The Jaccard Similarity of two center nodes is
defined as |Na .neiдhbor∩Nb .neiдhbor |

|Na .neiдhbor∪Nb .neiдhbor |
.

There are three steps in the scheduling: First, we use can-
didate pair selection to find the pair of center nodes that have
high neighbor similarity, then use pair merging to merge the
similar nodes into larger clusters and then use task scheduling
to schedule the center nodes to the real computation.

(1) Candidate pair selection To cluster the nodes with
similar neighbor distribution, we first find out all similar

pairs of center nodes in the graph that have neighbor distri-
bution with high Jaccard Similarity. We adopt Min-Hashing
and Locality-Sensitive Hashing (LSH) [24] to efficiently se-
lect the pairs. Min-Hashing reduces the computation work-
load of each pair by converting large neighbor sets to short
signatures, while approximately preserving Jaccard Similar-
ity. LSH further segments the signatures into multiple bands,
and hashes the different bands into buckets. Nodes in the
same buckets are more likely to have large similarity while
the ones in different buckets do not. Therefore, LSH reduces
the search space of pairs with large similarity. Its high effi-
ciency makes it a suitable choice for our scheduling, as we
are finding out the similar nodes on large graphs.

(2) Pair merging After pairing up nodes with high Jac-
card Similarity, we further put nodes with high similarity
into the same cluster using the pairs. At beginning, every
node is in a separate cluster with itself being the representa-
tive node of the cluster. The pairs are organized in a priority
queue, with the priority defined by the Jaccard similarity. We
dequeue the top pair in the queue, and merge the cluster that
the two nodes in the pair belong to. If the nodes are both
the representative node of their cluster, the clusters will be
merged into one, with the representative node of the larger
cluster (containing more nodes) as the new representative
node. Otherwise, we will pair up the representative node of
the two clusters, and enqueue that new pair into the priority
queue. We avoid having large clusters by setting an upper
bound to the cluster size (32 in our experiments), it also pre-
vents pairs with low similarity to get into the same cluster.
The process continues until all clusters are full or the queue
gets empty.

(3) Task scheduling After merging the pairs, we have
a number of clusters and each cluster contains nodes with
similar neighbor distribution. We then map the clusters onto
different computing units. We try to distribute the tasks of
nodes in the same cluster into adjacent computing units (e.g.,
adjacent thread warps or thread blocks), so that cache can
be better reused. We perform such scheduling directly on
the graph structure to minimize scheduling overhead.

4.1.2 Neighbor grouping. Besides the distribution of neigh-
bor nodes, another irregularity is the numbers of neighbors
of center nodes, an important reason for the load imbalance
in Observation 2.

To balance the workload, we schedule the tasks in a fine-
grained fashion by partitioning the tasks of center nodes
according to their numbers of neighbors. We partition the
neighbors of each center node into different groups by setting
an upper bound (a tunable parameter) for the number of
neighbors in every group. The computation for the neighbor
nodes within a group is then assigned to a specific computing
unit. As a result, workloads for center nodes that have a
large number of neighbors will be distributed to multiple
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computing units, resulting in more balanced schedules. This
method is called neighbor grouping.
Neighbor grouping forms a synergy with locality-aware

task scheduling in enhancing data locality. As computing
units now execute only part of a task of a center node, the
working set (the number of node features that GPU will
visit at the same time) becomes smaller and the collective
memory access is more likely to benefit from locality-aware
task scheduling.

A problem for neighbor grouping is that the computation
results of one center node can be put intomultiple computing
units, which then might be mapped to different SMs. Reduc-
tion would need to be performed to collect results across SMs.
By analyzing typical GNN applications, we find that most of
the reducers for GNN operations (e.g., Max, Mean, and Sum)
allow arbitrary orders in the aggregation. That allows each
SM to calculate the reduced results independently and use
atomic instructions to update the global memory; no data
exchanging is needed across SMs.

4.2 Data Visible Range Adapter
Asmentioned in Observation 3, the intensive function calls in
computation graphs introduce a large amount of redundant
memory access. Themain reason is that graph operations and
neural operations have distinct computation characteristics.
Due to the irregularity of graph operations, it is tricky to
directly fuse graph operations and neural operations into the
same kernel. Typically, for coalesced memory access, each
thread of graph operations is in charge of partial computation
of the neighbor node features, so outputs are private for
each thread. However, regular neural operations are usually
performed with a bunch of threads (e.g., a thread block). The
mismatch of scopes makes the fusion even harder.

TB1

TB2

Global Memory

TB2

TB1

Adapter

Adapter

Warp shuffle
Shared mem

Linear property

Store
Load

Store Load

Warp
TB
Global

Figure 5. Data visible range adapters remove mismatches
in the data visibility ranges across kernels. Enabled kernel
fusions can save kernel launch overhead, redundant graph
loading and the memory access of intermediate data.

The mismatch can be formulated with a concept named
data visible range. The data visible range refers to in what
scope of threads a data item is visible to. It could be thread
level, warp level, thread block level, or global level. A mis-
match between different operations occurs when the data
visible ranges of two operations differ. If the visible range of

some data is global in a kernel, a global synchronization (i.e.,
the end of a kernel on GPU) would be needed before the data
can be consumed by another operation. As shown on the left
of Figure 5, DGL and PyG ignore the property of data visible
ranges, so they put operations in separate kernels by default
even if the data only need to be shared within a thread block.
Our proposed data visible range adapter tries to identify

minimum visible ranges for operations in a model while
at the same time address mismatches of visible ranges of
adjacent kernels to enable kernel fusion. It leverages inter-
thread communication and shared memory to expand visible
range from thread to warp and thread block. As the right side
of Figure 5 illustrates, we introduce adapters for each thread
block. The threads in a thread block put thread-local data into
adapters, and the adapters convert them into thread block
level. The thread block of the next operation can continue
computation without waiting for other blocks or visiting
global memory. Two kernels can then be fused together.

Even with data visible range adapter, data with global visi-
bility still require global-memory-based communications.
We leverage the linear property of operations (e.g., Sum,
Mean, and Div) to postpone the needed global synchroniza-
tions to mitigate the effects. Consider two kernels, K1 and
K2. K1 first does normalization of the edge weights by di-
viding each edge weights with the summation result of all
edge weights of a center node, K2 uses the normalized edge
weight to scale the neighbor node feature, and performs re-
duction on the center node. If neighbor grouping splits the
task of a center node into two SMs, the first step would have
to require global visibility of edges for the calculation of the
summation. But as the division of the sum can be postponed
to later (the linear property), we transform the kernel by
moving it to the second kernel (which automatically ensures
the summation computation is all done) while keeping other
operations running efficiently in a single kernel.

4.3 Sparse Fetching and Redundancy Bypassing
As analyzed in Observation 4, current GNN frameworks
perform graph operations and neural operations separately,
where graph operations expand feature matrices, and then
neural operations perform transformations on the expanded
data. That introduces large redundancy in memory access
and computation.
We solve this problem by proposing sparse fetching and

redundancy bypassing. The basic idea is to combine neural
operations with graph operations and extract common com-
putation. Sparse fetching is a data access method in graph
operations, which accesses the data sparsely according to
neighbor indexes. Here we attach it to the neural operations
and can move the memory access of sparse data from a sep-
arate kernel into neural operation kernels.
Instead of accessing the data continuously, the threads

first acquire the information of the graph, and use the neigh-
bor index to fetch data to perform neural operations. The
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overhead of the memory access can be largely hidden by
heavy neural operations afterwards in the same kernel. Re-
dundancy Bypassing is further applied on top of Sparse fetch-
ing. While Sparse fetching considers the graph structure in
neural operations, Redundancy Bypassing utilizes the infor-
mation of common neighbors to eliminate the redundant
transformation by limiting the computation on the node fea-
ture matrices, which reduces the computation from O(E) to
O(N ).

Wf Wo Wz Wi

+

+

+

+ bi

bz

bo

bf

+

tanh

σ +

mul

Ri

Rz

Ro

Rf σ

ht−1 tanh

mul

mul

Ct−1

ht

Ct

Element-wise Dense OP

Graph 

Base impl.

Pre-transformed 
Feature Mat.

Our impl.: Sparse fetching 
& redundancy bypass

Transform

Transformed 
ahead of all 

cells

Sparse fetch
Graph 

Graph op

Neighbor 
Feature Mat.

Feature Mat.

Figure 6. An optimizing example for performing LSTM in a
center-neighbor pattern.

Figure 6 shows an example for optimizing GraphSAGE-
LSTM in the center-neighbor pattern. The t th cell of LSTM
takes the output from the previous cell (ht−1) and the t th
neighbor’s features of every center node as input. The trans-
formation is firstly done for neighbor features using weight
matrixWf ,Wo ,Wz ,Wi , and for ht−1 using weight matrix
Ri , Rz , Ro , Rf . It then performs element-wise operations for
transformed data and finishes computation for the current
LSTM cell. The part in the yellow box shows the base im-
plementation; a graph operation is performed to construct
the neighbor feature matrix by collecting the t th neighbor’s
feature for all center nodes. The transformations are then
performed on the neighbor feature matrix before they are
fed into the element-wise operations.
However, as shown in the red box, by applying sparse

fetching at the beginning of the neural network kernel, the
graph structure is used to get access to the data in the fea-
ture matrix, without performing separate graph operations.
Moreover, Redundancy bypassing helps to bypass the redun-
dant neural network transformations for the neighbor fea-
ture matrix in every LSTM cell. It enables us to apply the
transformation ahead of all the LSTM cells for only once. Af-
ter that, the pre-transformed features are fetched according
to graph structure at every LSTM cell. By applying Sparse
Fetching and Redundancy Bypassing to the neural operations
following graph structure, we can reduce both redundant
data movement and computation.

4.4 Tuning, Adaptation, and Overhead
There are several tunable parameters in the proposed op-
timizations, such as the upper bound in neighbor grouping
and the configurations of scheduling and running. The best
settings of the optimizations and scheduling could differ for
different graphs and feature lengths. We hence construct a
tuner to empirically search for appropriate parameter values.
The tuner contains some scheduling and optimization

templates to facilitate the search process. The strategy is to
first exhaust GPU resources by scheduling more warps and
increase the maximum number of thread blocks by limiting
their resources such as shared memory usage. As GPU fully
occupied, the tuner then adjusts the upper bound of neighbor
grouping, putting tasks of feature dimension to the same
computing unit, and fusing kernels for better locality.

The overhead of our optimizations mainly comes from the
analysis performed on the graph structure, which includes
the neighbor distribution of center nodes (locality-aware
scheduling) and their neighbor number (neighbor grouping).
Locality-aware scheduling takes some time (e.g., 600 itera-
tions of a three-layer GCN). It is done offline as we only need
to do it once because the graph structure stays invariant. The
results however can be used for many runs of the GNN. As
an iterative application, GNN usually needs many repeated
runs for hyper-parameter tuning [10, 25, 45] and each run
may involve thousands of epochs [26].
Neighbor grouping is done online, as its configuration is

affected by both graph structure and the given problem. As
it only iterates the index in CSR matrix once, which isO(N ),
the overhead is less than a half epoch and can be done asyn-
chronously with the computation. Multiple-round online
tuning is used to determine the appropriate group size upper
bound, with a different bound tried in each round. We limit
the choices to multiples of 16 and the maximum to be ten
times of the average node degree of the given graph. The
numbers of rounds needed never exceed 20 in our experi-
ments, negligible compared to the thousands of iterations in
GNN executions.

5 Performance Improvements
We implement the optimization techniques introduced in
Section 4 and wrap them in PyTorch. This section reports
observed performance improvements. The methodology is
the same as in Section 3.1. We compare the results with those
of DGL and PyG. Our experiments use three representative
GNN models, GCN, GAT, and GraphSAGE-LSTM, and eight
graph datasets (see Section 3.1 to describe them). As our
optimizations do not alter the semantics of the models, the
quality of the model outputs remain unchanged.We hence fo-
cus on performance (i.e., speed) comparisons. We first report
the overall performance and then provide detailed studies
on the benefits from each optimization. We report absolute
execution time in Section 5.1. For benefits breakdown, we
use normalized graphs for readability.
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Figure 7. A heatmap of performance slowdowns of three
frameworks (DGL, PyG, and ROC) compared to our imple-
mentation on different datasets and models. Darker color
means larger slowdown the framework has. The numbers
are the execution time (ms), lower numbers are better, while
the white numbers mean that the slowdown exceeds the
threshold, which is 8, 15, 2 respectively for GCN, GAT, and
SAGE. "×" means the framework does not implement the
model and "OOM" means the framework runs out of GPU
memory.

5.1 Overall performance
Figure 7 shows the average times taken by one forward pass
of each of three GNN models (three stacked layers in GCN
and GAT2 and one layer in GraphSAGE-LSTM3) on each
dataset.
2The input feature length is 512, with 128 and 64 hidden features, and 32
output features.
3The input and output feature lengths are both 32, with the sampled neigh-
bor number as 16

On GCN model, our improvement is 1.81×, 14.8×, and
3.76× compared to DGL, PyG, and ROC respectively. Since
the computation pattern in GCN is simple, the improvement
mainly comes from the optimizations of graph operations
together with computation graph optimization. DGL uses
cuSPARSE to perform graph operations in GCN, while PyG
expands the feature matrix, leading to large redundancy. It
would run out of memory for datasets with many edges as its
memory consumption increases linearly. On GAT model, the
improvement is 15.5× and 38.6× over DGL and PyG. For the
complicated computation graph in GAT, our method saves
a large number of memory accesses by kernel fusion and
optimizations of graph operations. On GraphSAGE-LSTM,
the speedup over DGL is 1.37×; PyG does not support the
model. We next provide detailed results and analysis.

5.2 Detailed Analysis
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Figure 8. Neighbor grouping (NG) enhances load balance on
graph operations in the last layer of GCN. "Base": default
implementation (as in DGL); "NG": our implementation; "Bal-
anced": execution time in perfect load balance; "Actual": the
actual execution time.

NeighborGrouping. Figure 8 illustrates the benefits of neigh-
bor grouping in enhancing load balance. The "Balanced" bars
(light-colored portion) show the execution time in perfect
load balance, measured by dividing the total time of all thread
blocks by the maximum number of active thread blocks the a
GPU can run at a moment. The gap between the "Balanced"
and actual execution time of the entire kernel is reduced
significantly when neighbor grouping is applied, showing its
benefits in improving the load balance. The light-colored
portions of some "NG" bars are higher than those of "Base"
bars, due to the extra global memory accesses incurred by
neighbor grouping. However, the actual time in "NG" is sig-
nificantly lower than the "Base" bars. The only exception
is Protein, where the variance of the neighbor number is
little, and the benefit by neighbor grouping is out-weighted
by the overhead, leading to 8% performance decrease.
Locality-aware scheduling. Figure 9 shows the locality im-
proved by task scheduling for graph operations. By itself, it
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Figure 9. L2 cache hit rates of graph operation in the last
layer of GCN. "Best prior": The best L2 cache hit rate other
implementations (DGL, PyG and ROC) can achieve; "NG":
Applying Neighbor Grouping; LAS: Applying Locality-aware
scheduling; "NG+LAS": Applying both Neighbor Grouping
and Locality-aware scheduling.

increases the L2 cache hits on six out of the eight cases. Its
benefits become a lot more obvious when neighbor grouping
is applied first. The reason is that, as the active warps are
doing computation for thousands of center nodes, the neigh-
bor node features that they may access concurrently are of a
large number. Even if the nodes with similar distributions
are grouped, the active area is still huge. Neighbor group-
ing helps mitigate the situation, making it more amenable
for the scheduling to function by narrowing the active area.
Dataset protein is a protein dataset with inherent clustered
distributions. Performing locality-aware scheduling breaks
the clustered pattern of it, while the reorder of the comput-
ing sequence brings uncertainty to graphs with high density
like ddi; they hence see a slight decrease of cache hits.
Computation graph scheduling.Data visible range adapter
helps eliminate the barriers between graph operations on
GAT, and the barriers between neural operations and graph
operations on GCN, enabling kernel fusions. Figure 10a
shows significant improvement for a complex computation
graph on GAT. When the optimization takes advantage of
the linear property to postpone some operations to later
kernels, it produces even more speedups.

GCN has a simple computation graph. The improvement
is hence limited (16% as Figure 10b shows), compared to
the version with only graph operation optimizations (Local-
ity aware task scheduling and Neighbor Grouping). ddi and
protein even show a slight performance decrease thanks to
their good data locality (shown in Figure 9) which leads to
highmemory throughput for graph operations in the original
version.
Sparse fetching and redundancy bypassing. The perfor-
mance improvement from sparse fetching and redundancy
bypassing is shown in Figure 11. For sparse fetching, the
kernel fetches the features by using the neighbors’ indices,
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Figure 10. Benefits from Data visible range adapter w/ and
w/o using linear property on GAT layer and GCN layer. The
baseline is our implementation with Neighbor grouping and
Locality-aware task scheduling.
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Figure 11. Benefits from sparse fetching and redundancy
bypassing on GraphSAGE-LSTM.

which can hurt locality. Thus the overall improvement by
sparse fetching is limited to below 10%. However, it enables
additional bypassing of redundant transformations, which
then brings 32% improvement.
Tuning and adaption. Figure 12 shows how the perfor-
mance of GCN graph operations changes with different fea-
ture lengths. As tuning is applied, though the different fea-
ture lengths result in distinct memory access pattern, our
implementation can achieve good performance.
Online and offline improvement analysis. It is worth not-
ing that the offline pre-processing is optional. It is only
needed for one (Locality-aware task scheduling) of the four
optimizations proposed in this work. The other three opti-
mizations are either online optimizations (Neighbor group-
ing) or kernel code optimizations (Data visible range adapter,
Sparse fetching, and Redundancy bypassing).
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Figure 12. The throughput changes as feature lengths
change when tuning is applied.

Even without the offline optimization, the other three op-
timizations can already produce significant speedups. As
shown in Table 6, the online optimization and one of the
two kernel optimizations together can already bring up to
8× (2.89× on average) speedups. The offline optimization
can bring 1.6× extra speedups, but it is not a must-to-have
in scenarios where offline pre-processing is not suitable to
use (e.g., graph dynamically changes at every iteration when
graph sampling is applied).

Table 6. The speedup of applying different optimizations to
the last layer of GAT on different datasets over our unop-
timized implementation. "Adp": Data visible range adapter,
"NG": Neighbor grouping, "LAS": Locality-aware task schedul-
ing

Dataset Adp Adp+NG Adp+NG+LAS
arxiv 1.07 8.02 9.85
collab 1.31 1.76 2.41
citation 1.43 1.86 2.24
ddi 1.25 2.57 2.86
protein 1.26 1.96 1.83
ppa 1.20 2.20 2.67
reddit 1.15 1.95 2.68
products 1.51 2.83 3.62
AVERAGE 1.27 2.89 3.52

6 Related work
GNN frameworks. PyG [5] and DGL [42] are GNN frame-
works widely used by GNN model researchers. They pro-
vide user-friendly programming interfaces. Roc [14] and
NeuGraph [29] are designed to meet the trend that GNN is
applied to larger graphs. They propose pipeline and graph
partition methods to scale the computation to multi-GPU
andmulti-node respectively. Their focus is to reduce the time
of communication for training in a distributed way.G3 [27]
demonstrates how to use graph processing frameworks to

train GNN, and provides flexible APIs to build GNN models.
The previous sections have provided detailed comparisons
with previous GNN frameworks.

GPU graph computing frameworks. To make use of
GPU’s good parallelism, there are a number of studies ex-
ploiting GPU for large graph processing. GunRock [43] pro-
vides graph processing primitives with high performance.
Groute [1] puts graph computing onto multiple GPUs and
leverage asynchronous communications to reduce latency.
Gluon [4] puts together a communication library for dis-
tributed heterogeneous graph processing. Lux [13] supports
multi-node GPU graph processing. These works have con-
tributed valuable insights on optimizing graph computing.
This work is partially inspired by these studies, but covers
the complexities special to GNNs.

Sparse operation optimization. Besides graph comput-
ing, sparse operations exist in many other cases, such as
SpMV [30], SpMM [46, 47], SDDMM [11] and spGEMM [19].
AsPT [11] focuses on optimizing SpMM and SDDMM by
adaptively tiling sparse matrix into dense and sparse tiles.
spECK [35] optimizes sparse general matrix-matrix mul-
tiplication using light weighted analysis. Tensor Algebra
Compiler (TACO) [21] uses compiler techniques to achieve
competitive performance with hand-optimized kernels for
both sparse tensor algebra and sparse linear algebra. These
optimizations all focus on a single primitive kernel. Though
they achieve good performance, how they can be applied to
GNNs is yet to understand.

Deepneural networkperformance optimization.There
are many previous studies on optimizing DNNs on GPUs.
They optimize DNNs through computation graph transfor-
mation [15, 16], changing the dimension of parallelism [18],
switching the batching method [34], and so on. These meth-
ods are all about DNNs only, without covering graphs as
inputs and targets. The other kind of DNN optimization is
about exploring the sparsity in DNNs, such as optimizations
and scheduling based on certain sparse patterns [31, 32, 48].
They mainly focus on performing efficient SpMM on sparse
data [6], rather than the special complexities in the combi-
nation of graph computing and neural operations.

7 Conclusion
This paper has analyzed the special complexities in opti-
mizing GNNs, and presents an in-depth examination of the
performance gaps in existing GNN frameworks. We point
out five major gaps in locality, load balance, redundancy,
memory footprints, and the lack of adaptation to varying
feature lengths. We propose a set of optimizations to fill the
gaps. These optimizations stem from some general principles
of GPU code optimizations but customize the designs to fit
the special properties of GNNs. They include locality-aware
task scheduling, neighbor grouping, data visible range adapter,
sparse fetching, and redundancy bypassing. Experiments show
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that our optimizations lead to performance improvement of
1.37×–15.5× over the state of the art. As GNNs gain increas-
ing popularity in many domains, our findings in this work
can help better meet the demands for the efficiency of many
GNN-based applications.
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A Appendix
A.1 Abstract
This section is mainly the guideline to perform artifact eval-
uation for this paper. We first describe the directory tree of
our code, which contains the code of both related work and
our work. Then, we present the check-list for the evalua-
tion. Finally, experiment workflow shows how to access the
source code and how to use the scripts to perform detailed
validation.

A.2 Description
The following is the directory tree of the code, which con-
tains eight sub-directories as follows

A.3 Artifact check-list
• Algorithm: Forward phase of graph neural networks
on GPU and the optimizations

• Program: CUDA and C/C++ code
• Compilation: nvcc10.1 with -O2 and –use_fast_math
flag.

• Binary: CUDA executable
• Data set: Graphs for GNN tasks from Open Graph
Benchmark (OGB)

• Run-time environment: Debian 4.19 with CUDA SDK
10.1 installed

• Hardware: Any NVIDIA GPUs with compute capabil-
ity >=5.0 (Recommended GPU: NVIDIA Tesla V100-
PCIe-32GB)

• Expected memory requirements to run the artifact:
with 200GB main memory and 32GB GPU memory

• Expected time to run experiments (end-to-end): 2 hours
• Publicly available: Yes

A.4 Experiment workflow
For the convenience of the artifact evaluation, we only pro-
vide a few simple scripts in each sub-directory. Below are
the steps to download our code, run the experiments, and
observe the results.

A.4.1 Download the code. git clone
https://github.com/xxcclong/GNN-Computing.git

A.4.2 Build and run. To build and run the code, follow
the instructions of README.md in the code and reproduce
the results shown in Section 5.
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