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Mono3D accelerators, and converges to a near-optimal design for

the user-specified optimization goal (e.g., minimizing energy or

latency) while satisfying performance and thermal constraints. For

the systematic selection of accelerators , the optimizer uses the op-

erating frequency, chip’s aspect ratio, and combinations of systolic

array and SRAMs as its control knobs. Since the array and SRAMs

have to satisfy the whitespace constraint, we produce a list of all

possible combinations offline (l𝑐𝑜𝑚𝑏 ).

Algorithm 1 details our optimizer, which is inherently paralleliz-

able because all the "starts" run in parallel (line 1). Each start is

assigned an operating frequency and an aspect ratio range (𝐴𝑅),

within which the optimizer determines a near-optimal solution by

minimizing the objective function, 𝑂𝑏 𝑗 , which can be inference

latency, chip power, energy or another energy efficiency metric.

𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , and decay (𝛿) are parameters of the optimizer that

define the annealing temperatures and the rate of cooling1. Each

start begins by randomly choosing an initial accelerator (𝑆𝑖 ) that

satisfies the design constraints (i)-(vi) listed above (lines 3-7). We set

𝑆𝑖 as the current solution (𝑆𝑐𝑢𝑟𝑟 ) and initialize the latency (𝐶𝑐𝑢𝑟𝑟 ),

smallest latency (𝐶𝑏𝑒𝑠𝑡 ), peak temperature (𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 ), and𝑂𝑏 𝑗𝑐𝑢𝑟𝑟
with 𝑆𝑖 ’s parameters (lines 8-10). We then randomly perturb 𝑆𝑐𝑢𝑟𝑟
by selecting a feasible design (𝑆𝑝 ) from l𝑐𝑜𝑚𝑏 (lines 11-15). If the

DNN inference latency on the perturbed design (𝐶𝑝 ) is smaller or

within a user-specified performance degradation (𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 ) from

𝐶𝑏𝑒𝑠𝑡 , this design (i.e., 𝑆𝑝 ) is ‘accepted’ for the next step. Otherwise,

it is ‘rejected’ (lines 16-19). The ‘accepted’ 𝑆𝑝 is then thermally

simulated for steady state analysis. If the peak chip temperature

(𝑇𝑝𝑒𝑎𝑘,𝑝 ) is greater than the thermal budget (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ), 𝑆𝑝 is re-

jected. Otherwise, 𝑆𝑝 is checked for a lower𝑂𝑏 𝑗𝑝 . If𝑂𝑏 𝑗𝑝 is smaller

than 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 , then 𝑆𝑝 is ‘accepted’. Otherwise, it is ‘accepted’ with

a certain probability (lines 20-30). The term Δ𝑂𝑏 𝑗 is the difference

between 𝑂𝑏 𝑗𝑝 and 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 , while Δ𝑂𝑏 𝑗𝑎𝑣𝑔 refers to the running

average of Δ𝑂𝑏 𝑗 for the accepted designs. The ‘accepted’ 𝑆𝑝 is then

set as 𝑆𝑐𝑢𝑟𝑟 for the next iteration (lines 31-35).

The algorithm terminates upon satisfying the conditions in lines

1 and 11. The accepted designs are stored in a file. Finally, the

optimizer selects the best design among all the starts with the

least𝑂𝑏 𝑗 while satisfying the performance and thermal constraints

(line 39). If the user’s objective is to design a single accelerator for

multiple DNNs, then additional meta strategies could be integrated

to the optimizer, e.g., selecting the most efficient design out of

several optimized solutions for all target DNNs on average, or the

design that yields the best results for the most frequently run DNNs.

3.3 Performance Model
SCALE-Sim is a cycle-accurate simulator for systolic arrays that

operate on 8-bit integer data. It takes the array and SRAM size,

along with DRAM bandwidth as inputs, simulates a stall-free DNN

inference, and outputs compute cycles, non-overlapping DRAM

cycles, array utilization, SRAM accesses, and SRAM bandwidth to

support stall-free inference. Compute cycles include cycles spent in

data transfer between SRAMs and systolic array, along with DRAM

cycles that overlap with the computation. We divide the compute

cycles and non-overlapping cycles by chip and DRAM frequencies,

respectively, to calculate the latency. Among the several dataflows

1Annealing temperature is a unitless parameter in MSA that allows it to escape a local
minima by accepting a design with a higher𝑂𝑏 𝑗 value. Rate of cooling is the rate at
which the annealing temperature decays to achieve convergence.

Algorithm 1:MSA-based Temperature-Aware Optimizer

Input :DNN, AR range, footprint budget, systolic array range,
𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 , frequencies, 𝑙𝑐𝑜𝑚𝑏

Output :𝑆𝑏𝑒𝑠𝑡 with minimum𝑂𝑏 𝑗
Initialize :𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , 𝑁 , decay rate 𝛿 ,𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 ,𝑇 , AR range for

each start 𝑖 (𝐴𝑅𝑖 ),𝑇𝑝𝑒𝑎𝑘 for each start 𝑖 (𝑇𝑝𝑒𝑎𝑘,𝑖 )

1 while𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 > 0 do
2 𝑇𝑝𝑒𝑎𝑘,𝑖 ←𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 1

3 while𝑇𝑝𝑒𝑎𝑘,𝑖 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
4 randomly select an accelerator (𝑆𝑖 ) with𝐴𝑅𝑖 and a frequency

5 if 𝑆𝑖 meets design constraints (i)-(v) in Sec. 3.2 then
6 generate performance traces, calculate inference latency𝐶𝑖

7 generate power traces, estimate peak temperature (𝑇𝑝𝑒𝑎𝑘,𝑖 )

8 set current solution: 𝑆𝑐𝑢𝑟𝑟 ← 𝑆𝑖 ,𝐶𝑐𝑢𝑟𝑟 ←𝐶𝑖 ,𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 ←𝑇𝑝𝑒𝑎𝑘,𝑖
9 calculate𝑂𝑏 𝑗𝑐𝑢𝑟𝑟

10 initialize best performance,𝐶𝑏𝑒𝑠𝑡 ←𝐶𝑐𝑢𝑟𝑟

11 while𝑇 > 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ do
12 while 𝑁 > 0 do
13 randomly select a design, 𝑆𝑝 , from 𝑙𝑐𝑜𝑚𝑏 with𝐴𝑅𝑖
14 𝑁 -= 1

15 if 𝑆𝑝 meets design constraints (i)-(v) in Sec. 3.2 then

16 calculate𝐶𝑝 and loss in performance𝐶𝑙𝑜𝑠𝑠 =

𝐶𝑝−𝐶𝑐𝑢𝑟𝑟
𝐶𝑐𝑢𝑟𝑟

17 initialize status← ‘Reject’

18 if 𝐶𝑙𝑜𝑠𝑠 ≤ 𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 then
19 status← ‘Accept’

20 if status = ‘Accept’ then
21 status← ‘Reject’

22 generate power traces and calculate𝑇𝑝𝑒𝑎𝑘, 𝑝
23 calculate𝑂𝑏 𝑗𝑝
24 if 𝑇𝑝𝑒𝑎𝑘,𝑝 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
25 Δ𝑂𝑏 𝑗𝑎𝑣𝑔 = 𝑎𝑏𝑠 (𝑂𝑏 𝑗𝑝 −𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 )

26 if 𝑂𝑏 𝑗𝑝 ≤ 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 then
27 status← ‘Accept’

28 else if 𝑂𝑏 𝑗𝑝 > 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 then

29 if random(0,1) < 𝑒𝑥𝑝 (−
Δ𝑂𝑏𝑗

Δ𝑂𝑏𝑗𝑎𝑣𝑔∗𝑇
)

then
30 status← ‘Accept’

31 if status = ‘Accept’ then
32 𝑆𝑐𝑢𝑟𝑟 ← 𝑆𝑝 ,𝐶𝑐𝑢𝑟𝑟 ←𝐶𝑝 ,𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 ←𝑂𝑏 𝑗𝑝
33 update Δ𝑂𝑏 𝑗𝑎𝑣𝑔
34 if 𝐶𝑝 < 𝐶𝑐𝑢𝑟𝑟 then
35 𝐶𝑏𝑒𝑠𝑡 ←𝐶𝑐𝑢𝑟𝑟

36 Store 𝑆𝑐𝑢𝑟𝑟 ,𝐶𝑐𝑢𝑟𝑟 ,𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 ,𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 in a data structure

37 𝑇 ←𝑇 ∗ 𝛿

38 𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 -= 1

39 return 𝑆𝑏𝑒𝑠𝑡 s.t.𝑇𝑝𝑒𝑎𝑘 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , &𝐶𝑙𝑜𝑠𝑠 ≤ 𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥

SCALE-Sim supports, we use output stationary as it has been shown

to outperform the other dataflows [20].

3.4 Mono3D Power Models
We use SCALE-Sim outputs to obtain the average dynamic power

of the systolic array (𝑃𝑆𝐴,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 ) using Eqs. (1) and (2):

𝑈𝑎𝑣 = (

𝑁∑

𝑖=1

𝑈𝑖 ∗𝐶𝑖 )/(

𝑁∑

𝑖=1

𝐶𝑖 ), (1)

𝑃𝑆𝐴,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑈𝑎𝑣 ∗ 𝑃𝑀𝐴𝐶,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 , (2)

where 𝑁 is the total number of convolutional layers in the DNN,

𝑈𝑖 and 𝐶𝑖 are the utilization and compute cycles, respectively, for

the 𝑖𝑡ℎ layer, and 𝑃𝑀𝐴𝐶,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 is the dynamic power for a MAC

unit. We also integrate an exponential leakage model for MAC (see

Sec. 4.1.1 for details on MAC’s power model).
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Systolic array size 16×16 to 256×256

Each SRAM size {32, 64, 128, 256, 512, 1024, 2048, 4096} 𝐾𝐵

Aspect ratio of the chip 0.7 to 1.3

Frequencies {735, 600, 500}𝑀𝐻𝑧

Table 1: Design space for DNN accelerators.
We use the SRAM bandwidth (𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒) generated by

SCALE-Sim to decide the number of banks in SRAM.We use CACTI

to calculate the SRAM dynamic power and leakage. To estimate

SRAM leakage at a finer granularity than the 10 degree default

granularity of CACTI, we fit a linear model (a linear model can

accurately estimate leakage across close temperatures [23]).

We deploy a generic interconnect power model, where the in-

terconnects consume 15% of the total chip dynamic power because

(i) DNNs require large amounts of memory for inputs, weights,

and outputs, and (ii) there is frequent data movement between the

systolic array and SRAMs [24]. We then reduce the interconnect

power by 10%, which is equal to Mono3D iso-performance power

savings obtained from a recent work [14].

For energy efficiency, we use system energy (𝐸𝑠𝑦𝑠 , includes both

the chip and DRAM energy), energy-delay-area product (𝐸𝐷𝐴𝑃 ),

energy-delay2 product (𝐸𝐷2𝑃 ), and energy-delay product (𝐸𝐷𝑃 ).

3.5 Mono3D Thermal Model
We build a compact thermal model (CTM) in HotSpot for the chip-

stack shown in Fig. 2. The CTM has 32 layers (including tiers, metal

layers, etc.). We use HotSpot’s default ambient setting, i.e. 45 ◦𝐶 ,

and grid mode (grid length =MAC length) to conduct steady state

thermal simulations with the power traces generated using CACTI

and Mono3D power models. To model a mobile system, we set the

heat spreader thickness to 50 𝜇𝑚 and remove the heat sink by set-

ting its thickness to a negligible value. After every HotSpot run, we

read the SRAM andMAC temperatures and update the power traces

with their temperature-dependent leakage, and rerun HotSpot. This

feedback loop continues till the difference is < 1◦𝐶 for both MAC

and SRAM temperatures between consecutive HotSpot runs.

We validate our CTM with a model for the same design in COM-

SOL, a multiphysics simulator that uses finite element method to

solve a second order heat diffusion equation [25]. We model var-

ious aspect ratios, hot spot locations, sizes, and power densities.

Overall, we observe a maximum error in peak temperature of 3.89%

w.r.t. COMSOL. We also report average, maximum and RMS errors

of 1.53◦𝐶 , 4◦C (corresponds to 3.2% w.r.t. COMSOL), and 1.76◦𝐶 ,

respectively. We also observe that power profiles resembling our

Mono3D setup show amaximum error of 1◦ C (corresponds to 1.3%)

for peak temperatures close to 80◦𝐶 (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in our analysis).

4 EXPERIMENTAL RESULTS
In this section, we describe our experimental setup, evaluate our

optimizer for correctness and speed, and present the results of our

optimization flow. For our analyses, we have used eight DNN infer-

ence benchmarks, six from MLPerf [19], namely VGG19, VGG16,

VGG11, ResNet50, MobileNet, and GoogLeNet, along with Faster

R-CNN [26] and Tiny-YOLO [27]. We group MobileNet, GoogLeNet,

ResNet50, and Tiny-YOLO as low-complexity (LoC) DNNs because

of their lower memory usage and fewer number of MAC operations

and the rest as high-complexity (HiC) DNNs because of their greater

number of MAC operations and higher memory usage [28].

4.1 Experimental setup
4.1.1 SRAM/Systolic Array MAC model. We synthesize a 65 𝑛𝑚

8-bit MAC unit at 250𝑀𝐻𝑧 using the Synopsys Design Compiler

(DC) and scale it down to 22 𝑛𝑚 technology node. The scaled down

area, dynamic power, and the frequency are 121 𝜇𝑚2 (length = 11

𝜇𝑚), 0.25𝑚𝑊 , and 735𝑀𝐻𝑧, respectively. We also fit a temperature-

dependent exponential leakage model for a MAC unit using data

points (temperature, leakage) from our synthesized MAC model.

Furthermore, wemodel 22𝑛𝑚 SRAMs in CACTI-6.5 and the off-chip

DRAM is based on 8 𝐺𝑏 LPDDR2-800 x32 chips at 400𝑀𝐻𝑧, with

8.5 𝐺𝐵𝑝𝑠 bandwidth and 200 𝑝 𝐽/𝑏𝑦𝑡𝑒 energy consumption [29].
4.1.2 Constraints and Design Space. We set our chip footprint bud-

get to 8 𝑚𝑚2, desired systolic array size between 16×16 [2] and

256×256 (similar to Google’s Tensor Processing Unit), total allowed

SRAM size to 24 𝑀𝐵, thermal budget to 80◦𝐶 , and the maximum

whitespace allowed to 1% of the chip footprint. In addition to the

chip frequency of 735𝑀𝐻𝑧, we include 600𝑀𝐻𝑧 and 500𝑀𝐻𝑧 in

our search space. We set a constraint on maximum performance

loss of ≤ 10% w.r.t. the design with the lowest latency under the

given constraints. Note that this is a user-defined parameter and can

change as required. Each SRAM has 4 banks and provides a band-

width of 256 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 to match with the maximum SRAM

bandwidth for the given systolic array bounds as output by SCALE-

Sim. Table 1 shows the total design space for DNN accelerators, i.e.,

24.6𝑘 (3 frequencies × 8.2𝑘 accelerators) design points.

4.2 Optimizer Evaluation
4.2.1 Setup and Running Times. We launch 6 starts for each fre-

quency and each start is assigned an aspect ratio range. Each start

has 6 annealing temperatures with 35 perturbations. We ensure

convergence by observing that the optimizer does not accept worse

designs as it approaches termination. For tuning the optimizer, we

vary 𝛿 from 0.7 to 0.92 and 𝑇𝑠𝑡𝑎𝑟𝑡 from 1.446 to 4.481 (values set

empirically, based on a set of known good results). These two pa-

rameters control the rate and probability, respectively, with which

MSA accepts worse solutions to escape the local minima and arrive

at a near-optimal solution. Also, our optimizer can work with a

larger range of frequencies and still select a near-optimal point (this

may require launching more starts in parallel).

SCALE-Sim and HotSpot take 10-60 and 5-45 mins, respectively,

depending on the chip footprint and DNN. HiC DNNs have a higher

number of MAC operations that lead to higher power densities and

peak temperatures (more active PEs), which increase temperature-

dependent leakage. Thus, these DNNs require more iterations (4-5)

to converge in HotSpot. LoC DNNs require fewer iterations (2-3)

due to fewer MAC operations [28] and lower chip power. Long

simulation times are bottlenecks to perform an exhaustive search

in our large design space and demonstrate the need for an optimizer.
4.2.2 Correctness of the Optimizer. To demonstrate the correct-

ness of our optimizer, we select a smaller design space with one

frequency (735𝑀𝐻𝑧), 0.94 to 1 aspect ratio range, under the same

constraints listed in Sec. 4.1.2. In total, there are 1,196 valid config-

urations. We evaluate the optimizer with {10, 5, 3}% performance

constraints. We select 2 DNNs, Tiny-YOLO (LoC) and VGG11 (HiC),

and compare the optimizer’s choices to those determined by an

exhaustive search. The optimizer’s parameters {𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , 𝛿}

for Tiny-YOLO and VGG11 are set to {1.446, 0.738611, 0.8} and {1.446,

0.885963, 0.85}, respectively. The 6 starts are assigned aspect ratio

ranges: [0.94, 0.95], (0.95, 0.96], and so on till (0.99, 1]. Across all the

objectives (performance, power, energy, EDP, ED2P, and EDAP),

the near-optimal designs selected by the optimizer and the global

optimal differ by ≤ 2% in 𝑂𝑏 𝑗 values, showing close agreement.






