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Emerging studies across learning domains have shed light on mechanisms underlying sleep's benefits
during numerous developmental periods. In this conceptual review, we survey recent studies of sleep
and cognition across infancy, childhood, and adolescence. By summarizing recent findings and inte-
grating across studies with disparate approaches, we provide a novel understanding of sleep's role in
human cognitive function. Collectively, these studies point to an interrelation between brain develop-

ment, sleep, and cognition. Moreover, we point to gaps in our understanding, which inform the agenda
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Introduction

Sleep changes dramatically across human development. Infants’
14—20 h of daily sleep are halved before adolescence [1]. Addi-
tionally, while infants' sleep is distributed across multiple bouts,
sleep is consolidated to a single bout by 5—7 years [2]. Circadian
rhythms also change across development, from early bedtimes in
childhood to late nights in adolescence. However, sleep and sleep
timing are also marked by individual differences. Confidence in-
tervals mark a 10 h range in sleep time for young infants [3].
Likewise, late sleep onset may reflect only ~20% of adolescents’
circadian rhythms [4].

Importantly, sleep supports cognitive performance. As such, it is
important to consider individual differences in sleep as a factor
underlying individual differences in cognitive and brain develop-
ment [5]. Here, we review evidence that individual variability in
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sleep physiology and timing across childhood may influence the
benefits of sleep on cognition. Moreover, we propose that differ-
ences in sleep and differences in brain development may bidirec-
tionally reflect one another, and jointly impact cognition.

Relations between sleep changes and brain development

Developmental changes in sleep, such as cessation of napping,
are posited to reflect brain development. In preschool-aged chil-
dren, decreases in napping have been associated with higher vo-
cabulary and enhanced memory after intervals awake, even when
controlling for age [6,7]. These cognitive improvements are thought
to indicate development of memory-related brain regions. Indeed,
hippocampal subfield volumes vary between 4 and 6 year-old
nappers compared to non-habitual nappers after controlling for
variables such as age, gender, and intracranial volume [8]. This
difference suggests increasing efficiency of memory storage in non-
habitual nappers. Thus, natural cessation of napping may be a
marker of brain maturation.

Recent studies also report associations between sleep micro-
structure and brain maturation. Specifically, maximal slow-wave
activity (SWA) shifts from posterior to anterior areas, paralleling
cortical maturation [9]. In a cross-sectional sample ranging from 2
to 26 years, the topography of maximal SWA predicted cognitive
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performance and gray matter maturation. Moreover, among chil-
dren 2—13 years, SWA propagation distance positively correlated
with whole-brain and inter-hemispheric myelin content, while
propagation speed and cortical involvement correlated with myelin
content in the superior longitudinal fascicle [10]. Such patterns
suggest that SWA topography and dynamics may track early brain
development.

Sleep has also been associated with developments in functional
brain connectivity. In a longitudinal analysis of children at 2, 3, and
5 years, overnight changes in EEG coherence (a proxy for white
matter connectivity) varied with age [11]. EEG coherence in the
sleep spindle range overnight was minimal at 2 years, yet it
increased by ~10% at 5 years. At all ages, overnight sleep promoted
inter-hemispheric coherence across most sleep frequencies, while
intra-hemispheric coherence tended to decrease, suggesting that
sleep may modulate neural connectivity in early childhood.

Effects of sleep differences on cognition across development

Given sleep's relations to brain development, it may be expected
that the cognitive function of sleep changes across this period as
well. Studies from infancy through adolescence support sleep's role
across cognitive domains (Table 1). However, developmental
studies have minimally explored how sleep physiology (Table 2)
and timing moderate this benefit. Below, we review developmental
changes in sleep's effects within the most studied domains.

Declarative memory

Declarative memory denotes explicit memory for events or
facts. We discuss this domain broadly as examination of sub-
divisions of declarative memory are limited.

Behavioral findings

Declarative memory studies in infants and young children
mainly focus on napping. Napping benefits memory [12—16] in
infants as young as 3 months, with such benefits observable both
shortly after napping and on more delayed timescales. In one study
of deferred imitation [13], infants, 6—12 months, who napped for
>30 min reproduced more previously demonstrated actions after
4 h than a control group who did not observe the actions. In
contrast, infants who remained awake or took brief naps showed
no performance differences compared to the control group.
Furthermore, following overnight sleep, infants in the nap group
showed better action performance than infants in both the control
and wake/short nap groups. These results suggest that napping
shortly after learning may strengthen infants’ declarative memory,
with benefits apparent even after overnight sleep.

Such declarative nap benefits may differ between episodic and
semantic memory types [17]. For example, in one study, 14-17-
month-old toddlers were shown objects paired with correct cate-
gory labels and subsequently napped or remained awake (between
subjects). Afterward, toddlers were shown both the same (“old”)
and new objects belonging to the same categories. Event-related
potential (ERP) measures suggested that toddlers who napped
formed distinct episodic memories of the old objects, and a sepa-
rable semantic response for new objects. In contrast, toddlers who
remained awake did not exhibit episodic memory, showing se-
mantic responses to old and new objects. These findings suggest
that napping may allow toddlers to better consolidate episodic
details.

Napping continues to support declarative memory across early
childhood. Among children 3—5 years, napping between learning
and test has been shown to benefit storybook memory [18] and
visuospatial learning [7], with effects observable immediately after
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napping as well as the day following. In another study [19],
declarative word learning was assessed among 3.5-year-olds
exposed either to one story three times or to three different stories.
Children who napped retained more words and maintained supe-
rior performance after 7 days than children kept awake. Notably,
children in the nap group were habitual nappers while those
assigned to the wake group were infrequent nappers. As such, it is
intriguing that children in the wake group experienced a memory
disadvantage, given work suggesting that nonhabitual nappers can
retain declarative memories more proficiently than habitual nap-
pers when daytime wake follows learning [7]. However, criteria for
nap habituality were not defined, and differences may speak to the
interval at which memory was tested, as prior work [7] had short-
term and not 7-day follow-up. Additionally, children in [19] were
younger and spanned a smaller age range than children in [7].
Although nap habituality has been shown to predict cognitive
performance independent of age [6], the fact that children in [19]
were all relatively young may suggest that nap frequency differ-
ences in this study (along with possibly being less distinctive) could
have been more driven by extrinsic influences than by children's
own brain maturation or readiness to give up napping. Together,
these findings suggest that napping shortly after learning can aid
declarative memory in early childhood, and that perhaps in the
long term, delayed sleep may not allow children to recover mem-
ories lost by staying awake.

Studies of children >5 years have focused on overnight sleep,
generally finding sleep advantageous for declarative memory
[20—22]. Furthermore, these benefits occur even with a long delay
between initial encoding and sleep. In one study [21], 7-12-year-
olds learned novel words, followed by overnight sleep or daytime
wake. Word recognition improved following sleep, but not after
equivalent time awake. However, after delayed overnight sleep, the
wake group's recall also improved. Likewise, 9-12-year-olds’
memory in a word-matching task improved following overnight
sleep, regardless of whether learning occurred in the morning or
evening [20]. These studies indicate that overnight sleep can
benefit declarative memory consolidation in children, even with
delays between encoding and sleep. Importantly however, sleep
timing effects on declarative memory may emerge in the longer
term, as one recent study in 8—12-year-olds showed enhanced
declarative memory retention after 4—10 weeks when sleep fol-
lowed initial learning [23].

Sleeping shortly after learning may likewise be optimal at later
ages ([24—26], but see [27]). For example, high school students who
learned words from an unfamiliar language showed greater
forgetting when they learned >12 h before sleep compared to
when they learned within a few hours of sleep [24]. Performance
differences remained 48 h later, suggesting that additional over-
night sleep did not recover memories.

Aside from comparing sleep to wake, many adolescent studies
assess how sleep duration affects declarative memory. Intriguingly,
neither natural nor experimental differences in sleep duration
seem to impact adolescent memory consolidation. Memory
retention was similar among adolescents who slept 4—5 h
compared to 9 h [28,29], and it is speculated that as little as 1-2 h of
sleep may be sufficient for declarative consolidation at this age [29].
Nonetheless, sleep restriction may adversely affect adolescents’
encoding of declarative information [30,31].

Physiological mechanisms

In adults, SWS and sleep spindles are suggested to support
declarative memory consolidation [32]. Specifically, one of the most
established theories is the active systems consolidation theory, which
posits that hippocampal sharp-wave ripples reactivate declarative
memories in co-occurrence with sleep spindles and slow oscillations



Table 1

Developmental studies assessing relations between sleep and cognition (ordered by age tested).

Cognitive Domain Author/Ref Age(s) Tested Task Sleep bout(s) considered Experimental Manipulation? Immediate® Next-Day Extended (>24 h)
Description Post-Sleep Benefit?  Benefit? Benefit?
Declarative Memory Seehagen et al. [13] 6 & 12mo Deferred imitation Nap & Nap vs. No Nap vs. Baseline Yes Yes
Overnight
Friedrich et al. [14] 9—16mo New word learning Nap Nap vs. No Nap Yes
(specific exemplars)
Friedrich et al. [17] 14—17mo Episodic memory (old  Nap Nap vs. No Nap Yes
Vs. new objects)
Horvath et al. [15] 16mo Object-word pair Nap Nap vs. No Nap Yes
associations
Kurdziel et al. [7] 36—67mo Visuospatial recall Nap & Nap vs. No Nap Yes Yes
Overnight
Lokhandwala et al. 36—71mo Episodic recall Nap & Overnight Nap vs. No Nap Yes Yes
[18] (storybook paradigm)
Williams & Horst 3.5y New word learning Nap, Overnight, 1wk later Nap vs. No Nap Yes Yes Yes
[19] (storybook paradigm)
Spano et al. [39] 41-84mo Word learning Nap & Overnight Nap vs. No Nap Yes Yes
Henderson et al. 7-12y Word learning, Overnight, AM vs. PM learning Yes®, but no Yes (relative to own Yes (relative to own
[21] visuospatial recall 1wk later comparison after prior timepoint) prior timepoint)
sleep across groups
Peiffer et al. [42] 7—12y, adults Definition learning Overnight AM vs. PM learning groups Yes, for children
only
Wilhelm et al. [41] 8—11y, adults Declarative recall of Overnight Nocturnal sleep vs. Daytime Yes
motor sequences wake
James et al. [23] 8—12y New word learning Overnight Nocturnal sleep vs. Daytime Yes (night Yes (day condition Yes (night
(picture-naming, stem- wake condition improved > night from condition
completion, object- improved > day 12 to 24hr) improved > day
location) from O to 12hr) relative to own
baselines)
Backhaus et al. [20] 9-12y Word pair associations  Overnight AM vs. PM learning Yes, but no Yes? (relative to own
comparison after baseline)
sleep across
conditions
Voderholzer et al. 13-17y Word pair associations  Overnight (multiple days)  Sleep restriction (5,6,7,8,9 h) No differences
[29]
Kopasz et al. [28] 14—16y Word pair associations  Overnight (multiple days) Sleep restriction (4 h vs. 9 h) No differences
Hahn et al. [43] 14—-18y Word pair associations  Overnight Wake (AM learning) vs. Sleep Yes
(PM learning)
Cousins et al. [30] 15—-18y Picture Overnight (multiple days) Sleep restriction (5 h vs. 9 h) Yes
Encoding
Lau et al. [25] 15—-18y Word pair associations, Nap Nap vs. No Nap Yes®
story recall, list learning
Holz et al. [27] 16—17y Word pair associations  Overnight Afternoon vs. Evening Learning No No differences
Gais et al. [24] 17y Novel word learning Overnight Multiple sleep-delay Yes Yes Yes
Leong et al. [26] 17y Semantic Overnight Wake vs. Sleep Yes
categorization
Procedural Fagen & Rovee- 3mo Operant foot kicking Not specified (total sleep Observational (correlation Yes
Memory Collier [46] time across 8 h interval) btwn sleep duration and recall)
Berger & Scher [47] 9—16mo Tunnel task Nap Nap vs. No Nap Yes
Desrochers et al. 33—71mo Serial reaction time Nap & Overnight Nap vs. No Nap No differences Yes
[48]
Wilhelm et al. [49] 4—6y Motor sequence Nap Nap vs. No Nap Yes'
learning X
Standard vs. Extended training
Wilhelm et al. [22] 6—-8y Finger sequence Overnight Nocturnal sleep vs. Daytime No
tapping wake

(continued on next page)
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Table 1 (continued )

Cognitive Domain Author/Ref

Age(s) Tested Task
Description

Sleep bout(s) considered

Experimental Manipulation?

Immediate® Next-Day
Post-Sleep Benefit?  Benefit?

Extended (>24 h)
Benefit?

Fischer et al. [51]

Henderson et al.

[21]
Prehn-Kristensen
et al. [50]

Holz et al. [27]

Generalization Friedrich et al. [96]
Simon et al. [97]
Friedrich et al. [14]
Konrad et al. [66],
Gomez et al. [64]
Hupbach et al. [65]
Horvath et al. [98]
Werchan & Gomez
[69]
Werchan et al. [71]
Sandoval et al. [70]
Emotional Cognition Mindell et al. [77]
Berger et al. [80]
Kurdziel et al. [78]
Cremone et al. [79]
Bolinger et al. [81]

Vriend et al. [84]

Prehn-Kristensen

et al. [89]
Prehn-Kristensen
et al. [50]

Baum et al. [85]

Short & Louca [86]

7-11y Serial reaction time
7-12y Serial reaction time
10—-13y Mirror tracing
16—17y Finger sequence
tapping
6—8mo Object-label
generalization
6.5mo Declarative retention of
statistical learning
9—16mo Object-label
generalization
12mo Generalization of
deferred imitation
15mo Artificial language
15mo Artificial language
16mo Object-label
generalization
2.5y Noun learning
29—-36mo Noun learning
3y Verb learning
3—18mo Social Emotional
Assessment
2.5-3y Emotion-eliciting task
34—64mo Emotional memory

3-5y Dot Probe (Emotional
Attention Bias)

8—11y Emotional/Neutral
pictures

8—12y Affective response task
(ART)

9—-12y Emotional picture
recognition

10—-13y Emotional recognition
task

14-17y Mood and emotion
regulation assessments

14—18y Profile of Mood States

Overnight
Overnight, 1wk later
Overnight
Overnight

Nap

Nap

Nap

Nap

Nap

Nap & Overnight
Nap

Nap

Nap & Overnight

Nap & Overnight
Overall sleep patterns
Nap

Nap & Overnight

Nap

Overnight

Overnight

Overnight

Overnight

Overnight

Overnight

Nocturnal sleep vs. Daytime
wake
AM vs. PM Learning

Nocturnal sleep vs. Daytime
wake
Afternoon vs. Evening Learning

Short vs. Long nap
Nap vs. No Nap
Nap vs. No Nap
Nap vs. No Nap

Nap vs. No Nap
Nap vs. No Nap
Nap vs. No Nap

Nap vs. No Nap

Nap/Overnight vs. No-Nap/
Overnight vs. Nap Only

Nap vs. No Nap

Observational: Assessments at
6, 12, and 18mo
Nap vs. No Nap
Nap vs. No Nap
Nap vs. No Nap

Nocturnal sleep vs. Daytime
wake
Sleep restriction and extension

Nocturnal sleep vs. Daytime
wake

Nocturnal sleep vs. Daytime
wake

Sleep restriction

Baseline vs. total sleep
deprivation

No
No differences
No differences
Yes
Yes®
Yes (block-specific)
Yes
Yes
Yes
Yes
Yes
No
Unclear (no Yes

No-Nap Only

group)
Yes

Yes

No differences Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

No differences

No differences

Yes

Yes

For the rightmost three columns, ‘No’ is indicative of a sleep detriment.

a
b
c
d

e

f With extended training.

& Short naps promoted surface—level associations; long nap promoted more semantically-based associations.

" Typically developing children benefited from sleep, while those with ADHD did not.

“Immediate” refers to recall <4 h after the first sleep bout. i.e., following a nap in nap + overnight protocols, in the morning following overnight protocols.
A group effect was observed for the explicit word learning task, and group x timepoint interactions for both declarative tasks.
Only for picture-naming reaction time; no differences for picture-naming accuracy, stem-completion, or object-location tasks.
While memory did not increase further after the wake interval, the boost resulting from overnight sleep remained.

Nap benefited story word-pair recall, but not for list learning.
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Table 2
Developmental studies assessing relations between sleep physiology and cognition (ordered by age tested).
Cognitive Author/Ref Age(s) Tested Sleep bout(s) examined Memory Physiology Associated with Cognitive Performance
Domain xlslg)scg?ted Sleep Spindles or SWS or REM (time, % time, Other/
o Power SWA/slow REM additional
(any sleep stage) oscillation theta power) stages or
power microstructure
(description)
Declarative Horvith et al. [12] 3mo Nap No
Memory Friedrich et al. [14] 9—16mo Nap No
Friedrich et al. [17] 14—17mo Nap Yes X
Spano et al. [39] 2:2—4:2y Midday nap Yes?® X?
Kurdziel et al. [7] 2:9-5:6y Midday nap Yes X
Lokhandwala et al. [18] 2:9-5:11y Midday nap Yes X
Wilhelm et al. [41] 8—11y Overnight sleep Yes X
Hahn et al. [43] 8—11y; Overnight sleep Yes X
14—-18y
Zinke et al. [62] 8—12y Overnight sleep Yes X
Backhaus et al. [20] 9-12y Overnight sleep Yes % nREM
(summed
across nREM
2,3/4)
Piosczyk et al. [45] 16y Afternoon nap Yes X
Holz et al. [27] 16—-17y Overnight sleep No
Procedural Wilhelm et al. [49] 4—6y Midday nap No
Memory Wilhelm et al. [22] 6—8y Overnight sleep No
Fischer et al. [51] 7-11y Overnight sleep No
Wilhelm et al. [41] 8—11y Overnight sleep Unknown
Zinke et al. [62] 8—12y Overnight sleep Yes X X
Saletin et al. [57] 10-12.9y Overnight sleep No"
Holz et al. [27] 16—17y Overnight sleep No
Generalization Friedrich et al. [96] 6—8mo Nap Yes X
Simon et al. [97] 6.5mo 1st Nap of day Yes X Absolute alpha
and theta
across brain
Friedrich et al. [14] 9—16mo Nap Yes X
Friedrich et al. [99] 14—16mo Nap, but memory Yes X
assessed next day
Emotional Kurdziel et al. [78] 34—64mo Nap & Overnight sleep  Yes X
Cognition Cremone et al. [79] 37-69mo Nap Yes© X
Bolinger et al. [81] 8—11y Overnight sleep No
Prehn-Kristensen et al. 9—12y Overnight sleep Yes¢ X X
[89]
Prehn-Kristensen et al. 11—14y (typical Overnight sleep Yes X nREM duration
[90] group)

a
b

In typically-developing children, not children with Down syndrome.

Physiology/memory association only seen in ADHD.
c

d

to promote information transfer from hippocampus to neocortex
[32]. However, it has been suggested that in infancy, SWS aids
memory through cortical synaptic downscaling (i.e., weakening global
synaptic potentiation, and increasing signal-to-noise for connections
increased during learning) rather than active systems consolidation
[33]. Supporting this perspective, younger infants often require
multiple exposures to retain declarative information [12], which is
arguably characteristic of cortically-mediated learning rather than
rapid hippocampal learning [33].

Synaptic downscaling has been associated with SWA [34]. Yet,
the only study to find associations between infant sleep physiology
and consolidation reported a correlation between frontal fast
spindle (13—15 Hz frequency) amplitude and episodic memory in
14—17-month-olds [17]. This result instead supports that active
systems consolidation may be present in infants as fast spindles
have specifically been associated with hippocampal-cortical func-
tional connectivity and active memory restructuring [35]. Addi-
tionally, intracranial recordings and experimental manipulations
have linked spindles with enhanced hippocampal-neocortical
coupling [36] and declarative memory performance [37].

SWA correlated with faster response times overall, not specifically to emotionally “congruent” trials.
Physiological/behavior association only in typically developing children when combined with adults.

Although [35—37] focused on adults, behavioral findings in infants
further support early active systems consolidation, as 12-month-
olds can retain some declarative information after just three brief
demonstrations within the same learning session [13], and 14-17-
month-olds can retain episodic details over just two demonstra-
tions [17]. However, given that these studies were done in older
infants (>12 months), it is possible that infants <12 months may
benefit from synaptic downscaling while older infants benefit from
active systems consolidation.

Though associations between spindles and sleep-dependent
declarative gains have only been found in older infants thus far,
nap spindles have also been associated with pre-sleep declarative
learning in younger infants (3 months) [12]. No other studies have
found relations between declarative retention in infants and either
SWS or sleep spindles (however, see [14]). Such null SWS findings
may be attributable to ceiling effects (infant naps generally have
high SWS), or perhaps SWS serves different functions in infancy
compared to adulthood.

More studies have addressed mechanisms underlying nap
benefits in early childhood, but these results are discrepant. One
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study found relations between preschool-aged children's nap
spindle density and post-nap visuospatial memory [7]. However, a
more recent study found that SWS duration, but not spindles,
correlated with post-nap memory for story sequences [18]. These
contrasting findings may suggest that relevant sleep physiology is
task-dependent. The visuospatial task [7] may particularly depend
on spatial-coding place cells whereas the story task may rely on
mechanisms such as SWS-dependent downscaling. Alternatively,
both spindles and SWS may aid memory in these tasks [38], but
different associations may emerge due to other paradigmatic dif-
ferences or sample characteristics (for example, spindle density
ranges in [7] were wider than in [18]).

REM has also been implicated in early learning. Typically-
developing preschool-age children with more REM retained more
learned items than those with less REM [39]. Moreover, children
with Down syndrome who exhibited minimal REM showed no nap-
dependent benefits. Importantly, this REM role may emerge with
longer or more ecologically typical naps, as REM and overall nap
durations were longer in this in—home study than in other
laboratory-based nap paradigms ([39]: 13.97 min REM/104.09 min
sleep; [7]: 1.32 min REM/73.83 min sleep; [18]: .39 min REM/
94.18 min sleep). Nonetheless, a specific role for REM in declarative
memory consolidation among preschoolers stands in contrast with
adult studies which infrequently find REM-related declarative
memory benefits [40].

In middle childhood, declarative memory has been associated
with overnight nREM sleep [20]. For example, 8-11-year-old chil-
dren's recall was associated with higher overnight SWA and
increased hippocampal activation [41]. These children also expe-
rienced greater sleep-dependent explicit memory gains when
compared to a group of adults, attributed to greater SWS and SWA
in children. Another study [42] corroborated the superior sleep-
dependent declarative benefits experienced by children (7—12
years) compared to adults, though the authors did not measure
sleep physiology. Intriguingly, a recent longitudinal study starting
at ages 8—11 years suggested that slow spindle densities positively
predicted absolute declarative performance, but that overnight
increases in slow spindles negatively predicted overnight memory
consolidation [43]. In contrast, fast spindle densities in adolescence
(14—18 years) positively predicted overnight consolidation, and
changes in sleep-dependent memory benefits across the two
timepoints were related to developmental changes in fast spindles.
Overall, these studies suggest that different features of nREM in
middle childhood may have contrasting impacts on declarative
memory.

In adolescent sleep restriction studies [28,29,44], SWS duration
was largely preserved at the expense of other sleep stages. Pres-
ervation of SWS might explain why declarative memory consoli-
dation is relatively maintained [29]. Additionally, EEG sigma power
in naps predicted declarative memory consolidation apart from IQ
or encoding differences [45]. These data indicate that the mecha-
nisms implicated in adolescent declarative memory consolidation
parallel findings in adults.

Procedural memory

Procedural memories are memories for skills and motor se-
quences, relying on distinct neural circuitry (e.g., basal ganglia,
cerebellum) in adults. Although adult studies have considered
forms of non-motor procedural learning, studies in development
have been limited to the motor domain.

Behavioral findings
Although research exploring sleep and “procedural memory” is
scarce in infants, two studies suggest that sleep may be beneficial.
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In one [46], 3-month-olds were trained to move a mobile above
their crib via kicking. Two weeks later, the mobile was again
presented, and memory was assessed via kick rate. Retention
positively correlated with the percentage of time infants slept
during the delay. Napping likewise benefited locomotor learning
in 9—16-month-olds. Infants were placed in front of a tunnel that
required them to switch from walking to crawling [47]. Following
a delay including napping or wake, infants completed the tunnel
task again. Infants who napped were quicker, required fewer
chances to traverse the tunnel, and had fewer “body-tunnel mis-
matches” at test compared to infants who stayed awake. Together
these findings support a beneficial role of sleep in early procedural
learning.

Whether naps benefit procedural learning in early childhood
is ambiguous. One study using a sequential learning task in
children 2.9—6 years did not find an immediate nap benefit, but
found a nap benefit after overnight sleep [48]. In contrast,
another report in 4-6-year-olds [49] showed an immediate nap
benefit but only with additional training, suggesting that weak
initial learning may not benefit from sleep. Thus, while napping
may benefit procedural memory in young children, augmenta-
tion (additional sleep, training) may be necessary for such ben-
efits to be realized.

Procedural studies in middle childhood show either no sleep
benefits compared to wake [21,50] or, surprisingly, a negative effect
of sleep [22,51]. Notably, studies reporting negative results exam-
ined only short-term performance effects and not possible delayed
benefits. The need to examine longer-term sleep effects is exem-
plified by work in juvenile songbirds, which shows that the
magnitude of overnight performance deterioration following early
motor learning positively predicts long-term performance gains
(>30 days later) [52]. Initial sleep-related impairments are thought
to reflect short-term memory destabilization due to sleep-related
reactivation, which predicts long-term stabilization. Thus, it is
possible that negative sleep effects in middle childhood may yield
delayed advantages.

On the other hand, the distinction between sleep's effects on
procedural versus declarative memories has led to speculation
that, in early childhood, sleep may preferentially consolidate
declarative memory at the expense of procedural memory
[22,51,53]. Studies of children with ADHD may lend credence to
this hypothesis, as sleep supports their motor learning [54] while
their sleep architecture differs from that of typically-developing
same-aged children [55]. ADHD also often entails atypical con-
nectivity of brain networks important for explicit learning and
attention [56]. Network reductions combined with sleep differ-
ences may attenuate the neural competition between declarative
and procedural memories observed in typically-developing chil-
dren [54,57], allowing children with ADHD to experience a sleep
benefit in both domains.

No studies have directly contrasted sleep and wake-related
procedural memory changes in adolescents. However, one study
in 16—17-year-olds considered the timing of procedural learning
relative to sleep [27]. Adolescents who learned a finger-tapping
task immediately prior to sleep showed greater next-day im-
provements compared to those who learned 7.5 h before sleep.
These differences remained 7 days after training, suggesting that,
similar to declarative memory, shorter intervals between learning
and sleep may produce long-lasting procedural memory benefits
during adolescence.

Physiological mechanisms

In adults, both REM and nREM2 sleep characteristics are
implicated in procedural memory, possibly interacting to aid
learning and consolidation [58]. How sleep facilitates infants’
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procedural memory is poorly understood. However, if we expand
early procedural learning to include common motor milestones
such as crawling and coordinated reaching, recent perspectives on
sensorimotor development provide insights. For instance, Blum-
berg and colleagues [59] posit that during fetal development and
early infancy, myoclonic twitches during active sleep (the precursor
to REM) may aid sensorimotor organization via sensory feedback,
allowing young infants to build “topographic maps” that enhance
limb and behavioral coordination and promote cortical develop-
ment [60]. Supporting this notion, a study in premature human
infants found that sleep twitches produced oscillatory activity in
somatotopically related cortical areas [61]. Thus, it is possible that
active/REM sleep and its associated neural and movement patterns
may play a functional role in infants’ motor learning.

Of six PSG studies of childhood and adolescence, only one found
associations between procedural memory and sleep, specifically
spindles and SWA [62]. Given that children's procedural learning
often does not show sleep-dependent improvements, this paucity
of associations is perhaps not surprising. However, in adults, pro-
cedural consolidation is often linked to sleep microstructure, such
as number of sleep spindles or rapid eye movements. Few child
studies consider sleep microstructure; thus, discrepant results may
reflect analytical differences. Alternatively, sleep differences be-
tween children and adults may underlie a shift in sleep's function
with age. In a study comparing 7-11-year-olds and adults, children's
sequence learning suffered following overnight sleep while adults'
performance improved [51]. Children also spent more time in SWS
compared to adults, corroborating the suggestion that because
children have more SWS and greater SWA, procedural memory may
be less prioritized for processing than declarative learning at this
age [53]. However, more research is needed to directly test this
possibility.

Generalization

Generalization involves abstracting broad rules, representa-
tions, or concepts from specific examples that share similar fea-
tures. Whether sleep supports generalization in early development
is of particular interest, as the ability to generalize is critical for
semantic category learning (i.e., identifying similarities between
related but non-identical items or examples), language learning,
and flexibility in new contexts [63,64].

Behavioral findings

Sleep benefits generalization from a young age. When 9-16-
month-olds were randomly assigned to nap or wake groups, only
infants who napped showed ERP evidence of generalizing recently
learned object labels to new examples [ 14]. Likewise, Gémez et al. [64]
demonstrated that after hearing syllable sequences with a specific
grammar, only 15-month-olds who napped recognized the underly-
ing grammar. This nap benefit persisted 24 h after encoding [65].

These effects extend to non-linguistic learning as well. Infants
who napped after viewing an experimenter perform target actions
on different hand puppets performed more target actions with a
novel puppet compared to infants kept awake [66]. One possible
explanation for this result is that naps promoted generalization to
the new puppet via forgetting of less frequent or non-overlapping
aspects of the training puppets [33]. However, forgetting alone
would not explain differences in performance from the wake group,
who would also theoretically forget due to interference from
waking sensory input [67]. Thus, perhaps a more nuanced expla-
nation is that napping adaptively increased the signal-to-noise
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ratio of overlapping commonalities across stimuli [68]. Mecha-
nism aside, these results suggest that napping supported infants’
abstraction and generalization of actions performed on similar
items.

Findings regarding naps and generalization in early childhood
(2.5—3.5 years) are mixed. One study suggested that children better
generalize newly-learned nouns to novel examples when kept
awake following learning [69]. However, another study found
children more adeptly generalized novel verbs to new agents 24 h
later if they napped within 5 h of learning [ 70]. Aside from targeting
different parts of speech (noun vs. verb), one distinction between
these studies is the timing at which generalization was probed (4
vs. 24-hrs later). A follow-up experiment using the noun learning
task from [69] confirmed the importance of additional sleep for
nap-dependent generalization effects. After overnight sleep, chil-
dren who napped after learning the prior day more accurately
generalized noun labels to new exemplars than children who
stayed awake for at least 4 h following learning [71]. Why gener-
alization might depend on multiple sleep bouts at this age is un-
clear, though it may be that additional sleep cycles including longer
REM sleep intervals are needed. Such REM intervals could promote
reorganization and integration of related memories strengthened
during nap nREM by increasing cortical plasticity, a function
attributed to REM [72—74]. Still, given the lack of PSG studies for
generalization tasks in this age range, the role of REM for gener-
alization in early childhood is only speculative.

No studies to our knowledge have assessed the role of sleep on
generalization in middle childhood or adolescence. Further work
must address the conditions under which sleep benefits general-
ization during these periods of development.

Physiological mechanisms

Infants' generalization has largely been associated with sleep
spindles, but there is speculation regarding mechanism. Friedrich
et al. [14] argue that infants' spindles assist with active memory
reorganization, increasing synaptic plasticity by driving neocortical
short- and long-term potentiation. This plasticity is thought to
allow for active strengthening of overlapping elements across ex-
periences. However, Gémez and Edgin [33] maintain that infants’
sleep-dependent generalization is due synaptic downscaling dur-
ing sleep, whereby only connections strengthened during learning
survive in memory. Though they concede that associations be-
tween spindles and generalization may reflect more active cortical
synaptic strengthening, they distinguish between active spindle-
related enhancement of cortical memory and active systems
consolidation involving the hippocampus, which they argue is not
sufficiently mature in infancy. Resolving these speculations re-
quires future work with brain-based measures.

There is a gap in both behavioral and physiological studies of
sleep-dependent generalization in childhood and adolescence.
However, given the role of overnight sleep in nap-dependent
generalization in young children, it is possible that overnight
REM enhances generalization in correspondence with nREM
shortly after learning. Further behavioral and physiological studies
beyond infancy may elucidate the requisites for sleep-dependent
generalization across development.

Emotional cognition

Sleep contributes to emotion processing in adults. In develop-
mental studies, although the domains and paradigms vary, these
studies collectively support a role of sleep on emotion processing.
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Behavioral findings

No studies have examined the direct effects of sleep compared
to wake on emotional memory in infancy. However, a pair of studies
used MRI while infants slept to evaluate emotion processing. This
work found that infants 3—12 months can process and differentiate
emotional content while asleep [75,76], though whether such
processing is enhanced relative to wake is unclear. However,
consistent with this, more sleep at 6 months predicted fewer
parent-reported emotional difficulties at 12 months [77]. Although
correlational (and limited to parent sleep reports), these studies
suggest that differences in sleep during infancy may affect
emotional development.

Likewise, sleep in early childhood benefits emotion processing.
One study [78] experimentally manipulated sleep to understand
how naps influence preschoolers’ memory for faces encoded in an
emotional context. Although no immediate nap benefit was found,
memory for both “mean” and “nice” faces was greater the
following day if a nap followed learning. It is possible that the
next-day nap benefit reflects nap-specific memory reactivation
that left memory unstable initially but primed it for overnight
consolidation. In contrast, other work has shown an immediate
nap benefit for tasks probing emotional attention and regulation.
For example, 3-5-year-olds showed an emotional attention bias
when kept awake during naptime compared to when they napped
[79]. Likewise, nap-deprived 2.5-3-year-old children responded
more negatively towards neutral and negative stimuli and less
positively to positive stimuli in an emotion-eliciting task
compared to when they were well-rested [80]. Nap-deprived
children also spent less time conveying positive affect when
completing a solvable puzzle and more time expressing negative
affect toward an unsolvable puzzle. Such findings indicate that
early childhood naps may facilitate adaptive emotional responses
in various contexts, though expression of emotional memory
consolidation per se may depend on additional nighttime sleep
[78].

A few studies have explored the effects of overnight sleep
and sleep restriction on emotion in later childhood and
adolescence. For example, overnight sleep (relative to daytime
wake) generally improved 8-11-year-olds’ image recall,
regardless of emotional valence [81]. Intriguingly, sleep also
attenuated children's EEG reactivity and subjective emotional
valence ratings, while increasing automatic emotional re-
sponses (heart rate deceleration). Thus, sleep may have para-
doxical effects on children's emotional reactivity, attenuating
more cognitively-mediated reactions while increasing the
automatic physiological impact of emotional content. Studies in
adults [82,83] have shown that a SWS-associated mechanism
supports protection of emotional valence while a REM-
dependent mechanism protects emotional physiological reac-
tivity. It is possible the former is underdeveloped in this age
group. However, this seems unlikely given that declarative
memories, thought to rely on the same mechanism, are
consolidated with SWS at this age [41].

In other work [84], 8-12-year-olds exhibited less positive affect
on a laboratory task and had poorer emotional regulation when
experimentally sleep-restricted by 1 h across 4 days. When 14-17-
year-olds’ sleep was restricted to 6.5 h for five nights, adolescents
rated themselves higher in emotional dysregulation, confirmed
also by parents [85]. Additionally, a study in 14—18-year-olds [86]
reported significantly depressed mood after one night of total sleep
deprivation, but only in female participants. Collectively, these
findings indicate that the effects of sleep restriction or deprivation
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on adolescent emotion are generally deleterious, but may be
moderated by demographic factors.

Physiological findings

In adults, emotional processing is frequently attributed to REM
sleep, though recent studies support a role for SWS [87]. During
REM, theta oscillations from the amygdala synchronize with hip-
pocampal and cortical activity, corresponding to emotional mem-
ory enhancement [88]. When emotional memory involves
declarative aspects, SWS likely also supports such aspects as pre-
viously described.

In studies of early childhood, SWS is most often implicated in
emotion processing. For instance, the next-day nap benefit for
emotional face memory [78] was associated with nap SWA,
suggesting a possible interaction between nap SWA and over-
night sleep. Additionally, SWA in preschool children's naps pre-
dicted faster post-nap response times in an emotional attention
task [79].

Among 9-12-year-old children and adults, both REM theta and
SWS positively predicted emotional picture memory [89]. SWS was
also found to correlate with 11—14-year-olds’ emotional memory
consolidation, though this association was not specific to emotional
items [90]. Considering this study and others [79], future work
should focus on whether sleep physiology in childhood and
adolescence specifically supports emotional over neutral memory
consolidation.

Interrelations between brain development, sleep, and
cognition

In the present review, we have outlined how sleep changes
developmentally in tandem with early brain development, and
how sleep may support early cognition. Broadly speaking, studies
support either a facilitative or direct physiological role for sleep
across multiple cognitive domains. However, these domains
differ in the conditions under which sleep supports them, and
age differences may also influence the conditions necessary for
sleep-dependent benefits. Additionally, though progress has
been made in investigating the sleep correlates of memory and
cognitive development, physiological data remain sparse within
most developmental age ranges and cognitive domains. Thus,
while we discuss the implications of the available literature,
conclusions are preliminary, and replication and expansion is
needed.

Physiologically, sleep spindles and slow waves appear to be
the most prominent facilitators of cognitive processing across
development thus far (see Table 2). While this may reflect limi-
tations in paradigms (e.g., nap studies in infants and early
childhood), it may also point to a distinct function of REM un-
related to localized cognitive processing. A recent mathematical
model of sleep physiology, sleep time, and brain weight
concluded that the function of sleep, and particularly REM sleep,
shifts abruptly between two and three years. In infancy, REM
may support neural reorganization while, at later ages, REM
function may shift to neural repair [91]. Consistent with this,
REM sleep supports new dendritic spine formation during early
development [92] and synaptic pruning begins around 2 years
[93]. Thus, there may be a role of nREM in local memory net-
works while REM supports more global reorganization that
might be more evident in longer-term follow-up studies. Note
that, in addition to REM supporting spine formation in



G.M. Mason, S. Lokhandwala, T. Riggins et al.

development, REM was also found to stabilize new spines
immediately post-learning in adult animals [92].

Additionally, our review indicates that sleep timing may affect
early sleep-dependent cognitive benefits. Infants and children who
do not nap shortly after declarative learning show reduced
consolidation even after one or multiple days of unrestricted
follow-up sleep, and even if initial learning occurs during an in-
terval in which they would not normally nap (in contrast to nap
deprivation; i.e., [13,19]). Intriguingly however, older children
benefit from sleep in some tasks even when the interval between
learning and sleep is extended [20,21]. This may suggest that the
increased development of memory-related brain areas in older
children allows memories to be held longer without interference.
However, older adolescents’ performance shows varying depen-
dence on the temporal proximity of sleep relative to learning,
depending on the task [24,27]. These differences in reliance on
sleep timing between children and older adolescents require
further investigation.

We have described general trends regarding sleep's influ-
ence on cognition, yet individual differences also impact sleep's
effects. Specifically, nap habituality may predict the effects of
wakefulness on memory in infants and young children ([7], but
see [19]), and differences in spindle densities and SWA predict
learning differences across same-age children [7,78]. Neuro-
developmental conditions (ADHD, Down syndrome) may also
alter sleep's effects, either by affecting sleep directly or through
other indirect neural processes [39,54,90]. Furthermore, sleep
may be influenced by cultural and socioeconomic variables
[94], indicating that sleep could moderate or mediate associa-
tions found between cognition and sociodemographic factors.
Finally, sleep’s benefits may also depend on individuals' relative
skill level and depth of initial encoding, as indicated in some of
the child studies reviewed here [23,49] and noted in adults
[95].

Given recent studies connecting sleep microstructure changes
with early brain development [8,9], future work should tease apart
whether such changes, including topographical shifts in maximal
SWA, also predict developmental shifts in sleep's benefits for
cognitive abilities that rely on different neural networks (i.e.,
declarative vs. procedural memory). If relations are found, further
analyses should tease apart whether these relations are accounted
for solely by brain development, or if brain development leads to
specific sleep changes that directly alter sleep's influence on
cognition. Overall, the current data imply not only that develop-
mental differences in sleep may impact cognition, but reciprocally
that sleep itself—and its relative benefits—may be affected by brain
development.

Concluding remarks

Our review highlights a growing interest in understanding how
the timing, physiology, and developmental characteristics of sleep
support cognition in human development. Although much has
been done to elucidate sleep's short-term role in early memory and
learning, further work must clarify how early sleep bouts interact
over hours and days to support cognitive development. By assess-
ing the impact of sleep at multiple timepoints and across domains,
we will understand not only how different cognitive abilities
change developmentally, but also how the neural systems and
physiology supporting cognition emerge to influence individual
developmental trajectories.
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Practice points

1. Sleep timing and structure changes significantly across
development. Additionally, individual differences in
sleep within the same developmental period are
common.

2. For infants and children, sleep immediately following
learning may maximize sleep's benefits on memory.

3. Current sleep physiology studies underscore the inter-
active role of sleep spindles and SWS in sleep-dependent
memory consolidation, particularly for declarative
memory. SWS is also implicated in emotional memory,
and spindles in generalization.

4. Differences in relations between sleep physiology and
memory across studies likely result from differences in
sample characteristics and behavioral task(s) employed.

5. In contrast to earlier reviews that did not find a sleep
benefit for procedural learning in children, recent studies
have found this association under specific study para-
digms (e.g., extended training), and when considering
multiple sleep bouts.

Research agenda

1. Investigate the interactive effects of multiple sleep bouts
on early cognition, and assess sleep effects over multiple
days to identify extended sleep benefits.

2. Longitudinally examine interrelations between brain
structural/functional development, sleep characteristics,
and cognition.

3. Consider how paradigms employed might affect study
outcomes. Determine whether outcomes are task-
specific by including more tasks within a single para-
digmatic framework.

4. Examine whether eliminating naps (as is sometimes
done to promote overnight sleep in young children) is
detrimental to cognitive development.
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