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Abstract— Hardware implementation of Artificial Neural Networks (ANNs) using conventional binary arithmetic units 

requires large area and energy, due to the massive multiplication and addition operations in the inference process, 

limiting their use in edge computing and emerging Internet of Things (IoT) systems. Stochastic computing (SC), where 

the probability of 1s and 0s in a randomly generated bit-stream is used to represent a decimal number, has been 

proposed as an alternative for compact and low-energy arithmetic hardware, due to its ability to implement basic 

arithmetic operations using far fewer logic gates than binary operations. To realize SC in hardware, however, tunable 

true random number generators (TRNGs) are needed, which cannot be efficiently realized using existing CMOS 

technology. Here we address this challenge by using magnetic tunnel junctions (MTJs) as TRNGs, the stochasticity of 

which can be tuned by an electric current via spin-transfer torque. We demonstrate the implementation of ANNs with SC 

units, using stochastic bit-streams experimentally generated by a series of 50 nm perpendicular MTJs. The numerical 

value (1 to 0 ratio) of the bit-streams is tuned by the current through the MTJs via spin-transfer torque, with an ultralow 

current of < 5 µA (= 0.25 MA cm-2). The MTJ-based SC-ANN achieves 95% accuracy for handwritten digit recognition 

on the MNIST database. MRAM-based SC-ANNs provide a promising solution for ultra-low-power machine learning in 

edge, mobile and IoT devices. 

 
Index Terms—Spin Electronics, Artificial Neural Network, Stochastic Computing, MRAM 

 

I.  INTRODUCTION 

Machine learning in portable systems and edge devices is emerging 

as a critical enabler of new applications in internet of things (IoT) [Li 

2018], autonomous driving [Chen 2015, Sallab 2017, Shalev-Shwartz 

2016], health [Beam and Kohane 2018, Farrar and Worden 2012, Ravì 

2016], wearables [Hammerla 2016], augmented/virtual reality 

(AR/VR) [Wu 2019] and other areas. However, existing hardware 

implementations of Artificial Neural Networks (ANNs) using 

conventional binary arithmetic units require large area and energy, 

due to the massive multiplication and addition operations in the 

inference process [Li 2017, Li 2017, Ren 2017, Sim and Lee 2017]. 

This limits their use in low-power portable systems, edge, and IoT 

devices.  

Stochastic computing (SC) [Li 2017, Li 2017, Ren 2017, Sim and 

Lee 2017, Gaines 1969, Brown and Card 2001, Wang 2017, Lv and 

Wang 2017, Li 2018, Daniels 2020, Kim 2016] has been proposed as 

an alternative for compact and low-energy arithmetic hardware. SC 

uses the probability of 1s or 0s in a randomly generated bit-stream to 

represent a decimal number. This allows it to implement basic 

arithmetic operations using fewer logic gates than binary operations. 

However, to efficiently realize SC in hardware, a key requirement is 

the existence of tunable true random number generators (TRNGs), 

which cannot be efficiently realized using existing CMOS technology. 
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As an example, a conventional 32-bit linear feedback shift register 

(LFSR) used for RNG operation in CMOS requires more than 1000 

transistors [Borders 2019].  

Here we address this challenge by using a series of 

magnetoresistive random-access memory (MRAM) bits – i.e. 

magnetic tunnel junctions (MTJs) [Daniels 2020, Nishimura 2002, 

Ikeda 2010, Gallagher 1997, Mizrahi 2018, Mizrahi 2016, 

Vodenicarevic 2017] – as TRNGs. The TRNG operation is based on 

the thermal fluctuations at room temperature of the MTJ free layer 

[Camsari 2017, Brown Jr 1963, Fukushima 2014]. The stochasticity 

of this process can be tuned by an ultralow current of < 5 µA (= 0.25 

MA cm-2) via spin-transfer torque (STT) [Fuchs 2004], to generate 

tunable stochastic bit-streams representing the entire range of 

numbers from -1 to 1. By using the bit-streams that are experimentally 

generated from these MTJs, we demonstrate a SC-based ANN using 

MTJ-TRNGs that performs handwritten digit recognition on the 

MNIST database [Li 2018, Daniels 2020, Lecun 1999] with accuracy 

of 95% using a 1024-bit stochastic bit-stream length. 

 

 

II. GENERATION OF BIT-STREAMS 
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A. Device Structure and Physical Mechanism 

The structure of the perpendicular MTJs used in this work is 

illustrated in Fig. 1(a). The MTJ consists of two ferromagnetic layers 

separated by an oxide layer. Depending on the direction of the 

magnetization in the two ferromagnetic layers, the device has a low-

resistance parallel state (P) and a high-resistance antiparallel state 

(AP) [Yuasa and Djayaprawira 2007, Yuasa 2004, Yuasa 2004], 

resulting in a tunnel magnetoresistance (TMR) ratio of ~ 130% and a 

parallel-state resistance-area (RA) product of ~ 440 Ω-µm2. Our 

devices were circular and had a diameter of 50 nm. 

The two states of an MTJ are separated by an energy barrier 𝐸𝑏 

which is proportional to the free layer volume and anisotropy. The 

retention time can be written as 𝜏 = 𝜏0exp (𝐸𝑏/𝑘𝐵𝑇), where 𝜏0 is the 

characteristic attempt time (on the order of 1 ns), 𝑘𝐵 is the Boltzmann 

constant and T is temperature. For a large MTJ where 𝐸𝑏  is large 

enough, the retention time is long resulting in nonvolatile memory 

operation. In the present experiment, however, the free layer thickness 

and anisotropy were adjusted so that the retention time was reduced 

to ~ 5 ms, corresponding to an energy barrier < 16 𝑘𝐵𝑇. As a result, 

the MTJ stochastically switched between its two states at room 

temperature due to thermal fluctuations. In the presence of a current, 

one state or the other would be preferred by STT [Fuchs 2004], as 

shown in Fig. 1(b)-(c).  

 

B. Measurement of Bit-streams 

Stochastic bit-streams were generated experimentally by 

measuring the resistance of the MTJs in time domain under different 

voltage bias conditions. In total, six nominally similar MTJs with a 

diameter of 50 nm were used in this work, as explained in detail below. 

The resistance of a representative 50 nm MTJ as a function of external 

magnetic field, under different bias voltages is shown in Fig. 2(a)-(c). 

An offset field of approximately -35 mT was observed in the loop 

measured at 1 mV, due to the stray field from the uncompensated 

reference layer. The MTJ did not show a significant coercivity, 

consistent with its small energy barrier. Due to the STT effect, the 

offset field shifted in opposite directions depending on the applied 

bias voltage. Based on this, we fixed the external magnetic field at -

35 mT in our experiment and measured the resistance under different 

bias voltages for a period of ~ 2 minutes, in intervals of 100 ms, which 

provided ~ 1200 data points for each voltage. Fig. 2(d)-(f) show the 

results under three different bias voltages applied to the MTJ. 

Tunability from > 95% AP to > 95% P was experimentally achieved 

 
Fig. 1. (a) Cross-section illustration of the MTJs. The devices have 
a bottom-pinned configuration with a Co/Pt multilayer-based 
synthetic antiferromagnetic (SAF) structure. (b)-(c) Energy 
diagram for a stochastic MTJ under bias current. Spin-transfer 
torque (STT) acting on the MTJ free layer in (b) favors the parallel 
state, while in (c) it favors the antiparallel state. 

 
Fig. 2. (a)-(c) Resistance as a function of external field for an MTJ measured under different DC voltages: (a) -1 V, (b)  1 mV, (c) 1 V. Different 
colors represent different measurement repetitions. (d)-(f) MTJ resistance oscillations measured as a function of time, under a fixed external 
magnetic field H = -350 Oe but different bias voltages: (d) V = -1 V, (e) V = 1 mV and (f) V = 1 V. 
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by a voltage less than 1 V, as shown in Fig. 3, corresponding to an 

ultralow current less than 5 µA (= 0.25 MA cm-2). Using this 

procedure, bit-streams were generated representing the entire range of 

numbers from -1 to 1.  

 

III. MTJ-BASED STOCHASTIC COMPUTING UNITS 

In the SC paradigm, numbers are represented by the probability of 

1s in a bit-stream [Gaines 1969, Brown and Card 2001]. In this work, 

bipolar mapping was used to map real numbers x within the range of 

[-1, 1], to bit-streams X, via the relation P(X=1) = (x+1)/2. Using this 

approach, the key arithmetic operations in the ANN were 

implemented as follows.  

Multiplication was implemented with an XNOR gate [Brown and 

Card 2001], as shown in Fig. 4(a). The output of the XNOR gate is 

P(𝑌) = P(𝐴) ∙ P(𝐵) + P(𝐴)̅̅ ̅̅ ̅̅ ∙ P(𝐵)̅̅ ̅̅ ̅̅ . For bipolar mapping, this can be 

rewritten as (y + 1) / 2 = [(a + 1) / 2][(b + 1) / 2] + [1 − (a + 1) / 2][1 

− (b + 1) / 2], which can be reduced to y=ab. 

The addition and the following activation operation were 

implemented by an approximate parallel counter (APC)-based neuron 

design, following an approach similar to [Kim 2016]. As shown in 

Fig. 4(b), the multiplication of n inputs and weights was performed 

through XNOR gates as described above, which resulted in n bit-

streams with bit-stream length m. The addition was then done by the 

APC, where the sum of 1s in each column (dashed square in Fig. 4(b)) 

was accumulated. However, since the output from the APC was a 

binary number, to convert it again into a stochastic bit-stream, a 

saturated up/down counter was exploited to approximate a hyperbolic 

tangent function Btanh(n, K, x) ≈ tanh(x) [Kim 2016], where K is the 

number of states for the saturated counter and K = 2n in this work. 

This is similar to a finite state machine, except that the amount of 

increase or decrease for the states in each cycle is decided by the 

counted number in the APC for each column. Given K states in the 

counter, half of them generate 0 and the other half generate 1. The 

output bit-stream is thus an approximation of the hyperbolic tangent 

of the result of the dot product. 

 

IV. IMPLEMENTATION OF SC-ANN 

A. Training 

The ANN architecture demonstrated in this work had one hidden 

layer with 128 neurons, as shown in Fig. 5. The inputs were grayscale 

images of handwritten digits from the MNIST database [Lecun 1999], 

whose values were pre-scaled to [0, 1] to be compatible with the 

stochastic bit-streams. The ANN parameters (weights and biases) 

were trained using TensorFlow [Abadi 2016], on floating point 

numbers with 32 bits, during which L-2 regularization was employed 

to ensure the trained weights and biases also sat within the [-1, 1] 

range. The resulting training accuracy was 97%.  

B. Inference on Stochastic Computing ANN 

The inference process was then performed using the stochastic 

computing approach discussed above, by mapping the inputs and 

trained parameters to corresponding stochastic bit-streams, which 

were generated experimentally by the 50 nm MTJs. For each MTJ, 

data under ~30 different bias voltages were obtained, resulting in ~30 

different bit-streams per MTJ. The products (XNOR) of every two 

MTJs were then used to generate bit-stream sets with deeper number 

resolution. Furthermore, to make sure the bit-streams involved in each 

operation were statistically independent of each other, data from 

different pairs of MTJs were used to map the values for inputs and 

weights in different layers of the SC-ANN. Thus, six MTJs in total 

were used where each two of them were responsible for one of the 

three statistically independent bit-stream sets used in the network.  

It is worth noting that as a consequence of the relatively small 

number of MTJs that generate our bit-streams, the number of synaptic 

weights in each layer is still much larger than the number of sampled 

bit-streams. To reduce the resulting correlations of bit-streams of the 

same value in the same layer, we additionally used one of our MTJs 

to introduce a random reshuffling mechanism. The 1024-bit long bit-

streams were cut into eight segments, where each one of them was 

128-bit long. Each time when a number was to be mapped by the 

corresponding bit-stream, the bit-stream was rotated and restarted 

from the i-th segment, where i is a random integer from 0 to 7.  

Importantly, to generate the random integers from 0 to 7 with the same 

probability, a bit-stream with 50% probabilities of 1s and 0s from one 

of the MTJs was used. In principle, the need for this reshuffling 

Fig. 3. Probabilities of 1s and 0s (parallel and antiparallel states) 
generated by an MTJ under different bias voltages. 

Fig. 4. (a) Stochastic multiplication using bipolar mapping within 
the [-1, 1] range. (b) APC-based neuron for stochastic dot product 
and activation functions. 
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mechanism is eliminated in real applications when the bit-streams are 

generated in real time. 

The structure for the resulting SC-ANN is shown in Fig. 5. The 

result of inference with SC on 1024-bit long bit-streams is shown in 

Fig. 6(a) in the form of a confusion matrix. The numbers of correct 

and incorrect classifications are summarized and normalized for each 

class. It can be seen that the ANN successfully classifies the 

handwritten digits.  

Classification accuracy for the inference run with SC using bit-

streams of different lengths is shown in Fig. 6(b). It is evident that 

longer bit-streams provide better classification accuracy, which is 

understandable because the accuracy of each bit-stream is 

proportional to its length.  

It is worth comparing the proposed SC-ANN to recent works on 

CMOS [[Li 2018]] and hybrid spintronic-CMOS [Daniels 2020] SC-

based neural networks and RNGs [Zhakatayev 2018] in terms of 

energy dissipation. Specifically, while the circuit design and 

simulation of a complete SC-ANN are beyond the scope of the present 

paper, here we focus on comparing the performance of our MTJ-based 

TRNG to the RNGs discussed in these recent reports.    

For a conventional CMOS-based LFSR RNG, the energy per bit is 

on the order of ~10 fJ [Daniels 2020]. In our case, the energy 

dissipation of the TRNG depends on the retention time 𝜏 of the MTJs, 

which itself is determined by the energy barrier 𝐸𝑏 . Although the 

retention time reported in this work is relatively long, it could in 

principle be reduced by reducing the perpendicular magnetic 

anisotropy or reducing the diameter of the MTJs. Assuming a 

reduction of the diameter of our MTJs from 50 nm to 20 nm, we would 

expect a ~ 6.25× reduction of the free layer volume, which results in 

𝐸𝑏 ~ 2.5 kBT. This corresponds to a reduction of the retention time 

(and associated increase of the bit generation rate) to 𝜏 ~ 10 ns. We 

note that this is a conservative estimate, and recent works have 

indicated the possibility of retention times even smaller than 1 ns 

[Kaiser 2019, Hassan 2019, Desplat and Kim 2020]. Nonetheless, 

even with 𝜏 ~ 10 ns, the energy per bit reduces to ~ 20 fJ assuming an 

applied voltage of ~1 V and device resistance of 500 kΩ, which is 

comparable to CMOS-only RNGs [Li 2018, Zhakatayev 2018]. It is 

worth noting that the analog control circuitry required for biasing the 

MTJs will add to this energy consumption. This contribution, which 

would depend on the required bit-stream resolution and number of 

MTJs, is likely highly dependent on details of the circuit 

implementation and is therefore not quantified here. 

It is also worth comparing this type of TRNG to the MTJ-based 

TRNGs proposed in [Daniels 2020]. The latter approach uses a 

digitally controlled circuit to convert the oscillations of a 

superparamagnetic MTJ into stochastic bit-streams. This is 

qualitatively different from the TRNG discussed in the present paper, 

which is essentially analog (similar to the circuits previously proposed 

for probabilistic (p-) bit generation [Camsari 2017]), thus representing 

different tradeoffs and suitable application scenarios. Firstly, the 

energy dissipation of the pre-charge sense amplifier (PCSA) method 

used in [Daniels 2020] is essentially independent of the MTJ device 

size, in contrast to the present approach where the switching rate 

directly affects the energy dissipation. Hence, while the PCSA 

approach is expected to provide superior energy efficiency for longer 

clock cycles (150 ns in [Daniels 2020]), as clock speed is increased, 

one can expect the analog TRNG approach to achieve similar, if not 

better, energy efficiency. A second difference is that in the analog 

TRNG used in this work, the representation accuracy can be 

controlled by the length of the bit-streams. On the other hand, for the 

PCSA method, the representation accuracy is determined by the 

number of programmable bits in the bit-stream generators, thus 

determined by the number of transistors and MTJs in the circuit. 

Hence, for the same representation accuracy, the present method is 

likely to have an overall lower component count. Finally, we note that 

while the work by [Daniels 2020] showed a similar increase of the 

accuracy with bit-stream length as that shown in Fig. 6, it achieved 

comparable accuracies with shorter bit-streams than in the present 

work, which is a consequence of the more complex LeNet5 neural 

network structure with six hidden layers that was considered in 

[Daniels 2020]. 

 

V.  CONCLUSION 

We have demonstrated MRAM-based SC-ANNs which 

successfully classify handwritten digits with accuracy up to 95%. The 

SC-ANNs use experimentally measured stochastic bit-streams 

generated by 50 nm MTJ-based TRNGs that are tuned by an ultralow 

electric current (< 5 µA). The accuracy of the classification can be 

Fig. 5. Structure of the full SC-ANN demonstrated in this work, 
using pairs of MTJs for stochastic bit-stream generation. Insets 
show the photograph of one of the MTJ devices used (upper right 
inset) and the stochastic data measured (lower right inset). The big 
and small rectangular pads in the upper right inset are the bottom 
and top electrodes, respectively.  

Fig. 6. (a) Confusion matrix of the result of the inference operation, 
with stochastic computing on 1024-bit long bit-streams. (b) 
Classification accuracy achieved on the SC-ANN using different 
stochastic bit-stream lengths. 
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adjusted in real time by changing the length of the bit-streams. Our 

results provide a promising solution for ultra-low-power machine 

learning in edge, mobile and IoT devices.  
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