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Abstract— Hardware implementation of Artificial Neural Networks (ANNs) using conventional binary arithmetic units
requires large area and energy, due to the massive multiplication and addition operations in the inference process,
limiting their use in edge computing and emerging Internet of Things (loT) systems. Stochastic computing (SC), where
the probability of 1s and Os in a randomly generated bit-stream is used to represent a decimal number, has been
proposed as an alternative for compact and low-energy arithmetic hardware, due to its ability to implement basic
arithmetic operations using far fewer logic gates than binary operations. To realize SC in hardware, however, tunable
true random number generators (TRNGs) are needed, which cannot be efficiently realized using existing CMOS
technology. Here we address this challenge by using magnetic tunnel junctions (MTJs) as TRNGs, the stochasticity of
which can be tuned by an electric current via spin-transfer torque. We demonstrate the implementation of ANNs with SC
units, using stochastic bit-streams experimentally generated by a series of 50 nm perpendicular MTJs. The numerical
value (1 to 0 ratio) of the bit-streams is tuned by the current through the MTJs via spin-transfer torque, with an ultralow
current of < 5 pA (= 0.25 MA cm2). The MTJ-based SC-ANN achieves 95% accuracy for handwritten digit recognition
on the MNIST database. MRAM-based SC-ANNs provide a promising solution for ultra-low-power machine learning in

edge, mobile and loT devices.

Index Terms—Spin Electronics, Artificial Neural Network, Stochastic Computing, MRAM

[.  INTRODUCTION

Machine learning in portable systems and edge devices is emerging
as a critical enabler of new applications in internet of things (IoT) [Li
2018], autonomous driving [Chen 2015, Sallab 2017, Shalev-Shwartz
2016], health [Beam and Kohane 2018, Farrar and Worden 2012, Ravi
2016], wearables [Hammerla 2016], augmented/virtual reality
(AR/VR) [Wu 2019] and other areas. However, existing hardware
implementations of Artificial Neural Networks (ANNs) using
conventional binary arithmetic units require large area and energy,
due to the massive multiplication and addition operations in the
inference process [Li 2017, Li 2017, Ren 2017, Sim and Lee 2017].
This limits their use in low-power portable systems, edge, and IoT
devices.

Stochastic computing (SC) [Li 2017, Li 2017, Ren 2017, Sim and
Lee 2017, Gaines 1969, Brown and Card 2001, Wang 2017, Lv and
Wang 2017, Li 2018, Daniels 2020, Kim 2016] has been proposed as
an alternative for compact and low-energy arithmetic hardware. SC
uses the probability of 1s or Os in a randomly generated bit-stream to
represent a decimal number. This allows it to implement basic
arithmetic operations using fewer logic gates than binary operations.
However, to efficiently realize SC in hardware, a key requirement is
the existence of tunable true random number generators (TRNGs),

which cannot be efficiently realized using existing CMOS technology.
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As an example, a conventional 32-bit linear feedback shift register
(LFSR) used for RNG operation in CMOS requires more than 1000
transistors [Borders 2019].

Here we address this challenge by wusing a series of
magnetoresistive random-access memory (MRAM) bits — i.e.
magnetic tunnel junctions (MTJs) [Daniels 2020, Nishimura 2002,
Ikeda 2010, Gallagher 1997, Mizrahi 2018, Mizrahi 2016,
Vodenicarevic 2017] — as TRNGs. The TRNG operation is based on
the thermal fluctuations at room temperature of the MTJ free layer
[Camsari 2017, Brown Jr 1963, Fukushima 2014]. The stochasticity
of this process can be tuned by an ultralow current of <5 pA (= 0.25
MA cm?) via spin-transfer torque (STT) [Fuchs 2004], to generate
tunable stochastic Dbit-streams representing the entire range of
numbers from -1 to 1. By using the bit-streams that are experimentally
generated from these MTJs, we demonstrate a SC-based ANN using
MTJ-TRNGs that performs handwritten digit recognition on the
MNIST database [Li 2018, Daniels 2020, Lecun 1999] with accuracy
0f 95% using a 1024-bit stochastic bit-stream length.

II. GENERATION OF BIT-STREAMS
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A. Device Structure and Physical Mechanism
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Fig. 1. (a) Cross-section illustration of the MTJs. The devices have
a bottom-pinned configuration with a Co/Pt multilayer-based
synthetic antiferromagnetic (SAF) structure. (b)-(c) Energy
diagram for a stochastic MTJ under bias current. Spin-transfer
torque (STT) acting on the MTJ free layer in (b) favors the parallel
state, while in (c) it favors the antiparallel state.

E,< 16 k,T

The structure of the perpendicular MTJs used in this work is
illustrated in Fig. 1(a). The MTJ consists of two ferromagnetic layers
separated by an oxide layer. Depending on the direction of the
magnetization in the two ferromagnetic layers, the device has a low-
resistance parallel state (P) and a high-resistance antiparallel state
(AP) [Yuasa and Djayaprawira 2007, Yuasa 2004, Yuasa 2004],
resulting in a tunnel magnetoresistance (TMR) ratio of ~ 130% and a
parallel-state resistance-area (RA) product of ~ 440 Q-um? Our
devices were circular and had a diameter of 50 nm.

The two states of an MTJ are separated by an energy barrier E),
which is proportional to the free layer volume and anisotropy. The
retention time can be written as T = tgexp (Ep/kgT), where 7 is the
characteristic attempt time (on the order of 1 ns), kg is the Boltzmann

constant and T is temperature. For a large MTJ where E}, is large
enough, the retention time is long resulting in nonvolatile memory
operation. In the present experiment, however, the free layer thickness
and anisotropy were adjusted so that the retention time was reduced
to ~ 5 ms, corresponding to an energy barrier < 16 kzT. As a result,
the MTJ stochastically switched between its two states at room
temperature due to thermal fluctuations. In the presence of a current,
one state or the other would be preferred by STT [Fuchs 2004], as
shown in Fig. 1(b)-(c).

B. Measurement of Bit-streams

Stochastic  bit-streams were generated experimentally by
measuring the resistance of the MTJs in time domain under different
voltage bias conditions. In total, six nominally similar MTJs with a
diameter of 50 nm were used in this work, as explained in detail below.
The resistance of a representative 50 nm MTJ as a function of external
magnetic field, under different bias voltages is shown in Fig. 2(a)-(c).
An offset field of approximately -35 mT was observed in the loop
measured at 1 mV, due to the stray field from the uncompensated
reference layer. The MTJ did not show a significant coercivity,
consistent with its small energy barrier. Due to the STT effect, the
offset field shifted in opposite directions depending on the applied
bias voltage. Based on this, we fixed the external magnetic field at -
35 mT in our experiment and measured the resistance under different
bias voltages for a period of ~ 2 minutes, in intervals of 100 ms, which
provided ~ 1200 data points for each voltage. Fig. 2(d)-(f) show the
results under three different bias voltages applied to the MTJ.

Tunability from > 95% AP to > 95% P was experimentally achieved
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Fig. 2. (a)-(c) Resistance as a function of external field for an MTJ measured under different DC voltages: (a) -1V, (b) 1 mV, (c) 1 V. Different
colors represent different measurement repetitions. (d)-(f) MTJ resistance oscillations measured as a function of time, under a fixed external
magnetic field H = -350 Oe but different bias voltages: (d)V=-1V,(e)V=1mVand (ffV=1V.
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Fig. 3. Probabilities of 1s and Os (parallel and antiparallel states)
generated by an MTJ under different bias voltages.

by a voltage less than 1 V, as shown in Fig. 3, corresponding to an
ultralow current less than 5 pA (= 0.25 MA cm?). Using this
procedure, bit-streams were generated representing the entire range of
numbers from -1 to 1.

1. MTJ-BASED STOCHASTIC COMPUTING UNITS

In the SC paradigm, numbers are represented by the probability of
1s in a bit-stream [Gaines 1969, Brown and Card 2001]. In this work,
bipolar mapping was used to map real numbers x within the range of
[-1, 1], to bit-streams X, via the relation P(X=1) = (x+1)/2. Using this
approach, the key arithmetic operations in the ANN were
implemented as follows.

Multiplication was implemented with an XNOR gate [Brown and
Card 2001], as shown in Fig. 4(a). The output of the XNOR gate is
P(Y) = P(4) - P(B) + P(4) - P(B). For bipolar mapping, this can be
rewrittenas (y+ 1) /2=[(a+ 1) /2][(b+ 1)/ 2]+ [1 - (a+1)/2][1
— (b + 1)/ 2], which can be reduced to y=ab.

A:1,1,1,1,0,0,0,0(4/8) A

B:1,1,0,1,1,1,1,0(6/8) B
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Fig. 4. (a) Stochastic multiplication using bipolar mapping within
the [-1, 1] range. (b) APC-based neuron for stochastic dot product
and activation functions.

The addition and the following activation operation were
implemented by an approximate parallel counter (APC)-based neuron
design, following an approach similar to [Kim 2016]. As shown in

Fig. 4(b), the multiplication of n inputs and weights was performed
through XNOR gates as described above, which resulted in n bit-
streams with bit-stream length m. The addition was then done by the
APC, where the sum of 1s in each column (dashed square in Fig. 4(b))
was accumulated. However, since the output from the APC was a
binary number, to convert it again into a stochastic bit-stream, a
saturated up/down counter was exploited to approximate a hyperbolic
tangent function Btanh(#n, K, x) = tanh(x) [Kim 2016], where K is the
number of states for the saturated counter and K = 2# in this work.
This is similar to a finite state machine, except that the amount of
increase or decrease for the states in each cycle is decided by the
counted number in the APC for each column. Given X states in the
counter, half of them generate 0 and the other half generate 1. The
output bit-stream is thus an approximation of the hyperbolic tangent
of the result of the dot product.

IV. IMPLEMENTATION OF SC-ANN

A. Training

The ANN architecture demonstrated in this work had one hidden
layer with 128 neurons, as shown in Fig. 5. The inputs were grayscale
images of handwritten digits from the MNIST database [Lecun 1999],
whose values were pre-scaled to [0, 1] to be compatible with the
stochastic bit-streams. The ANN parameters (weights and biases)
were trained using TensorFlow [Abadi 2016], on floating point
numbers with 32 bits, during which L-2 regularization was employed
to ensure the trained weights and biases also sat within the [-1, 1]
range. The resulting training accuracy was 97%.

B. Inference on Stochastic Computing ANN

The inference process was then performed using the stochastic
computing approach discussed above, by mapping the inputs and
trained parameters to corresponding stochastic bit-streams, which
were generated experimentally by the 50 nm MTlJs. For each MT]J,
data under ~30 different bias voltages were obtained, resulting in ~30
different bit-streams per MTJ. The products (XNOR) of every two
MT]Js were then used to generate bit-stream sets with deeper number
resolution. Furthermore, to make sure the bit-streams involved in each
operation were statistically independent of each other, data from
different pairs of MTJs were used to map the values for inputs and
weights in different layers of the SC-ANN. Thus, six MTJs in total
were used where each two of them were responsible for one of the
three statistically independent bit-stream sets used in the network.

It is worth noting that as a consequence of the relatively small
number of MTJs that generate our bit-streams, the number of synaptic
weights in each layer is still much larger than the number of sampled
bit-streams. To reduce the resulting correlations of bit-streams of the
same value in the same layer, we additionally used one of our MTJs
to introduce a random reshuffling mechanism. The 1024-bit long bit-
streams were cut into eight segments, where each one of them was
128-bit long. Each time when a number was to be mapped by the
corresponding bit-stream, the bit-stream was rotated and restarted
from the i-th segment, where i is a random integer from 0 to 7.
Importantly, to generate the random integers from 0 to 7 with the same
probability, a bit-stream with 50% probabilities of 1s and Os from one
of the MTJs was used. In principle, the need for this reshuffling
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mechanism is eliminated in real applications when the bit-streams are
generated in real time.

The structure for the resulting SC-ANN is shown in Fig. 5. The
result of inference with SC on 1024-bit long bit-streams is shown in
Fig. 6(a) in the form of a confusion matrix. The numbers of correct
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Fig. 5. Structure of the full SC-ANN demonstrated in this work,
using pairs of MTJs for stochastic bit-stream generation. Insets
show the photograph of one of the MTJ devices used (upper right
inset) and the stochastic data measured (lower right inset). The big
and small rectangular pads in the upper right inset are the bottom
and top electrodes, respectively.

and incorrect classifications are summarized and normalized for each
class. It can be seen that the ANN successfully classifies the
handwritten digits.

Classification accuracy for the inference run with SC using bit-
streams of different lengths is shown in Fig. 6(b). It is evident that
longer bit-streams provide better classification accuracy, which is
understandable because the accuracy of each bit-stream is
proportional to its length.

It is worth comparing the proposed SC-ANN to recent works on
CMOS [[Li 2018]] and hybrid spintronic-CMOS [Daniels 2020] SC-
based neural networks and RNGs [Zhakatayev 2018] in terms of
energy dissipation. Specifically, while the circuit design and
simulation of a complete SC-ANN are beyond the scope of the present
paper, here we focus on comparing the performance of our MTJ-based
TRNG to the RNGs discussed in these recent reports.

For a conventional CMOS-based LFSR RNG, the energy per bit is
on the order of ~10 fJ [Daniels 2020]. In our case, the energy
dissipation of the TRNG depends on the retention time t of the MTJs,
which itself is determined by the energy barrier E;. Although the
retention time reported in this work is relatively long, it could in
principle be reduced by reducing the perpendicular magnetic
anisotropy or reducing the diameter of the MTJs. Assuming a
reduction of the diameter of our MTJs from 50 nm to 20 nm, we would
expect a ~ 6.25% reduction of the free layer volume, which results in
Ep ~ 2.5 ksT. This corresponds to a reduction of the retention time
(and associated increase of the bit generation rate) to T ~ 10 ns. We
note that this is a conservative estimate, and recent works have
indicated the possibility of retention times even smaller than 1 ns

[Kaiser 2019, Hassan 2019, Desplat and Kim 2020]. Nonetheless,

even with 7 ~ 10 ns, the energy per bit reduces to ~ 20 fJ assuming an
applied voltage of ~1 V and device resistance of 500 kQ, which is

comparable to CMOS-only RNGs [Li 2018, Zhakatayev 2018]. It is
worth noting that the analog control circuitry required for biasing the
MTIJs will add to this energy consumption. This contribution, which
would depend on the required bit-stream resolution and number of
MTIJs, is likely highly dependent on details of the circuit
implementation and is therefore not quantified here.

It is also worth comparing this type of TRNG to the MTJ-based
TRNGs proposed in [Daniels 2020]. The latter approach uses a
digitally controlled circuit to convert the oscillations of a
superparamagnetic MTJ into stochastic bit-streams. This is
qualitatively different from the TRNG discussed in the present paper,
which is essentially analog (similar to the circuits previously proposed
for probabilistic (p-) bit generation [Camsari 2017]), thus representing
different tradeoffs and suitable application scenarios. Firstly, the
energy dissipation of the pre-charge sense amplifier (PCSA) method
used in [Daniels 2020] is essentially independent of the MTJ device
size, in contrast to the present approach where the switching rate
directly affects the energy dissipation. Hence, while the PCSA
approach is expected to provide superior energy efficiency for longer
clock cycles (150 ns in [Daniels 2020]), as clock speed is increased,
one can expect the analog TRNG approach to achieve similar, if not
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Fig. 6. (a) Confusion matrix of the result of the inference operation,
with stochastic computing on 1024-bit long bit-streams. (b)
Classification accuracy achieved on the SC-ANN using different
stochastic bit-stream lengths.
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better, energy efficiency. A second difference is that in the analog
TRNG used in this work, the representation accuracy can be
controlled by the length of the bit-streams. On the other hand, for the
PCSA method, the representation accuracy is determined by the
number of programmable bits in the bit-stream generators, thus
determined by the number of transistors and MTJs in the circuit.
Hence, for the same representation accuracy, the present method is
likely to have an overall lower component count. Finally, we note that
while the work by [Daniels 2020] showed a similar increase of the
accuracy with bit-stream length as that shown in Fig. 6, it achieved
comparable accuracies with shorter bit-streams than in the present
work, which is a consequence of the more complex LeNet5 neural
network structure with six hidden layers that was considered in
[Daniels 2020].

V. CONCLUSION

We have demonstrated MRAM-based SC-ANNs which
successfully classify handwritten digits with accuracy up to 95%. The
SC-ANNs use experimentally measured stochastic bit-streams
generated by 50 nm MTJ-based TRNGs that are tuned by an ultralow
electric current (< 5 pA). The accuracy of the classification can be
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adjusted in real time by changing the length of the bit-streams. Our
results provide a promising solution for ultra-low-power machine
learning in edge, mobile and IoT devices.
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