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Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and
the most commonly inherited neurological disorder. Clinical manifestations of CMT
mutations are typically limited to peripheral neurons, the longest cells in the body.
Currently, mutations in at least 80 different genes are associated with CMT and new
mutations are regularly being discovered. A large portion of the proteins mutated in
axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle
trafficking defects may be a common underlying disease mechanism. This review will
focus on the potential role of altered mitochondrial mobility in the pathogenesis of
axonal CMT, highlighting the conceptional challenges and potential experimental and
therapeutic opportunities presented by this “impaired mobility” model of the disease.

Keywords: organelle transport, axonal transport deficiency, neurodegeneration, cytoskeleton, mitochondria,
Charcot-Marie-Tooth (CMT) disease

INTRODUCTION

Charcot-Marie-Tooth (CMT) disease is the most commonly inherited neurological disorder,
affecting ~1 in 5000 people (Skre, 1974; Barreto et al., 2016). It is a peripheral neuropathy defined by
progressive deterioration of the peripheral nerves in the distal parts of the body, specifically the feet,
hands, and lower extremities. This typically results in both motor and sensory loss in the affected
areas. Unraveling the pathogenic mechanism(s) underlying CMT is somewhat complicated by the
fact that CMT is both genetically and clinically heterogeneous. CMT has many subtypes including,
demyelinating (affecting mainly Schwann cells), axonal, and intermediate (affecting both axons and
Schwann cells). Herein, we are focusing on perturbations of mitochondrial mobility that might
underlie the pathogenesis of axonal CMT.

Charcot-Marie-Tooth variants were originally classified based purely on clinical data. However,
a recent explosion in genetic data can be mined to generate some compelling hypotheses. To date,
over 100 mutations across more than 40 different proteins have been implicated in axonal and
intermediate CMT. A large fraction of CMT-associated proteins has been shown or is predicted
to affect the mobility of mitochondria or other organelles (Table 1). In this review, we will focus
on those that affect mitochondrial mobility and hypothesize that defects in this process might
begin to explain why CMT mutations mainly affect peripheral neurons. At the same time, we
highlight important limitations to this “impaired mobility” model. Our belief is that the insights
gained from studying the effects of CMT mutations in peripheral neurons will inform the role of
mitochondrial mobility in other types of neurons and neurodegenerative disorders, including those
associated with aging.
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CMT IS A PROGRESSIVE DISORDER
THAT AFFECTS PREDOMINANTLY THE
LONGEST NEURONS

Charcot-Marie-Tooth usually affects only the feet, hands, and
lower extremities. The axons leading to these distal sites can be
as long as a meter in some individuals. There have been some
reports of central nervous system involvement but these instances
are rare (Pareyson and Marchesi, 2009; Lee et al., 2017). Some
CMT mutations also cause optic atrophy, and the optical nerve
notably consists of relatively long axons (~50 mm). Patients are
usually born unaffected, but typically by age 10 display major
losses of function. However, the range of age can be from the
toddler years to the 5th decade of life (Skre, 1974; Verhoeven
et al., 2003; Zuchner et al., 2004, 2006; Chung et al., 2006;
Engelfried et al., 2006; Cho et al, 2007; Calvo et al., 2009;
Braathen et al., 2010; Boyer et al., 2011b). The severity of the
disease is directly correlated with the age of onset (Chung et al,,
2006; Verhoeven et al., 2006), and the longer axons (i.e., the feet)
invariably degenerate before the shorter axons (i.e., the hands).
In cases where CMT patients also display optic atrophy, this
occurs after loss of function in the hands (Verhoeven et al.,
2006; Zuchner et al., 2006). Together, these observations indicate
a disease that directly correlates the length of the axon with
the speed of onset, and the speed of onset with the magnitude
of the pathology.

CMT MUTATIONS LARGELY AFFECT
MITOCHONDRIAL MOBILITY

As mentioned above, a unique peripheral nerve characteristic
is their extreme length, which suggests these cells are uniquely
sensitive to impaired long-distance transport. Put simply, a
decrease in mobility would have a greater impact on longer
distance commutes than shorter ones. In support of this theory,
23 out of the 48 genes mutated in axonal or intermediate CMT
encode proteins that play roles in mitochondrial function, often
impacting mitochondrial mobility (Table 1).

The majority of axonal CMT studies have centered on
Mitofusin 2 (MFN2) mutations, which consistently result in
reduced axonal mitochondrial mobility. This phenotype has
been reproduced in mouse models and in patient cell lines and
tissues. Neurons expressing MFN2 CMT mutants and neurons
from MFN2 CMT mouse models also show reduced axonal
mitochondrial mobility (Baloh et al., 2007; Vallat et al., 2008;
Rocha et al., 2018). MFN2 is also implicated in mitochondrial
fusion dynamics, and MFN2 CMT mutations cause clustering
of improperly fused mitochondria (Baloh et al., 2007; Detmer
and Chan, 2007; Vallat et al., 2008; Rocha et al., 2018). Thus,
it is possible that this mitochondrial clustering contributes
to reduced mitochondrial mobility. Although several MFN2
CMT mutants cause mitochondrial fragmentation suggesting
a disruption of its fusogenic activity, there are other MFN2
CMT mutants that do not alter mitochondrial morphology
or, seemingly paradoxically, even cause mitochondrial

elongation (Detmer and Chan, 2007; Codron et al, 2016;
Rocha et al,, 2018). MFN2 is also implicated in mitophagy, lipid
transfer, lipid droplet-mitochondria contacts, and endoplasmic
reticulum (ER)-mitochondria contacts, although whether
MFN2 increases or decreases ER-mitochondria contacts is
still under debate (de Brito and Scorrano, 2008; Chen and
Dorn, 2013; Sugiura et al., 2013; Gong et al., 2015; Leal et al,,
2016; Naon et al., 2016, 2017; Boutant et al., 2017; Filadi et al,,
2017; Basso et al, 2018; McLelland et al., 2018; Hernandez-
Alvarez et al., 2019). While MFN2 CMT mutants reduce
ER-mitochondria contacts (Bernard-Marissal et al, 2019;
Larrea et al., 2019), it is unclear whether these changes affect
mitochondrial mobility.

How alterations in mitochondrial motility impact
mitochondrial function, particularly in the context of
CMT, remains poorly understood. Despite clear defects in
mitochondrial mobility, some studies have concluded CMT
mutations do not alter readouts of mitochondrial OXPHOS
function such as mitochondrial membrane potential, oxygen
consumption, and ATP production, or impair cellular calcium
levels which mitochondria are involved in controlling (Baloh
et al., 2007; Larrea et al.,, 2019). However, other studies have
demonstrated that CMT mutations cause defects in these
readouts (Loiseau et al.,, 2007; Guillet et al., 2010; Barneo-
Munoz et al., 2015; Saporta et al,, 2015; Rocha et al., 2018;
Almutawa et al, 2019; Bernard-Marissal et al., 2019). And,
another study demonstrated that bioenergetic efficiency and
viability in a fly model can be rescued with only minor alterations
in mitochondrial distribution (Trevisan et al., 2018). These
discrepancies may be at least partially explained by differences in
the model systems and experimental conditions used. There are
now a wide variety of tools to study CMT including mouse and
fly (Drosophila melanogaster) genetic models and iPSC-derived
motor neurons (Saporta et al., 2015; Yamaguchi and Takashima,
2018; Juneja et al., 2019).

There is also clear evidence for a role of organelle-organelle
contacts affecting mitochondrial mobility in CMT caused
by mutations in the endo-lysosomal protein RAB7A. Wong
et al. demonstrated reduced mitochondrial mobility due to
prolonged inter-mitochondrial contacts in HeLa cells expressing
CMT-mutant MFN2, RAB7A, or TRPV4 (Transient Receptor
Potential Cation Channel Subfamily V. Member 4) (Wong
et al, 2019). RAB7A CMT mutations also increase tethering
between mitochondria and endolysosomes, leading to changes in
mitochondrial morphology and reduced mitochondrial mobility
(Wong et al, 2018, 2019; Cioni et al,, 2019). There is also
evidence pointing towards an interaction between RAB7A and
MEFN2 (Zhao T. et al., 2012). Together, these findings suggest
that interpretations of RAB7A mutations causing CMT based
solely on defects in its endo-lysosomal function may be too
simplistic. In the same vein, a recent study found that CMT-
causing GDAP1 (Ganglioside Induced Differentiation Associated
Protein 1) mutations result in defective mitochondria-lysosome
contacts (Cantarero et al., 2020). That mitochondria-organelle
contacts can affect mitochondrial mobility and dynamics
highlights the limitations of evaluating protein and organelle
dysfunction in isolation.
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TABLE 1 | Genes mutated in axonal and intermediate CMT.

Gene/CMT subtype/OMIM Function References
Code
AARS1/CMT2N/613287 Catalyzes the attachment of alanine to tRNA. McLaughlin et al., 2012; Zhao Z. et al., 2012; Bansagi et al.,
2015; Dohrn et al., 2017; Weterman et al., 2018
ATP1A1/CMT2DD/618036 Catalyzes the hydrolysis of ATP coupled with the exchange of sodium  Lassuthova et al., 2018
and potassium ions across the plasma membrane.
BAG3/CMT2* Acts as a nucleotide-exchange factor promoting the release of ADP Kim et al., 2018; Shy et al., 2018
from the HSP70 and HSC70 proteins thereby triggering
client/substrate protein release. Has anti-apoptotic activity. Plays a
role in cytoskeletal proteostasis and dynamics.
BSCL2/CMT2/619112* Plays a crucial role in the formation of lipid droplets. Mediates the Chaudhry et al., 2013
formation and/or stabilization of endoplasmic reticulum-lipid droplet
contacts. Binds anionic phospholipids including phosphatidic acid.
DCTN2/CMT2* Component of a large macromolecular complex required for the Braathen et al., 2016
cytoplasmic dynein-driven movement of organelles along
microtubules. Pays a role in prometaphase chromosome alignment
and spindle organization during mitosis.
DGAT2/CMT2 Required for synthesis and storage of intracellular triglycerides. Hong et al., 2016
DHTKD1/CMT2Q/615025 Catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA Baets et al., 2014; Dohrn et al., 2017; Zhao et al., 2019
and COo.
DNAJB2/CMT2T/604139 Functions as a co-chaperone, activating the ATPase activity of Gess et al., 2014; Lupo et al., 2016
chaperones of the HSP70/heat shock protein 70 family. Contributes
to the ubiquitin-dependent proteasomal degradation of misfolded
proteins.
DNM2/CMT2M/602378; Plays an important role in vesicular trafficking processes, in particular ~ Echaniz-Laguna et al., 2007; Bitoun et al., 2008; Haberlova et al.,
CMTDIB/606482* endocytosis. Involved in producing microtubule bundles. Involved in 2011; Gonzalez-Jamett et al., 2014; Saghira et al., 2018

DYNC1H1/CMT20/614228*

GARS1/CMT2D/601472

GDAP1/CMT2K/607831;
CMTRIAG08340/;
CMT4A/214400*

HARS1/CMT2W/616625
HINT1/CMT2/137200

HSPB1/CMT2F/606595*

HSPB8/CMT2L/608673*

IGHMBP2/CMT2S/6161565

JPH1/CMT2K/607831

KIF1B/CMT2A1/118210*
KIF5A/CMT2*

LMNA/CMT2B1/605588

cytokinesis.

Acts as a motor for the intracellular retrograde motility of vesicles and
organelles along microtubules. Plays a role in mitotic spindle
assembly and metaphase plate congression.

Catalyzes the attachment of glycine to tRNA

Regulates the mitochondrial network by promoting mitochondrial
fission. Proposed roles in mitochondrial transport, redox processes,
calcium homeostasis, and energy production.

Catalyzes the attachment of histidine to tRNA.

Hydrolyzes purine nucleotide phosphoramidates with a single
phosphate group.

Functions as a molecular chaperone maintaining denatured proteins
in a folding-competent state. Plays a role in stress resistance and
actin organization. Regulates numerous biological processes
including phosphorylation and axonal transport of neurofilament
proteins.

Displays temperature-dependent chaperone activity. Forms complex
with BAG3.

5’ to 3’ helicase that unwinds RNA and DNA duplices. Acts as a
transcription regulator.

Contributes to the formation of junctional membrane complexes
which link the plasma membrane with the endoplasmic or
sarcoplasmic reticulum in excitable cells. Provides a structural
foundation for functional cross-talk between the cell surface and
intracellular calcium release channels.

Motor for anterograde transport of mitochondria.
Microtubule-dependent motor required for slow axonal transport of
neurofilament proteins. Contributes to the vesicular transport of VAPA,
VAPB, SURF4, RAB11A, RAB11B and RTN3 proteins in neurons.
Plays an important role in nuclear assembly, chromatin organization,
nuclear membrane and telomere dynamics.

Weedon et al., 2011

James et al., 2006; Xie et al., 2006; Hamaguchi et al., 2010;
Motley et al., 2011; Morelli et al., 2017

Baxter et al., 2002; Cuesta et al., 2002; Ammar et al., 2003;
Senderek et al., 2003; Di Maria et al., 2004; Zhang et al., 2004;
Barankova et al., 2007; Kabzinska et al., 2007; Auer-Grumbach
et al., 2008; Rougeot et al., 2008; Xin et al., 2008; Moroni et al.,
2009; Sahin-Calapoglu et al., 2009a,b; Cassereau et al., 2011;
Fusco et al., 2011; Zimon et al., 2011, 2015; Vital et al., 2012;
Auranen et al., 2013; Manganelli et al., 2015; Martin et al., 2015;
Dohrn et al., 2017; Ho et al., 2017; Marti et al., 2017; Yoshimura
etal., 2017; He et al., 2018; Masingue et al., 2018;
Rzepnikowska and Kochanski, 2018; Mai et al., 2019; Qin et al.,
2019

Baets et al., 2014

Baets et al., 2014; LasSuthova et al., 2015; Zimon et al., 2015;
Dohrn et al., 2017

Liu et al., 2005; Tang et al., 2005; Chung et al., 2008; Houlden
et al., 2008; Solla et al., 2010; Amornvit et al., 2017; Dohrn et al.,
2017; Ho et al., 2017; Weeks et al., 2018

Nicholson et al., 2009

Cottenie et al., 2014; Wagner et al., 2015; Dohrn et al., 2017;
Yuan et al., 2017

Pla-Martin et al., 2015; Kanwal and Perveen, 2019

Nakagawa and Takashima, 2003; Bissar-Tadmouri et al., 2004
Dohrn et al., 2017

De Sandre-Giovannoli et al., 2002; Chaouch et al., 2003;
Hamadouche et al., 2008; Zhang et al., 2010; Liang et al., 2016;
Dohrn et al., 2017

(Continued)
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TABLE 1 | Continued

Gene/CMT subtype/OMIM
Code

Function

References

LRSAM1/CMT2G/614436

MARS1/CMT2U/616280
MED25/CMT2B2/605589

MFN2/CMT2A2/609260*

MME/CMT2T/617017

MORC2/CMT27/616688

MPV17/CMT2EE/618400*

MPZ/CMT2J/607736; CMTDID/
607791; CMT1B/118200

MT-ATP6/CMT2*

MYH14/CMT2/614369*

NAGLU/CMT2V/616491
NEFH/CMT2CC/616924*

NEFL/CMT2E/607684*

PNKP/CMT2B2/605589

RAB7A/CMT2B/600882*

SPG11/CMT2X/616668*

ES3 ubiquitin-protein ligase. Bacterial recognition protein that defends
the cytoplasm from invasive pathogens. Potential role in mitophagy?
Catalyzes the attachment of methionine to tRNA.

A coactivator involved in the regulated transcription of nearly all RNA
polymerase lI-dependent genes.

Mitochondrial outer membrane GTPase that mediates mitochondrial
clustering and fusion. Involved in the clearance of damaged
mitochondria via mitophagy. Potential roles in mitochondria-ER
contacts and mitochondrial transport.

Biologically important in the destruction of opioid peptides. Able to
cleave angiotensin. Involved in the degradation of atrial natriuretic
factor.

Essential for epigenetic silencing by the HUSH complex.
Non-selective channel that modulates membrane potential under
normal conditions and oxidative stress, and is involved in
mitochondrial homeostasis. Involved in mitochondrial
deoxynucleoside triphosphates pool homeostasis and mitochondrial
DNA maintenance.

Mediates adhesion between adjacent myelin wraps and ultimately
drives myelin compaction.

Mitochondrial membrane ATP synthase. Key component of the
proton channel.

Conventional non-muscle myosin. Actin-dependent motor protein.
Mediates mitochondrial fission.

Involved in the degradation of heparan sulfate.

Component of neurofilaments, the most abundant cytoskeletal
component of myelinated axons.

Component of neurofilaments, the most abundant cytoskeletal
component of myelinated axons. Regulates mitochondrial
morphology.

Plays a key role in the repair of DNA damage, functioning as part of
both the non-homologous end-joining and base excision repair
pathways.

Key regulator in endo-lysosomal trafficking. Plays roles in
growth-factor-mediated cell signaling, nutrient-transporter mediated
nutrient uptake, neurotrophin transport in the axons of neurons and
lipid metabolism. Regulates mitochondrial fission, mitophagy, and
mitochondria-lysosome tethering.

Plays a role in neurite plasticity by maintaining cytoskeleton stability
and regulating synaptic vesicle transport.

Guernsey et al., 2010; Nicolaou et al., 2013; Dohrn et al., 2017

Baets et al., 2014; Sun et al., 2017
Leal et al., 2009, 2018; Tazir et al., 2013

Kijima et al., 2005; Lawson et al., 2005; Engelfried et al., 2006;
Verhoeven et al., 2006; Zuchner et al., 2006; Loiseau et al., 2007;
Muglia et al., 2007; Neusch et al., 2007; Del Bo et al., 2008;
Calvo et al., 2009; Cartoni and Martinou, 2009; Braathen et al.,
2010; Ouvrier and Grew, 2010; Feely et al., 2011; McCorquodale
et al., 2011; Park et al., 2012; Vital et al., 2012; Brozkova et al.,
2013; Chapman et al., 2013; Kotruchow et al., 2013; Lv et al.,
2013, 2015; Vielhaber et al., 2013; Bergamin et al., 2014; Choi
B. O. et al., 2015; Wang et al., 2015; Bannerman et al., 2016; Di
Meglio et al., 2016; Neupauerova et al., 2016;
Rudnik-Schéneborn et al., 2016; Tan et al., 2016; Werheid et al.,
2016; Xie et al., 2016; Ando et al., 2017; Beresewicz et al., 2017;
Dohrn et al., 2017; El Fissi et al., 2018; Finsterer et al., 2018;
lapadre et al., 2018; Milley et al., 2018; Larrea et al., 2019; Xu
etal., 2019

Auer-Grumbach et al., 2016; Fujisawa et al., 2017

Albulym et al., 2016
Choi Y. R. etal., 2015

Hayasaka et al., 1993; Pham-Dinh et al., 1993; Nelis et al., 1994;
Latour et al., 1995; Blanquet-Grossard et al., 1996; Roa et al.,
1996; Silander et al., 1996; Bissar-Tadmouri et al., 1999; De
Jonghe et al., 1999; Lagueny et al., 1999; Quattrini et al., 1999;
Senderek et al., 2000; Kochanski et al., 2004; Kurihara et al.,
2004; Bienfait et al., 2006; Sabet et al., 2006; Laura et al., 2007;
Lee et al., 2008; Mazzeo et al., 2008; Gallardo et al., 2009; Avila
et al., 2010; Brozkova et al., 2010; Kleffner et al., 2010; Choi

et al., 2011; Hoyer et al., 2011, 2014; Chavada et al., 2012;
Maeda et al., 2012; Marttila et al., 2012; Rosberg et al., 2013;
Speevak and Farrell, 2013; Bergamin et al., 2014; Leal et al.,
2014; Sanmaneechai et al., 2015; Tokuda et al., 2015; Wang

et al., 2015; Rudnik-Schéneborn et al., 2016; Werheid et al.,
2016; Dohrn et al., 2017; He et al., 2018; Milley et al., 2018; Xu
etal., 2019

Pitceathly et al., 2012
Almutawa et al., 2019

Tétreault et al., 2015
Bian et al., 2018

Lupski, 2000; Luo et al., 2003; Fabrizi et al., 2007;
Miltenberger-Miltenyi et al., 2007; Shin et al., 2008; Bhagavati
et al., 2009; Berciano et al., 2016; Werheid et al., 2016; Dohrn
etal., 2017; Horga et al., 2017; Fu and Yuan, 2018; Xu et al.,
2019

Leal et al., 2018

Meggouh et al., 2006; Zhang et al., 2010; Manganelli et al., 2015

Montecchiani et al., 2016

(Continued)
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TABLE 1 | Continued

Gene/CMT subtype/OMIM
Code

Function

References

TRIM2/CMT2R/615490"

TRPV4/CMT2C/606071*

VCP/CMT2Y/616687*

C10RF194/CMTDI
GNB4/CMTDIF/615185
INF2/CMTDIE/614455*

SLC12A6/CMTDI/218000
YARS1/CMTDIC/608323
COXBA1/CMTRI/616039*
KARS1/CMTRIB/613641

PLEKHG5/CMTRIC/615376

ES3 ubiquitin-protein ligase that mediates the ubiquitination of NEFL
and of phosphorylated BCL2L11.

Non-selective calcium permeant cation channel involved in osmotic
sensitivity and mechanosensitivity. Some data supporting a role in
regulating mitochondrial motility.

Necessary for the fragmentation of Golgi stacks during mitosis and for
their reassembly after mitosis. Involved in the formation of the
transitional endoplasmic reticulum. Plays a role in the regulation of
stress granule clearance. Involved in DNA damage response. Essential
for the maturation of ubiquitin-containing autophagosomes and the
clearance of ubiquitinated protein by autophagy and mitophagy.

May affect intracellular Ca?* homeostasis.
Modulator/transducer in various transmembrane signaling systems.

Mediates actin polymerization at ER-mitochondria contact sites.
Regulates mitochondrial morphology and maotility.

Mediates electroneutral potassium-chloride cotransport.
Catalyzes the attachment of tyrosine to its corresponding tRNA
A subunit of the cytochrome ¢ oxidase complex

Catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and
mitochondria

Activates the nuclear factor kappa B (NFKB1) signaling pathway. Also

Baets et al., 2014; Pehlivan et al., 2015

Klein et al., 2003; Deng et al., 2010; Manganelli et al., 2015; Dohrn
etal, 2017

Gonzalez et al., 2014

Sun et al., 2019
Soong et al., 2013; Baets et al., 2014; Miura et al., 2017

Boyer et al., 2011a,b; Mademan et al., 2013; Rodriguez et al.,
2013; Vallat et al., 2013; Caridi et al., 2014; Park et al., 2014; Jin
et al., 2015; Werheid et al., 2016; Dohrn et al., 2017;
Echaniz-Laguna and Latour, 2019; Fu et al., 2019

Lupo et al., 2016

Jordanova et al., 2006; Xie et al., 2007
Tamiya et al., 2014

MclLaughlin et al., 2010

Kim et al., 2013

implicated in distal spinal muscular atrophy.

Genes that play a role in mitochondrial function and/or motility are marked with an asterisk.

Recently, a screen for RAB7A binding partners found that
another CMT protein, INF2 (Inverted Formin 2), is one of
several actin-binding candidate interaction partners for RAB7A
(Pan et al., 2020). This is particularly relevant to our discussion
on CMT, inter-organelle contacts, and mitochondrial mobility
for multiple reasons. First, a splice isoform of INF2 is tail-
anchored to the ER. Second, dominant active mutations in ER-
anchored INF2 that mimic INF2 CMT mutations have been
shown to increase actin-dependent mitochondrial fragmentation
and decrease mitochondrial mobility (Korobova et al., 2013;
Chakrabarti et al., 2018). Together, these data point towards
an important role in ER-mitochondria inter-organelle contacts
in somehow regulating mitochondrial mobility via the actin
cytoskeleton. That INF2 also potentially interacts with RAB7A
suggests that mitochondria, endo-lysosomes, and ER all contact
one another via CMT-associated proteins.

All INF2 CMT mutations are predicted or have been
shown to increase actin assembly (Bayraktar et al, 2020).
While some actin-binding motor proteins likely facilitate
microtubule-independent mitochondrial transport, numerous
studies have shown that long-range microtubule-based mobility
of mitochondria is antagonized by actin and actin-binding motor
proteins (Chada and Hollenbeck, 2004; Quintero et al., 2009;
Pathak et al., 2010; Venkatesh et al., 2019; Cardanho-Ramos
et al.,, 2020). Thus, while the effects of INF2 CMT mutations
have yet to be studied in neurons, it is reasonable to expect
that INF2 CMT mutations will cause an actin-dependent
decrease in mitochondrial mobility in axons. Furthermore,
since the ER regularly contacts many other organelles,
and even appears to drive actin-assembly at ER-organelle
contact sites (Korobova et al., 2013, 2014; Manor et al., 2015;

Chakrabarti et al.,, 2018; Yang and Svitkina, 2019; Schiavon et al,,
2020), it is quite possible INF2 CMT mutations cause aberrant
actin assembly on other organelles, reducing their mobility as
well (Figure 1).

Together with the newly uncovered role for RAB7A in
(indirectly) modulating actin assembly (Pan et al., 2020), these
observations point towards a role for multiple CMT mutations
causing aberrant organelle-organelle and organelle-actin
contacts, all of which cause decreased mitochondrial mobility.
Whether some (or all) CMT mutations also cause decreased
mobility of other organelles remains an important open question.

The focus of the role of mitochondria in CMT has been
primarily on MFN2 and GDAPI, and to a lesser extent on
associated motor proteins (KIF1B - Kinesin Family Member
1B, KIF5A - Kinesin Family Member 5A, DYNCI1H1 - Dynein
Cytoplasmic 1 Heavy Chain 1, DCTN2 - Dynactin Subunit 2)
and some cytoskeletal proteins (NEFL - Neurofilament Light).
Here, we have highlighted INF2 and RAB7A as CMT-associated
proteins likely involved in mitochondrial mobility and dynamics.
However, we propose that the proteins mutated in CMT that play
roles in mitochondrial function, dynamics and mobility likely
extend well beyond just these two (see Table 1 for a full list).

WHY DO MOBILITY DEFECTS USUALLY
ONLY AFFECT PERIPHERAL NEURONS
IN CMT PATIENTS?

Hopefully, we have provided a convincing argument that many
CMT mutations likely reduce mitochondrial mobility. Given
the extreme lengths of peripheral axons, it is tempting to
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FIGURE 1 | Model for how CMT mutations in INF2 reduce mitochondrial mobility. Normal INF2 is autoinhibited as indicated by open conformation compared to the
closed conformation and thus has regulated actin-assembly activity. CMT mutations in INF2 reduce autoinhibition, resulting in excessive actin assembly on

mitochondria and potentially other organelles, which in turn reduces their mobility.
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conclude that a reduction in mobility due to CMT mutations
simply affects longer axons more severely (the “impaired
mobility model” of CMT). One can easily reconcile two
key features of CMT using the impaired mobility model:
The progressive nature of the disease: This suggests that
dysfunction must accumulate over time. One can imagine
this more severely affects longer axons, due to reduced
turnover of damaged mitochondria resulting from reduced
mitochondrial mobility. Interestingly, one could imagine that
reduced mobility of other organelles associated with turnover
(e.g., lysosomes) could also cause increased accumulation
of damaged mitochondria in longer axons. The longest
peripheral axons (i.e., the feet) progressively degenerate
prior to the next-longest axons (i.e., the hands): This further
supports the impaired mobility model, wherein damage
accumulates first in the longest axons due to the more

demanding, “longer commute” resulting in faster accumulation
of damaged mitochondria.

Unfortunately, while this model is compelling, it appears
to be overly simplistic. The weakness in relying on mobility
alone as an explanation can best be highlighted by comparing
the lengths of different axons both within and between species.
For example, the longest axon in mice is approximately 2 cm,
whereas in humans the longest axon is ~60 times longer. Just
as striking, some unaffected axons in the human CNS may be
longer than the mouse’s longest axon. The very same mutation in
humans and mice can cause CMT, yet no defects are found in the
brains of human CMT patients. Meanwhile, the motor proteins,
cytoskeletal tracks, and mitochondria of mice and humans are
all roughly the same size, and all possess roughly the same
biophysical properties (e.g., velocity, force generation, etc.) when
transporting their organelles across long distances (Figure 2).
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physiopathology of these mutations.

FIGURE 2 | The relative scales of axons in humans versus mice. While microtubules, motor proteins, and mitochondria have nearly identical sizes in mice and men,
the length of the axons can be very different. At the same time, axons in the mouse sciatic nerve are not as long as some of the longer axons within the human brain.
For example, it is known in the macaque there are direct connections from the frontal eye fields in the anterior bank of the arcuate sulcus to the primary visual cortex,
which in the macaque is ~5 cm, and probably as long as 12.5 cm in humans. Notably, for most CMT patients the pathology is often constrained to only peripheral
neurons. Since the same mutations can cause CMT in mice and men, the distances mitochondria must travel can only provide a partial explanation for the

Any analysis of mobility must consider not just distance but
also time. Most laboratory mice only live for ~2 years, while
human CMT patients may not even experience symptoms until
adolescence or adulthood. Thus, there is clearly a “missing
variable” that underlies differences in lifespan and disease
susceptibility between species (e.g., differences in metabolism
or oxidative stress). Thus, CMT may serve as a “model disease”
to better understand age-related neurodegeneration. It is
well established mitochondria play myriad roles at the pre-
synapse, including ATP production, intra- and intercellular
signaling (e.g., calcium signaling and signaling via reactive
oxygen species), and the biosynthesis of signaling molecules
(e.g., lipids, hormones, and neurotransmitter intermediates)
(Devine and Kittler, 2018). Perhaps perturbed transport
of mitochondria to the pre-synapse of peripheral neurons
in CMT provides an opportunity to better understand
other neurodegenerative disorders associated with defective
presynaptic mitochondria, including Alzheimer’s, ALS,

Parkinson’s, Friedreich’s Ataxia,
Paraplegia (Devine and Kittler, 2018).

But even considering the impaired mobility model for CMT
within a single organism has some issues. It is difficult to imagine
how reductions in mobility as high as 100% (Baloh et al., 2007;
Rocha et al., 2018) could have a severe effect only on the longest
axons, but not other axons that, while shorter than the peripheral
neurons, are still very long compared to the ~25 nm step size of
a motor protein.

When considering these conundrums, it is helpful to
consider alternative mechanisms for replenishing mitochondria
in neurons, many of which are reviewed elsewhere
(Misgeld and Schwarz, 2017; Yu and Pekkurnaz, 2018). Briefly,
mitochondrial rejuvenation is speculated to be at least partially
mediated via local translation in the axon. Interestingly, multiple
CMT mutations affect local translation machinery (Table 1).
More recent work showed that mitochondria serve as a stable
compartment for mediating biogenesis by serving as an energy

and Hereditary Spastic
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source for synaptic translation (Rangaraju et al, 2019). This
raises a chicken vs. egg question: Does reduced mitochondrial
mobility impair local translation needed for synaptic and
therefore neuronal health and maintenance? Or does impaired
local translation lead to dysfunctional mitochondria that
cannot be replaced without sufficient mobility? That CMT
is caused by mutations disrupting both mobility and local
translation indicates these two processes have a unique
relationship in long axons.

CONCLUSION AND OPEN QUESTIONS

One open question is how the overall distribution of
mitochondria is altered in CMT neurons, and how this relates
to axonal maintenance. A recent study showed mitochondria
tend to distribute along the length of axons with regular spacing,
and that inter-mitochondrial feedback mediates their positioning
and movement (Matsumoto et al., 2020). Is this feedback-based
positioning altered in CMT? Do mutations affecting mobility
result in CMT via a “domino effect” caused by defects in relatively
local repositioning between axonal mitochondria, which then
cascades with increasing defects as a function of increasing
axonal length? How much longer does it take mitochondria in
CMT patients to traverse the entire length of an axon? Defective
mitophagy has been implicated in other neurodegenerative
disorders and some studies have linked CMT to alterations
in autophagy (Colecchia et al, 2018; Gautam et al., 2019). Is
there a reduction in the turnover rate of mitochondria in CMT
patients? Mitochondria are increasingly being implicated as
important players in adaptive and innate immune responses and
inflammatory pathology, including neurodegeneration (West,
2017; Newman and Shadel, 2018). Could “mitoflammation”
contribute to the pathophysiology of CMT? How do any and all
of these factors affect mitochondria at the pre-synapse of CMT
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