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Abstract

In plant cytokinesis, de novo formation of a cell plate evolving into the new cell wall parti-
tions the cytoplasm of the dividing cell. In our earlier chemical genomics studies, we iden-
tified and characterized the small molecule endosidin-7, that specifically inhibits callose
deposition at the cell plate, arresting late-stage cytokinesis in arabidopsis. Endosidin-7
has emerged as a very valuable tool for dissecting this essential plant process. To gain
insights regarding its mode of action and the effects of cytokinesis inhibition on the overall
plant response, we investigated the effect of endosidin-7 through a nuclear magnetic res-
onance spectroscopy (NMR) metabolomics approach. In this case study, metabolomics
profiles of arabidopsis leaf and root tissues were analyzed at different growth stages and
endosidin-7 exposure levels. The results show leaf and root-specific metabolic profile
changes and the effects of endosidin-7 treatment on these metabolomes. Statistical anal-
yses indicated that the effect of endosidin-7 treatment was more significant than the
developmental impact. The endosidin-7 induced metabolic profiles suggest compensa-
tions for cytokinesis inhibition in central metabolism pathways. This study further shows
that long-term treatment of endosidin-7 profoundly changes, likely via alteration of hor-
monal regulation, the primary metabolism of arabidopsis seedlings. Hormonal pathway-
changes are likely reflecting the plant’s responses, compensating for the arrested cell
division, which in turn are leading to global metabolite modulation. The presented NMR
spectral data are made available through the Metabolomics Workbench, providing a ref-
erence resource for the scientific community.
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Introduction

In a large-scale chemical genetics screening of small molecules interfering with endomem-
brane trafficking in arabidopsis [1], a number of highly specific compound-probes were identi-
fied. Among these compounds was endosidin-7, a heterocyclic organic molecule with
attributes of both flavonoid and alkaloid derivatives (Fig 1A), that specifically inhibits callose
deposition at the division plane, which consequently leads to late-stage cytokinesis arrest [2].
Cytokinesis is a fundamental process of all life on earth and is essential for plant growth and
development. The tight regulation of this process involves the coordinated accumulation of
membrane material and polysaccharide deposition. It is currently hypothesized that callose
integration structurally stabilizes the maturing cell plate while it transitions into a new cell wall
[3-5]. Cell plate formation involves highly orchestrated vesicle accumulation, fusion, and
membrane network maturation, and is supported by the temporary integration of elastic and
pliable callose [6, 7]. Currently, the integration and coordination of polysaccharide deposition,
in conjunction with the membrane maturation during cell plate expansion, is ill-understood
[6, 7]. A detailed understanding of the plant’s metabolome in response to endosidin-7 treat-
ment can provide insights into major metabolic fluxes during plant cytokinesis and potential
compensating mechanisms to its inhibition.

The utility of endosidin-7 as a cytokinesis probe has been shown by its ability to reveal the
interplay of specific vesicle populations during cell plate assembly [2, 8]. With the aid of endosi-
din-7, the timely pattern of vesicle contributions during cell plate expansion can be dissected to
better understand their specific roles. This includes distinguishing between the early arrival of
GTPase RABA2a labeled cytokinetic vesicles and the vesicle fusion mechanisms visualized by the
cytokinesis-specific SNARE protein KNOLLE [2]. The removal of excess membrane material,
facilitated by clathrin-coated vesicles, accompanies callose deposition. Endosidin-7 treatment
reduces the amount of these vesicles, suggesting that the cell plate does not reach the excess mem-
brane removal stage and supports the notion of a vital role for the temporal calose integration
during cell plate maturation [2]. In our earlier studies in arabidopsis, we showed that endosidin-7
indirectly inhibits callose synthase activity, specifically incorporating UDP-glucose into 8-1,3-glu-
can. Notably, the effect of endosidin-7 is specific, with no discernable differences during inter-
phase cells in non-dividing cells. In addition, it does not affect wound-induced callose deposition
or plug formation in sieve elements [2]. Consistent effects of endosidin-7 across the plant king-
dom, from early diverging algae, e.g., Charophyte Penium margaritaceum, to higher plants, dem-
onstrate that the pathways affected by endosidin-7 are evolutionarily conserved [9].

Arabidopsis thaliana L. (Heynh). is a well-established model organism employed in many
studies to understand biological functions across the plant kingdom [10]. Many detailed omics
studies have been carried out to map and investigate the transcriptome, proteome, and meta-
bolome of arabidopsis during growth and development [11-13]. This combined wealth of ara-
bidopsis knowledge makes this model plant an excellent choice for untargeted metabolite
analysis. The significance of arabidopsis as a model system has led to several nuclear magnetic
resonance (NMR)-based metabolomics studies with both solution and solid-state samples [14-
17]. Recently developed approaches of 'H high-resolution magic angle spinning NMR, which
are circumventing the need for elaborate sample preparation and allowing utilization of solid-
state NMR spectroscopy, were employed for the study of intact arabidopsis leaves [18, 19].
NMR-based methods for studying plant metabolomics, including sample preparation proto-
cols and data analysis approaches, are being refined continuously [20, 21], contributing to a
proliferation in their utilization.

In order to understand the effect of endosidin-7 on overall plant physiology and metabo-
lism, we performed an NMR-based metabolomics analysis. Given the metabolic differences
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Fig 1. Experimental design and phenotypic responses to endosidin-7 treatments. (A) Experimental design of
endosidin-7 treatment and NMR Metabolomics analysis. The molecular structure of endosidin-7 is shown on the left.
Arabidopsis seedlings were treated with 0, 3, 5, and 10 uM of endosidin-7 and grown for up to 10-day old, with 4, 5, 6,
10-day old seedlings used as developmental controls. The cartoon of three seedlings represents three biological
replicates; each replicate comprised pooled seedlings from one plate. Leaves and roots were extracted by deuterated
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water and subjected to NMR spectroscopy analysis. (B) Morphological phenotype of endosidin-7 treated arabidopsis
seedlings. Images were recorded before the metabolite extraction for NMR analysis. An endosidin-7 concentration-
dependent inhibition of seedling growth was shown. (C) Chlorophyll content of endosidin-7 treated leaves. Samples
from endosidin-7 treated leaves (10-day old) compared with the control (10-day old). A significant reduction in the
chlorophyll content of endosidin-7 treated leaves was observed. Data represent the mean + SD (n = 4), with the asterisk
indicating p <0.05 in the t-test.

https://doi.org/10.1371/journal.pone.0241627.9001

between aerial tissues and roots, including photosynthesis, carbon assimilation, and nutrient
acquisition [22-24], we investigated roots and leaves separately. Metabolites were monitored
in roots and leaves of treated and non-treated arabidopsis seedlings over periods of 4-10 days.
To investigate the factors affecting metabolite levels in roots and leaves upon endosidin-7
treatment, we utilized a partial least squares discriminant analysis (PLS-DA) for the classifica-
tion of metabolites across developmental stages and endosidin-7 treatment concentrations. A
comprehensive multivariate statistical analysis was employed to identify and quantify the
metabolites differentially altered due to endosidin-7 treatment. We found that the concentra-
tions of over 50 metabolites were affected in arabidopsis roots and leaves as a result of endosi-
din-7 induced cytokinesis inhibition. Additionally, our work provides an NMR-based
metabolomics protocol to study the effect of small molecules on plant metabolism.

Materials and methods
Plant materials and metabolite extraction

Arabidopsis seedlings (Columbia) were germinated on agar media with half-strength MS basal
salts and 1% sucrose. Seedlings were grown at 22°C with a 16h light cycle at ~80 yumol m™s™
light intensity. Endosidin-7 was dissolved in DMSO and supplemented into the medium at
concentrations of 0, 3, 5, and 10 uM. Seedlings were germinated in a vertical orientation,
encouraging directional root growth, easier treatment assessment, and tissue collection. Dur-
ing sample harvesting, roots and leaves, including hypocotyls as indicated in Fig 1A, were sep-
arated by sectioning with razor blades. Metabolites were extracted following a standard
procedure [20, 25]. All seedlings in one plate composed an individual biological replicate.
Approximately 50 mg of root tissue and 300 mg of leaf tissue were harvested for each biological
replicate. Tissue was homogenized with mortar and pestle in liquid nitrogen, and metabolites
were extracted in methanol. Homogenized tissue was lysed using ice-cold 80/20 (v/v) metha-
nol/water by v/w ratio of 3:1 in 1.5 mL tubes by vortexing/trituration and then incubated for
20 minutes on ice. Samples were centrifuged for 10 minutes at 10,000g, the clarified superna-
tant was dried in a speed-vacuum/lyophilizer, and the dried pellet was stored at -80°C. Subse-
quent sample preparation for NMR spectroscopy was performed on the dried samples, as
described below.

For chlorophyll quantification in leaves, 10-day old seedlings, grown as described above,
were used. The glucanase activity assay was performed using leaf crude extracts of 10-day old
plants. Both chlorophyll and glucanase activity analyses are described below.

Proton nuclear magnetic resonance spectroscopy

For the 'H NMR analysis, the aforementioned extracted samples were resuspended to a final
volume of 600 pL in D,0, with 0.35 mM sodium trimethylsilyl-2,2,3,3-d-propionate (TSP)
added to each lyophilized, titrated extract for chemical shift calibration. All sample prepara-
tions were performed over two days, and samples were subsequently stored at 4°C. Quantita-
tive '"H-NMR spectra were recorded at 800 MHz and 300 K on an Avance III spectrometer
(Bruker Biospin, Wissembourg, France) using a 5>-mm ATMA broadband inverse probe. One-
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dimensional 'H experiments, with a mild pre-saturation of water resonance, were performed
with a 90° pulse angle. NMR spectra were collected over 512 transients, with an acquisition
time of 2.5 s, and a relaxation delay of 1.0 s.

The spectra were processed and analyzed with Chenomx NMR Suite 8.1 software (Che-
nomx Inc., 2014). Fourier-transformed spectra were multiplied with an exponential weighting
function corresponding to a line-broadening of 0.5 Hz. All the spectra were manually phase-
corrected, baseline optimized, and their chemical shifts were referenced to TSP. The resulted
spectra were analyzed using the PROFILER-Module of Chenomx, and the concentrations of
selected metabolites were estimated in all the samples. The combined concentration data was
used for the multivariate statistical analysis. The metabolite peaks of the processed spectra
were analyzed and assigned to their chemical shifts using the built-in Chenomx and the
Human Metabolome Database [26]. The assigned metabolites were compared and confirmed
through chemical shift values of other NMR based metabolomics studies performed in arabi-
dopsis [16, 18, 27] and through comparison with the Metabolomic Repository Bordeaux
(MeRy-B) database [28]. The concentrations of the assigned metabolites were determined
using the Chenomx software and the concentration of the internal standard TSP [16]. All the
NMR spectral data were deposited in Metabolomics Workbench (accession ST001478) under
project DOI: 10.21228/M85T2G.

Statistical analysis of NMR spectroscopy datasets

Metabolite concentrations in leaf and root extracts from different experimental conditions
were analyzed using multivariate statistical analyses based on previously established methods
[29, 30]. A description for calculating the differential expression of metabolites between two
groups can be found in the detailed protocol by Chong et al. [31]. Briefly, a linear model fit
was determined for each analyte using the LIMMA package in R [32]. Lists of metabolites with
the most evident differential levels between the groups (control vs. treatment; leaves vs. roots;
growth periods and endosidin-7 concentration) were obtained. Significantly changed metabo-
lites were selected via a two-step process. First, the initial data set consisted of all the metabo-
lites for which a signal was detected for at least one feature (e.g., control group of 4-day old
plants) for one condition. Second, the data from all the comparisons were combined into a sin-
gle data set. The resulting combined data set consisted of metabolites exhibiting modulation
for at least one experimental comparison tested. Differential measurements within groups of
samples, i.e., control samples at a particular day and endosidin-7 treatment, were detected by
an F-test. P-values for different analytes were transformed to compensate for multiple compar-
isons using the False Discovery Rate (FDR) adjustment (FC > 1.5 and p-value < 0.05) for mul-
tiple comparisons using the Benjamini-Hochberg procedure [33, 34]. Fold changes were
derived from multivariate statistical analysis. This analysis allowed a comparison between mul-
tiple groups, and to provide a more meaningful value for fold change and adjusted p-values
across multiple comparisons. The threshold for significance was a p-value < 0.05 for all tests
with a fold change of (log2) > 1.5, unless otherwise stated in the specific analysis. All the analy-
ses and plots were produced using a combination of Bioconductor and R [32, 35].

Spectrophotometric assays

Glucanase activity assays were performed according to the protocol provided by Choudhury
[36]. Leaves of 10-day old arabidopsis seedlings grown on agar plates were homogenized in lig-
uid nitrogen with 50 mM sodium acetate buffer (pH5.2) containing 1 mM PMSF in a 1:1 w/v
ratio using mortar and pestle. The homogenates were then filtered through Miracloth (Milli-
poreSigma, Burlington, MA, USA), and subsequently cleared by centrifugation at 1000g for 2
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min at 4°C. The clear upper phase of the lysate was desalted by size exclusion chromatography,
using a PD MiniTrap G-25 prepacked column (GE Healthcare, Chicago, IL, USA) with assay
buffer as eluent. The protein content was measured by Bradford protein assay [37], and
extracted proteins were used for the glucanase assay with background level estimation, as
described below. A 100 uL assay mixture contained 50 uL desalted crude extract, 1 uL of
DMSO or DMSO containing endosidin-7, 19 pL of DI water, and 30 pL laminarin (TCI Amer-
ica, Portland, OR, USA) to yield a final concentration of 15 g/L as substrate. The standard
curve was established with 3.125 to 100 ug of glucose dissolved in the assay buffer. Assays were
performed at 50°C for 45 min, and terminated with 900 pL 3,5-dinitrosalicylic acid reagent at
85°C for 10 min. Then absorbance was recorded at 510 nm on a spectrophotometer (UV-
1700, Shimadzu, Kyoto, Japan). Background levels of reduced sugars in the assay were deter-
mined using boiled protein extracts as reference.

Leaf chlorophyll content was quantified according to an established protocol [38]. Briefly,
chlorophyll was extracted from weighed arabidopsis leaves (20-40 mg) with 400 uL methanol/
chloroform (2:1, v/v) for 1 h. Then 300 pL of water with 125 pL chloroform were added into
the mixture to facilitate phase separation. After centrifugation at 10000 g for 5 min, the lower
chloroform phase was air-dried and resuspended in methanol. Chlorophyll (a and b) content
was calculated from the sample’s absorbance at 665nm, 652 nm, and 750 nm, using the extinc-
tion coefficient for suspension in methanol and the formula provided by Porra et al. [38].

Results
Phenotypic responses of endosidin-7 treated arabidopsis seedlings

Arabidopsis seedlings were grown for 4, 5, 6, and 10 days after germination with 0 pM endosi-
din-7 in the media and only DMSO as reference and control (Fig 1A and 1B). The effect of
endosidin-7 was assessed by seedling growth inhibition under 3, 5, or 10 uM endosidin-7 treat-
ment for up to 6 or 10 days (Fig 1A and 1B). The selected endosidin-7 concentration range
was based on the previously established (by root growth inhibition) ICsy of 5 uM [2]. Com-
pared to untreated controls, endosidin-7 treated seedlings exhibited, in a concentration-
dependent manner, consistently shorter roots (Fig 1B), corroborating our earlier observations
[2]. Notably, loss of gravitropism was observed in endosidin-7 treated 10-day old samples. The
aerial part of the leaves was similarly affected, as indicated by its diminished growth. To assess
the impact on the leaves, we measured the chlorophyll content of 10-day old seedlings treated
with 10 uM endosidin-7. The leaf chlorophyll content showed a >50% reduction compared to
the untreated control (Fig 1C), indicating a significant loss of photosynthetic activity. Given
that endosidin-7 reduces plant growth, we allowed the plants to grow for 6 or 10 days to ensure
the availability of sufficient harvestable material for metabolite analysis. Metabolites were
extracted from leaves and roots, and NMR spectra were recorded.

The effect of endosidin-7 treatment is greater than the developmental
impact on the arabidopsis metabolomes

Generally, a difference in the NMR spectra representing the metabolite profiles was observed
for the different organs, as shown by spectral excerpts of 10-day old seedlings (S1 Fig). A par-
tial least squares discriminant analysis (PLS-DA) of all the untreated leaf and root samples
(S2A Fig) underscores the prominent difference between leaf and root metabolites. Biological
triplicates of control metabolomes for each time point were tightly correlated, demonstrating
the consistency in the experiments and the robustness of the analysis (52B Fig). In general, the
NMR spectra of the leaves, in comparison with that of the roots, tend to have additional
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spectral features at the aromatic region and beyond (>7.00 ppm) (S1 Fig). Furthermore, con-
sidering all the untreated samples (all developmental stages), the metabolites of root samples
cluster much tighter than that of leaves (S2A Fig), indicating a larger variation in the leaf sam-
ples. PLS-DA on the different developmental control metabolomes indicated a difference
across the different developmental stages (S2C Fig, PC1 = 16.8% and 18.8% for leaves and
roots, respectively).

A multivariate analysis was performed to quantify potential changes in the observed metab-
olites across the developmental gradient between 4-10 days after germination. The develop-
mental data (leaves or roots) without endosidin-7 treatment at 10, 6, 5-day old samples was
compared with reference to the data of 4-day old samples. A trend of potential differences was
observed, and some of the metabolites passed the fold-change criteria (> 1.5); however, the
changes were not statistically significant (p-value > 0.05). Potentially the dense population of
seedlings, especially at 10 days after germination, as shown in Fig 1B, could account for an
increase of stress-related metabolites compared to the 4-day old plants. However, the absence
of statistical differences at these stages suggests that pressure under the growth conditions did
not induce discernable differences in the analyzed NMR metabolome.

A series of statistical analyses were applied to determine if the endosidin-7 treatment is the
dominant factor contributing to the metabolite changes. In order to assess the degree of dis-
persion in the metabolomes across the developmental gradient and endosidin-7 treatment, we
analyzed the metabolite data of all 27 samples (Fig 1A) for roots and leaves by PLS-DA. For
both roots and leaves, PLS-DA for 0, 3, 5, and 10 uM endosidin-7 treatment were grouped
tightly into areas of 95% confidence regions, marked by ellipses, and are well separated from
the collective metabolome of the 12 untreated controls, across all developmental stages com-
bined (Fig 2A). Even at the lowest used endosidin-7 concentration of 3 uM, no cluster overlap
was observed with the control samples (Fig 2A, PC1 = 8.3% and 13.8% for leaves and roots,
respectively). This shows that the plant growth under tissue culture settings and the develop-
mental stage did not induce significant changes to mask the effect of endosidin-7. For the
10-day old plants metabolomes (Fig 2B), for 0, 3, 5, and 10 uM endosidin-7 concentrations, a
clear separation of clusters was observed, accounting for the increased chemical treatment.
The cross-validation of all the performed PLS-DA analysis, S3 Fig, with the corresponding
unsupervised principal component analysis (PCA) S4 Fig, is detailed in the supporting
information.

To determine if the developmental gradient has a confounding impact on the inhibitor
effects, multivariate analyses were performed for a given age of plants (6 or 10-day old) and as
a function of endosidin-7 concentration. The criteria for significance were defined by relative
changes in the leaves or roots, in 6-day old plants (two concentrations of endosidin-7; 3 or
5 uM) or 10-day old plants (three concentrations of endosidin-7; 3, 5, or 10 uM) to the plants
of the same growth stage without treatment control. For conditions (FC > 1.5 and p-
value < 0.05), the analysis identified three metabolites (dimethylamine, glycerone and syrin-
gate), and with a reduced p-value to 0.1 identified six additional metabolites. Taking together,
these multivariate analysis results unequivocally demonstrate that the metabolic differences
between samples are primarily caused by treatment with different endosidin-7 concentrations
rather than the developmental gradient of the sample.

Endosidin-7 induces changes in the primary arabidopsis metabolism

After verifying that endosidin-7 treatment caused significant changes in the metabolome com-
position, surpassing that of the developmental gradient, we focused on identifying the most
prominently altered metabolites. In order to increase the metabolite detection sensitivity
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within the biomarker window and the statistical power of biological replicates, we focused on
comparing the endosidin-7 effect between treated and untreated samples in the leaves or roots,
independent of the developmental stage. Metabolite changes were considered significant when
a threshold of fold-change (log2) > 1.5 with a corresponding adjusted p-value < 0.05 was
observed. A larger number of metabolites (> 100) was identified by Chemonex, however rele-
vant plant metabolites were only considered if they can be found in the spectra of all endosi-
din-7 treated samples versus the control samples. The presence of fifty-three metabolites was
significantly changed upon endosidin-7 treatment in leaves or roots (p < 0.05), as listed in the
S1 Table (endosidin-7 treatment n = 15, control n = 12).

Individual compounds, shown in S1 Table, were first explored for their roles in arabidopsis
metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG, genome.jp/
kegg, [39]). Their putative involvement and role in the biochemical pathways of leaves and
roots are summarized in a network map adapted from KEGG pathways, Fig 3. Detected
metabolites can be categorized into components and derivatives of seven major metabolic
pathways, including carbohydrate metabolism [40], glycolysis and Krebs cycle [41, 42], glycer-
ophospholipid metabolism, branched-chain amino acid metabolism [43], glycine, serine, and
arginine metabolism [44, 45], shikimate pathway [46], and the pentose phosphate pathway
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Fig 3. Metabolic pathway map of altered metabolites in (A) leaves and (B) roots of arabidopsis seedlings upon endosidin-7
treatment. Backbone pathways are adapted from KEGG (genome.jp/kegg). Each solid arrow indicates one enzymatic step, and
each dashed arrow indicates multiple enzymatic steps. Red arrows represent callose synthase and B-1,3-glucanase pathways,
respectively. Grey rounded rectangles denote major pathways with multiple steps. Compounds in grey were not detected in the
analysis, while dashed arrows with double cross lines indicate metabolic steps not previously reported in plants. Compounds in
orange exhibited a significant increase; compounds in blue indicate a significant decrease, and compounds in black indicate no
significant change upon endosidin-7 treatment (significant criteria p < 0.05 in multivariate analysis, with exceptions and details

indicated in S1 Table). Chlorophyll change is inferred from the analysis of Fig 1C and denoted by *.

https://doi.org/10.1371/journal.pone.0241627.9003
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[47], S1 Table. The average concentrations of the metabolites in the control or endosidin-7
treatment are listed for leaves and roots (S2 Table). Individual biological replicates are shown
in the boxplot to indicate the variation of each of the metabolites in the treatment (Fig 4).
Most of the detected metabolites are regarded as part of primary metabolism (Fig 4A-4G) and
are involved in central plant growth and developmental processes.

Four metabolites with uncharacterized biosynthetic pathways were identified: methylguani-
dine, dimethylamine, trimethylamine, and acetylsalicylate. These metabolites were plotted in
the metabolite map based on structural similarity with putative precursors, indicated by loz-
enge symbol (¢), and linked with putative precursors by dashed lines with a break in the
arrows (Fig 3). Methylguanidine and trimethylamine have been independently reported in
plant metabolomes using NMR spectroscopy [48] and liquid chromatography-tandem mass
spectrometry [49].

The levels of the 53 compounds (S1 Table) are also shown across the different developmen-
tal stages in untreated samples and are listed in the S3 Table. According to the aforementioned
multivariate analysis, none of these compounds showed significant changes across the
observed developmental gradient in either roots or leaves. Apart from primary metabolism
compounds, there were very few specialized metabolites detected, likely because they are gen-
erally of low abundance in arabidopsis and thus challenging to identify by 1D NMR profiling.

The dominant part of the modulated root metabolites showed an increase upon endosidin-
7 treatment (Fig 3B), contrasting a decrease in leaves (Fig 3A). This likely reflects the differ-
ence in metabolic needs and compensatory mechanisms in aerial tissues and roots. The levels
of most reduced sugars and their derivatives showed increased accumulation in roots and
reduced leaves upon endosidin-7 treatment. Maltose and sucrose were exceptions, showing a
decreased accumulation in roots (Fig 4A and S2 Table). A physiological concentration of
maltose is known to maintain membrane potential and protect the photosynthetic electron
transport chain in vitro [50]. The decrease of maltose in both roots and leaves upon endosidin-
7 treatment may indicate a disrupted primary metabolism. In roots, endosidin-7 induced an
increase of compounds upstream of the polyamine biosynthesis, including creatine, guanidi-
noacetate, and sarcosine (Fig 4E), which are derivatives of glycine, serine, and arginine. In
addition, endosidin-7 treated roots exhibited an increase in 4-aminobutyrate (GABA) (Fig
4B), a Krebs cycle derivative., whose production is closely related to in vivo polyamine levels
under stress [51, 52]. Endosidin-7 also modulated levels of ferulate, syringate, 5-hydroxyin-
dole-3-acetate, and xanthurenate in both roots and leaves (Fig 4F). As products of the shiki-
mate pathway, these compounds are phenylpropanoid and tryptophan derivatives related to
the precursors for the biosynthesis of plant hormones, including auxin and salicylic acid [53,
54]. Taken together, these metabolite changes suggest a pronounced effect of endosidin-7 on
plant hormone biosynthesis pathways.

The pool of UDP-glucose and glucose are not significantly affected by
endosidin-7

We did not detect significant changes in the direct metabolic substrate and degradation product
of callose (B-1,3-glucan), namely UDP-glucose and glucose, upon endosidin-7 treatment (Fig
3). This shows that inhibition of cytokinesis-specific callose deposition does not cause a global
change in the precursor pool. Given that UDP-glucose is involved in many metabolic activities
and various cell wall polysaccharide biosynthetic steps, such as starch and cellulose, the modula-
tion of the transient accumulation of callose at the cell plate might not be discernable.

Callose deposition is regulated by the activity of both callose synthases and B-1,3-glucanases
(Fig 5A) [55]. Arabidopsis contains twelve homologs of callose synthases [56] and fifty
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Fig 4. Differential levels of NMR detected metabolites in roots and leaves under endosidin-7. Metabolites were categorized according to their involvement
in major or upstream pathways. Each panel lists a specific metabolite for LC (Control leaves, n = 12), LE (endosidin-7 treated leaves, n = 15), RC (Control roots,
n =12) and RE (endosidin-7 treated root, n = 15). Concentrations are expressed in mM/g (log2) with reference to the internal standard TSP.

https://doi.org/10.1371/journal.pone.0241627.9004

homologs of B-1,3-glucanases [57]. It is plausible that endosidin-7 enhances the activity of
cytokinetic -1,3-glucanase(s), leading to higher phragmoplast callose degradation, thereby
constraining polymer availability. To test this hypothesis, we examined the total glucanase

activity modulation in arabidopsis crude extracts upon treatment with endosidin-7. At 10 uM
and 100 uM endosidin-7, total glucanase activity did not show a statistically significant change
compared to the DMSO control (Fig 5B). This strongly suggests that global B-1,3-glucanase
activity is not affected by endosidin-7, corroborating our NMR observations that endosidin-7
does not cause a significant change in the direct metabolic substrate and degradation product

of callose.

Discussion

NMR-based investigation reveals small molecule induced metabolomics

changes

Plant metabolomics can be defined as the quantitative measurement of the time-related multi-
parametric metabolic response of plants to environmental stimuli or genetic modification. The
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Fig 5. Endosidin-7 treatment does not affect glucanase activity. (A) Callose synthase and B-1,3-glucanase regulate
the dynamic equilibrium of the callose deposition in vivo. (B) Glucanase activity in crude extracts of arabidopsis
seedling leaves. Activities are measured via the amount of glucose generated by the incubation of desalted crude
extracts with laminarin. No statistical difference was observed on the glucanase activity between the three treatments of
DMSO, 10 pM endosidin-7, or 100 uM endosidin-7. Data are presenting the mean + SD (n = 4).

https://doi.org/10.1371/journal.pone.0241627.9005

metabolomic information content complements the genomic and proteomic approaches
toward the interpretation of biological mechanisms and their function [58, 59]. Transcriptome
and proteome analyses have been extensively recruited to study how organ-specific responses
are coordinated during growth and are assisting a better understanding of plant development
[60-64]. Considerable strides have been made in recent analytical and methodological
advances, especially in the field of gene expression analysis, that now allow single-cell level-
based studies. These, in turn, can unravel how gene networks are organized and regulated at
the cellular level [65-67].

In the field of metabolomics, attempts to describe the metabolome of single cells have been
based on tandem mass spectrometry [68]. In pioneering, spatial resolution improving work, a
survey of the subcellular distribution of metabolites in cytosolic, vacuolar, and plastid fractions
of arabidopsis leaves was performed by Krueger and colleagues using GC-TOF/MS and LC/
MS. The results provided a topological metabolite map and took initial steps toward analyzing
the metabolic dynamics between subcellular compartments [69].

While a metabolomic analysis can be performed using several mass spectrometry-based ana-
lytical chemistry techniques, NMR spectroscopy-based metabolomics analysis has some distinct
advantages [70, 71]. These include easy and rapid sample preparation, elimination of derivatiza-
tion analysis, which in turn allows high-throughput and quantitative analysis with a single inter-
nal standard [72-74]. In plant biology, NMR techniques have been utilized mostly for the
characterization of cell wall polymers [17, 75-77]. However, the most current applications of
NMR-based metabolomics in plants emphasize analytical data accumulation and sample classi-
fication, not developing 1H NMR spectroscopy as a tool to study metabolic networks [78]. This
bias might be attributable to the limited availability of open-access NMR spectral libraries for
plant metabolites [79, 80]. NMR studies on the whole plants have been conducted to evaluate
the response of the plant defense inducer benzothiadiazole [81], the hormone methyl jasmonate
involved in various signaling pathways, including tissue wound response [27], the trafficking
inhibitor Sortin 1 [25], and the fungal pathogen Verticillium dahliae [82]. The arabidopsis
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metabolic profiles, with and without pharmacological inhibition, presented here can contribute
to an enhanced understanding of general plant responses to small-molecule stimuli.

Leaf and root metabolome modulations to dissect small molecule induced
plant responses

We analyzed, through 'H NMR spectroscopy profiling, arabidopsis leaf and root metabolites
responding to the small molecule endosidin-7. Leaves and roots reacted distinctly different,
clearly demonstrating organ-specific responses to endosidin-7, which could be quantified via
multivariate analysis (Fig 4 and S2 Table). Metabolomics has been utilized earlier to study plant
abiotic or biotic stress [83, 84]. Discriminating root and leaf metabolic responses were investi-
gated through GC or LC-MS upon sublethal cadmium exposure and high salt and low potassium
stress. Principal component analysis (PCA) in these three independent metabolomics studies
consistently indicated differential responses in root and leaf tissue of arabidopsis and barley [85-
87]. In addition to the studies mentioned above, Novak et al. studied the organ-specific auxin
metabolome of both roots and leaves of wild type and auxin over-producing arabidopsis lines by
LC-MRM-MS [88]. PCA analysis revealed that the overproduction of auxin leads to distinct
metabolome modulations, in which up- or down-regulation of the metabolites in leaves and
roots does not follow a synchronized pattern [88]. Fontaine and colleagues showed in an NMR
metabolomics study, using PCA on leaves, stems, and roots of GLUTAMATE DEHYDROGE-
NASE 3 mutants and wild type arabidopsis, that organ-specific metabolomics responses are tak-
ing place. These changes include amino acids, organic acids, and sugars [89]. In mold-resistant
melon rootstocks (roots), and susceptible watermelon scions (aerial parts), organ-specific metab-
olite changes were observed via NMR upon exposure to the powdery mildew disease. Notably,
the concentrations of root and leaf metabolites changed in opposite directions. The authors put
forward the hypothesis that translocation of metabolites between rootstocks and scions through
the vascular system is responsible for the antiparallel metabolome modulation [90].

Our observed trend of metabolite level changes in leaves and roots upon endosidin-7 treat-
ment is also strikingly different (Fig 3 and S1 Table), despite the similarity in cytokinesis arrest
at the cellular level [2]. One plausible explanation of this antiparallel root and leave response is
the aberrant translocation of metabolites between plant organs under endosidin-7 treatment.
The levels of ferulate and syringate, both precursors of lignin biosynthesis, are affected upon
endosidin-7 treatment (Fig 3 and S1 Table). Aberrant lignin biosynthesis may further affect
xylem development in arabidopsis seedlings [91], which in turn interferes with nutrient trans-
location and potentially giving rise to the antiparallel metabolome modulation in roots and
leaves. Another equally plausible explanation is that intrinsic organ-specific regulation of pri-
mary metabolic pathways is not concomitant in plant organs under chemically induced
stressed conditions. The cited studies above, together with our presented data, illustrate the
importance of organ-specific investigations to assess the responses of plants comprehensively
via NMR metabolomics.

Long term endosidin-7 treatment may induce hormonal responses in
arabidopsis

Endosidin-7 inhibits specifically cytokinetic callose deposition but does not affect wounding
stress-induced callose deposition or its deposition at sieve cells [2]. Given the specificity of
endosidin-7 on cytokinetic callose, we performed a long-term endosidin-7 treatment for 6 and
10 days to investigate the metabolic phenotype that captures both the long-term growth inhibi-
tion and the cellular phenotype of arrested cell division. Together, the morphological pheno-
type of reduced growth, altered gravitropic response, and metabolite changes induced by
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endosidin-7 treatment suggest a hormonal response from endosidin-7 exposure. Loss of gravi-
tropism is a sign of possible hormonal regulation disruption, as it is regulated by crosstalk
between auxin and other hormones [92, 93]. We did not observe a significant change in
indole-3-acetate (auxin) levels upon endosidin-7 treatment; however, 5-hydroxyindole-3-ace-
tate showed a significant increase in roots (Fig 4F). In independent plant metabolomics studies
in melon, soybean, and Isatis indigotica [90, 94, 95], 5-hydroxyindole-3-acetate is reported to
be putatively synthesized from tryptophan and it is speculated to affect auxin metabolism in
plants [90, 95]. Considering the increase of xanthine and 1,7-dimethylxanthine in roots (Figs 3
and 4G), it is likely that downstream of the purine metabolism, cytokinins synthesized from
the deoxyxylulose pathway [96, 97] are affected upon endosidin-7 treatment. The plant hor-
mone salicylate, which is involved in both abiotic and biotic stress [98, 99], was not signifi-
cantly changed, but levels of acetylsalicylate showed a 60% reduction upon endosidin-7
treatment in leaves (Fig 4F and S2 Table). Ambiguity for the identification of salicylate and
acetylsalicylate in the present study is possible due to the strong similarity in the aromatic spec-
tral region (in the range of 7-9 ppm) of these molecules. Further, components of the poly-
amine biosynthesis pathways are affected upon endosidin-7 treatment. Altogether, our data
strongly suggest that the imbalance of certain hormone levels during prolonged treatment of
endosidin-7 could lead to the induction of the global metabolite changes.

The proposed hormonal regulation is supported by previous long-term hormone treatment
omics studies [100, 101]. Earlier microarray analysis revealed that 35 primary metabolism-
related genes, involved in light signaling, nutrient uptake, and photosynthesis were altered in
arabidopsis shoots treated with 5 pM isopentenyladenine (a synthetic cytokinin) for 4 days
[100, 101]. Similarly, in another long-term cytokinin triggered study, lettuce treated by benzyla-
minopurine or meta-topolin for 13 days showed reduced accumulation of photosynthetic pig-
ments and inhibition of photosystem II activity [102]. The phenotypes of endosidin-7 treated
seedlings, plus the plethora of metabolite changes related to the primary metabolism (Fig 3)
accompanying the loss of chlorophyll (Fig 1C), also suggest an aberrant hormonal regulation,
as chlorophyll synthesis is tightly regulated by the balance of auxin and cytokinin [103, 104].
Both auxin and cytokinin are responsible for the initiation of the G1/S phase transition prior to
cell division, a prerequisite for cell division through the regulation of cyclin-dependent kinases
[105-108]. Further, crosstalk exists between the auxin and cytokinin biosynthetic pathways via
the direct regulation of biosynthesis genes and transporters [109]. Endosidin-7 induced metabo-
lome changes could reflect a compensatory mechanism counteracting the inhibition of cytoki-
nesis and plant growth resulting from a cytokinin and auxin imbalance.

The effect of endosidin-7 inhibition on callose deposition at the division plate can be
observed after a short two hours of pulse treatment [2]. This time frame is in line with charac-
teristic hormonal responses, where gene expression or metabolite level changes are usually
observed after a few hours of cytokinin or auxin induction [110-113]. Given that the cellular
phenotype of cell plate disruption is observed after only two hours when treated with 50 uM,
endosidin-7, these conditions could be used in future NMR metabolomic studies to dissect the
long-term metabolite effects from the short-term.

Summary and perspectives

We performed an organ-specific NMR-based metabolomics study of arabidopsis leaves and
roots at different developmental stages and treatments with various concentrations of the spe-
cific cytokinesis inhibitor endosidin-7. Metabolome analyses indicated that cytokinesis inhibi-
tion by endosidin-7 likely disrupts primary metabolism and hormonal regulation. This study
provides metabolomics references for early stages of arabidopsis development, indicates
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multiple metabolic pathways affected by endosidin-7, and highlights the relevance of organ or
tissue-specific investigation in plants for an accurate and comprehensive assessment of plant
metabolome modulations.

Our organ-specific examination highlighted the importance of spatial resolution in metabo-
lite analysis. Given the complex interactions between metabolic pathways, future studies allow-
ing higher spatial and temporal resolutions are essential for unmasking the different layers of
interaction, particularly upon exogenous stimuli. There are various ways to envision how this
complex task could be efficiently addressed through future developments, two promising ones
are: a) automation through partially robotic extraction of the required substantial amounts of
tissue, and b) improving the sensitivity of metabolite identification and metabolic flux analysis
to reduce the required sample volumes. The use of stable isotopic enriched and multidimen-
sional NMR metabolomics might be key for the latter [71, 114-116]. Technological advances,
in combination with cell synchronization, might ultimately uncover very delicate metabolite
changes during various cellular processes, including cytokinesis.

Supporting information

S1 Fig. Representative NMR spectra of roots and leaves (10-day old plants), and simulated
spectra based on the metabolites that are significantly alerted due to endosidin-7 treat-
ment.

(PDF)

S2 Fig. Statistical analyses of the arabidopsis metabolome without endosidin-7 treatment.
(A) PLS-DA analysis of leaves and root metabolomes. (B) Correlation analysis among 4, 5,
6, and 10-day old samples without endosidin-7 treatment. Triplicates of each developmental
stage, ranked with the highest correlation with each other, are highlighted in a dashed
square. Values in the squares represent the correlation coefficient between every two sam-
ples in the plot. The histogram shows the density estimation. The scatter plot displays the
strength of the relationship. (C) PLS-DA analysis of metabolomics data of arabidopsis seed-
lings at different days after germination. Ellipses represent a 95% confidence region of the
classification.

(PDF)

S3 Fig. Evaluation of the PLS-DA model. A 10-fold cross-validation, with three different
measures, was performed. Blue bars indicate the accuracy of the model, pink bars (R?, varia-
tions) indicate the goodness of fit, and light-blue bars (Q?, prediction of the model) indicate
the goodness of prediction. Good predictions with a high Q value are marked by *. PLS-DA
correspond to the figures: Figs 2A and 2B and S2C.

(PDF)

$4 Fig. PCA analysis of the data corresponding to PLS-DA analysis shown in Figs 2A and
2B and S2C. As indicated above, S2C Fig indicates analysis of metabolomics data of arabidop-
sis seedlings at different days after germination without chemical treatment, while Fig 2A
describes PLS-DA analysis of all NMR data under different endosidin-7 concentrations. Fig 2B
shows PLS-DA analysis of only 10-day old plants for different endosidin-7 concentrations.
Score plots with the respective variances are shown in parenthesis.

(PDF)

S1 Table. Significantly changed leaves and root metabolites upon endosidin-7 treatment.
The difference of metabolite levels in arabidopsis seedlings for endosidin-7 treatment (n = 15)
versus the control (n = 12) is expressed by log2 fold change. The length of the colored bar is

PLOS ONE | https://doi.org/10.1371/journal.pone.0241627 November 6, 2020 15/22


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241627.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241627.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241627.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241627.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241627.s005
https://doi.org/10.1371/journal.pone.0241627

PLOS ONE

Metabolite changes in arabidopsis upon long-term cytokinesis inhibition

proportional to the value, with decreases in blue and increases indicated in orange. A threshold
of 1.5 (log2) was used in the multivariate analysis to calculate the p-value of significance.
(PDF)

$2 Table. Quantification of metabolite level changes upon endosidin-7 treatment in leaves
and roots. Concentrations (mean+SD) are expressed in mM/g (log2) with reference to the
internal standard TSP (n = 12 for controls, n = 15 for endosidin-7 treated).

(PDF)

$3 Table. Quantification of metabolite level modulations in leaves and roots during seed-
ling development. Without endosidin-7 treatment, multivariate analysis does not show signif-
icant concentration modulations for these compounds (threshold of 1.5 (log2), p < 0.05).
Concentrations (mean+SD) are expressed in mM/g (log2) with reference to the internal stan-
dard TSP (n = 3 for each developmental stage). N.D. denotes “not detected”.

(PDF)
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