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ORIGINAL RESEARCH ARTICLE

C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and
synapse density
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USA; eDepartment of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA

ABSTRACT
Synapses are dynamic connections that underlie essential functions of the nervous system. The add-
ition, removal, and maintenance of synapses govern the flow of information in neural circuits through-
out the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that
neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal
cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans
epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain
superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epi-
dermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization.
Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes
neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic recep-
tor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a
manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.
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Introduction

Synapses enable the transmission and integration of infor-
mation within the nervous system. Proper synaptic connect-
ivity is essential to govern nervous system functions such as
sensory perception, learning, and coordinated movement.
Aberrant synaptic connections have been associated with a
variety of neurological disorders. Synapse formation, elimin-
ation, and maintenance work together to ensure precision
and plasticity of neuronal circuits throughout the lifetime of
an animal. Many neuronal-intrinsic mechanisms involve
various classes of cell surface proteins and intracellular sig-
naling pathways that establish synaptic connections (Cherra
& Jin, 2015; de Wit & Ghosh, 2016; Sudhof, 2018).
Additional work has shown how extrinsic mechanisms
involving non-neuronal cells, such as astrocytes and micro-
glia, cooperate with neurons to modulate neuronal circuits
(Allen & Eroglu, 2017; Chung, Allen, & Eroglu, 2015). It is
now well established that astrocytes and microglia play an
active role in the pruning of synaptic connections during
development of the visual system in mice (Chung et al.,
2013; Stevens et al., 2007). In Drosophila, glial cells also
remove synapses and axonal components as a means to
eliminate neuronal connections (Awasaki et al., 2006;
Fuentes-Medel et al., 2009).

One common mechanism for non-neuronal cells to assist
in the wiring and rewiring of circuits is through the phago-
cytosis pathway. The phagocytosis pathway is highly con-
served throughout evolution and plays essential roles in the
removal of cell corpses and cellular debris (Bangs, Franc, &
White, 2000; Mangahas & Zhou, 2005). While the core
machinery that orchestrates engulfment has been widely
studied, additional mechanisms that modulate the initiation
or target specificity of this pathway still remain largely
unknown. The C. elegans motor circuit provides a simple
model to understand how non-neuronal cells modulate syn-
apse elimination via the phagocytosis pathway. Our previous
work uncovered a cell surface protein, ZIG-10, which medi-
ates an interaction between the epidermis and neurons. The
cell-cell interaction mediated by ZIG-10 enables the elimin-
ation of synapses through the activation of the phagocytosis
pathway (Cherra & Jin, 2016).

In this study we have further investigated how the phago-
cytosis pathway maintains optimal synaptic connectivity in the
motor circuit. We have discovered that a member of the
MPP5/Pals1 membrane-associated guanylate kinase (MAGUK)
family, MAGU-2, regulates synapse density. MAGU-2 func-
tions in the epidermis and regulates ZIG-10 localization.
Furthermore, we show that motor neuron membrane transfer
to the epidermis is dependent on the phagocytosis receptor,
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CED-1. Our study highlights a new role for MAGUKs in regu-
lating synaptic connectivity.

Results

Identification of MAGU-2 in ZIG-10 pathway

We have previously reported that maintenance of synaptic
connectivity in the C. elegans motor circuit requires compo-
nents of the phagocytosis pathway acting in the epidermis
(Cherra & Jin, 2016). To further understand the regulation
of phagocytosis-mediated synapse elimination, we screened
for additional genes using a function-based assay. Ectopic
expression of ZIG-10 in the ventral cord GABAergic motor
neurons causes a reduction in GABAergic synapse number
(Cherra & Jin, 2016) and enhances locomotor deficit caused
by an acetylcholine receptor mutation, acr-2(n2420) (Jospin
et al., 2009) (Supplemental Figure 1(a–c)). We employed
this ectopic ZIG-10 expression induced phenotype to iden-
tify intracellular signaling molecules using RNAi against
genes that contained SH3 domains (Cherra & Jin, 2016).
One candidate corresponded to the magu-2 gene, knock-
down of which decreased the locomotor defects in zig-
10(tm6127); acr-2(n2420) animals that also ectopically
expressed ZIG-10 in GABAergic neurons. The observed
magu-2(RNAi) effect on locomotor defects was further veri-
fied using genetic null mutations in magu-2 (Supplementary
Figure 1(a)). Additionally, the magu-2(gk218) null mutation
restored the number of GABAergic synapses to wild type
levels in animals ectopically expressing ZIG-10
(Supplementary Figure 1(b–c)). Since loss of function in
magu-2 alone does not cause any defects in GABA synapse
morphology (Supplementary Figure 1(b–c)), this suggests
that MAGU-2 acts in a cellular context dependent on the
ZIG-10 pathway.

MAGU-2 belongs to the membrane-associated guanylate
kinase (MAGUK) family that contains a PDZ domain, an
SH3 domain, and a guanylate kinase domain in its carboxy-
terminus (Supplementary Figure 2(a)) (Hobert, 2013; Zhu,
Shang, & Zhang, 2016). The family of MAGUKs modulate
various forms of intercellular junctions by regulating protein
localization (Zhu et al., 2016). In mammals, CASK and
PSD95 modulate intercellular junctions in the nervous sys-
tem through their regulation of synaptic transmission and
neurotransmitter receptor clustering. Based on homology,
MAGU-2 belongs to the MAGUK subfamily of membrane
palmitoylated proteins (MPP) and displays highest percent
of total identity (�32%) with Mpp5/Pals1 (Supplementary
Figure 2(b)). In the developing mouse nervous system,
Mpp5/Pals1 is expressed in Schwann cells and Muller glia
and is essential for establishing cell polarity (Ozcelik et al.,
2010; van Rossum et al., 2006). Additionally, Mpp5/Pals1
regulates the maintenance of cerebellar progenitors (Park
et al., 2016) and axon sorting in the peripheral nervous sys-
tem (Zollinger, Chang, Baalman, Kim, & Rasband, 2015).
Retinal ganglion cell-specific Mpp5/Pals1 knockout mice dis-
play neuronal degeneration early during development, mim-
icking the clinical degeneration observed in Leber congenital
amaurosis patients (Cho et al., 2012; Park et al., 2011). The

Drosophila homolog, Stardust, acts as a scaffolding protein
at epithelial intercellular junctions to establish cell polarity
(Tepass, 2012). However, it is unclear whether the MPP sub-
family also regulates synaptic connectivity.

MAGU-2 acts in the epidermis to regulate the synapse
number of cholinergic motor neurons

To determine where MAGU-2 functions to modulate synap-
tic connectivity, we first investigated the magu-2 gene struc-
ture to identify its promoter based on the information from
AceView and Wormbase (Lee et al., 2018; Thierry-Mieg &
Thierry-Mieg, 2006). Both sources predicted magu-2 to span
more than 10 kb, producing two potential isoforms (Figure
1(a–b)), with the long isoform a being supported by a recent
dataset based on single-cell RNA-seq (Cao et al., 2017). We
isolated RNA from a mixed population of wild type N2 ani-
mals. We then used isoform-specific forward primers and a
common reverse primer to amplify each putative isoform.
Using genomic DNA as a control, we found that only the
shorter isoform b was detected in our assay as a 270 bp-
band whereas 748 bp-band indicative of the longer isoform
was not detected (Figure 1(d)). This analysis does not
exclude the possibility that isoform a may be expressed at
lower levels or in a very limited subset of tissues.

Based on our transcript analysis, we created a MAGU-
2::GFP fusion protein driven by the 4 kb DNA sequence
upstream of magu-2 isoform b to determine where MAGU-2
was expressed (Figure 1(c)). We detected MAGU-2::GFP
expression from embryo to adulthood (Figure 1(e–f)).
MAGU-2::GFP was visible as a diffuse signal throughout the
epidermis and in various cells in the head, pharyngeal
muscle, and posterior intestine, but was not observed in
neurons or muscle (Figure 1(g–h)). Since ZIG-10 acts in
both epidermis and cholinergic neurons to regulate choliner-
gic synapse density (Cherra & Jin, 2016), we investigated
whether magu-2 affects cholinergic synapses. We analyzed
two magu-2 deletion mutants, ok1059 and gk218, which
both remove most of the gene, and therefore likely are null
alleles (Figure 2(a–d); Supplementary Figure 2(a)). Both
alleles displayed an increase in cholinergic synapses, similar
to zig-10(tm6127) animals (Figure 2(d)). We observed that
zig-10(tm6127); magu-2(gk218) double mutants showed no
further increase in cholinergic synapses (Figure 2(d)). To
assess whether the additional cholinergic synapses in magu-2
mutants formed functional postsynaptic compartments, we
assayed the animals’ sensitivity to the cholinergic agonist,
levamisole. We have previously shown that the excessive
synapses observed in the zig-10(tm6127) animals caused
hypersensitivity to levamisole, leading to more rapid paraly-
sis than wild type animals (Cherra & Jin, 2016). The magu-
2(gk218) mutants showed an increased sensitivity to levami-
sole similar to zig-10(tm6127) mutants (Figure 2(e)). Overall,
these observations are consistent with MAGU-2 and ZIG-10
functioning in the same pathway.

Expression of MAGU-2::GFP in magu-2(gk218) animals
was sufficient to restore cholinergic synapse density to wild
type levels (Figure 2(h,m)), demonstrating that isoform b
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was sufficient to replace MAGU-2 function in the gk218
mutant. We further addressed in which cells MAGU-2 was
functioning to regulate synapse density using tissue-specific
promoters to express MAGU-2 isoform b cDNA. Expression
of MAGU-2 cDNA in the epidermis of magu-2(gk218) ani-
mals restored the density of cholinergic synapses to wild
type levels (Figure 2(j,m)). However, expression of MAGU-2
in the nervous system or muscles was not sufficient to
restore cholinergic synapse density (Figure 2(i,k,m)).
Moreover, expressing mouse Mpp5 cDNA in the epidermis
sufficiently restored synapse number to wild type levels

(Figure 2(l–m)), indicating that mpp5 can function similarly
to MAGU-2. Together, these data indicate that MAGU-2 is
expressed and functions solely in the epidermis to modulate
synaptic connectivity.

MAGU-2 affects phagocytosis in epidermis

To determine if MAGU-2 regulates epidermal phagocytosis,
we investigated whether magu-2(gk218) animals displayed
changes in the epidermal structures marked by GFP::FYVE.
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Figure 1. MAGU-2 is expressed in the epidermis. (a) Diagram of the magu-2 genetic locus on chromosome V. The magu-2 gene is flanked by the neighboring genes,
sup-37 and rpm-1. (b) Diagram of magu-2 gene structure representing the predicted a and b isoforms. Gray arrowheads indicate primers used for isoform analysis.
(c) Diagram of MAGU-2::GFP transgene. (d) Images of PCR products using magu-2a and magu-2b specific primers after gel electrophoresis. Genomic DNA (gDNA)
from N2 was used as a PCR reaction control. Messenger RNAs from N2 were reverse transcribed into cDNA. PCR of magu-2a is expected to produce a 5.7 kb band
from gDNA and 748 bp band from cDNA; magu-2b is expected to produce a 323 bp band from gDNA and a 270 bp band from cDNA. (e) MAGU-2::GFP expression in
an embryo, between 150 and 300min after fertilization. Arrows indicate cluster of cells expressing MAGU-2::GFP. (f) MAGU-2::GFP expression in a z-plane through
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FYVE domains associate with the membranes of endosomes
and phagosomes in developing embryos of C. elegans (Yu,
Lu, & Zhou, 2008). We have reported that both fluores-
cently-labeled FYVE domain and CED-1 expressed in the
epidermis show colocalization with puncta labeled for pre-
synaptic proteins (Cherra & Jin, 2016). Here, we analyzed
the colocalization between GFP::FYVE structures in the epi-
dermis and cholinergic synapses labeled by the presynaptic
marker, mCherry::RAB-3. We observed that wild type ani-
mals displayed �4 colocalization events per 100 micrometers
where GFP::FYVE-labeled structures were associated with
mCherry::RAB-3 expressed by cholinergic motor neurons
(Figure 3(a–b)). In magu-2(gk218) animals, we found a sig-
nificant decrease in the number of phagosomes near cholin-
ergic synapses, similar to that of ced-1(e1735) animals
(Figure 3(a–b)). These results indicate that MAGU-2 regu-
lates epidermal phagocytosis.

To further evaluate the phagocytosis of neuronal materi-
als by the epidermis, we performed electron microscopy ana-
lysis using the mini singlet oxygen generator (miniSOG) to
label specific tissues. When stimulated by blue light,
miniSOG produces singlet oxygen, and in the presence of
diaminobenzadine (DAB), miniSOG oxidizes DAB to gener-
ate electron-dense osmiophilic polymers within nanometers

of miniSOG localization (Shu et al., 2011). We expressed
miniSOG fused to ZIG-10 in cholinergic neurons to deter-
mine if cholinergic membranes were engulfed by the epider-
mis. On electron micrographs of the nerve cord,
miniSOG::ZIG-10 signals were detected in a subset of neur-
onal processes, whose positions were consistent with being
cholinergic axons and dendrites (Figure 3(c–d)).
Importantly, in addition to the miniSOG signals found in
the nerve cord, we also observed miniSOG-containing
vesicles within the epidermis (Figure 3(c)). This suggested
that the epidermis engulfs portions of cholinergic neuronal
membranes. As further support for this idea, we analyzed
cholinergic-driven miniSOG::ZIG-10 in the phagocytotic
receptor ced-1(e1735) animals, which are deficient in execut-
ing phagocytosis (Hedgecock, Sulston, & Thomson, 1983;
Zhou, Hartwieg, & Horvitz, 2001). In over 300 EM sections
from two wild type animals, we found more than twenty
miniSOG-labeled vesicles derived from cholinergic neurons
in the epidermis. In the same number of sections from three
ced-1(e1735) animals, we only observed miniSOG-labeled
cholinergic axons or dendrites (Figure 3(d)). Thus, these
data from miniSOG-mediated correlated-light-electron-
microscopy analyses show that neuronal membranes are
transferred to epidermis through the phagocytosis pathway.
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col-10 promoter for epidermis, or myo-3 promoter for muscle. Mouse mpp5 cDNA was expressed using the col-10 promoter. Gray dots represent individual animals;
the black lines indicate the means; �p< 0.05; ���p< 0.001.
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ZIG-10 localization depends on magu-2

MAGUKs regulate localization and surface expression of ion
channels (El-Husseini et al., 2000), glutamate receptors (Mi
et al., 2004), and N-cadherins (Wang et al., 2014).
Mutations in the extracellular Ig domain of ZIG-10 or
RNAi-mediated knockdown displayed a similar phenotype
to the zig-10(tm6127) mutation, suggesting that extracellular
interactions and cell surface expression levels of ZIG-10
were essential to its function (Cherra & Jin, 2016). We
hypothesized that MAGU-2 may regulate ZIG-10 expression
or localization, similar to the interactions between cell adhe-
sion proteins and other MAGUKs. To test this possibility,
we generated a single-copy insertion of a functional
GFP::ZIG-10 (Supplemental Figure 3). We then co-stained
for GFP::ZIG-10 and the presynaptic active zone protein,
UNC-10 in wild type and magu-2(gk218) animals harboring
the GFP::ZIG-10 transgene. In magu-2(gk218) animals, there
was a significant decrease in GFP::ZIG-10 near UNC-10-

labeled synapses (Figure 4(a,b)). However, there was no
change in GFP::ZIG-10 intensity in neuronal cell bodies
(Figure 4(c,d)). These data suggest that MAGU-2 regulates
ZIG-10 localization near synapses but does not alter ZIG-10
expression levels.

Discussion

The regulation of synaptic connections plays an essential
role in promoting circuit function and robust signaling.
Cell-cell signaling is a common mechanism to modulate syn-
apse formation and maintenance. In mammals, Drosophila,
and C. elegans non-neuronal cells play essential roles in con-
trolling synapse number through multiple mechanisms
(Allen, 2013; Cherra & Jin, 2015; Corty & Freeman, 2013).
Phagocytosis-mediated synapse pruning requires cell-cell
interactions that enable glia or other non-neuronal cells to
remove synapses (Cherra & Jin, 2016; Chung et al., 2013;
MacDonald et al., 2006). Here, we have presented a new
approach for investigating cellular interactions by electron
microscopy, using genetically encoded miniSOG enzyme
that enables the labeling of specific proteins or cellular com-
partments for electron microscopic analysis (Shu et al.,
2011). miniSOG can be expressed in a tissue-specific or tem-
poral manner to enable the analysis of discrete interactions,
such as between the epidermis and neurons. This approach
provides a complementary method for immuno-EM analysis
of protein localization or cell-cell interactions, including the
analysis of phagocytosis.

Within the nervous system, phagocytosis by glia or epi-
dermal cells plays multiple roles in removing dead cells or
debris, degrading axons after injury, and pruning axons or
synapses to modulate neural circuits (Awasaki et al., 2006;
Cherra & Jin, 2016; MacDonald et al., 2006; Rasmussen,
Sack, Martin, & Sagasti, 2015; Stevens et al., 2007). While
the removal of apoptotic cells by phagocytes has been widely
studied, the recognition and engulfment of synapses is not
well understood. In addition to phagocyte-corpse interac-
tions mediated by a phagocytosis receptor, CED-1/Draper/
Megf, other cell surface proteins further modulate the
phagocytosis process, such as integrin and the immuno-
globulin domain superfamily member, ZIG-10 (Albert, Kim,
& Birge, 2000; Cherra & Jin, 2016). Here, we uncovered a
role for the Pals1/Mpp5 homolog, MAGU-2, in regulating
non-neuronal phagocytosis and synapse density at the
neuromuscular junction. MPP members establish cell polar-
ity, participate in axon sorting, and reduce or prevent neur-
onal degeneration through the maintenance of cell-cell
interactions (Cho et al., 2012; van Rossum et al., 2006;
Zollinger et al., 2015). Our data suggest that cell polarity
and MPPs may also modulate synaptic connectivity.

We propose that MAGU-2 functions in the epidermis to
maintain cellular interactions between the epidermis and
neurons by regulating the localization of ZIG-10. In the
presence of MAGU-2, ZIG-10 localizes near synapses and
enables the execution of phagocytosis to reduce the number
of cholinergic synapses at the neuromuscular junction. Since
MPPs are expressed in brain regions where glial-mediated
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mals, which show no miniSOG labeled structures inside the epidermis.
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synaptic pruning occurs (Clarke et al., 2018; Zhang et al.,
2014), this raises the possibility that a conserved mechanism
involving MPPs and phagocytosis may underlie synaptic
pruning in mammals. Together these results provide new
insights into how the phagocytosis pathway modulates syn-
aptic connectivity.

Materials and methods

Strains and transgenes

All strains were maintained at 20 �C as previously described
(Brenner, 1974). Transgenic animals were created by micro-
injection as previously described (Mello, Kramer,
Stinchcomb, & Ambros, 1991). Single-copy insertion of
GFP::ZIG-10 at cxTi10882 on chromosome IV was generated
using CRISPR/Cas9 and modified plasmids (Frokjaer-Jensen,
Davis, Ailion, & Jorgensen, 2012; Takayanagi-Kiya, Zhou, &
Jin, 2016). For further strain and transgene information, see
Table S1 and Supplementary Figure 3.

mRNA Analysis for magu-2

To determine if magu-2 produced both predicted isoforms,
we isolated RNA from mixed stage worms using Trizol
according to manufacturer’s specifications. SuperScript First
Strand Synthesis kit (Invitrogen) was used to generate
cDNA. We performed RT-PCR using primers: 50-
TCGATACCACAGGCACTGT CC-30 as magu-2a forward,
50-CATTGCTGCAACATCTGG ACC-30 as magu-2b for-
ward, and 50-TTTCTTCAACTT CAGCGAGTGG-30 as the
common magu-2 reverse primer.

DNA plasmid construction

MAGU-2::GFP was constructed by PCR amplifying the 4 kb
sequence upstream of magu-2 b as its promoter and cloning
it into pCR8 (Invitrogen) to generate pCZGY3355. The gen-
omic magu-2 coding sequence was amplified by PCR from

wild type worms and Gibson assembly was used to fuse GFP
to the C-terminus of magu-2 to generate MAGU-2::GFP
(pCZGY3358). For tissue-specific rescue constructs, magu-2
cDNA was cloned from wild type animals using SuperScript
III First-Strand Synthesis System (Invitrogen). The splice
leader 1 sequence was used with gene-specific primers that
recognized the longest predicted mRNA to generate magu-2
cDNA, which then was cloned into pCR8 (Invitrogen) to
produce pCZGY3350. Mouse mpp5 cDNA was amplified
from a mouse brain cDNA library and cloned into pCR8 to
produce pCZGY3359. Generation of tissue-specific rescue
constructs was performed using LR reactions (Invitrogen)
with destination vectors containing tissue-specific promoters
: rgef-1, col-10, unc-17b, myo-3 (Altun-Gultekin et al., 2001;
Cherra, & Jin, 2016; Okkema et al., 1993; Rand, 2007). For
single-copy insertion, Gibson assembly was used to clone
Pzig-10-gfp::zig-10, Prps-0-hygromycin resistance gene, and
homology arms around the cxTi10882 locus on chromosome
IV (pCZGY3354). See Table S2 for more information.

Whole-mount immunocytochemistry

To visualize GFP::ZIG-10 at near endogenous levels,
CRISPR technology was used to insert into chromosome
IV a single-copy of GFP::ZIG-10, which encodes the gen-
omic locus of ZIG-10 with GFP fused directly after the sig-
nal peptide. The localization of GFP::ZIG-10 (juSi333) in
the zig-10(tm6127) background in the presence or absence
of the magu-2(gk218) allele was analyzed. Adult animals
were washed 3 times in M9, followed by one 30-min wash
in water. Animals were then placed on poly-L-lysine coated
slides for freeze-crack and fixation with methanol and acet-
one as previously described (Duerr et al., 1999). Following
fixation, slides were washed in PBST and blocked with 5%
goat serum. Samples were then incubated overnight with
antibodies against GFP (1:500, A1112, RRID:AB_10073917,
Invitrogen) and against UNC-10 (1:50, RRID:AB_10570332,
Developmental Studies Hybridoma Bank). Samples were
washed and incubated with secondary antibodies: goat anti-
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mouse Alexa 594 (RRID:AB_141372, Invitrogen) or goat
anti-rabbit Alexa 488 (RRID:AB_143165, Invitrogen). After
washing, samples were mounted with Vectashield mounting
media (RRID:AB_2336789, Vector Labs).

MiniSOG photo-oxidation and electron microscopy

To investigate the cellular interactions between the epider-
mis and the nerve cord, we used miniSOG to label choliner-
gic neurons using tissue-specific promoters. miniSOG-
labeled cellular membranes were visualized by EM after fix-
ation and photo-oxidation. Adult animals were placed in 2%
glutaraldehyde, 2% paraformaldehyde solution in 100mM
sodium cacodylate buffer. After the animals stopped moving,
they were cut in half and incubated for 1 h on ice. The sam-
ples were washed in 100mM sodium cacodylate buffer and
then blocked in 50mM glycine, 10mM potassium cyanide,
20mM aminotriazole in 100mM sodium cacodylate buffer
for 2 h on ice. The samples were placed in a MatTek culture
dish containing ice-cold 2.5mM oxygentated diaminobenza-
dine and 10mM HCl in 100mM sodium cacodylate buffer
and illuminated with blue light using a Leica SPEII confocal
microscope for 20min. The samples were then washed in
100mM sodium cacodylate buffer and post fixed overnight
at 4 �C in 2% osmium tetroxide in 100mM sodium cacody-
late buffer. The following day samples were rinsed with ice-
cold ddH2O, dehydrated with ethanol and acetone,
embedded in Durcupan, and baked for 3 days at 60 �C.

After embedding, 60-nm-thick serial sections were pre-
pared for analysis. MiniSOG-labeled structures were identi-
fied by visual inspection of electron micrographs as vesicular
structures appearing darker than background and that per-
sist through at least two consecutive serial sections. For
miniSOG::ZIG-10 expressed in cholinergic neurons, the
number of miniSOG-labeled structures was counted in the
nerve cord and in the epidermis by an individual blinded to
the sample genotypes.

Fluorescent microscopy

All images were captured at 63� magnification using an
LSM710 confocal microscope (Zeiss) using identical settings
for each fluorescent protein marker. L4 animals were immo-
bilized in M9 buffer by rolling animals such that their dorsal
or ventral surface contacted the coverslip. All image analysis
was performed using the Fiji distribution of NIH ImageJ.

For synapse number, dorsal synapses posterior to the
vulva were imaged, and a single z-plane of 0.5-lm thickness
was analyzed. Synapse density was determined using the
ImageJ Analyze Particles function to count the number of
synaptic puncta larger than 0.05 lm2 over a defined length
of nerve cord.

For colocalization of phagosomes with dorsal synapses
posterior to the vulva, confocal images were manually
inspected for colocalization between GFP::FYVE and
mCherry::RAB-3, as defined by particles containing pixels
from both the red and green channels. The number of

colocalization events per length of nerve cord analyzed was
then determined.

For quantifying ZIG-10 near the neuromuscular junc-
tions, synapses were identified by eye as bright spots labeled
by the UNC-10 antibody. GFP::ZIG-10 intensity was quanti-
fied by drawing a 2-lm-wide rectangle adjacent to the
UNC-10-labeled nerve cord using ImageJ. The integrated
density from the green channel was then measured inside of
the rectangle. The rectangle was then moved 10 lm perpen-
dicular to the nerve cord to measure the background inte-
grated density. The background signal was subtracted from
the GFP::ZIG-10 signal adjacent to the nerve cord to pro-
duce the measured intensity of ZIG-10 at the neuromuscu-
lar junction.

Levamisole sensitivity assay

L4 animals were moved to a fresh plate. The following day
young adult animals were placed on plates containing 1mM
levamisole (Sigma). Animals were gently touched every
15min for one hour to assess paralysis; animals that did not
move after three touches were considered paralyzed.

Statistical analysis

All quantitative data are displayed as mean with individual
data points represented as circles. For comparisons between
two groups with normal distributions, Student’s t-test was
used. A Mann-Whitney test was used for comparisons
between two groups that did not display Gaussian distribu-
tion. For comparisons between multiple groups, an ANOVA
was used followed by post-hoc t-tests using a Bonferroni
correction for multiple comparisons. A p values < 0.05 was
considered statistically significant. Power analysis was per-
formed to ensure that data was collected from a large
enough sample size to provide a beta error � 0.2.
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